blob: 27062ea4b8610a8ebfc5e1b86c0efe38d006a63c [file] [log] [blame]
/*
* Stream management functions.
*
* Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <import/ebistree.h>
#include <haproxy/acl.h>
#include <haproxy/action.h>
#include <haproxy/activity.h>
#include <haproxy/api.h>
#include <haproxy/applet.h>
#include <haproxy/arg.h>
#include <haproxy/backend.h>
#include <haproxy/capture.h>
#include <haproxy/cfgparse.h>
#include <haproxy/channel.h>
#include <haproxy/check.h>
#include <haproxy/cli.h>
#include <haproxy/connection.h>
#include <haproxy/dict.h>
#include <haproxy/dynbuf.h>
#include <haproxy/fd.h>
#include <haproxy/filters.h>
#include <haproxy/freq_ctr.h>
#include <haproxy/frontend.h>
#include <haproxy/global.h>
#include <haproxy/hlua.h>
#include <haproxy/http_ana.h>
#include <haproxy/http_rules.h>
#include <haproxy/htx.h>
#include <haproxy/istbuf.h>
#include <haproxy/log.h>
#include <haproxy/pipe.h>
#include <haproxy/pool.h>
#include <haproxy/proxy.h>
#include <haproxy/queue.h>
#include <haproxy/server.h>
#include <haproxy/resolvers.h>
#include <haproxy/sample.h>
#include <haproxy/session.h>
#include <haproxy/stats-t.h>
#include <haproxy/stick_table.h>
#include <haproxy/stream.h>
#include <haproxy/stream_interface.h>
#include <haproxy/task.h>
#include <haproxy/tcp_rules.h>
#include <haproxy/thread.h>
#include <haproxy/trace.h>
#include <haproxy/vars.h>
DECLARE_POOL(pool_head_stream, "stream", sizeof(struct stream));
DECLARE_POOL(pool_head_uniqueid, "uniqueid", UNIQUEID_LEN);
/* incremented by each "show sess" to fix a delimiter between streams */
unsigned stream_epoch = 0;
/* List of all use-service keywords. */
static struct list service_keywords = LIST_HEAD_INIT(service_keywords);
/* trace source and events */
static void strm_trace(enum trace_level level, uint64_t mask,
const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4);
/* The event representation is split like this :
* strm - stream
* si - stream interface
* http - http analyzis
* tcp - tcp analyzis
*
* STRM_EV_* macros are defined in <proto/stream.h>
*/
static const struct trace_event strm_trace_events[] = {
{ .mask = STRM_EV_STRM_NEW, .name = "strm_new", .desc = "new stream" },
{ .mask = STRM_EV_STRM_FREE, .name = "strm_free", .desc = "release stream" },
{ .mask = STRM_EV_STRM_ERR, .name = "strm_err", .desc = "error during stream processing" },
{ .mask = STRM_EV_STRM_ANA, .name = "strm_ana", .desc = "stream analyzers" },
{ .mask = STRM_EV_STRM_PROC, .name = "strm_proc", .desc = "stream processing" },
{ .mask = STRM_EV_SI_ST, .name = "si_state", .desc = "processing stream-interface states" },
{ .mask = STRM_EV_HTTP_ANA, .name = "http_ana", .desc = "HTTP analyzers" },
{ .mask = STRM_EV_HTTP_ERR, .name = "http_err", .desc = "error during HTTP analyzis" },
{ .mask = STRM_EV_TCP_ANA, .name = "tcp_ana", .desc = "TCP analyzers" },
{ .mask = STRM_EV_TCP_ERR, .name = "tcp_err", .desc = "error during TCP analyzis" },
{}
};
static const struct name_desc strm_trace_lockon_args[4] = {
/* arg1 */ { /* already used by the stream */ },
/* arg2 */ { },
/* arg3 */ { },
/* arg4 */ { }
};
static const struct name_desc strm_trace_decoding[] = {
#define STRM_VERB_CLEAN 1
{ .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" },
#define STRM_VERB_MINIMAL 2
{ .name="minimal", .desc="report info on stream and stream-interfaces" },
#define STRM_VERB_SIMPLE 3
{ .name="simple", .desc="add info on request and response channels" },
#define STRM_VERB_ADVANCED 4
{ .name="advanced", .desc="add info on channel's buffer for data and developer levels only" },
#define STRM_VERB_COMPLETE 5
{ .name="complete", .desc="add info on channel's buffer" },
{ /* end */ }
};
struct trace_source trace_strm = {
.name = IST("stream"),
.desc = "Applicative stream",
.arg_def = TRC_ARG1_STRM, // TRACE()'s first argument is always a stream
.default_cb = strm_trace,
.known_events = strm_trace_events,
.lockon_args = strm_trace_lockon_args,
.decoding = strm_trace_decoding,
.report_events = ~0, // report everything by default
};
#define TRACE_SOURCE &trace_strm
INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE);
/* the stream traces always expect that arg1, if non-null, is of a stream (from
* which we can derive everything), that arg2, if non-null, is an http
* transaction, that arg3, if non-null, is an http message.
*/
static void strm_trace(enum trace_level level, uint64_t mask, const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4)
{
const struct stream *s = a1;
const struct http_txn *txn = a2;
const struct http_msg *msg = a3;
struct task *task;
const struct stream_interface *si_f, *si_b;
const struct channel *req, *res;
struct htx *htx;
if (!s || src->verbosity < STRM_VERB_CLEAN)
return;
task = s->task;
si_f = &s->si[0];
si_b = &s->si[1];
req = &s->req;
res = &s->res;
htx = (msg ? htxbuf(&msg->chn->buf) : NULL);
/* General info about the stream (htx/tcp, id...) */
chunk_appendf(&trace_buf, " : [%u,%s]",
s->uniq_id, ((s->flags & SF_HTX) ? "HTX" : "TCP"));
if (isttest(s->unique_id)) {
chunk_appendf(&trace_buf, " id=");
b_putist(&trace_buf, s->unique_id);
}
/* Front and back stream-int state */
chunk_appendf(&trace_buf, " SI=(%s,%s)",
si_state_str(si_f->state), si_state_str(si_b->state));
/* If txn is defined, HTTP req/rep states */
if (txn)
chunk_appendf(&trace_buf, " HTTP=(%s,%s)",
h1_msg_state_str(txn->req.msg_state), h1_msg_state_str(txn->rsp.msg_state));
if (msg)
chunk_appendf(&trace_buf, " %s", ((msg->chn->flags & CF_ISRESP) ? "RESPONSE" : "REQUEST"));
if (src->verbosity == STRM_VERB_CLEAN)
return;
/* If msg defined, display status-line if possible (verbosity > MINIMAL) */
if (src->verbosity > STRM_VERB_MINIMAL && htx && htx_nbblks(htx)) {
const struct htx_blk *blk = htx_get_head_blk(htx);
const struct htx_sl *sl = htx_get_blk_ptr(htx, blk);
enum htx_blk_type type = htx_get_blk_type(blk);
if (type == HTX_BLK_REQ_SL || type == HTX_BLK_RES_SL)
chunk_appendf(&trace_buf, " - \"%.*s %.*s %.*s\"",
HTX_SL_P1_LEN(sl), HTX_SL_P1_PTR(sl),
HTX_SL_P2_LEN(sl), HTX_SL_P2_PTR(sl),
HTX_SL_P3_LEN(sl), HTX_SL_P3_PTR(sl));
}
/* If txn defined info about HTTP msgs, otherwise info about SI. */
if (txn) {
chunk_appendf(&trace_buf, " - t=%p s=(%p,0x%08x) txn.flags=0x%08x, http.flags=(0x%08x,0x%08x) status=%d",
task, s, s->flags, txn->flags, txn->req.flags, txn->rsp.flags, txn->status);
}
else {
chunk_appendf(&trace_buf, " - t=%p s=(%p,0x%08x) si_f=(%p,0x%08x,0x%x) si_b=(%p,0x%08x,0x%x) retries=%d",
task, s, s->flags, si_f, si_f->flags, si_f->err_type,
si_b, si_b->flags, si_b->err_type, si_b->conn_retries);
}
if (src->verbosity == STRM_VERB_MINIMAL)
return;
/* If txn defined, don't display all channel info */
if (src->verbosity == STRM_VERB_SIMPLE || txn) {
chunk_appendf(&trace_buf, " req=(%p .fl=0x%08x .exp(r,w,a)=(%u,%u,%u))",
req, req->flags, req->rex, req->wex, req->analyse_exp);
chunk_appendf(&trace_buf, " res=(%p .fl=0x%08x .exp(r,w,a)=(%u,%u,%u))",
res, res->flags, res->rex, res->wex, res->analyse_exp);
}
else {
chunk_appendf(&trace_buf, " req=(%p .fl=0x%08x .ana=0x%08x .exp(r,w,a)=(%u,%u,%u) .o=%lu .tot=%llu .to_fwd=%u)",
req, req->flags, req->analysers, req->rex, req->wex, req->analyse_exp,
(long)req->output, req->total, req->to_forward);
chunk_appendf(&trace_buf, " res=(%p .fl=0x%08x .ana=0x%08x .exp(r,w,a)=(%u,%u,%u) .o=%lu .tot=%llu .to_fwd=%u)",
res, res->flags, res->analysers, res->rex, res->wex, res->analyse_exp,
(long)res->output, res->total, res->to_forward);
}
if (src->verbosity == STRM_VERB_SIMPLE ||
(src->verbosity == STRM_VERB_ADVANCED && src->level < TRACE_LEVEL_DATA))
return;
/* channels' buffer info */
if (s->flags & SF_HTX) {
struct htx *rqhtx = htxbuf(&req->buf);
struct htx *rphtx = htxbuf(&res->buf);
chunk_appendf(&trace_buf, " htx=(%u/%u#%u, %u/%u#%u)",
rqhtx->data, rqhtx->size, htx_nbblks(rqhtx),
rphtx->data, rphtx->size, htx_nbblks(rphtx));
}
else {
chunk_appendf(&trace_buf, " buf=(%u@%p+%u/%u, %u@%p+%u/%u)",
(unsigned int)b_data(&req->buf), b_orig(&req->buf),
(unsigned int)b_head_ofs(&req->buf), (unsigned int)b_size(&req->buf),
(unsigned int)b_data(&req->buf), b_orig(&req->buf),
(unsigned int)b_head_ofs(&req->buf), (unsigned int)b_size(&req->buf));
}
/* If msg defined, display htx info if defined (level > USER) */
if (src->level > TRACE_LEVEL_USER && htx && htx_nbblks(htx)) {
int full = 0;
/* Full htx info (level > STATE && verbosity > SIMPLE) */
if (src->level > TRACE_LEVEL_STATE) {
if (src->verbosity == STRM_VERB_COMPLETE)
full = 1;
}
chunk_memcat(&trace_buf, "\n\t", 2);
htx_dump(&trace_buf, htx, full);
}
}
/* Create a new stream for connection <conn>. Return < 0 on error. This is only
* valid right after the handshake, before the connection's data layer is
* initialized, because it relies on the session to be in conn->owner. On
* success, <input> buffer is transferred to the stream and thus points to
* BUF_NULL. On error, it is unchanged and it is the caller responsibility to
* release it.
*/
int stream_create_from_cs(struct conn_stream *cs, struct buffer *input)
{
struct stream *strm;
strm = stream_new(cs->conn->owner, &cs->obj_type, input);
if (strm == NULL)
return -1;
task_wakeup(strm->task, TASK_WOKEN_INIT);
return 0;
}
/* Upgrade an existing TCP stream for connection <conn>. Return < 0 on error.
* This is only valid right after a TCP to H1 upgrade. The stream should be
* "reativated" by removing SF_IGNORE flag. And the right mode must be set.
* On success, <input> buffer is transferred to the stream and thus points to
* BUF_NULL. On error, it is unchanged and it is the caller responsibility to
* release it (this never happens for now).
*/
int stream_upgrade_from_cs(struct conn_stream *cs, struct buffer *input)
{
struct stream_interface *si = cs->data;
struct stream *s = si_strm(si);
if (cs->conn->mux->flags & MX_FL_HTX)
s->flags |= SF_HTX;
if (!b_is_null(input)) {
/* Xfer the input buffer to the request channel. <input> will
* than point to BUF_NULL. From this point, it is the stream
* responsibility to release it.
*/
s->req.buf = *input;
*input = BUF_NULL;
s->req.total = (IS_HTX_STRM(s) ? htxbuf(&s->req.buf)->data : b_data(&s->req.buf));
s->req.flags |= (s->req.total ? CF_READ_PARTIAL : 0);
}
s->flags &= ~SF_IGNORE;
task_wakeup(s->task, TASK_WOKEN_INIT);
return 0;
}
/* Callback used to wake up a stream when an input buffer is available. The
* stream <s>'s stream interfaces are checked for a failed buffer allocation
* as indicated by the presence of the SI_FL_RXBLK_ROOM flag and the lack of a
* buffer, and and input buffer is assigned there (at most one). The function
* returns 1 and wakes the stream up if a buffer was taken, otherwise zero.
* It's designed to be called from __offer_buffer().
*/
int stream_buf_available(void *arg)
{
struct stream *s = arg;
if (!s->req.buf.size && !s->req.pipe && (s->si[0].flags & SI_FL_RXBLK_BUFF) &&
b_alloc(&s->req.buf))
si_rx_buff_rdy(&s->si[0]);
else if (!s->res.buf.size && !s->res.pipe && (s->si[1].flags & SI_FL_RXBLK_BUFF) &&
b_alloc(&s->res.buf))
si_rx_buff_rdy(&s->si[1]);
else
return 0;
task_wakeup(s->task, TASK_WOKEN_RES);
return 1;
}
/* This function is called from the session handler which detects the end of
* handshake, in order to complete initialization of a valid stream. It must be
* called with a completely initialized session. It returns the pointer to
* the newly created stream, or NULL in case of fatal error. The client-facing
* end point is assigned to <origin>, which must be valid. The stream's task
* is configured with a nice value inherited from the listener's nice if any.
* The task's context is set to the new stream, and its function is set to
* process_stream(). Target and analysers are null. <input> is used as input
* buffer for the request channel and may contain data. On success, it is
* transfer to the stream and <input> is set to BUF_NULL. On error, <input>
* buffer is unchanged and it is the caller responsibility to release it.
*/
struct stream *stream_new(struct session *sess, enum obj_type *origin, struct buffer *input)
{
struct stream *s;
struct task *t;
struct conn_stream *cs = objt_cs(origin);
struct appctx *appctx = objt_appctx(origin);
DBG_TRACE_ENTER(STRM_EV_STRM_NEW);
if (unlikely((s = pool_alloc(pool_head_stream)) == NULL))
goto out_fail_alloc;
/* minimum stream initialization required for an embryonic stream is
* fairly low. We need very little to execute L4 ACLs, then we need a
* task to make the client-side connection live on its own.
* - flags
* - stick-entry tracking
*/
s->flags = 0;
s->logs.logwait = sess->fe->to_log;
s->logs.level = 0;
tv_zero(&s->logs.tv_request);
s->logs.t_queue = -1;
s->logs.t_connect = -1;
s->logs.t_data = -1;
s->logs.t_close = 0;
s->logs.bytes_in = s->logs.bytes_out = 0;
s->logs.prx_queue_pos = 0; /* we get the number of pending conns before us */
s->logs.srv_queue_pos = 0; /* we will get this number soon */
s->obj_type = OBJ_TYPE_STREAM;
s->logs.accept_date = sess->accept_date;
s->logs.tv_accept = sess->tv_accept;
s->logs.t_handshake = sess->t_handshake;
s->logs.t_idle = sess->t_idle;
/* default logging function */
s->do_log = strm_log;
/* default error reporting function, may be changed by analysers */
s->srv_error = default_srv_error;
/* Initialise the current rule list pointer to NULL. We are sure that
* any rulelist match the NULL pointer.
*/
s->current_rule_list = NULL;
s->current_rule = NULL;
s->rules_exp = TICK_ETERNITY;
/* Copy SC counters for the stream. We don't touch refcounts because
* any reference we have is inherited from the session. Since the stream
* doesn't exist without the session, the session's existence guarantees
* we don't lose the entry. During the store operation, the stream won't
* touch these ones.
*/
memcpy(s->stkctr, sess->stkctr, sizeof(s->stkctr));
s->sess = sess;
s->si[0].flags = SI_FL_NONE;
s->si[1].flags = SI_FL_ISBACK;
s->stream_epoch = _HA_ATOMIC_LOAD(&stream_epoch);
s->uniq_id = _HA_ATOMIC_FETCH_ADD(&global.req_count, 1);
/* OK, we're keeping the stream, so let's properly initialize the stream */
LIST_INIT(&s->back_refs);
LIST_INIT(&s->buffer_wait.list);
s->buffer_wait.target = s;
s->buffer_wait.wakeup_cb = stream_buf_available;
s->call_rate.curr_tick = s->call_rate.curr_ctr = s->call_rate.prev_ctr = 0;
s->pcli_next_pid = 0;
s->pcli_flags = 0;
s->unique_id = IST_NULL;
if ((t = task_new(tid_bit)) == NULL)
goto out_fail_alloc;
s->task = t;
s->pending_events = 0;
t->process = process_stream;
t->context = s;
t->expire = TICK_ETERNITY;
if (sess->listener)
t->nice = sess->listener->nice;
/* Note: initially, the stream's backend points to the frontend.
* This changes later when switching rules are executed or
* when the default backend is assigned.
*/
s->be = sess->fe;
s->req_cap = NULL;
s->res_cap = NULL;
/* Initialise all the variables contexts even if not used.
* This permits to prune these contexts without errors.
*/
vars_init_head(&s->vars_txn, SCOPE_TXN);
vars_init_head(&s->vars_reqres, SCOPE_REQ);
/* this part should be common with other protocols */
if (si_reset(&s->si[0]) < 0)
goto out_fail_alloc;
si_set_state(&s->si[0], SI_ST_EST);
s->si[0].hcto = sess->fe->timeout.clientfin;
if (cs && cs->conn->mux) {
if (cs->conn->mux->flags & MX_FL_CLEAN_ABRT)
s->si[0].flags |= SI_FL_CLEAN_ABRT;
if (cs->conn->mux->flags & MX_FL_HTX)
s->flags |= SF_HTX;
}
/* Set SF_HTX flag for HTTP frontends. */
if (sess->fe->mode == PR_MODE_HTTP)
s->flags |= SF_HTX;
/* attach the incoming connection to the stream interface now. */
if (cs)
si_attach_cs(&s->si[0], cs);
else if (appctx)
si_attach_appctx(&s->si[0], appctx);
if (likely(sess->fe->options2 & PR_O2_INDEPSTR))
s->si[0].flags |= SI_FL_INDEP_STR;
/* pre-initialize the other side's stream interface to an INIT state. The
* callbacks will be initialized before attempting to connect.
*/
if (si_reset(&s->si[1]) < 0)
goto out_fail_alloc_si1;
s->si[1].hcto = TICK_ETERNITY;
if (likely(sess->fe->options2 & PR_O2_INDEPSTR))
s->si[1].flags |= SI_FL_INDEP_STR;
stream_init_srv_conn(s);
s->target = sess->listener ? sess->listener->default_target : NULL;
s->target_addr = NULL;
s->pend_pos = NULL;
s->priority_class = 0;
s->priority_offset = 0;
/* init store persistence */
s->store_count = 0;
channel_init(&s->req);
s->req.flags |= CF_READ_ATTACHED; /* the producer is already connected */
s->req.analysers = sess->listener ? sess->listener->analysers : 0;
if (IS_HTX_STRM(s)) {
/* Be sure to have HTTP analysers because in case of
* "destructive" stream upgrade, they may be missing (e.g
* TCP>H2)
*/
s->req.analysers |= AN_REQ_WAIT_HTTP|AN_REQ_HTTP_PROCESS_FE;
}
if (!sess->fe->fe_req_ana) {
channel_auto_connect(&s->req); /* don't wait to establish connection */
channel_auto_close(&s->req); /* let the producer forward close requests */
}
s->req.rto = sess->fe->timeout.client;
s->req.wto = TICK_ETERNITY;
s->req.rex = TICK_ETERNITY;
s->req.wex = TICK_ETERNITY;
s->req.analyse_exp = TICK_ETERNITY;
channel_init(&s->res);
s->res.flags |= CF_ISRESP;
s->res.analysers = 0;
if (sess->fe->options2 & PR_O2_NODELAY) {
s->req.flags |= CF_NEVER_WAIT;
s->res.flags |= CF_NEVER_WAIT;
}
s->res.wto = sess->fe->timeout.client;
s->res.rto = TICK_ETERNITY;
s->res.rex = TICK_ETERNITY;
s->res.wex = TICK_ETERNITY;
s->res.analyse_exp = TICK_ETERNITY;
s->txn = NULL;
s->hlua = NULL;
s->resolv_ctx.requester = NULL;
s->resolv_ctx.hostname_dn = NULL;
s->resolv_ctx.hostname_dn_len = 0;
s->resolv_ctx.parent = NULL;
s->tunnel_timeout = TICK_ETERNITY;
LIST_APPEND(&ti->streams, &s->list);
if (flt_stream_init(s) < 0 || flt_stream_start(s) < 0)
goto out_fail_accept;
s->si[1].l7_buffer = BUF_NULL;
/* finish initialization of the accepted file descriptor */
if (appctx)
si_want_get(&s->si[0]);
if (sess->fe->accept && sess->fe->accept(s) < 0)
goto out_fail_accept;
if (!b_is_null(input)) {
/* Xfer the input buffer to the request channel. <input> will
* than point to BUF_NULL. From this point, it is the stream
* responsibility to release it.
*/
s->req.buf = *input;
*input = BUF_NULL;
s->req.total = (IS_HTX_STRM(s) ? htxbuf(&s->req.buf)->data : b_data(&s->req.buf));
s->req.flags |= (s->req.total ? CF_READ_PARTIAL : 0);
}
/* it is important not to call the wakeup function directly but to
* pass through task_wakeup(), because this one knows how to apply
* priorities to tasks. Using multi thread we must be sure that
* stream is fully initialized before calling task_wakeup. So
* the caller must handle the task_wakeup
*/
DBG_TRACE_LEAVE(STRM_EV_STRM_NEW, s);
return s;
/* Error unrolling */
out_fail_accept:
flt_stream_release(s, 0);
task_destroy(t);
tasklet_free(s->si[1].wait_event.tasklet);
LIST_DELETE(&s->list);
out_fail_alloc_si1:
tasklet_free(s->si[0].wait_event.tasklet);
out_fail_alloc:
pool_free(pool_head_stream, s);
DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_NEW|STRM_EV_STRM_ERR);
return NULL;
}
/*
* frees the context associated to a stream. It must have been removed first.
*/
static void stream_free(struct stream *s)
{
struct session *sess = strm_sess(s);
struct proxy *fe = sess->fe;
struct bref *bref, *back;
struct conn_stream *cli_cs = objt_cs(s->si[0].end);
int must_free_sess;
int i;
DBG_TRACE_POINT(STRM_EV_STRM_FREE, s);
/* detach the stream from its own task before even releasing it so
* that walking over a task list never exhibits a dying stream.
*/
s->task->context = NULL;
__ha_barrier_store();
pendconn_free(s);
if (objt_server(s->target)) { /* there may be requests left pending in queue */
if (s->flags & SF_CURR_SESS) {
s->flags &= ~SF_CURR_SESS;
_HA_ATOMIC_DEC(&__objt_server(s->target)->cur_sess);
}
if (may_dequeue_tasks(objt_server(s->target), s->be))
process_srv_queue(objt_server(s->target));
}
if (unlikely(s->srv_conn)) {
/* the stream still has a reserved slot on a server, but
* it should normally be only the same as the one above,
* so this should not happen in fact.
*/
sess_change_server(s, NULL);
}
if (s->req.pipe)
put_pipe(s->req.pipe);
if (s->res.pipe)
put_pipe(s->res.pipe);
/* We may still be present in the buffer wait queue */
if (LIST_INLIST(&s->buffer_wait.list))
LIST_DEL_INIT(&s->buffer_wait.list);
if (s->req.buf.size || s->res.buf.size) {
int count = !!s->req.buf.size + !!s->res.buf.size;
b_free(&s->req.buf);
b_free(&s->res.buf);
offer_buffers(NULL, count);
}
pool_free(pool_head_uniqueid, s->unique_id.ptr);
s->unique_id = IST_NULL;
flt_stream_stop(s);
flt_stream_release(s, 0);
hlua_ctx_destroy(s->hlua);
s->hlua = NULL;
if (s->txn)
http_destroy_txn(s);
/* ensure the client-side transport layer is destroyed */
if (cli_cs)
cs_close(cli_cs);
for (i = 0; i < s->store_count; i++) {
if (!s->store[i].ts)
continue;
stksess_free(s->store[i].table, s->store[i].ts);
s->store[i].ts = NULL;
}
if (s->resolv_ctx.requester) {
__decl_thread(struct resolvers *resolvers = s->resolv_ctx.parent->arg.resolv.resolvers);
HA_SPIN_LOCK(DNS_LOCK, &resolvers->lock);
ha_free(&s->resolv_ctx.hostname_dn);
s->resolv_ctx.hostname_dn_len = 0;
resolv_unlink_resolution(s->resolv_ctx.requester, 0);
HA_SPIN_UNLOCK(DNS_LOCK, &resolvers->lock);
pool_free(resolv_requester_pool, s->resolv_ctx.requester);
s->resolv_ctx.requester = NULL;
}
if (fe) {
if (s->req_cap) {
struct cap_hdr *h;
for (h = fe->req_cap; h; h = h->next)
pool_free(h->pool, s->req_cap[h->index]);
}
if (s->res_cap) {
struct cap_hdr *h;
for (h = fe->rsp_cap; h; h = h->next)
pool_free(h->pool, s->res_cap[h->index]);
}
pool_free(fe->rsp_cap_pool, s->res_cap);
pool_free(fe->req_cap_pool, s->req_cap);
}
/* Cleanup all variable contexts. */
if (!LIST_ISEMPTY(&s->vars_txn.head))
vars_prune(&s->vars_txn, s->sess, s);
if (!LIST_ISEMPTY(&s->vars_reqres.head))
vars_prune(&s->vars_reqres, s->sess, s);
stream_store_counters(s);
list_for_each_entry_safe(bref, back, &s->back_refs, users) {
/* we have to unlink all watchers. We must not relink them if
* this stream was the last one in the list. This is safe to do
* here because we're touching our thread's list so we know
* that other streams are not active, and the watchers will
* only touch their node under thread isolation.
*/
LIST_DEL_INIT(&bref->users);
if (s->list.n != &ti->streams)
LIST_APPEND(&LIST_ELEM(s->list.n, struct stream *, list)->back_refs, &bref->users);
bref->ref = s->list.n;
__ha_barrier_store();
}
LIST_DELETE(&s->list);
/* applets do not release session yet */
must_free_sess = objt_appctx(sess->origin) && sess->origin == s->si[0].end;
si_release_endpoint(&s->si[1]);
si_release_endpoint(&s->si[0]);
tasklet_free(s->si[0].wait_event.tasklet);
tasklet_free(s->si[1].wait_event.tasklet);
b_free(&s->si[1].l7_buffer);
if (must_free_sess) {
sess->origin = NULL;
session_free(sess);
}
sockaddr_free(&s->target_addr);
pool_free(pool_head_stream, s);
/* We may want to free the maximum amount of pools if the proxy is stopping */
if (fe && unlikely(fe->disabled)) {
pool_flush(pool_head_buffer);
pool_flush(pool_head_http_txn);
pool_flush(pool_head_requri);
pool_flush(pool_head_capture);
pool_flush(pool_head_stream);
pool_flush(pool_head_session);
pool_flush(pool_head_connection);
pool_flush(pool_head_pendconn);
pool_flush(fe->req_cap_pool);
pool_flush(fe->rsp_cap_pool);
}
}
/* Allocates a work buffer for stream <s>. It is meant to be called inside
* process_stream(). It will only allocate the side needed for the function
* to work fine, which is the response buffer so that an error message may be
* built and returned. Response buffers may be allocated from the reserve, this
* is critical to ensure that a response may always flow and will never block a
* server from releasing a connection. Returns 0 in case of failure, non-zero
* otherwise.
*/
static int stream_alloc_work_buffer(struct stream *s)
{
if (LIST_INLIST(&s->buffer_wait.list))
LIST_DEL_INIT(&s->buffer_wait.list);
if (b_alloc(&s->res.buf))
return 1;
LIST_APPEND(&ti->buffer_wq, &s->buffer_wait.list);
return 0;
}
/* releases unused buffers after processing. Typically used at the end of the
* update() functions. It will try to wake up as many tasks/applets as the
* number of buffers that it releases. In practice, most often streams are
* blocked on a single buffer, so it makes sense to try to wake two up when two
* buffers are released at once.
*/
void stream_release_buffers(struct stream *s)
{
int offer = 0;
if (c_size(&s->req) && c_empty(&s->req)) {
offer++;
b_free(&s->req.buf);
}
if (c_size(&s->res) && c_empty(&s->res)) {
offer++;
b_free(&s->res.buf);
}
/* if we're certain to have at least 1 buffer available, and there is
* someone waiting, we can wake up a waiter and offer them.
*/
if (offer)
offer_buffers(s, offer);
}
void stream_process_counters(struct stream *s)
{
struct session *sess = s->sess;
unsigned long long bytes;
int i;
bytes = s->req.total - s->logs.bytes_in;
s->logs.bytes_in = s->req.total;
if (bytes) {
_HA_ATOMIC_ADD(&sess->fe->fe_counters.bytes_in, bytes);
_HA_ATOMIC_ADD(&s->be->be_counters.bytes_in, bytes);
if (objt_server(s->target))
_HA_ATOMIC_ADD(&objt_server(s->target)->counters.bytes_in, bytes);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->bytes_in, bytes);
for (i = 0; i < MAX_SESS_STKCTR; i++) {
if (!stkctr_inc_bytes_in_ctr(&s->stkctr[i], bytes))
stkctr_inc_bytes_in_ctr(&sess->stkctr[i], bytes);
}
}
bytes = s->res.total - s->logs.bytes_out;
s->logs.bytes_out = s->res.total;
if (bytes) {
_HA_ATOMIC_ADD(&sess->fe->fe_counters.bytes_out, bytes);
_HA_ATOMIC_ADD(&s->be->be_counters.bytes_out, bytes);
if (objt_server(s->target))
_HA_ATOMIC_ADD(&objt_server(s->target)->counters.bytes_out, bytes);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->bytes_out, bytes);
for (i = 0; i < MAX_SESS_STKCTR; i++) {
if (!stkctr_inc_bytes_out_ctr(&s->stkctr[i], bytes))
stkctr_inc_bytes_out_ctr(&sess->stkctr[i], bytes);
}
}
}
int stream_set_timeout(struct stream *s, enum act_timeout_name name, int timeout)
{
switch (name) {
case ACT_TIMEOUT_SERVER:
s->req.wto = timeout;
s->res.rto = timeout;
return 1;
case ACT_TIMEOUT_TUNNEL:
s->tunnel_timeout = timeout;
return 1;
default:
return 0;
}
}
/*
* This function handles the transition between the SI_ST_CON state and the
* SI_ST_EST state. It must only be called after switching from SI_ST_CON (or
* SI_ST_INI or SI_ST_RDY) to SI_ST_EST, but only when a ->proto is defined.
* Note that it will switch the interface to SI_ST_DIS if we already have
* the CF_SHUTR flag, it means we were able to forward the request, and
* receive the response, before process_stream() had the opportunity to
* make the switch from SI_ST_CON to SI_ST_EST. When that happens, we want
* to go through back_establish() anyway, to make sure the analysers run.
* Timeouts are cleared. Error are reported on the channel so that analysers
* can handle them.
*/
static void back_establish(struct stream *s)
{
struct stream_interface *si = &s->si[1];
struct conn_stream *srv_cs = objt_cs(si->end);
struct connection *conn = srv_cs ? srv_cs->conn : objt_conn(si->end);
struct channel *req = &s->req;
struct channel *rep = &s->res;
DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
/* First, centralize the timers information, and clear any irrelevant
* timeout.
*/
s->logs.t_connect = tv_ms_elapsed(&s->logs.tv_accept, &now);
si->exp = TICK_ETERNITY;
si->flags &= ~SI_FL_EXP;
/* errors faced after sending data need to be reported */
if (si->flags & SI_FL_ERR && req->flags & CF_WROTE_DATA) {
/* Don't add CF_WRITE_ERROR if we're here because
* early data were rejected by the server, or
* http_wait_for_response() will never be called
* to send a 425.
*/
if (conn && conn->err_code != CO_ER_SSL_EARLY_FAILED)
req->flags |= CF_WRITE_ERROR;
rep->flags |= CF_READ_ERROR;
si->err_type = SI_ET_DATA_ERR;
DBG_TRACE_STATE("read/write error", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s);
}
if (objt_server(s->target))
health_adjust(objt_server(s->target), HANA_STATUS_L4_OK);
if (!IS_HTX_STRM(s)) { /* let's allow immediate data connection in this case */
/* if the user wants to log as soon as possible, without counting
* bytes from the server, then this is the right moment. */
if (!LIST_ISEMPTY(&strm_fe(s)->logformat) && !(s->logs.logwait & LW_BYTES)) {
/* note: no pend_pos here, session is established */
s->logs.t_close = s->logs.t_connect; /* to get a valid end date */
s->do_log(s);
}
}
else {
rep->flags |= CF_READ_DONTWAIT; /* a single read is enough to get response headers */
}
rep->analysers |= strm_fe(s)->fe_rsp_ana | s->be->be_rsp_ana;
si_rx_endp_more(si);
rep->flags |= CF_READ_ATTACHED; /* producer is now attached */
if (objt_cs(si->end)) {
/* real connections have timeouts
* if already defined, it means that a set-timeout rule has
* been executed so do not overwrite them
*/
if (!tick_isset(req->wto))
req->wto = s->be->timeout.server;
if (!tick_isset(rep->rto))
rep->rto = s->be->timeout.server;
if (!tick_isset(s->tunnel_timeout))
s->tunnel_timeout = s->be->timeout.tunnel;
/* The connection is now established, try to read data from the
* underlying layer, and subscribe to recv events. We use a
* delayed recv here to give a chance to the data to flow back
* by the time we process other tasks.
*/
si_chk_rcv(si);
}
req->wex = TICK_ETERNITY;
/* If we managed to get the whole response, and we don't have anything
* left to send, or can't, switch to SI_ST_DIS now. */
if (rep->flags & (CF_SHUTR | CF_SHUTW)) {
si->state = SI_ST_DIS;
DBG_TRACE_STATE("response channel shutdwn for read/write", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s);
}
DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
}
/* Set correct stream termination flags in case no analyser has done it. It
* also counts a failed request if the server state has not reached the request
* stage.
*/
static void sess_set_term_flags(struct stream *s)
{
if (!(s->flags & SF_FINST_MASK)) {
if (s->si[1].state == SI_ST_INI) {
/* anything before REQ in fact */
_HA_ATOMIC_INC(&strm_fe(s)->fe_counters.failed_req);
if (strm_li(s) && strm_li(s)->counters)
_HA_ATOMIC_INC(&strm_li(s)->counters->failed_req);
s->flags |= SF_FINST_R;
}
else if (s->si[1].state == SI_ST_QUE)
s->flags |= SF_FINST_Q;
else if (si_state_in(s->si[1].state, SI_SB_REQ|SI_SB_TAR|SI_SB_ASS|SI_SB_CON|SI_SB_CER|SI_SB_RDY))
s->flags |= SF_FINST_C;
else if (s->si[1].state == SI_ST_EST || s->si[1].prev_state == SI_ST_EST)
s->flags |= SF_FINST_D;
else
s->flags |= SF_FINST_L;
}
}
/* This function parses the use-service action ruleset. It executes
* the associated ACL and set an applet as a stream or txn final node.
* it returns ACT_RET_ERR if an error occurs, the proxy left in
* consistent state. It returns ACT_RET_STOP in success case because
* use-service must be a terminal action. Returns ACT_RET_YIELD
* if the initialisation function require more data.
*/
enum act_return process_use_service(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
struct appctx *appctx;
/* Initialises the applet if it is required. */
if (flags & ACT_OPT_FIRST) {
/* Register applet. this function schedules the applet. */
s->target = &rule->applet.obj_type;
if (unlikely(!si_register_handler(&s->si[1], objt_applet(s->target))))
return ACT_RET_ERR;
/* Initialise the context. */
appctx = si_appctx(&s->si[1]);
memset(&appctx->ctx, 0, sizeof(appctx->ctx));
appctx->rule = rule;
}
else
appctx = si_appctx(&s->si[1]);
/* Stops the applet scheduling, in case of the init function miss
* some data.
*/
si_stop_get(&s->si[1]);
/* Call initialisation. */
if (rule->applet.init)
switch (rule->applet.init(appctx, px, s)) {
case 0: return ACT_RET_ERR;
case 1: break;
default: return ACT_RET_YIELD;
}
if (rule->from != ACT_F_HTTP_REQ) {
if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */
_HA_ATOMIC_INC(&sess->fe->fe_counters.intercepted_req);
/* The flag SF_ASSIGNED prevent from server assignment. */
s->flags |= SF_ASSIGNED;
}
/* Now we can schedule the applet. */
si_cant_get(&s->si[1]);
appctx_wakeup(appctx);
return ACT_RET_STOP;
}
/* This stream analyser checks the switching rules and changes the backend
* if appropriate. The default_backend rule is also considered, then the
* target backend's forced persistence rules are also evaluated last if any.
* It returns 1 if the processing can continue on next analysers, or zero if it
* either needs more data or wants to immediately abort the request.
*/
static int process_switching_rules(struct stream *s, struct channel *req, int an_bit)
{
struct persist_rule *prst_rule;
struct session *sess = s->sess;
struct proxy *fe = sess->fe;
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
/* now check whether we have some switching rules for this request */
if (!(s->flags & SF_BE_ASSIGNED)) {
struct switching_rule *rule;
list_for_each_entry(rule, &fe->switching_rules, list) {
int ret = 1;
if (rule->cond) {
ret = acl_exec_cond(rule->cond, fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
/* If the backend name is dynamic, try to resolve the name.
* If we can't resolve the name, or if any error occurs, break
* the loop and fallback to the default backend.
*/
struct proxy *backend = NULL;
if (rule->dynamic) {
struct buffer *tmp;
tmp = alloc_trash_chunk();
if (!tmp)
goto sw_failed;
if (build_logline(s, tmp->area, tmp->size, &rule->be.expr))
backend = proxy_be_by_name(tmp->area);
free_trash_chunk(tmp);
tmp = NULL;
if (!backend)
break;
}
else
backend = rule->be.backend;
if (!stream_set_backend(s, backend))
goto sw_failed;
break;
}
}
/* To ensure correct connection accounting on the backend, we
* have to assign one if it was not set (eg: a listen). This
* measure also takes care of correctly setting the default
* backend if any. Don't do anything if an upgrade is already in
* progress.
*/
if (!(s->flags & (SF_BE_ASSIGNED|SF_IGNORE)))
if (!stream_set_backend(s, fe->defbe.be ? fe->defbe.be : s->be))
goto sw_failed;
/* No backend assigned but no error reported. It happens when a
* TCP stream is upgraded to HTTP/2.
*/
if ((s->flags & (SF_BE_ASSIGNED|SF_IGNORE)) == SF_IGNORE) {
DBG_TRACE_DEVEL("leaving with no backend because of a destructive upgrade", STRM_EV_STRM_ANA, s);
return 0;
}
}
/* we don't want to run the TCP or HTTP filters again if the backend has not changed */
if (fe == s->be) {
s->req.analysers &= ~AN_REQ_INSPECT_BE;
s->req.analysers &= ~AN_REQ_HTTP_PROCESS_BE;
s->req.analysers &= ~AN_REQ_FLT_START_BE;
}
/* as soon as we know the backend, we must check if we have a matching forced or ignored
* persistence rule, and report that in the stream.
*/
list_for_each_entry(prst_rule, &s->be->persist_rules, list) {
int ret = 1;
if (prst_rule->cond) {
ret = acl_exec_cond(prst_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (prst_rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
/* no rule, or the rule matches */
if (prst_rule->type == PERSIST_TYPE_FORCE) {
s->flags |= SF_FORCE_PRST;
} else {
s->flags |= SF_IGNORE_PRST;
}
break;
}
}
DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
return 1;
sw_failed:
/* immediately abort this request in case of allocation failure */
channel_abort(&s->req);
channel_abort(&s->res);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_RESOURCE;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
if (s->txn)
s->txn->status = 500;
s->req.analysers &= AN_REQ_FLT_END;
s->req.analyse_exp = TICK_ETERNITY;
DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_ANA|STRM_EV_STRM_ERR, s);
return 0;
}
/* This stream analyser works on a request. It applies all use-server rules on
* it then returns 1. The data must already be present in the buffer otherwise
* they won't match. It always returns 1.
*/
static int process_server_rules(struct stream *s, struct channel *req, int an_bit)
{
struct proxy *px = s->be;
struct session *sess = s->sess;
struct server_rule *rule;
DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
if (!(s->flags & SF_ASSIGNED)) {
list_for_each_entry(rule, &px->server_rules, list) {
int ret;
ret = acl_exec_cond(rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
if (ret) {
struct server *srv;
if (rule->dynamic) {
struct buffer *tmp = get_trash_chunk();
if (!build_logline(s, tmp->area, tmp->size, &rule->expr))
break;
srv = findserver(s->be, tmp->area);
if (!srv)
break;
}
else
srv = rule->srv.ptr;
if ((srv->cur_state != SRV_ST_STOPPED) ||
(px->options & PR_O_PERSIST) ||
(s->flags & SF_FORCE_PRST)) {
s->flags |= SF_DIRECT | SF_ASSIGNED;
s->target = &srv->obj_type;
break;
}
/* if the server is not UP, let's go on with next rules
* just in case another one is suited.
*/
}
}
}
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
return 1;
}
static inline void sticking_rule_find_target(struct stream *s,
struct stktable *t, struct stksess *ts)
{
struct proxy *px = s->be;
struct eb32_node *node;
struct dict_entry *de;
void *ptr;
struct server *srv;
/* Look for the server name previously stored in <t> stick-table */
HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock);
ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_KEY);
de = stktable_data_cast(ptr, std_t_dict);
HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock);
if (de) {
struct ebpt_node *node;
if (t->server_key_type == STKTABLE_SRV_NAME) {
node = ebis_lookup(&px->conf.used_server_name, de->value.key);
if (node) {
srv = container_of(node, struct server, conf.name);
goto found;
}
} else if (t->server_key_type == STKTABLE_SRV_ADDR) {
HA_RWLOCK_RDLOCK(PROXY_LOCK, &px->lock);
node = ebis_lookup(&px->used_server_addr, de->value.key);
HA_RWLOCK_RDUNLOCK(PROXY_LOCK, &px->lock);
if (node) {
srv = container_of(node, struct server, addr_node);
goto found;
}
}
}
/* Look for the server ID */
HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock);
ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_ID);
node = eb32_lookup(&px->conf.used_server_id, stktable_data_cast(ptr, std_t_sint));
HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock);
if (!node)
return;
srv = container_of(node, struct server, conf.id);
found:
if ((srv->cur_state != SRV_ST_STOPPED) ||
(px->options & PR_O_PERSIST) || (s->flags & SF_FORCE_PRST)) {
s->flags |= SF_DIRECT | SF_ASSIGNED;
s->target = &srv->obj_type;
}
}
/* This stream analyser works on a request. It applies all sticking rules on
* it then returns 1. The data must already be present in the buffer otherwise
* they won't match. It always returns 1.
*/
static int process_sticking_rules(struct stream *s, struct channel *req, int an_bit)
{
struct proxy *px = s->be;
struct session *sess = s->sess;
struct sticking_rule *rule;
DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
list_for_each_entry(rule, &px->sticking_rules, list) {
int ret = 1 ;
int i;
/* Only the first stick store-request of each table is applied
* and other ones are ignored. The purpose is to allow complex
* configurations which look for multiple entries by decreasing
* order of precision and to stop at the first which matches.
* An example could be a store of the IP address from an HTTP
* header first, then from the source if not found.
*/
if (rule->flags & STK_IS_STORE) {
for (i = 0; i < s->store_count; i++) {
if (rule->table.t == s->store[i].table)
break;
}
if (i != s->store_count)
continue;
}
if (rule->cond) {
ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
struct stktable_key *key;
key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->expr, NULL);
if (!key)
continue;
if (rule->flags & STK_IS_MATCH) {
struct stksess *ts;
if ((ts = stktable_lookup_key(rule->table.t, key)) != NULL) {
if (!(s->flags & SF_ASSIGNED))
sticking_rule_find_target(s, rule->table.t, ts);
stktable_touch_local(rule->table.t, ts, 1);
}
}
if (rule->flags & STK_IS_STORE) {
if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) {
struct stksess *ts;
ts = stksess_new(rule->table.t, key);
if (ts) {
s->store[s->store_count].table = rule->table.t;
s->store[s->store_count++].ts = ts;
}
}
}
}
}
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
return 1;
}
/* This stream analyser works on a response. It applies all store rules on it
* then returns 1. The data must already be present in the buffer otherwise
* they won't match. It always returns 1.
*/
static int process_store_rules(struct stream *s, struct channel *rep, int an_bit)
{
struct proxy *px = s->be;
struct session *sess = s->sess;
struct sticking_rule *rule;
int i;
int nbreq = s->store_count;
DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
list_for_each_entry(rule, &px->storersp_rules, list) {
int ret = 1 ;
/* Only the first stick store-response of each table is applied
* and other ones are ignored. The purpose is to allow complex
* configurations which look for multiple entries by decreasing
* order of precision and to stop at the first which matches.
* An example could be a store of a set-cookie value, with a
* fallback to a parameter found in a 302 redirect.
*
* The store-response rules are not allowed to override the
* store-request rules for the same table, but they may coexist.
* Thus we can have up to one store-request entry and one store-
* response entry for the same table at any time.
*/
for (i = nbreq; i < s->store_count; i++) {
if (rule->table.t == s->store[i].table)
break;
}
/* skip existing entries for this table */
if (i < s->store_count)
continue;
if (rule->cond) {
ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
struct stktable_key *key;
key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL, rule->expr, NULL);
if (!key)
continue;
if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) {
struct stksess *ts;
ts = stksess_new(rule->table.t, key);
if (ts) {
s->store[s->store_count].table = rule->table.t;
s->store[s->store_count++].ts = ts;
}
}
}
}
/* process store request and store response */
for (i = 0; i < s->store_count; i++) {
struct stksess *ts;
void *ptr;
char *key;
struct dict_entry *de;
struct stktable *t = s->store[i].table;
if (objt_server(s->target) && objt_server(s->target)->flags & SRV_F_NON_STICK) {
stksess_free(s->store[i].table, s->store[i].ts);
s->store[i].ts = NULL;
continue;
}
ts = stktable_set_entry(t, s->store[i].ts);
if (ts != s->store[i].ts) {
/* the entry already existed, we can free ours */
stksess_free(t, s->store[i].ts);
}
s->store[i].ts = NULL;
HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock);
ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_ID);
stktable_data_cast(ptr, std_t_sint) = __objt_server(s->target)->puid;
HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
if (t->server_key_type == STKTABLE_SRV_NAME)
key = __objt_server(s->target)->id;
else if (t->server_key_type == STKTABLE_SRV_ADDR)
key = __objt_server(s->target)->addr_node.key;
else
continue;
HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock);
de = dict_insert(&server_key_dict, key);
if (de) {
ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_KEY);
stktable_data_cast(ptr, std_t_dict) = de;
}
HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
stktable_touch_local(t, ts, 1);
}
s->store_count = 0; /* everything is stored */
rep->analysers &= ~an_bit;
rep->analyse_exp = TICK_ETERNITY;
DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
return 1;
}
/* Set the stream to HTTP mode, if necessary. The minimal request HTTP analysers
* are set and the client mux is upgraded. It returns 1 if the stream processing
* may continue or 0 if it should be stopped. It happens on error or if the
* upgrade required a new stream. The mux protocol may be specified.
*/
int stream_set_http_mode(struct stream *s, const struct mux_proto_list *mux_proto)
{
struct connection *conn;
struct conn_stream *cs;
/* Already an HTTP stream */
if (IS_HTX_STRM(s))
return 1;
s->req.analysers |= AN_REQ_WAIT_HTTP|AN_REQ_HTTP_PROCESS_FE;
if (unlikely(!s->txn && !http_create_txn(s)))
return 0;
conn = objt_conn(strm_sess(s)->origin);
cs = objt_cs(s->si[0].end);
if (conn && cs) {
si_rx_endp_more(&s->si[0]);
/* Make sure we're unsubscribed, the the new
* mux will probably want to subscribe to
* the underlying XPRT
*/
if (s->si[0].wait_event.events)
conn->mux->unsubscribe(cs, s->si[0].wait_event.events,
&s->si[0].wait_event);
if (conn->mux->flags & MX_FL_NO_UPG)
return 0;
if (conn_upgrade_mux_fe(conn, cs, &s->req.buf,
(mux_proto ? mux_proto->token : ist("")),
PROTO_MODE_HTTP) == -1)
return 0;
s->req.flags &= ~(CF_READ_PARTIAL|CF_AUTO_CONNECT);
s->req.total = 0;
s->flags |= SF_IGNORE;
if (strcmp(conn->mux->name, "H2") == 0) {
/* For HTTP/2, destroy the conn_stream, disable logging,
* and abort the stream process. Thus it will be
* silently destroyed. The new mux will create new
* streams.
*/
cs_free(cs);
si_detach_endpoint(&s->si[0]);
s->logs.logwait = 0;
s->logs.level = 0;
channel_abort(&s->req);
channel_abort(&s->res);
s->req.analysers &= AN_REQ_FLT_END;
s->req.analyse_exp = TICK_ETERNITY;
}
}
return 1;
}
/* This macro is very specific to the function below. See the comments in
* process_stream() below to understand the logic and the tests.
*/
#define UPDATE_ANALYSERS(real, list, back, flag) { \
list = (((list) & ~(flag)) | ~(back)) & (real); \
back = real; \
if (!(list)) \
break; \
if (((list) ^ ((list) & ((list) - 1))) < (flag)) \
continue; \
}
/* These 2 following macros call an analayzer for the specified channel if the
* right flag is set. The first one is used for "filterable" analyzers. If a
* stream has some registered filters, pre and post analyaze callbacks are
* called. The second are used for other analyzers (AN_REQ/RES_FLT_* and
* AN_REQ/RES_HTTP_XFER_BODY) */
#define FLT_ANALYZE(strm, chn, fun, list, back, flag, ...) \
{ \
if ((list) & (flag)) { \
if (HAS_FILTERS(strm)) { \
if (!flt_pre_analyze((strm), (chn), (flag))) \
break; \
if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \
break; \
if (!flt_post_analyze((strm), (chn), (flag))) \
break; \
} \
else { \
if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \
break; \
} \
UPDATE_ANALYSERS((chn)->analysers, (list), \
(back), (flag)); \
} \
}
#define ANALYZE(strm, chn, fun, list, back, flag, ...) \
{ \
if ((list) & (flag)) { \
if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \
break; \
UPDATE_ANALYSERS((chn)->analysers, (list), \
(back), (flag)); \
} \
}
/* Processes the client, server, request and response jobs of a stream task,
* then puts it back to the wait queue in a clean state, or cleans up its
* resources if it must be deleted. Returns in <next> the date the task wants
* to be woken up, or TICK_ETERNITY. In order not to call all functions for
* nothing too many times, the request and response buffers flags are monitored
* and each function is called only if at least another function has changed at
* least one flag it is interested in.
*/
struct task *process_stream(struct task *t, void *context, unsigned int state)
{
struct server *srv;
struct stream *s = context;
struct session *sess = s->sess;
unsigned int rqf_last, rpf_last;
unsigned int rq_prod_last, rq_cons_last;
unsigned int rp_cons_last, rp_prod_last;
unsigned int req_ana_back;
struct channel *req, *res;
struct stream_interface *si_f, *si_b;
unsigned int rate;
DBG_TRACE_ENTER(STRM_EV_STRM_PROC, s);
activity[tid].stream_calls++;
req = &s->req;
res = &s->res;
si_f = &s->si[0];
si_b = &s->si[1];
/* First, attempt to receive pending data from I/O layers */
si_sync_recv(si_f);
si_sync_recv(si_b);
rate = update_freq_ctr(&s->call_rate, 1);
if (rate >= 100000 && s->call_rate.prev_ctr) { // make sure to wait at least a full second
stream_dump_and_crash(&s->obj_type, read_freq_ctr(&s->call_rate));
}
/* this data may be no longer valid, clear it */
if (s->txn)
memset(&s->txn->auth, 0, sizeof(s->txn->auth));
/* This flag must explicitly be set every time */
req->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE);
res->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE);
/* Keep a copy of req/rep flags so that we can detect shutdowns */
rqf_last = req->flags & ~CF_MASK_ANALYSER;
rpf_last = res->flags & ~CF_MASK_ANALYSER;
/* we don't want the stream interface functions to recursively wake us up */
si_f->flags |= SI_FL_DONT_WAKE;
si_b->flags |= SI_FL_DONT_WAKE;
/* update pending events */
s->pending_events |= (state & TASK_WOKEN_ANY);
/* 1a: Check for low level timeouts if needed. We just set a flag on
* stream interfaces when their timeouts have expired.
*/
if (unlikely(s->pending_events & TASK_WOKEN_TIMER)) {
si_check_timeouts(si_f);
si_check_timeouts(si_b);
/* check channel timeouts, and close the corresponding stream interfaces
* for future reads or writes. Note: this will also concern upper layers
* but we do not touch any other flag. We must be careful and correctly
* detect state changes when calling them.
*/
channel_check_timeouts(req);
if (unlikely((req->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) {
si_b->flags |= SI_FL_NOLINGER;
si_shutw(si_b);
}
if (unlikely((req->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) {
if (si_f->flags & SI_FL_NOHALF)
si_f->flags |= SI_FL_NOLINGER;
si_shutr(si_f);
}
channel_check_timeouts(res);
if (unlikely((res->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) {
si_f->flags |= SI_FL_NOLINGER;
si_shutw(si_f);
}
if (unlikely((res->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) {
if (si_b->flags & SI_FL_NOHALF)
si_b->flags |= SI_FL_NOLINGER;
si_shutr(si_b);
}
if (HAS_FILTERS(s))
flt_stream_check_timeouts(s);
/* Once in a while we're woken up because the task expires. But
* this does not necessarily mean that a timeout has been reached.
* So let's not run a whole stream processing if only an expiration
* timeout needs to be refreshed.
*/
if (!((req->flags | res->flags) &
(CF_SHUTR|CF_READ_ACTIVITY|CF_READ_TIMEOUT|CF_SHUTW|
CF_WRITE_ACTIVITY|CF_WRITE_TIMEOUT|CF_ANA_TIMEOUT)) &&
!((si_f->flags | si_b->flags) & (SI_FL_EXP|SI_FL_ERR)) &&
((s->pending_events & TASK_WOKEN_ANY) == TASK_WOKEN_TIMER)) {
si_f->flags &= ~SI_FL_DONT_WAKE;
si_b->flags &= ~SI_FL_DONT_WAKE;
goto update_exp_and_leave;
}
}
resync_stream_interface:
/* below we may emit error messages so we have to ensure that we have
* our buffers properly allocated.
*/
if (!stream_alloc_work_buffer(s)) {
/* No buffer available, we've been subscribed to the list of
* buffer waiters, let's wait for our turn.
*/
si_f->flags &= ~SI_FL_DONT_WAKE;
si_b->flags &= ~SI_FL_DONT_WAKE;
goto update_exp_and_leave;
}
/* 1b: check for low-level errors reported at the stream interface.
* First we check if it's a retryable error (in which case we don't
* want to tell the buffer). Otherwise we report the error one level
* upper by setting flags into the buffers. Note that the side towards
* the client cannot have connect (hence retryable) errors. Also, the
* connection setup code must be able to deal with any type of abort.
*/
srv = objt_server(s->target);
if (unlikely(si_f->flags & SI_FL_ERR)) {
if (si_state_in(si_f->state, SI_SB_EST|SI_SB_DIS)) {
si_shutr(si_f);
si_shutw(si_f);
si_report_error(si_f);
if (!(req->analysers) && !(res->analysers)) {
_HA_ATOMIC_INC(&s->be->be_counters.cli_aborts);
_HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_INC(&sess->listener->counters->cli_aborts);
if (srv)
_HA_ATOMIC_INC(&srv->counters.cli_aborts);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_D;
}
}
}
if (unlikely(si_b->flags & SI_FL_ERR)) {
if (si_state_in(si_b->state, SI_SB_EST|SI_SB_DIS)) {
si_shutr(si_b);
si_shutw(si_b);
si_report_error(si_b);
_HA_ATOMIC_INC(&s->be->be_counters.failed_resp);
if (srv)
_HA_ATOMIC_INC(&srv->counters.failed_resp);
if (!(req->analysers) && !(res->analysers)) {
_HA_ATOMIC_INC(&s->be->be_counters.srv_aborts);
_HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_INC(&sess->listener->counters->srv_aborts);
if (srv)
_HA_ATOMIC_INC(&srv->counters.srv_aborts);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_SRVCL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_D;
}
}
/* note: maybe we should process connection errors here ? */
}
if (si_state_in(si_b->state, SI_SB_CON|SI_SB_RDY)) {
/* we were trying to establish a connection on the server side,
* maybe it succeeded, maybe it failed, maybe we timed out, ...
*/
if (si_b->state == SI_ST_RDY)
back_handle_st_rdy(s);
else if (si_b->state == SI_ST_CON)
back_handle_st_con(s);
if (si_b->state == SI_ST_CER)
back_handle_st_cer(s);
else if (si_b->state == SI_ST_EST)
back_establish(s);
/* state is now one of SI_ST_CON (still in progress), SI_ST_EST
* (established), SI_ST_DIS (abort), SI_ST_CLO (last error),
* SI_ST_ASS/SI_ST_TAR/SI_ST_REQ for retryable errors.
*/
}
rq_prod_last = si_f->state;
rq_cons_last = si_b->state;
rp_cons_last = si_f->state;
rp_prod_last = si_b->state;
/* Check for connection closure */
DBG_TRACE_POINT(STRM_EV_STRM_PROC, s);
/* nothing special to be done on client side */
if (unlikely(si_f->state == SI_ST_DIS))
si_f->state = SI_ST_CLO;
/* When a server-side connection is released, we have to count it and
* check for pending connections on this server.
*/
if (unlikely(si_b->state == SI_ST_DIS)) {
si_b->state = SI_ST_CLO;
srv = objt_server(s->target);
if (srv) {
if (s->flags & SF_CURR_SESS) {
s->flags &= ~SF_CURR_SESS;
_HA_ATOMIC_DEC(&srv->cur_sess);
}
sess_change_server(s, NULL);
if (may_dequeue_tasks(srv, s->be))
process_srv_queue(srv);
}
}
/*
* Note: of the transient states (REQ, CER, DIS), only REQ may remain
* at this point.
*/
resync_request:
/* Analyse request */
if (((req->flags & ~rqf_last) & CF_MASK_ANALYSER) ||
((req->flags ^ rqf_last) & CF_MASK_STATIC) ||
(req->analysers && (req->flags & CF_SHUTW)) ||
si_f->state != rq_prod_last ||
si_b->state != rq_cons_last ||
s->pending_events & TASK_WOKEN_MSG) {
unsigned int flags = req->flags;
if (si_state_in(si_f->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO)) {
int max_loops = global.tune.maxpollevents;
unsigned int ana_list;
unsigned int ana_back;
/* it's up to the analysers to stop new connections,
* disable reading or closing. Note: if an analyser
* disables any of these bits, it is responsible for
* enabling them again when it disables itself, so
* that other analysers are called in similar conditions.
*/
channel_auto_read(req);
channel_auto_connect(req);
channel_auto_close(req);
/* We will call all analysers for which a bit is set in
* req->analysers, following the bit order from LSB
* to MSB. The analysers must remove themselves from
* the list when not needed. Any analyser may return 0
* to break out of the loop, either because of missing
* data to take a decision, or because it decides to
* kill the stream. We loop at least once through each
* analyser, and we may loop again if other analysers
* are added in the middle.
*
* We build a list of analysers to run. We evaluate all
* of these analysers in the order of the lower bit to
* the higher bit. This ordering is very important.
* An analyser will often add/remove other analysers,
* including itself. Any changes to itself have no effect
* on the loop. If it removes any other analysers, we
* want those analysers not to be called anymore during
* this loop. If it adds an analyser that is located
* after itself, we want it to be scheduled for being
* processed during the loop. If it adds an analyser
* which is located before it, we want it to switch to
* it immediately, even if it has already been called
* once but removed since.
*
* In order to achieve this, we compare the analyser
* list after the call with a copy of it before the
* call. The work list is fed with analyser bits that
* appeared during the call. Then we compare previous
* work list with the new one, and check the bits that
* appeared. If the lowest of these bits is lower than
* the current bit, it means we have enabled a previous
* analyser and must immediately loop again.
*/
ana_list = ana_back = req->analysers;
while (ana_list && max_loops--) {
/* Warning! ensure that analysers are always placed in ascending order! */
ANALYZE (s, req, flt_start_analyze, ana_list, ana_back, AN_REQ_FLT_START_FE);
FLT_ANALYZE(s, req, tcp_inspect_request, ana_list, ana_back, AN_REQ_INSPECT_FE);
FLT_ANALYZE(s, req, http_wait_for_request, ana_list, ana_back, AN_REQ_WAIT_HTTP);
FLT_ANALYZE(s, req, http_wait_for_request_body, ana_list, ana_back, AN_REQ_HTTP_BODY);
FLT_ANALYZE(s, req, http_process_req_common, ana_list, ana_back, AN_REQ_HTTP_PROCESS_FE, sess->fe);
FLT_ANALYZE(s, req, process_switching_rules, ana_list, ana_back, AN_REQ_SWITCHING_RULES);
ANALYZE (s, req, flt_start_analyze, ana_list, ana_back, AN_REQ_FLT_START_BE);
FLT_ANALYZE(s, req, tcp_inspect_request, ana_list, ana_back, AN_REQ_INSPECT_BE);
FLT_ANALYZE(s, req, http_process_req_common, ana_list, ana_back, AN_REQ_HTTP_PROCESS_BE, s->be);
FLT_ANALYZE(s, req, http_process_tarpit, ana_list, ana_back, AN_REQ_HTTP_TARPIT);
FLT_ANALYZE(s, req, process_server_rules, ana_list, ana_back, AN_REQ_SRV_RULES);
FLT_ANALYZE(s, req, http_process_request, ana_list, ana_back, AN_REQ_HTTP_INNER);
FLT_ANALYZE(s, req, tcp_persist_rdp_cookie, ana_list, ana_back, AN_REQ_PRST_RDP_COOKIE);
FLT_ANALYZE(s, req, process_sticking_rules, ana_list, ana_back, AN_REQ_STICKING_RULES);
ANALYZE (s, req, flt_analyze_http_headers, ana_list, ana_back, AN_REQ_FLT_HTTP_HDRS);
ANALYZE (s, req, http_request_forward_body, ana_list, ana_back, AN_REQ_HTTP_XFER_BODY);
ANALYZE (s, req, pcli_wait_for_request, ana_list, ana_back, AN_REQ_WAIT_CLI);
ANALYZE (s, req, flt_xfer_data, ana_list, ana_back, AN_REQ_FLT_XFER_DATA);
ANALYZE (s, req, flt_end_analyze, ana_list, ana_back, AN_REQ_FLT_END);
break;
}
}
rq_prod_last = si_f->state;
rq_cons_last = si_b->state;
req->flags &= ~CF_WAKE_ONCE;
rqf_last = req->flags;
if ((req->flags ^ flags) & (CF_SHUTR|CF_SHUTW))
goto resync_request;
}
/* we'll monitor the request analysers while parsing the response,
* because some response analysers may indirectly enable new request
* analysers (eg: HTTP keep-alive).
*/
req_ana_back = req->analysers;
resync_response:
/* Analyse response */
if (((res->flags & ~rpf_last) & CF_MASK_ANALYSER) ||
(res->flags ^ rpf_last) & CF_MASK_STATIC ||
(res->analysers && (res->flags & CF_SHUTW)) ||
si_f->state != rp_cons_last ||
si_b->state != rp_prod_last ||
s->pending_events & TASK_WOKEN_MSG) {
unsigned int flags = res->flags;
if (si_state_in(si_b->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO)) {
int max_loops = global.tune.maxpollevents;
unsigned int ana_list;
unsigned int ana_back;
/* it's up to the analysers to stop disable reading or
* closing. Note: if an analyser disables any of these
* bits, it is responsible for enabling them again when
* it disables itself, so that other analysers are called
* in similar conditions.
*/
channel_auto_read(res);
channel_auto_close(res);
/* We will call all analysers for which a bit is set in
* res->analysers, following the bit order from LSB
* to MSB. The analysers must remove themselves from
* the list when not needed. Any analyser may return 0
* to break out of the loop, either because of missing
* data to take a decision, or because it decides to
* kill the stream. We loop at least once through each
* analyser, and we may loop again if other analysers
* are added in the middle.
*/
ana_list = ana_back = res->analysers;
while (ana_list && max_loops--) {
/* Warning! ensure that analysers are always placed in ascending order! */
ANALYZE (s, res, flt_start_analyze, ana_list, ana_back, AN_RES_FLT_START_FE);
ANALYZE (s, res, flt_start_analyze, ana_list, ana_back, AN_RES_FLT_START_BE);
FLT_ANALYZE(s, res, tcp_inspect_response, ana_list, ana_back, AN_RES_INSPECT);
FLT_ANALYZE(s, res, http_wait_for_response, ana_list, ana_back, AN_RES_WAIT_HTTP);
FLT_ANALYZE(s, res, process_store_rules, ana_list, ana_back, AN_RES_STORE_RULES);
FLT_ANALYZE(s, res, http_process_res_common, ana_list, ana_back, AN_RES_HTTP_PROCESS_BE, s->be);
ANALYZE (s, res, flt_analyze_http_headers, ana_list, ana_back, AN_RES_FLT_HTTP_HDRS);
ANALYZE (s, res, http_response_forward_body, ana_list, ana_back, AN_RES_HTTP_XFER_BODY);
ANALYZE (s, res, pcli_wait_for_response, ana_list, ana_back, AN_RES_WAIT_CLI);
ANALYZE (s, res, flt_xfer_data, ana_list, ana_back, AN_RES_FLT_XFER_DATA);
ANALYZE (s, res, flt_end_analyze, ana_list, ana_back, AN_RES_FLT_END);
break;
}
}
rp_cons_last = si_f->state;
rp_prod_last = si_b->state;
res->flags &= ~CF_WAKE_ONCE;
rpf_last = res->flags;
if ((res->flags ^ flags) & (CF_SHUTR|CF_SHUTW))
goto resync_response;
}
/* maybe someone has added some request analysers, so we must check and loop */
if (req->analysers & ~req_ana_back)
goto resync_request;
if ((req->flags & ~rqf_last) & CF_MASK_ANALYSER)
goto resync_request;
/* FIXME: here we should call protocol handlers which rely on
* both buffers.
*/
/*
* Now we propagate unhandled errors to the stream. Normally
* we're just in a data phase here since it means we have not
* seen any analyser who could set an error status.
*/
srv = objt_server(s->target);
if (unlikely(!(s->flags & SF_ERR_MASK))) {
if (req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) {
/* Report it if the client got an error or a read timeout expired */
req->analysers = 0;
if (req->flags & CF_READ_ERROR) {
_HA_ATOMIC_INC(&s->be->be_counters.cli_aborts);
_HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_INC(&sess->listener->counters->cli_aborts);
if (srv)
_HA_ATOMIC_INC(&srv->counters.cli_aborts);
s->flags |= SF_ERR_CLICL;
}
else if (req->flags & CF_READ_TIMEOUT) {
_HA_ATOMIC_INC(&s->be->be_counters.cli_aborts);
_HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_INC(&sess->listener->counters->cli_aborts);
if (srv)
_HA_ATOMIC_INC(&srv->counters.cli_aborts);
s->flags |= SF_ERR_CLITO;
}
else if (req->flags & CF_WRITE_ERROR) {
_HA_ATOMIC_INC(&s->be->be_counters.srv_aborts);
_HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_INC(&sess->listener->counters->srv_aborts);
if (srv)
_HA_ATOMIC_INC(&srv->counters.srv_aborts);
s->flags |= SF_ERR_SRVCL;
}
else {
_HA_ATOMIC_INC(&s->be->be_counters.srv_aborts);
_HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_INC(&sess->listener->counters->srv_aborts);
if (srv)
_HA_ATOMIC_INC(&srv->counters.srv_aborts);
s->flags |= SF_ERR_SRVTO;
}
sess_set_term_flags(s);
/* Abort the request if a client error occurred while
* the backend stream-interface is in the SI_ST_INI
* state. It is switched into the SI_ST_CLO state and
* the request channel is erased. */
if (si_b->state == SI_ST_INI) {
si_b->state = SI_ST_CLO;
channel_abort(req);
if (IS_HTX_STRM(s))
channel_htx_erase(req, htxbuf(&req->buf));
else
channel_erase(req);
}
}
else if (res->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) {
/* Report it if the server got an error or a read timeout expired */
res->analysers = 0;
if (res->flags & CF_READ_ERROR) {
_HA_ATOMIC_INC(&s->be->be_counters.srv_aborts);
_HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_INC(&sess->listener->counters->srv_aborts);
if (srv)
_HA_ATOMIC_INC(&srv->counters.srv_aborts);
s->flags |= SF_ERR_SRVCL;
}
else if (res->flags & CF_READ_TIMEOUT) {
_HA_ATOMIC_INC(&s->be->be_counters.srv_aborts);
_HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_INC(&sess->listener->counters->srv_aborts);
if (srv)
_HA_ATOMIC_INC(&srv->counters.srv_aborts);
s->flags |= SF_ERR_SRVTO;
}
else if (res->flags & CF_WRITE_ERROR) {
_HA_ATOMIC_INC(&s->be->be_counters.cli_aborts);
_HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_INC(&sess->listener->counters->cli_aborts);
if (srv)
_HA_ATOMIC_INC(&srv->counters.cli_aborts);
s->flags |= SF_ERR_CLICL;
}
else {
_HA_ATOMIC_INC(&s->be->be_counters.cli_aborts);
_HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_INC(&sess->listener->counters->cli_aborts);
if (srv)
_HA_ATOMIC_INC(&srv->counters.cli_aborts);
s->flags |= SF_ERR_CLITO;
}
sess_set_term_flags(s);
}
}
/*
* Here we take care of forwarding unhandled data. This also includes
* connection establishments and shutdown requests.
*/
/* If no one is interested in analysing data, it's time to forward
* everything. We configure the buffer to forward indefinitely.
* Note that we're checking CF_SHUTR_NOW as an indication of a possible
* recent call to channel_abort().
*/
if (unlikely((!req->analysers || (req->analysers == AN_REQ_FLT_END && !(req->flags & CF_FLT_ANALYZE))) &&
!(req->flags & (CF_SHUTW|CF_SHUTR_NOW)) &&
(si_state_in(si_f->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO)) &&
(req->to_forward != CHN_INFINITE_FORWARD))) {
/* This buffer is freewheeling, there's no analyser
* attached to it. If any data are left in, we'll permit them to
* move.
*/
channel_auto_read(req);
channel_auto_connect(req);
channel_auto_close(req);
if (IS_HTX_STRM(s)) {
struct htx *htx = htxbuf(&req->buf);
/* We'll let data flow between the producer (if still connected)
* to the consumer.
*/
co_set_data(req, htx->data);
if (!(req->flags & (CF_SHUTR|CF_SHUTW_NOW)))
channel_htx_forward_forever(req, htx);
}
else {
/* We'll let data flow between the producer (if still connected)
* to the consumer (which might possibly not be connected yet).
*/
c_adv(req, ci_data(req));
if (!(req->flags & (CF_SHUTR|CF_SHUTW_NOW)))
channel_forward_forever(req);
}
}
/* check if it is wise to enable kernel splicing to forward request data */
if (!(req->flags & (CF_KERN_SPLICING|CF_SHUTR)) &&
req->to_forward &&
(global.tune.options & GTUNE_USE_SPLICE) &&
(objt_cs(si_f->end) && __objt_cs(si_f->end)->conn->xprt && __objt_cs(si_f->end)->conn->xprt->rcv_pipe &&
__objt_cs(si_f->end)->conn->mux && __objt_cs(si_f->end)->conn->mux->rcv_pipe) &&
(objt_cs(si_b->end) && __objt_cs(si_b->end)->conn->xprt && __objt_cs(si_b->end)->conn->xprt->snd_pipe &&
__objt_cs(si_b->end)->conn->mux && __objt_cs(si_b->end)->conn->mux->snd_pipe) &&
(pipes_used < global.maxpipes) &&
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_REQ) ||
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) &&
(req->flags & CF_STREAMER_FAST)))) {
req->flags |= CF_KERN_SPLICING;
}
/* reflect what the L7 analysers have seen last */
rqf_last = req->flags;
/* it's possible that an upper layer has requested a connection setup or abort.
* There are 2 situations where we decide to establish a new connection :
* - there are data scheduled for emission in the buffer
* - the CF_AUTO_CONNECT flag is set (active connection)
*/
if (si_b->state == SI_ST_INI) {
if (!(req->flags & CF_SHUTW)) {
if ((req->flags & CF_AUTO_CONNECT) || !channel_is_empty(req)) {
/* If we have an appctx, there is no connect method, so we
* immediately switch to the connected state, otherwise we
* perform a connection request.
*/
si_b->state = SI_ST_REQ; /* new connection requested */
si_b->conn_retries = s->be->conn_retries;
if ((s->be->retry_type &~ PR_RE_CONN_FAILED) &&
(s->be->mode == PR_MODE_HTTP) &&
!(si_b->flags & SI_FL_D_L7_RETRY))
si_b->flags |= SI_FL_L7_RETRY;
}
}
else {
si_release_endpoint(si_b);
si_b->state = SI_ST_CLO; /* shutw+ini = abort */
channel_shutw_now(req); /* fix buffer flags upon abort */
channel_shutr_now(res);
}
}
/* we may have a pending connection request, or a connection waiting
* for completion.
*/
if (si_state_in(si_b->state, SI_SB_REQ|SI_SB_QUE|SI_SB_TAR|SI_SB_ASS)) {
/* prune the request variables and swap to the response variables. */
if (s->vars_reqres.scope != SCOPE_RES) {
if (!LIST_ISEMPTY(&s->vars_reqres.head))
vars_prune(&s->vars_reqres, s->sess, s);
vars_init_head(&s->vars_reqres, SCOPE_RES);
}
do {
/* nb: step 1 might switch from QUE to ASS, but we first want
* to give a chance to step 2 to perform a redirect if needed.
*/
if (si_b->state != SI_ST_REQ)
back_try_conn_req(s);
if (si_b->state == SI_ST_REQ)
back_handle_st_req(s);
/* get a chance to complete an immediate connection setup */
if (si_b->state == SI_ST_RDY)
goto resync_stream_interface;
/* applets directly go to the ESTABLISHED state. Similarly,
* servers experience the same fate when their connection
* is reused.
*/
if (unlikely(si_b->state == SI_ST_EST))
back_establish(s);
srv = objt_server(s->target);
if (si_b->state == SI_ST_ASS && srv && srv->rdr_len && (s->flags & SF_REDIRECTABLE))
http_perform_server_redirect(s, si_b);
} while (si_b->state == SI_ST_ASS);
}
/* Let's see if we can send the pending request now */
si_sync_send(si_b);
/*
* Now forward all shutdown requests between both sides of the request buffer
*/
/* first, let's check if the request buffer needs to shutdown(write), which may
* happen either because the input is closed or because we want to force a close
* once the server has begun to respond. If a half-closed timeout is set, we adjust
* the other side's timeout as well.
*/
if (unlikely((req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) ==
(CF_AUTO_CLOSE|CF_SHUTR))) {
channel_shutw_now(req);
}
/* shutdown(write) pending */
if (unlikely((req->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW &&
channel_is_empty(req))) {
if (req->flags & CF_READ_ERROR)
si_b->flags |= SI_FL_NOLINGER;
si_shutw(si_b);
}
/* shutdown(write) done on server side, we must stop the client too */
if (unlikely((req->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW &&
!req->analysers))
channel_shutr_now(req);
/* shutdown(read) pending */
if (unlikely((req->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) {
if (si_f->flags & SI_FL_NOHALF)
si_f->flags |= SI_FL_NOLINGER;
si_shutr(si_f);
}
/* Benchmarks have shown that it's optimal to do a full resync now */
if (si_f->state == SI_ST_DIS ||
si_state_in(si_b->state, SI_SB_RDY|SI_SB_DIS) ||
(si_f->flags & SI_FL_ERR && si_f->state != SI_ST_CLO) ||
(si_b->flags & SI_FL_ERR && si_b->state != SI_ST_CLO))
goto resync_stream_interface;
/* otherwise we want to check if we need to resync the req buffer or not */
if ((req->flags ^ rqf_last) & (CF_SHUTR|CF_SHUTW))
goto resync_request;
/* perform output updates to the response buffer */
/* If no one is interested in analysing data, it's time to forward
* everything. We configure the buffer to forward indefinitely.
* Note that we're checking CF_SHUTR_NOW as an indication of a possible
* recent call to channel_abort().
*/
if (unlikely((!res->analysers || (res->analysers == AN_RES_FLT_END && !(res->flags & CF_FLT_ANALYZE))) &&
!(res->flags & (CF_SHUTW|CF_SHUTR_NOW)) &&
si_state_in(si_b->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO) &&
(res->to_forward != CHN_INFINITE_FORWARD))) {
/* This buffer is freewheeling, there's no analyser
* attached to it. If any data are left in, we'll permit them to
* move.
*/
channel_auto_read(res);
channel_auto_close(res);
if (IS_HTX_STRM(s)) {
struct htx *htx = htxbuf(&res->buf);
/* We'll let data flow between the producer (if still connected)
* to the consumer.
*/
co_set_data(res, htx->data);
if (!(res->flags & (CF_SHUTR|CF_SHUTW_NOW)))
channel_htx_forward_forever(res, htx);
}
else {
/* We'll let data flow between the producer (if still connected)
* to the consumer.
*/
c_adv(res, ci_data(res));
if (!(res->flags & (CF_SHUTR|CF_SHUTW_NOW)))
channel_forward_forever(res);
}
/* if we have no analyser anymore in any direction and have a
* tunnel timeout set, use it now. Note that we must respect
* the half-closed timeouts as well.
*/
if (!req->analysers && s->tunnel_timeout) {
req->rto = req->wto = res->rto = res->wto =
s->tunnel_timeout;
if ((req->flags & CF_SHUTR) && tick_isset(sess->fe->timeout.clientfin))
res->wto = sess->fe->timeout.clientfin;
if ((req->flags & CF_SHUTW) && tick_isset(s->be->timeout.serverfin))
res->rto = s->be->timeout.serverfin;
if ((res->flags & CF_SHUTR) && tick_isset(s->be->timeout.serverfin))
req->wto = s->be->timeout.serverfin;
if ((res->flags & CF_SHUTW) && tick_isset(sess->fe->timeout.clientfin))
req->rto = sess->fe->timeout.clientfin;
req->rex = tick_add(now_ms, req->rto);
req->wex = tick_add(now_ms, req->wto);
res->rex = tick_add(now_ms, res->rto);
res->wex = tick_add(now_ms, res->wto);
}
}
/* check if it is wise to enable kernel splicing to forward response data */
if (!(res->flags & (CF_KERN_SPLICING|CF_SHUTR)) &&
res->to_forward &&
(global.tune.options & GTUNE_USE_SPLICE) &&
(objt_cs(si_f->end) && __objt_cs(si_f->end)->conn->xprt && __objt_cs(si_f->end)->conn->xprt->snd_pipe &&
__objt_cs(si_f->end)->conn->mux && __objt_cs(si_f->end)->conn->mux->snd_pipe) &&
(objt_cs(si_b->end) && __objt_cs(si_b->end)->conn->xprt && __objt_cs(si_b->end)->conn->xprt->rcv_pipe &&
__objt_cs(si_b->end)->conn->mux && __objt_cs(si_b->end)->conn->mux->rcv_pipe) &&
(pipes_used < global.maxpipes) &&
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_RTR) ||
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) &&
(res->flags & CF_STREAMER_FAST)))) {
res->flags |= CF_KERN_SPLICING;
}
/* reflect what the L7 analysers have seen last */
rpf_last = res->flags;
/* Let's see if we can send the pending response now */
si_sync_send(si_f);
/*
* Now forward all shutdown requests between both sides of the buffer
*/
/*
* FIXME: this is probably where we should produce error responses.
*/
/* first, let's check if the response buffer needs to shutdown(write) */
if (unlikely((res->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) ==
(CF_AUTO_CLOSE|CF_SHUTR))) {
channel_shutw_now(res);
}
/* shutdown(write) pending */
if (unlikely((res->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW &&
channel_is_empty(res))) {
si_shutw(si_f);
}
/* shutdown(write) done on the client side, we must stop the server too */
if (unlikely((res->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW) &&
!res->analysers)
channel_shutr_now(res);
/* shutdown(read) pending */
if (unlikely((res->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) {
if (si_b->flags & SI_FL_NOHALF)
si_b->flags |= SI_FL_NOLINGER;
si_shutr(si_b);
}
if (si_f->state == SI_ST_DIS ||
si_state_in(si_b->state, SI_SB_RDY|SI_SB_DIS) ||
(si_f->flags & SI_FL_ERR && si_f->state != SI_ST_CLO) ||
(si_b->flags & SI_FL_ERR && si_b->state != SI_ST_CLO))
goto resync_stream_interface;
if ((req->flags & ~rqf_last) & CF_MASK_ANALYSER)
goto resync_request;
if ((res->flags ^ rpf_last) & CF_MASK_STATIC)
goto resync_response;
if (((req->flags ^ rqf_last) | (res->flags ^ rpf_last)) & CF_MASK_ANALYSER)
goto resync_request;
/* we're interested in getting wakeups again */
si_f->flags &= ~SI_FL_DONT_WAKE;
si_b->flags &= ~SI_FL_DONT_WAKE;
/* This is needed only when debugging is enabled, to indicate
* client-side or server-side close. Please note that in the unlikely
* event where both sides would close at once, the sequence is reported
* on the server side first.
*/
if (unlikely((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) ||
(global.mode & MODE_VERBOSE)))) {
if (si_b->state == SI_ST_CLO &&
si_b->prev_state == SI_ST_EST) {
chunk_printf(&trash, "%08x:%s.srvcls[%04x:%04x]\n",
s->uniq_id, s->be->id,
objt_cs(si_f->end) ? (unsigned short)objt_cs(si_f->end)->conn->handle.fd : -1,
objt_cs(si_b->end) ? (unsigned short)objt_cs(si_b->end)->conn->handle.fd : -1);
DISGUISE(write(1, trash.area, trash.data));
}
if (si_f->state == SI_ST_CLO &&
si_f->prev_state == SI_ST_EST) {
chunk_printf(&trash, "%08x:%s.clicls[%04x:%04x]\n",
s->uniq_id, s->be->id,
objt_cs(si_f->end) ? (unsigned short)objt_cs(si_f->end)->conn->handle.fd : -1,
objt_cs(si_b->end) ? (unsigned short)objt_cs(si_b->end)->conn->handle.fd : -1);
DISGUISE(write(1, trash.area, trash.data));
}
}
if (likely((si_f->state != SI_ST_CLO) || !si_state_in(si_b->state, SI_SB_INI|SI_SB_CLO) ||
(req->analysers & AN_REQ_FLT_END) || (res->analysers & AN_RES_FLT_END))) {
if ((sess->fe->options & PR_O_CONTSTATS) && (s->flags & SF_BE_ASSIGNED) && !(s->flags & SF_IGNORE))
stream_process_counters(s);
si_update_both(si_f, si_b);
/* Trick: if a request is being waiting for the server to respond,
* and if we know the server can timeout, we don't want the timeout
* to expire on the client side first, but we're still interested
* in passing data from the client to the server (eg: POST). Thus,
* we can cancel the client's request timeout if the server's
* request timeout is set and the server has not yet sent a response.
*/
if ((res->flags & (CF_AUTO_CLOSE|CF_SHUTR)) == 0 &&
(tick_isset(req->wex) || tick_isset(res->rex))) {
req->flags |= CF_READ_NOEXP;
req->rex = TICK_ETERNITY;
}
/* Reset pending events now */
s->pending_events = 0;
update_exp_and_leave:
/* Note: please ensure that if you branch here you disable SI_FL_DONT_WAKE */
t->expire = tick_first((tick_is_expired(t->expire, now_ms) ? 0 : t->expire),
tick_first(tick_first(req->rex, req->wex),
tick_first(res->rex, res->wex)));
if (!req->analysers)
req->analyse_exp = TICK_ETERNITY;
if ((sess->fe->options & PR_O_CONTSTATS) && (s->flags & SF_BE_ASSIGNED) &&
(!tick_isset(req->analyse_exp) || tick_is_expired(req->analyse_exp, now_ms)))
req->analyse_exp = tick_add(now_ms, 5000);
t->expire = tick_first(t->expire, req->analyse_exp);
t->expire = tick_first(t->expire, res->analyse_exp);
if (si_f->exp)
t->expire = tick_first(t->expire, si_f->exp);
if (si_b->exp)
t->expire = tick_first(t->expire, si_b->exp);
s->pending_events &= ~(TASK_WOKEN_TIMER | TASK_WOKEN_RES);
stream_release_buffers(s);
DBG_TRACE_DEVEL("queuing", STRM_EV_STRM_PROC, s);
return t; /* nothing more to do */
}
DBG_TRACE_DEVEL("releasing", STRM_EV_STRM_PROC, s);
if (s->flags & SF_BE_ASSIGNED)
_HA_ATOMIC_DEC(&s->be->beconn);
if (unlikely((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) {
chunk_printf(&trash, "%08x:%s.closed[%04x:%04x]\n",
s->uniq_id, s->be->id,
objt_cs(si_f->end) ? (unsigned short)objt_cs(si_f->end)->conn->handle.fd : -1,
objt_cs(si_b->end) ? (unsigned short)objt_cs(si_b->end)->conn->handle.fd : -1);
DISGUISE(write(1, trash.area, trash.data));
}
if (!(s->flags & SF_IGNORE)) {
s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now);
stream_process_counters(s);
if (s->txn && s->txn->status) {
int n;
n = s->txn->status / 100;
if (n < 1 || n > 5)
n = 0;
if (sess->fe->mode == PR_MODE_HTTP) {
_HA_ATOMIC_INC(&sess->fe->fe_counters.p.http.rsp[n]);
}
if ((s->flags & SF_BE_ASSIGNED) &&
(s->be->mode == PR_MODE_HTTP)) {
_HA_ATOMIC_INC(&s->be->be_counters.p.http.rsp[n]);
_HA_ATOMIC_INC(&s->be->be_counters.p.http.cum_req);
}
}
/* let's do a final log if we need it */
if (!LIST_ISEMPTY(&sess->fe->logformat) && s->logs.logwait &&
!(s->flags & SF_MONITOR) &&
(!(sess->fe->options & PR_O_NULLNOLOG) || req->total)) {
/* we may need to know the position in the queue */
pendconn_free(s);
s->do_log(s);
}
/* update time stats for this stream */
stream_update_time_stats(s);
}
/* the task MUST not be in the run queue anymore */
stream_free(s);
task_destroy(t);
return NULL;
}
/* Update the stream's backend and server time stats */
void stream_update_time_stats(struct stream *s)
{
int t_request;
int t_queue;
int t_connect;
int t_data;
int t_close;
struct server *srv;
unsigned int samples_window;
t_request = 0;
t_queue = s->logs.t_queue;
t_connect = s->logs.t_connect;
t_close = s->logs.t_close;
t_data = s->logs.t_data;
if (s->be->mode != PR_MODE_HTTP)
t_data = t_connect;
if (t_connect < 0 || t_data < 0)
return;
if (tv_isge(&s->logs.tv_request, &s->logs.tv_accept))
t_request = tv_ms_elapsed(&s->logs.tv_accept, &s->logs.tv_request);
t_data -= t_connect;
t_connect -= t_queue;
t_queue -= t_request;
srv = objt_server(s->target);
if (srv) {
samples_window = (((s->be->mode == PR_MODE_HTTP) ?
srv->counters.p.http.cum_req : srv->counters.cum_lbconn) > TIME_STATS_SAMPLES) ? TIME_STATS_SAMPLES : 0;
swrate_add_dynamic(&srv->counters.q_time, samples_window, t_queue);
swrate_add_dynamic(&srv->counters.c_time, samples_window, t_connect);
swrate_add_dynamic(&srv->counters.d_time, samples_window, t_data);
swrate_add_dynamic(&srv->counters.t_time, samples_window, t_close);
HA_ATOMIC_UPDATE_MAX(&srv->counters.qtime_max, t_queue);
HA_ATOMIC_UPDATE_MAX(&srv->counters.ctime_max, t_connect);
HA_ATOMIC_UPDATE_MAX(&srv->counters.dtime_max, t_data);
HA_ATOMIC_UPDATE_MAX(&srv->counters.ttime_max, t_close);
}
samples_window = (((s->be->mode == PR_MODE_HTTP) ?
s->be->be_counters.p.http.cum_req : s->be->be_counters.cum_lbconn) > TIME_STATS_SAMPLES) ? TIME_STATS_SAMPLES : 0;
swrate_add_dynamic(&s->be->be_counters.q_time, samples_window, t_queue);
swrate_add_dynamic(&s->be->be_counters.c_time, samples_window, t_connect);
swrate_add_dynamic(&s->be->be_counters.d_time, samples_window, t_data);
swrate_add_dynamic(&s->be->be_counters.t_time, samples_window, t_close);
HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.qtime_max, t_queue);
HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.ctime_max, t_connect);
HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.dtime_max, t_data);
HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.ttime_max, t_close);
}
/*
* This function adjusts sess->srv_conn and maintains the previous and new
* server's served stream counts. Setting newsrv to NULL is enough to release
* current connection slot. This function also notifies any LB algo which might
* expect to be informed about any change in the number of active streams on a
* server.
*/
void sess_change_server(struct stream *strm, struct server *newsrv)
{
struct server *oldsrv = strm->srv_conn;
if (oldsrv == newsrv)
return;
if (oldsrv) {
_HA_ATOMIC_DEC(&oldsrv->served);
_HA_ATOMIC_DEC(&oldsrv->proxy->served);
__ha_barrier_atomic_store();
if (oldsrv->proxy->lbprm.server_drop_conn)
oldsrv->proxy->lbprm.server_drop_conn(oldsrv);
stream_del_srv_conn(strm);
}
if (newsrv) {
_HA_ATOMIC_INC(&newsrv->served);
_HA_ATOMIC_INC(&newsrv->proxy->served);
__ha_barrier_atomic_store();
if (newsrv->proxy->lbprm.server_take_conn)
newsrv->proxy->lbprm.server_take_conn(newsrv);
stream_add_srv_conn(strm, newsrv);
}
}
/* Handle server-side errors for default protocols. It is called whenever a a
* connection setup is aborted or a request is aborted in queue. It sets the
* stream termination flags so that the caller does not have to worry about
* them. It's installed as ->srv_error for the server-side stream_interface.
*/
void default_srv_error(struct stream *s, struct stream_interface *si)
{
int err_type = si->err_type;
int err = 0, fin = 0;
if (err_type & SI_ET_QUEUE_ABRT) {
err = SF_ERR_CLICL;
fin = SF_FINST_Q;
}
else if (err_type & SI_ET_CONN_ABRT) {
err = SF_ERR_CLICL;
fin = SF_FINST_C;
}
else if (err_type & SI_ET_QUEUE_TO) {
err = SF_ERR_SRVTO;
fin = SF_FINST_Q;
}
else if (err_type & SI_ET_QUEUE_ERR) {
err = SF_ERR_SRVCL;
fin = SF_FINST_Q;
}
else if (err_type & SI_ET_CONN_TO) {
err = SF_ERR_SRVTO;
fin = SF_FINST_C;
}
else if (err_type & SI_ET_CONN_ERR) {
err = SF_ERR_SRVCL;
fin = SF_FINST_C;
}
else if (err_type & SI_ET_CONN_RES) {
err = SF_ERR_RESOURCE;
fin = SF_FINST_C;
}
else /* SI_ET_CONN_OTHER and others */ {
err = SF_ERR_INTERNAL;
fin = SF_FINST_C;
}
if (!(s->flags & SF_ERR_MASK))
s->flags |= err;
if (!(s->flags & SF_FINST_MASK))
s->flags |= fin;
}
/* kill a stream and set the termination flags to <why> (one of SF_ERR_*) */
void stream_shutdown(struct stream *stream, int why)
{
if (stream->req.flags & (CF_SHUTW|CF_SHUTW_NOW))
return;
channel_shutw_now(&stream->req);
channel_shutr_now(&stream->res);
stream->task->nice = 1024;
if (!(stream->flags & SF_ERR_MASK))
stream->flags |= why;
task_wakeup(stream->task, TASK_WOKEN_OTHER);
}
/* Appends a dump of the state of stream <s> into buffer <buf> which must have
* preliminary be prepared by its caller, with each line prepended by prefix
* <pfx>, and each line terminated by character <eol>.
*/
void stream_dump(struct buffer *buf, const struct stream *s, const char *pfx, char eol)
{
const struct conn_stream *csf, *csb;
const struct connection *cof, *cob;
const struct appctx *acf, *acb;
const struct server *srv;
const char *src = "unknown";
const char *dst = "unknown";
char pn[INET6_ADDRSTRLEN];
const struct channel *req, *res;
const struct stream_interface *si_f, *si_b;
if (!s) {
chunk_appendf(buf, "%sstrm=%p%c", pfx, s, eol);
return;
}
if (s->obj_type != OBJ_TYPE_STREAM) {
chunk_appendf(buf, "%sstrm=%p [invalid type=%d(%s)]%c",
pfx, s, s->obj_type, obj_type_name(&s->obj_type), eol);
return;
}
si_f = &s->si[0];
si_b = &s->si[1];
req = &s->req;
res = &s->res;
csf = objt_cs(si_f->end);
cof = cs_conn(csf);
acf = objt_appctx(si_f->end);
if (cof && cof->src && addr_to_str(cof->src, pn, sizeof(pn)) >= 0)
src = pn;
else if (acf)
src = acf->applet->name;
csb = objt_cs(si_b->end);
cob = cs_conn(csb);
acb = objt_appctx(si_b->end);
srv = objt_server(s->target);
if (srv)
dst = srv->id;
else if (acb)
dst = acb->applet->name;
chunk_appendf(buf,
"%sstrm=%p src=%s fe=%s be=%s dst=%s%c"
"%srqf=%x rqa=%x rpf=%x rpa=%x sif=%s,%x sib=%s,%x%c"
"%saf=%p,%u csf=%p,%x%c"
"%sab=%p,%u csb=%p,%x%c"
"%scof=%p,%x:%s(%p)/%s(%p)/%s(%d)%c"
"%scob=%p,%x:%s(%p)/%s(%p)/%s(%d)%c"
"",
pfx, s, src, s->sess->fe->id, s->be->id, dst, eol,
pfx, req->flags, req->analysers, res->flags, res->analysers,
si_state_str(si_f->state), si_f->flags,
si_state_str(si_b->state), si_b->flags, eol,
pfx, acf, acf ? acf->st0 : 0, csf, csf ? csf->flags : 0, eol,
pfx, acb, acb ? acb->st0 : 0, csb, csb ? csb->flags : 0, eol,
pfx, cof, cof ? cof->flags : 0, conn_get_mux_name(cof), cof?cof->ctx:0, conn_get_xprt_name(cof),
cof ? cof->xprt_ctx : 0, conn_get_ctrl_name(cof), cof ? cof->handle.fd : 0, eol,
pfx, cob, cob ? cob->flags : 0, conn_get_mux_name(cob), cob?cob->ctx:0, conn_get_xprt_name(cob),
cob ? cob->xprt_ctx : 0, conn_get_ctrl_name(cob), cob ? cob->handle.fd : 0, eol);
}
/* dumps an error message for type <type> at ptr <ptr> related to stream <s>,
* having reached loop rate <rate>, then aborts hoping to retrieve a core.
*/
void stream_dump_and_crash(enum obj_type *obj, int rate)
{
const struct stream *s;
char *msg = NULL;
const void *ptr;
ptr = s = objt_stream(obj);
if (!s) {
const struct appctx *appctx = objt_appctx(obj);
if (!appctx)
return;
ptr = appctx;
s = si_strm(appctx->owner);
if (!s)
return;
}
chunk_reset(&trash);
stream_dump(&trash, s, "", ' ');
chunk_appendf(&trash, "filters={");
if (HAS_FILTERS(s)) {
struct filter *filter;
list_for_each_entry(filter, &s->strm_flt.filters, list) {
if (filter->list.p != &s->strm_flt.filters)
chunk_appendf(&trash, ", ");
chunk_appendf(&trash, "%p=\"%s\"", filter, FLT_ID(filter));
}
}
chunk_appendf(&trash, "}");
memprintf(&msg,
"A bogus %s [%p] is spinning at %d calls per second and refuses to die, "
"aborting now! Please report this error to developers "
"[%s]\n",
obj_type_name(obj), ptr, rate, trash.area);
ha_alert("%s", msg);
send_log(NULL, LOG_EMERG, "%s", msg);
ABORT_NOW();
}
/* initialize the require structures */
static void init_stream()
{
int thr;
for (thr = 0; thr < MAX_THREADS; thr++)
LIST_INIT(&ha_thread_info[thr].streams);
}
INITCALL0(STG_INIT, init_stream);
/* Generates a unique ID based on the given <format>, stores it in the given <strm> and
* returns the unique ID.
* If this function fails to allocate memory IST_NULL is returned.
*
* If an ID is already stored within the stream nothing happens existing unique ID is
* returned.
*/
struct ist stream_generate_unique_id(struct stream *strm, struct list *format)
{
if (isttest(strm->unique_id)) {
return strm->unique_id;
}
else {
char *unique_id;
int length;
if ((unique_id = pool_alloc(pool_head_uniqueid)) == NULL)
return IST_NULL;
length = build_logline(strm, unique_id, UNIQUEID_LEN, format);
strm->unique_id = ist2(unique_id, length);
return strm->unique_id;
}
}
/************************************************************************/
/* All supported ACL keywords must be declared here. */
/************************************************************************/
static enum act_return stream_action_set_log_level(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
s->logs.level = (uintptr_t)rule->arg.act.p[0];
return ACT_RET_CONT;
}
/* Parse a "set-log-level" action. It takes the level value as argument. It
* returns ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error.
*/
static enum act_parse_ret stream_parse_set_log_level(const char **args, int *cur_arg, struct proxy *px,
struct act_rule *rule, char **err)
{
int level;
if (!*args[*cur_arg]) {
bad_log_level:
memprintf(err, "expects exactly 1 argument (log level name or 'silent')");
return ACT_RET_PRS_ERR;
}
if (strcmp(args[*cur_arg], "silent") == 0)
level = -1;
else if ((level = get_log_level(args[*cur_arg]) + 1) == 0)
goto bad_log_level;
(*cur_arg)++;
/* Register processing function. */
rule->action_ptr = stream_action_set_log_level;
rule->action = ACT_CUSTOM;
rule->arg.act.p[0] = (void *)(uintptr_t)level;
return ACT_RET_PRS_OK;
}
static enum act_return stream_action_set_nice(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
s->task->nice = (uintptr_t)rule->arg.act.p[0];
return ACT_RET_CONT;
}
/* Parse a "set-nice" action. It takes the nice value as argument. It returns
* ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error.
*/
static enum act_parse_ret stream_parse_set_nice(const char **args, int *cur_arg, struct proxy *px,
struct act_rule *rule, char **err)
{
int nice;
if (!*args[*cur_arg]) {
bad_log_level:
memprintf(err, "expects exactly 1 argument (integer value)");
return ACT_RET_PRS_ERR;
}
nice = atoi(args[*cur_arg]);
if (nice < -1024)
nice = -1024;
else if (nice > 1024)
nice = 1024;
(*cur_arg)++;
/* Register processing function. */
rule->action_ptr = stream_action_set_nice;
rule->action = ACT_CUSTOM;
rule->arg.act.p[0] = (void *)(uintptr_t)nice;
return ACT_RET_PRS_OK;
}
static enum act_return tcp_action_switch_stream_mode(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
enum pr_mode mode = (uintptr_t)rule->arg.act.p[0];
const struct mux_proto_list *mux_proto = rule->arg.act.p[1];
if (!IS_HTX_STRM(s) && mode == PR_MODE_HTTP) {
if (!stream_set_http_mode(s, mux_proto)) {
channel_abort(&s->req);
channel_abort(&s->res);
return ACT_RET_ABRT;
}
}
return ACT_RET_STOP;
}
static int check_tcp_switch_stream_mode(struct act_rule *rule, struct proxy *px, char **err)
{
const struct mux_proto_list *mux_ent;
const struct mux_proto_list *mux_proto = rule->arg.act.p[1];
enum pr_mode pr_mode = (uintptr_t)rule->arg.act.p[0];
enum proto_proxy_mode mode = (1 << (pr_mode == PR_MODE_HTTP));
if (pr_mode == PR_MODE_HTTP)
px->options |= PR_O_HTTP_UPG;
if (mux_proto) {
mux_ent = conn_get_best_mux_entry(mux_proto->token, PROTO_SIDE_FE, mode);
if (!mux_ent || !isteq(mux_ent->token, mux_proto->token)) {
memprintf(err, "MUX protocol '%.*s' is not compatible with the selected mode",
(int)mux_proto->token.len, mux_proto->token.ptr);
return 0;
}
}
else {
mux_ent = conn_get_best_mux_entry(IST_NULL, PROTO_SIDE_FE, mode);
if (!mux_ent) {
memprintf(err, "Unable to find compatible MUX protocol with the selected mode");
return 0;
}
}
/* Update the mux */
rule->arg.act.p[1] = (void *)mux_ent;
return 1;
}
static enum act_parse_ret stream_parse_switch_mode(const char **args, int *cur_arg,
struct proxy *px, struct act_rule *rule,
char **err)
{
const struct mux_proto_list *mux_proto = NULL;
struct ist proto;
enum pr_mode mode;
/* must have at least the mode */
if (*(args[*cur_arg]) == 0) {
memprintf(err, "'%s %s' expects a mode as argument.", args[0], args[*cur_arg-1]);
return ACT_RET_PRS_ERR;
}
if (!(px->cap & PR_CAP_FE)) {
memprintf(err, "'%s %s' not allowed because %s '%s' has no frontend capability",
args[0], args[*cur_arg-1], proxy_type_str(px), px->id);
return ACT_RET_PRS_ERR;
}
/* Check if the mode. For now "tcp" is disabled because downgrade is not
* supported and PT is the only TCP mux.
*/
if (strcmp(args[*cur_arg], "http") == 0)
mode = PR_MODE_HTTP;
else {
memprintf(err, "'%s %s' expects a valid mode (got '%s').", args[0], args[*cur_arg-1], args[*cur_arg]);
return ACT_RET_PRS_ERR;
}
/* check the proto, if specified */
if (*(args[*cur_arg+1]) && strcmp(args[*cur_arg+1], "proto") == 0) {
if (*(args[*cur_arg+2]) == 0) {
memprintf(err, "'%s %s': '%s' expects a protocol as argument.",
args[0], args[*cur_arg-1], args[*cur_arg+1]);
return ACT_RET_PRS_ERR;
}
proto = ist2(args[*cur_arg+2], strlen(args[*cur_arg+2]));
mux_proto = get_mux_proto(proto);
if (!mux_proto) {
memprintf(err, "'%s %s': '%s' expects a valid MUX protocol, if specified (got '%s')",
args[0], args[*cur_arg-1], args[*cur_arg+1], args[*cur_arg+2]);
return ACT_RET_PRS_ERR;
}
*cur_arg += 2;
}
(*cur_arg)++;
/* Register processing function. */
rule->action_ptr = tcp_action_switch_stream_mode;
rule->check_ptr = check_tcp_switch_stream_mode;
rule->action = ACT_CUSTOM;
rule->arg.act.p[0] = (void *)(uintptr_t)mode;
rule->arg.act.p[1] = (void *)mux_proto;
return ACT_RET_PRS_OK;
}
/* 0=OK, <0=Alert, >0=Warning */
static enum act_parse_ret stream_parse_use_service(const char **args, int *cur_arg,
struct proxy *px, struct act_rule *rule,
char **err)
{
struct action_kw *kw;
/* Check if the service name exists. */
if (*(args[*cur_arg]) == 0) {
memprintf(err, "'%s' expects a service name.", args[0]);
return ACT_RET_PRS_ERR;
}
/* lookup for keyword corresponding to a service. */
kw = action_lookup(&service_keywords, args[*cur_arg]);
if (!kw) {
memprintf(err, "'%s' unknown service name.", args[1]);
return ACT_RET_PRS_ERR;
}
(*cur_arg)++;
/* executes specific rule parser. */
rule->kw = kw;
if (kw->parse((const char **)args, cur_arg, px, rule, err) == ACT_RET_PRS_ERR)
return ACT_RET_PRS_ERR;
/* Register processing function. */
rule->action_ptr = process_use_service;
rule->action = ACT_CUSTOM;
return ACT_RET_PRS_OK;
}
void service_keywords_register(struct action_kw_list *kw_list)
{
LIST_APPEND(&service_keywords, &kw_list->list);
}
struct action_kw *service_find(const char *kw)
{
return action_lookup(&service_keywords, kw);
}
/* Lists the known services on <out> */
void list_services(FILE *out)
{
struct action_kw_list *kw_list;
int found = 0;
int i;
fprintf(out, "Available services :");
list_for_each_entry(kw_list, &service_keywords, list) {
for (i = 0; kw_list->kw[i].kw != NULL; i++) {
found = 1;
fprintf(out, " %s", kw_list->kw[i].kw);
}
}
if (!found)
fprintf(out, " none\n");
}
/* This function dumps a complete stream state onto the stream interface's
* read buffer. The stream has to be set in strm. It returns 0 if the output
* buffer is full and it needs to be called again, otherwise non-zero. It is
* designed to be called from stats_dump_strm_to_buffer() below.
*/
static int stats_dump_full_strm_to_buffer(struct stream_interface *si, struct stream *strm)
{
struct appctx *appctx = __objt_appctx(si->end);
struct tm tm;
extern const char *monthname[12];
char pn[INET6_ADDRSTRLEN];
struct conn_stream *cs;
struct connection *conn;
struct appctx *tmpctx;
chunk_reset(&trash);
if (appctx->ctx.sess.section > 0 && appctx->ctx.sess.uid != strm->uniq_id) {
/* stream changed, no need to go any further */
chunk_appendf(&trash, " *** session terminated while we were watching it ***\n");
if (ci_putchk(si_ic(si), &trash) == -1)
goto full;
goto done;
}
switch (appctx->ctx.sess.section) {
case 0: /* main status of the stream */
appctx->ctx.sess.uid = strm->uniq_id;
appctx->ctx.sess.section = 1;
/* fall through */
case 1:
get_localtime(strm->logs.accept_date.tv_sec, &tm);
chunk_appendf(&trash,
"%p: [%02d/%s/%04d:%02d:%02d:%02d.%06d] id=%u proto=%s",
strm,
tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
tm.tm_hour, tm.tm_min, tm.tm_sec, (int)(strm->logs.accept_date.tv_usec),
strm->uniq_id,
strm_li(strm) ? strm_li(strm)->rx.proto->name : "?");
conn = objt_conn(strm_orig(strm));
switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) {
case AF_INET:
case AF_INET6:
chunk_appendf(&trash, " source=%s:%d\n",
pn, get_host_port(conn->src));
break;
case AF_UNIX:
chunk_appendf(&trash, " source=unix:%d\n", strm_li(strm)->luid);
break;
default:
/* no more information to print right now */
chunk_appendf(&trash, "\n");
break;
}
chunk_appendf(&trash,
" flags=0x%x, conn_retries=%d, srv_conn=%p, pend_pos=%p waiting=%d epoch=%#x\n",
strm->flags, strm->si[1].conn_retries, strm->srv_conn, strm->pend_pos,
LIST_INLIST(&strm->buffer_wait.list), strm->stream_epoch);
chunk_appendf(&trash,
" frontend=%s (id=%u mode=%s), listener=%s (id=%u)",
strm_fe(strm)->id, strm_fe(strm)->uuid, strm_fe(strm)->mode ? "http" : "tcp",
strm_li(strm) ? strm_li(strm)->name ? strm_li(strm)->name : "?" : "?",
strm_li(strm) ? strm_li(strm)->luid : 0);
switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) {
case AF_INET:
case AF_INET6:
chunk_appendf(&trash, " addr=%s:%d\n",
pn, get_host_port(conn->dst));
break;
case AF_UNIX:
chunk_appendf(&trash, " addr=unix:%d\n", strm_li(strm)->luid);
break;
default:
/* no more information to print right now */
chunk_appendf(&trash, "\n");
break;
}
if (strm->be->cap & PR_CAP_BE)
chunk_appendf(&trash,
" backend=%s (id=%u mode=%s)",
strm->be->id,
strm->be->uuid, strm->be->mode ? "http" : "tcp");
else
chunk_appendf(&trash, " backend=<NONE> (id=-1 mode=-)");
cs = objt_cs(strm->si[1].end);
conn = cs_conn(cs);
switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) {
case AF_INET:
case AF_INET6:
chunk_appendf(&trash, " addr=%s:%d\n",
pn, get_host_port(conn->src));
break;
case AF_UNIX:
chunk_appendf(&trash, " addr=unix\n");
break;
default:
/* no more information to print right now */
chunk_appendf(&trash, "\n");
break;
}
if (strm->be->cap & PR_CAP_BE)
chunk_appendf(&trash,
" server=%s (id=%u)",
objt_server(strm->target) ? objt_server(strm->target)->id : "<none>",
objt_server(strm->target) ? objt_server(strm->target)->puid : 0);
else
chunk_appendf(&trash, " server=<NONE> (id=-1)");
switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) {
case AF_INET:
case AF_INET6:
chunk_appendf(&trash, " addr=%s:%d\n",
pn, get_host_port(conn->dst));
break;
case AF_UNIX:
chunk_appendf(&trash, " addr=unix\n");
break;
default:
/* no more information to print right now */
chunk_appendf(&trash, "\n");
break;
}
chunk_appendf(&trash,
" task=%p (state=0x%02x nice=%d calls=%u rate=%u exp=%s tmask=0x%lx%s",
strm->task,
strm->task->state,
strm->task->nice, strm->task->calls, read_freq_ctr(&strm->call_rate),
strm->task->expire ?
tick_is_expired(strm->task->expire, now_ms) ? "<PAST>" :
human_time(TICKS_TO_MS(strm->task->expire - now_ms),
TICKS_TO_MS(1000)) : "<NEVER>",
strm->task->thread_mask,
task_in_rq(strm->task) ? ", running" : "");
chunk_appendf(&trash,
" age=%s)\n",
human_time(now.tv_sec - strm->logs.accept_date.tv_sec, 1));
if (strm->txn)
chunk_appendf(&trash,
" txn=%p flags=0x%x meth=%d status=%d req.st=%s rsp.st=%s req.f=0x%02x rsp.f=0x%02x\n",
strm->txn, strm->txn->flags, strm->txn->meth, strm->txn->status,
h1_msg_state_str(strm->txn->req.msg_state), h1_msg_state_str(strm->txn->rsp.msg_state),
strm->txn->req.flags, strm->txn->rsp.flags);
chunk_appendf(&trash,
" si[0]=%p (state=%s flags=0x%02x endp0=%s:%p exp=%s et=0x%03x sub=%d)\n",
&strm->si[0],
si_state_str(strm->si[0].state),
strm->si[0].flags,
obj_type_name(strm->si[0].end),
obj_base_ptr(strm->si[0].end),
strm->si[0].exp ?
tick_is_expired(strm->si[0].exp, now_ms) ? "<PAST>" :
human_time(TICKS_TO_MS(strm->si[0].exp - now_ms),
TICKS_TO_MS(1000)) : "<NEVER>",
strm->si[0].err_type, strm->si[0].wait_event.events);
chunk_appendf(&trash,
" si[1]=%p (state=%s flags=0x%02x endp1=%s:%p exp=%s et=0x%03x sub=%d)\n",
&strm->si[1],
si_state_str(strm->si[1].state),
strm->si[1].flags,
obj_type_name(strm->si[1].end),
obj_base_ptr(strm->si[1].end),
strm->si[1].exp ?
tick_is_expired(strm->si[1].exp, now_ms) ? "<PAST>" :
human_time(TICKS_TO_MS(strm->si[1].exp - now_ms),
TICKS_TO_MS(1000)) : "<NEVER>",
strm->si[1].err_type, strm->si[1].wait_event.events);
if ((cs = objt_cs(strm->si[0].end)) != NULL) {
conn = cs->conn;
chunk_appendf(&trash,
" co0=%p ctrl=%s xprt=%s mux=%s data=%s target=%s:%p\n",
conn,
conn_get_ctrl_name(conn),
conn_get_xprt_name(conn),
conn_get_mux_name(conn),
cs_get_data_name(cs),
obj_type_name(conn->target),
obj_base_ptr(conn->target));
chunk_appendf(&trash,
" flags=0x%08x fd=%d fd.state=%02x updt=%d fd.tmask=0x%lx\n",
conn->flags,
conn->handle.fd,
conn->handle.fd >= 0 ? fdtab[conn->handle.fd].state : 0,
conn->handle.fd >= 0 ? !!(fdtab[conn->handle.fd].update_mask & tid_bit) : 0,
conn->handle.fd >= 0 ? fdtab[conn->handle.fd].thread_mask: 0);
chunk_appendf(&trash, " cs=%p csf=0x%08x ctx=%p\n", cs, cs->flags, cs->ctx);
}
else if ((tmpctx = objt_appctx(strm->si[0].end)) != NULL) {
chunk_appendf(&trash,
" app0=%p st0=%d st1=%d st2=%d applet=%s tmask=0x%lx nice=%d calls=%u rate=%u cpu=%llu lat=%llu\n",
tmpctx,
tmpctx->st0,
tmpctx->st1,
tmpctx->st2,
tmpctx->applet->name,
tmpctx->t->thread_mask,
tmpctx->t->nice, tmpctx->t->calls, read_freq_ctr(&tmpctx->call_rate),
(unsigned long long)tmpctx->t->cpu_time, (unsigned long long)tmpctx->t->lat_time);
}
if ((cs = objt_cs(strm->si[1].end)) != NULL) {
conn = cs->conn;
chunk_appendf(&trash,
" co1=%p ctrl=%s xprt=%s mux=%s data=%s target=%s:%p\n",
conn,
conn_get_ctrl_name(conn),
conn_get_xprt_name(conn),
conn_get_mux_name(conn),
cs_get_data_name(cs),
obj_type_name(conn->target),
obj_base_ptr(conn->target));
chunk_appendf(&trash,
" flags=0x%08x fd=%d fd.state=%02x updt=%d fd.tmask=0x%lx\n",
conn->flags,
conn->handle.fd,
conn->handle.fd >= 0 ? fdtab[conn->handle.fd].state : 0,
conn->handle.fd >= 0 ? !!(fdtab[conn->handle.fd].update_mask & tid_bit) : 0,
conn->handle.fd >= 0 ? fdtab[conn->handle.fd].thread_mask: 0);
chunk_appendf(&trash, " cs=%p csf=0x%08x ctx=%p\n", cs, cs->flags, cs->ctx);
}
else if ((tmpctx = objt_appctx(strm->si[1].end)) != NULL) {
chunk_appendf(&trash,
" app1=%p st0=%d st1=%d st2=%d applet=%s tmask=0x%lx nice=%d calls=%u rate=%u cpu=%llu lat=%llu\n",
tmpctx,
tmpctx->st0,
tmpctx->st1,
tmpctx->st2,
tmpctx->applet->name,
tmpctx->t->thread_mask,
tmpctx->t->nice, tmpctx->t->calls, read_freq_ctr(&tmpctx->call_rate),
(unsigned long long)tmpctx->t->cpu_time, (unsigned long long)tmpctx->t->lat_time);
}
chunk_appendf(&trash,
" req=%p (f=0x%06x an=0x%x pipe=%d tofwd=%d total=%lld)\n"
" an_exp=%s",
&strm->req,
strm->req.flags, strm->req.analysers,
strm->req.pipe ? strm->req.pipe->data : 0,
strm->req.to_forward, strm->req.total,
strm->req.analyse_exp ?
human_time(TICKS_TO_MS(strm->req.analyse_exp - now_ms),
TICKS_TO_MS(1000)) : "<NEVER>");
chunk_appendf(&trash,
" rex=%s",
strm->req.rex ?
human_time(TICKS_TO_MS(strm->req.rex - now_ms),
TICKS_TO_MS(1000)) : "<NEVER>");
chunk_appendf(&trash,
" wex=%s\n"
" buf=%p data=%p o=%u p=%u i=%u size=%u\n",
strm->req.wex ?
human_time(TICKS_TO_MS(strm->req.wex - now_ms),
TICKS_TO_MS(1000)) : "<NEVER>",
&strm->req.buf,
b_orig(&strm->req.buf), (unsigned int)co_data(&strm->req),
(unsigned int)ci_head_ofs(&strm->req), (unsigned int)ci_data(&strm->req),
(unsigned int)strm->req.buf.size);
if (IS_HTX_STRM(strm)) {
struct htx *htx = htxbuf(&strm->req.buf);
chunk_appendf(&trash,
" htx=%p flags=0x%x size=%u data=%u used=%u wrap=%s extra=%llu\n",
htx, htx->flags, htx->size, htx->data, htx_nbblks(htx),
(htx->tail >= htx->head) ? "NO" : "YES",
(unsigned long long)htx->extra);
}
chunk_appendf(&trash,
" res=%p (f=0x%06x an=0x%x pipe=%d tofwd=%d total=%lld)\n"
" an_exp=%s",
&strm->res,
strm->res.flags, strm->res.analysers,
strm->res.pipe ? strm->res.pipe->data : 0,
strm->res.to_forward, strm->res.total,
strm->res.analyse_exp ?
human_time(TICKS_TO_MS(strm->res.analyse_exp - now_ms),
TICKS_TO_MS(1000)) : "<NEVER>");
chunk_appendf(&trash,
" rex=%s",
strm->res.rex ?
human_time(TICKS_TO_MS(strm->res.rex - now_ms),
TICKS_TO_MS(1000)) : "<NEVER>");
chunk_appendf(&trash,
" wex=%s\n"
" buf=%p data=%p o=%u p=%u i=%u size=%u\n",
strm->res.wex ?
human_time(TICKS_TO_MS(strm->res.wex - now_ms),
TICKS_TO_MS(1000)) : "<NEVER>",
&strm->res.buf,
b_orig(&strm->res.buf), (unsigned int)co_data(&strm->res),
(unsigned int)ci_head_ofs(&strm->res), (unsigned int)ci_data(&strm->res),
(unsigned int)strm->res.buf.size);
if (IS_HTX_STRM(strm)) {
struct htx *htx = htxbuf(&strm->res.buf);
chunk_appendf(&trash,
" htx=%p flags=0x%x size=%u data=%u used=%u wrap=%s extra=%llu\n",
htx, htx->flags, htx->size, htx->data, htx_nbblks(htx),
(htx->tail >= htx->head) ? "NO" : "YES",
(unsigned long long)htx->extra);
}
if (ci_putchk(si_ic(si), &trash) == -1)
goto full;
/* use other states to dump the contents */
}
/* end of dump */
done:
appctx->ctx.sess.uid = 0;
appctx->ctx.sess.section = 0;
return 1;
full:
return 0;
}
static int cli_parse_show_sess(char **args, char *payload, struct appctx *appctx, void *private)
{
if (!cli_has_level(appctx, ACCESS_LVL_OPER))
return 1;
if (*args[2] && strcmp(args[2], "all") == 0)
appctx->ctx.sess.target = (void *)-1;
else if (*args[2])
appctx->ctx.sess.target = (void *)strtoul(args[2], NULL, 0);
else
appctx->ctx.sess.target = NULL;
appctx->ctx.sess.section = 0; /* start with stream status */
appctx->ctx.sess.pos = 0;
appctx->ctx.sess.thr = 0;
/* let's set our own stream's epoch to the current one and increment
* it so that we know which streams were already there before us.
*/
si_strm(appctx->owner)->stream_epoch = _HA_ATOMIC_FETCH_ADD(&stream_epoch, 1);
return 0;
}
/* This function dumps all streams' states onto the stream interface's
* read buffer. It returns 0 if the output buffer is full and it needs
* to be called again, otherwise non-zero. It proceeds in an isolated
* thread so there is no thread safety issue here.
*/
static int cli_io_handler_dump_sess(struct appctx *appctx)
{
struct stream_interface *si = appctx->owner;
struct connection *conn;
thread_isolate();
if (unlikely(si_ic(si)->flags & (CF_WRITE_ERROR|CF_SHUTW))) {
/* If we're forced to shut down, we might have to remove our
* reference to the last stream being dumped.
*/
if (appctx->st2 == STAT_ST_LIST) {
if (!LIST_ISEMPTY(&appctx->ctx.sess.bref.users)) {
LIST_DELETE(&appctx->ctx.sess.bref.users);
LIST_INIT(&appctx->ctx.sess.bref.users);
}
}
goto done;
}
chunk_reset(&trash);
switch (appctx->st2) {
case STAT_ST_INIT:
/* the function had not been called yet, let's prepare the
* buffer for a response. We initialize the current stream
* pointer to the first in the global list. When a target
* stream is being destroyed, it is responsible for updating
* this pointer. We know we have reached the end when this
* pointer points back to the head of the streams list.
*/
LIST_INIT(&appctx->ctx.sess.bref.users);
appctx->ctx.sess.bref.ref = ha_thread_info[appctx->ctx.sess.thr].streams.n;
appctx->st2 = STAT_ST_LIST;
/* fall through */
case STAT_ST_LIST:
/* first, let's detach the back-ref from a possible previous stream */
if (!LIST_ISEMPTY(&appctx->ctx.sess.bref.users)) {
LIST_DELETE(&appctx->ctx.sess.bref.users);
LIST_INIT(&appctx->ctx.sess.bref.users);
}
/* and start from where we stopped */
while (1) {
char pn[INET6_ADDRSTRLEN];
struct stream *curr_strm;
int done= 0;
if (appctx->ctx.sess.bref.ref == &ha_thread_info[appctx->ctx.sess.thr].streams)
done = 1;
else {
/* check if we've found a stream created after issuing the "show sess" */
curr_strm = LIST_ELEM(appctx->ctx.sess.bref.ref, struct stream *, list);
if ((int)(curr_strm->stream_epoch - si_strm(appctx->owner)->stream_epoch) > 0)
done = 1;
}
if (done) {
appctx->ctx.sess.thr++;
if (appctx->ctx.sess.thr >= global.nbthread)
break;
appctx->ctx.sess.bref.ref = ha_thread_info[appctx->ctx.sess.thr].streams.n;
continue;
}
if (appctx->ctx.sess.target) {
if (appctx->ctx.sess.target != (void *)-1 && appctx->ctx.sess.target != curr_strm)
goto next_sess;
LIST_APPEND(&curr_strm->back_refs, &appctx->ctx.sess.bref.users);
/* call the proper dump() function and return if we're missing space */
if (!stats_dump_full_strm_to_buffer(si, curr_strm))
goto full;
/* stream dump complete */
LIST_DELETE(&appctx->ctx.sess.bref.users);
LIST_INIT(&appctx->ctx.sess.bref.users);
if (appctx->ctx.sess.target != (void *)-1) {
appctx->ctx.sess.target = NULL;
break;
}
else
goto next_sess;
}
chunk_appendf(&trash,
"%p: proto=%s",
curr_strm,
strm_li(curr_strm) ? strm_li(curr_strm)->rx.proto->name : "?");
conn = objt_conn(strm_orig(curr_strm));
switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) {
case AF_INET:
case AF_INET6:
chunk_appendf(&trash,
" src=%s:%d fe=%s be=%s srv=%s",
pn,
get_host_port(conn->src),
strm_fe(curr_strm)->id,
(curr_strm->be->cap & PR_CAP_BE) ? curr_strm->be->id : "<NONE>",
objt_server(curr_strm->target) ? objt_server(curr_strm->target)->id : "<none>"
);
break;
case AF_UNIX:
chunk_appendf(&trash,
" src=unix:%d fe=%s be=%s srv=%s",
strm_li(curr_strm)->luid,
strm_fe(curr_strm)->id,
(curr_strm->be->cap & PR_CAP_BE) ? curr_strm->be->id : "<NONE>",
objt_server(curr_strm->target) ? objt_server(curr_strm->target)->id : "<none>"
);
break;
}
chunk_appendf(&trash,
" ts=%02x epoch=%#x age=%s calls=%u rate=%u cpu=%llu lat=%llu",
curr_strm->task->state, curr_strm->stream_epoch,
human_time(now.tv_sec - curr_strm->logs.tv_accept.tv_sec, 1),
curr_strm->task->calls, read_freq_ctr(&curr_strm->call_rate),
(unsigned long long)curr_strm->task->cpu_time, (unsigned long long)curr_strm->task->lat_time);
chunk_appendf(&trash,
" rq[f=%06xh,i=%u,an=%02xh,rx=%s",
curr_strm->req.flags,
(unsigned int)ci_data(&curr_strm->req),
curr_strm->req.analysers,
curr_strm->req.rex ?
human_time(TICKS_TO_MS(curr_strm->req.rex - now_ms),
TICKS_TO_MS(1000)) : "");
chunk_appendf(&trash,
",wx=%s",
curr_strm->req.wex ?
human_time(TICKS_TO_MS(curr_strm->req.wex - now_ms),
TICKS_TO_MS(1000)) : "");
chunk_appendf(&trash,
",ax=%s]",
curr_strm->req.analyse_exp ?
human_time(TICKS_TO_MS(curr_strm->req.analyse_exp - now_ms),
TICKS_TO_MS(1000)) : "");
chunk_appendf(&trash,
" rp[f=%06xh,i=%u,an=%02xh,rx=%s",
curr_strm->res.flags,
(unsigned int)ci_data(&curr_strm->res),
curr_strm->res.analysers,
curr_strm->res.rex ?
human_time(TICKS_TO_MS(curr_strm->res.rex - now_ms),
TICKS_TO_MS(1000)) : "");
chunk_appendf(&trash,
",wx=%s",
curr_strm->res.wex ?
human_time(TICKS_TO_MS(curr_strm->res.wex - now_ms),
TICKS_TO_MS(1000)) : "");
chunk_appendf(&trash,
",ax=%s]",
curr_strm->res.analyse_exp ?
human_time(TICKS_TO_MS(curr_strm->res.analyse_exp - now_ms),
TICKS_TO_MS(1000)) : "");
conn = cs_conn(objt_cs(curr_strm->si[0].end));
chunk_appendf(&trash,
" s0=[%d,%1xh,fd=%d,ex=%s]",
curr_strm->si[0].state,
curr_strm->si[0].flags,
conn ? conn->handle.fd : -1,
curr_strm->si[0].exp ?
human_time(TICKS_TO_MS(curr_strm->si[0].exp - now_ms),
TICKS_TO_MS(1000)) : "");
conn = cs_conn(objt_cs(curr_strm->si[1].end));
chunk_appendf(&trash,
" s1=[%d,%1xh,fd=%d,ex=%s]",
curr_strm->si[1].state,
curr_strm->si[1].flags,
conn ? conn->handle.fd : -1,
curr_strm->si[1].exp ?
human_time(TICKS_TO_MS(curr_strm->si[1].exp - now_ms),
TICKS_TO_MS(1000)) : "");
chunk_appendf(&trash,
" exp=%s",
curr_strm->task->expire ?
human_time(TICKS_TO_MS(curr_strm->task->expire - now_ms),
TICKS_TO_MS(1000)) : "");
if (task_in_rq(curr_strm->task))
chunk_appendf(&trash, " run(nice=%d)", curr_strm->task->nice);
chunk_appendf(&trash, "\n");
if (ci_putchk(si_ic(si), &trash) == -1) {
/* let's try again later from this stream. We add ourselves into
* this stream's users so that it can remove us upon termination.
*/
LIST_APPEND(&curr_strm->back_refs, &appctx->ctx.sess.bref.users);
goto full;
}
next_sess:
appctx->ctx.sess.bref.ref = curr_strm->list.n;
}
if (appctx->ctx.sess.target && appctx->ctx.sess.target != (void *)-1) {
/* specified stream not found */
if (appctx->ctx.sess.section > 0)
chunk_appendf(&trash, " *** session terminated while we were watching it ***\n");
else
chunk_appendf(&trash, "Session not found.\n");
if (ci_putchk(si_ic(si), &trash) == -1)
goto full;
appctx->ctx.sess.target = NULL;
appctx->ctx.sess.uid = 0;
goto done;
}
/* fall through */
default:
appctx->st2 = STAT_ST_FIN;
goto done;
}
done:
thread_release();
return 1;
full:
thread_release();
si_rx_room_blk(si);
return 0;
}
static void cli_release_show_sess(struct appctx *appctx)
{
if (appctx->st2 == STAT_ST_LIST && appctx->ctx.sess.thr < global.nbthread) {
/* a dump was aborted, either in error or timeout. We need to
* safely detach from the target stream's list. It's mandatory
* to lock because a stream on the target thread could be moving
* our node.
*/
thread_isolate();
if (!LIST_ISEMPTY(&appctx->ctx.sess.bref.users))
LIST_DELETE(&appctx->ctx.sess.bref.users);
thread_release();
}
}
/* Parses the "shutdown session" directive, it always returns 1 */
static int cli_parse_shutdown_session(char **args, char *payload, struct appctx *appctx, void *private)
{
struct stream *strm, *ptr;
int thr;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
if (!*args[2])
return cli_err(appctx, "Session pointer expected (use 'show sess').\n");
ptr = (void *)strtoul(args[2], NULL, 0);
strm = NULL;
thread_isolate();
/* first, look for the requested stream in the stream table */
for (thr = 0; !strm && thr < global.nbthread; thr++) {
list_for_each_entry(strm, &ha_thread_info[thr].streams, list) {
if (strm == ptr) {
stream_shutdown(strm, SF_ERR_KILLED);
break;
}
}
}
thread_release();
/* do we have the stream ? */
if (!strm)
return cli_err(appctx, "No such session (use 'show sess').\n");
return 1;
}
/* Parses the "shutdown session server" directive, it always returns 1 */
static int cli_parse_shutdown_sessions_server(char **args, char *payload, struct appctx *appctx, void *private)
{
struct server *sv;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
sv = cli_find_server(appctx, args[3]);
if (!sv)
return 1;
/* kill all the stream that are on this server */
HA_SPIN_LOCK(SERVER_LOCK, &sv->lock);
srv_shutdown_streams(sv, SF_ERR_KILLED);
HA_SPIN_UNLOCK(SERVER_LOCK, &sv->lock);
return 1;
}
/* register cli keywords */
static struct cli_kw_list cli_kws = {{ },{
{ { "show", "sess", NULL }, "show sess [id] : report the list of current sessions or dump this exact session", cli_parse_show_sess, cli_io_handler_dump_sess, cli_release_show_sess },
{ { "shutdown", "session", NULL }, "shutdown session [id] : kill a specific session", cli_parse_shutdown_session, NULL, NULL },
{ { "shutdown", "sessions", "server" }, "shutdown sessions server <bk>/<srv> : kill sessions on a server", cli_parse_shutdown_sessions_server, NULL, NULL },
{{},}
}};
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
/* main configuration keyword registration. */
static struct action_kw_list stream_tcp_req_keywords = { ILH, {
{ "set-log-level", stream_parse_set_log_level },
{ "set-nice", stream_parse_set_nice },
{ "switch-mode", stream_parse_switch_mode },
{ "use-service", stream_parse_use_service },
{ /* END */ }
}};
INITCALL1(STG_REGISTER, tcp_req_cont_keywords_register, &stream_tcp_req_keywords);
/* main configuration keyword registration. */
static struct action_kw_list stream_tcp_res_keywords = { ILH, {
{ "set-log-level", stream_parse_set_log_level },
{ "set-nice", stream_parse_set_nice },
{ /* END */ }
}};
INITCALL1(STG_REGISTER, tcp_res_cont_keywords_register, &stream_tcp_res_keywords);
static struct action_kw_list stream_http_req_keywords = { ILH, {
{ "set-log-level", stream_parse_set_log_level },
{ "set-nice", stream_parse_set_nice },
{ "use-service", stream_parse_use_service },
{ /* END */ }
}};
INITCALL1(STG_REGISTER, http_req_keywords_register, &stream_http_req_keywords);
static struct action_kw_list stream_http_res_keywords = { ILH, {
{ "set-log-level", stream_parse_set_log_level },
{ "set-nice", stream_parse_set_nice },
{ /* END */ }
}};
INITCALL1(STG_REGISTER, http_res_keywords_register, &stream_http_res_keywords);
static int smp_fetch_cur_server_timeout(const struct arg *args, struct sample *smp, const char *km, void *private)
{
smp->flags = SMP_F_VOL_TXN;
smp->data.type = SMP_T_SINT;
if (!smp->strm)
return 0;
smp->data.u.sint = TICKS_TO_MS(smp->strm->res.rto);
return 1;
}
static int smp_fetch_cur_tunnel_timeout(const struct arg *args, struct sample *smp, const char *km, void *private)
{
smp->flags = SMP_F_VOL_TXN;
smp->data.type = SMP_T_SINT;
if (!smp->strm)
return 0;
smp->data.u.sint = TICKS_TO_MS(smp->strm->tunnel_timeout);
return 1;
}
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*/
static struct sample_fetch_kw_list smp_kws = {ILH, {
{ "cur_server_timeout", smp_fetch_cur_server_timeout, 0, NULL, SMP_T_SINT, SMP_USE_BKEND, },
{ "cur_tunnel_timeout", smp_fetch_cur_tunnel_timeout, 0, NULL, SMP_T_SINT, SMP_USE_BKEND, },
{ NULL, NULL, 0, 0, 0 },
}};
INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/