blob: 74917add8e9c0d83650d94a77f8d921bced75b36 [file] [log] [blame]
/*
* FD polling functions for Speculative I/O combined with Linux epoll()
*
* Copyright 2000-2007 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>
#include <common/compat.h>
#include <common/config.h>
#include <common/standard.h>
#include <common/time.h>
#include <types/fd.h>
#include <types/global.h>
#include <proto/fd.h>
#include <proto/task.h>
#if defined(USE_MY_EPOLL)
#include <common/epoll.h>
#include <errno.h>
#include <sys/syscall.h>
static _syscall1 (int, epoll_create, int, size);
static _syscall4 (int, epoll_ctl, int, epfd, int, op, int, fd, struct epoll_event *, event);
static _syscall4 (int, epoll_wait, int, epfd, struct epoll_event *, events, int, maxevents, int, timeout);
#else
#include <sys/epoll.h>
#endif
/*
* We define 4 states for each direction of a file descriptor, which we store
* as 2 bits :
*
* 00 = IDLE : we're not interested in this event
* 01 = SPEC : perform speculative I/O on this FD
* 10 = WAIT : really wait for an availability event on this FD (poll)
* 11 = STOP : was marked WAIT, but disabled. It can switch back to WAIT if
* the application changes its mind, otherwise disable FD polling
* and switch back to IDLE.
*
* Since we do not want to scan all the FD list to find speculative I/O events,
* we store them in a list consisting in a linear array holding only the FD
* indexes right now.
*
* The STOP state requires the event to be present in the spec list so that
* it can be detected and flushed upon next scan without having to scan the
* whole FD list.
*
* This translates like this :
*
* EVENT_IN_SPEC_LIST = 01
* EVENT_IN_POLL_LIST = 10
*
* IDLE = 0
* SPEC = (EVENT_IN_SPEC_LIST)
* WAIT = (EVENT_IN_POLL_LIST)
* STOP = (EVENT_IN_SPEC_LIST|EVENT_IN_POLL_LIST)
*
* fd_is_set() just consists in checking that the status is 01 or 10.
*
* For efficiency reasons, we will store the Read and Write bits interlaced to
* form a 4-bit field, so that we can simply shift the value right by 0/1 and
* get what we want :
* 3 2 1 0
* Wp Rp Ws Rs
*
* The FD array has to hold a back reference to the speculative list. This
* reference is only valid if at least one of the directions is marked SPEC.
*
*/
#define FD_EV_IN_SL 1
#define FD_EV_IN_PL 4
#define FD_EV_IDLE 0
#define FD_EV_SPEC (FD_EV_IN_SL)
#define FD_EV_WAIT (FD_EV_IN_PL)
#define FD_EV_STOP (FD_EV_IN_SL|FD_EV_IN_PL)
/* Those match any of R or W for Spec list or Poll list */
#define FD_EV_RW_SL (FD_EV_IN_SL | (FD_EV_IN_SL << 1))
#define FD_EV_RW_PL (FD_EV_IN_PL | (FD_EV_IN_PL << 1))
#define FD_EV_MASK_DIR (FD_EV_IN_SL|FD_EV_IN_PL)
#define FD_EV_IDLE_R 0
#define FD_EV_SPEC_R (FD_EV_IN_SL)
#define FD_EV_WAIT_R (FD_EV_IN_PL)
#define FD_EV_STOP_R (FD_EV_IN_SL|FD_EV_IN_PL)
#define FD_EV_MASK_R (FD_EV_IN_SL|FD_EV_IN_PL)
#define FD_EV_IDLE_W (FD_EV_IDLE_R << 1)
#define FD_EV_SPEC_W (FD_EV_SPEC_R << 1)
#define FD_EV_WAIT_W (FD_EV_WAIT_R << 1)
#define FD_EV_STOP_W (FD_EV_STOP_R << 1)
#define FD_EV_MASK_W (FD_EV_MASK_R << 1)
#define FD_EV_MASK (FD_EV_MASK_W | FD_EV_MASK_R)
/* descriptor of one FD.
* FIXME: should be a bit field */
struct fd_status {
unsigned int e:4; // read and write events status.
unsigned int s:28; // Position in spec list. Should be last.
};
static int nbspec = 0; // current size of the spec list
static struct fd_status *fd_list = NULL; // list of FDs
static unsigned int *spec_list = NULL; // speculative I/O list
/* private data */
static struct epoll_event *epoll_events;
static int epoll_fd;
/* This structure may be used for any purpose. Warning! do not use it in
* recursive functions !
*/
static struct epoll_event ev;
REGPRM1 static void alloc_spec_entry(const int fd)
{
if (fd_list[fd].e & FD_EV_RW_SL)
return;
fd_list[fd].s = nbspec;
spec_list[nbspec++] = fd;
}
/* removes entry <pos> from the spec list and replaces it with the last one.
* The fd_list is adjusted to match the back reference if needed.
*/
REGPRM1 static void delete_spec_entry(const int pos)
{
int fd;
nbspec--;
if (pos == nbspec)
return;
/* we replace current FD by the highest one */
fd = spec_list[nbspec];
spec_list[pos] = fd;
fd_list[fd].s = pos;
}
/*
* Returns non-zero if <fd> is already monitored for events in direction <dir>.
*/
REGPRM2 static int __fd_is_set(const int fd, int dir)
{
int ret;
ret = ((unsigned)fd_list[fd].e >> dir) & FD_EV_MASK_DIR;
return (ret == FD_EV_SPEC || ret == FD_EV_WAIT);
}
/*
* Don't worry about the strange constructs in __fd_set/__fd_clr, they are
* designed like this in order to reduce the number of jumps (verified).
*/
REGPRM2 static int __fd_set(const int fd, int dir)
{
__label__ switch_state;
unsigned int i;
i = ((unsigned)fd_list[fd].e >> dir) & FD_EV_MASK_DIR;
if (i == FD_EV_IDLE) {
// switch to SPEC state and allocate a SPEC entry.
alloc_spec_entry(fd);
switch_state:
fd_list[fd].e ^= (unsigned int)(FD_EV_IN_SL << dir);
return 1;
}
else if (i == FD_EV_STOP) {
// switch to WAIT state
goto switch_state;
}
else
return 0;
}
REGPRM2 static int __fd_clr(const int fd, int dir)
{
__label__ switch_state;
unsigned int i;
i = ((unsigned)fd_list[fd].e >> dir) & FD_EV_MASK_DIR;
if (i == FD_EV_SPEC) {
// switch to IDLE state
goto switch_state;
}
else if (likely(i == FD_EV_WAIT)) {
// switch to STOP state
/* We will create a queue entry for this one because we want to
* process it later in order to merge it with other events on
* the same FD.
*/
alloc_spec_entry(fd);
switch_state:
fd_list[fd].e ^= (unsigned int)(FD_EV_IN_SL << dir);
return 1;
}
return 0;
}
REGPRM1 static void __fd_rem(int fd)
{
__fd_clr(fd, DIR_RD);
__fd_clr(fd, DIR_WR);
}
/*
* On valid epoll() implementations, a call to close() automatically removes
* the fds. This means that the FD will appear as previously unset.
*/
REGPRM1 static void __fd_clo(int fd)
{
if (fd_list[fd].e & FD_EV_RW_SL)
delete_spec_entry(fd_list[fd].s);
fd_list[fd].e &= ~(FD_EV_MASK);
}
static struct ev_to_epoll {
char op; // epoll opcode to switch from spec to wait, 0 if none
char m; // inverted mask for existing events
char ev; // remainint epoll events after change
char pad;
} ev_to_epoll[16] = {
[FD_EV_IDLE_W | FD_EV_STOP_R] = { .op=EPOLL_CTL_DEL, .m=FD_EV_MASK_R },
[FD_EV_SPEC_W | FD_EV_STOP_R] = { .op=EPOLL_CTL_DEL, .m=FD_EV_MASK_R },
[FD_EV_STOP_W | FD_EV_IDLE_R] = { .op=EPOLL_CTL_DEL, .m=FD_EV_MASK_W },
[FD_EV_STOP_W | FD_EV_SPEC_R] = { .op=EPOLL_CTL_DEL, .m=FD_EV_MASK_W },
[FD_EV_WAIT_W | FD_EV_STOP_R] = { .op=EPOLL_CTL_MOD, .m=FD_EV_MASK_R, .ev=EPOLLOUT },
[FD_EV_STOP_W | FD_EV_WAIT_R] = { .op=EPOLL_CTL_MOD, .m=FD_EV_MASK_W, .ev=EPOLLIN },
[FD_EV_STOP_W | FD_EV_STOP_R] = { .op=EPOLL_CTL_DEL, .m=FD_EV_MASK_R|FD_EV_MASK_W },
[FD_EV_WAIT_W | FD_EV_WAIT_R] = { .ev=EPOLLIN|EPOLLOUT },
};
/*
* speculative epoll() poller
*/
REGPRM2 static void _do_poll(struct poller *p, int wait_time)
{
static unsigned int last_skipped;
int status;
int fd, opcode;
int count;
int spec_idx;
/* Here we have two options :
* - either walk the list forwards and hope to atch more events
* - or walk it backwards to minimize the number of changes and
* to make better use of the cache.
* Tests have shown that walking backwards improves perf by 0.2%.
*/
spec_idx = nbspec;
while (likely(spec_idx > 0)) {
spec_idx--;
fd = spec_list[spec_idx];
opcode = ev_to_epoll[fd_list[fd].e].op;
if (opcode) {
ev.events = ev_to_epoll[fd_list[fd].e].ev;
ev.data.fd = fd;
epoll_ctl(epoll_fd, opcode, fd, &ev);
fd_list[fd].e &= ~(unsigned int)ev_to_epoll[fd_list[fd].e].m;
}
if (!(fd_list[fd].e & FD_EV_RW_SL)) {
// This one must be removed. Let's clear it now.
delete_spec_entry(spec_idx);
continue;
}
/* OK so now we do not have any event marked STOP anymore in
* the list. We can simply try to execute functions for the
* events we have found, and requeue them in case of EAGAIN.
*/
status = 0;
fdtab[fd].ev = 0;
if ((fd_list[fd].e & FD_EV_MASK_R) == FD_EV_SPEC_R) {
if (fdtab[fd].state != FD_STCLOSE && fdtab[fd].state != FD_STERROR) {
fdtab[fd].ev |= FD_POLL_IN;
if (fdtab[fd].cb[DIR_RD].f(fd) == 0)
status |= EPOLLIN;
}
}
if ((fd_list[fd].e & FD_EV_MASK_W) == FD_EV_SPEC_W) {
if (fdtab[fd].state != FD_STCLOSE && fdtab[fd].state != FD_STERROR) {
fdtab[fd].ev |= FD_POLL_OUT;
if (fdtab[fd].cb[DIR_WR].f(fd) == 0)
status |= EPOLLOUT;
}
}
if (status) {
/* Some speculative accesses have failed, we must
* switch to the WAIT state.
*/
ev.events = status;
ev.data.fd = fd;
if (fd_list[fd].e & FD_EV_RW_PL) {
// Event already in poll list
ev.events |= ev_to_epoll[fd_list[fd].e].ev;
opcode = EPOLL_CTL_MOD;
} else {
// Event not in poll list yet
opcode = EPOLL_CTL_ADD;
}
epoll_ctl(epoll_fd, opcode, fd, &ev);
if (status & EPOLLIN) {
fd_list[fd].e &= ~FD_EV_MASK_R;
fd_list[fd].e |= FD_EV_WAIT_R;
}
if (status & EPOLLOUT) {
fd_list[fd].e &= ~FD_EV_MASK_W;
fd_list[fd].e |= FD_EV_WAIT_W;
}
if ((fd_list[fd].e & FD_EV_MASK_R) != FD_EV_SPEC_R &&
(fd_list[fd].e & FD_EV_MASK_W) != FD_EV_SPEC_W) {
delete_spec_entry(spec_idx);
continue;
}
}
}
/* If some speculative events remain, we must not set the timeout in
* epoll_wait(). Also, if some speculative events remain, it means
* that some have been immediately processed, otherwise they would
* have been disabled.
*/
if (nbspec) {
if (!last_skipped++) {
/* Measures have shown a great performance increase if
* we call the epoll_wait() only the second time after
* speculative accesses have succeeded. This reduces
* the number of unsucessful calls to epoll_wait() by
* a factor of about 3, and the total number of calls
* by about 2.
*/
tv_now(&now);
return;
}
wait_time = 0;
}
last_skipped = 0;
/* now let's wait for events */
status = epoll_wait(epoll_fd, epoll_events, maxfd, wait_time);
tv_now(&now);
for (count = 0; count < status; count++) {
int e = epoll_events[count].events;
fd = epoll_events[count].data.fd;
/* it looks complicated but gcc can optimize it away when constants
* have same values.
*/
fdtab[fd].ev =
((e & EPOLLIN ) ? FD_POLL_IN : 0) |
((e & EPOLLPRI) ? FD_POLL_PRI : 0) |
((e & EPOLLOUT) ? FD_POLL_OUT : 0) |
((e & EPOLLERR) ? FD_POLL_ERR : 0) |
((e & EPOLLHUP) ? FD_POLL_HUP : 0);
if ((fd_list[fd].e & FD_EV_MASK_R) == FD_EV_WAIT_R) {
if (fdtab[fd].state == FD_STCLOSE || fdtab[fd].state == FD_STERROR)
continue;
if (fdtab[fd].ev & (FD_POLL_RD|FD_POLL_HUP|FD_POLL_ERR))
fdtab[fd].cb[DIR_RD].f(fd);
}
if ((fd_list[fd].e & FD_EV_MASK_W) == FD_EV_WAIT_W) {
if (fdtab[fd].state == FD_STCLOSE || fdtab[fd].state == FD_STERROR)
continue;
if (fdtab[fd].ev & (FD_POLL_WR|FD_POLL_ERR))
fdtab[fd].cb[DIR_WR].f(fd);
}
}
}
/*
* Initialization of the speculative epoll() poller.
* Returns 0 in case of failure, non-zero in case of success. If it fails, it
* disables the poller by setting its pref to 0.
*/
REGPRM1 static int _do_init(struct poller *p)
{
__label__ fail_fd_list, fail_spec, fail_ee, fail_fd;
p->private = NULL;
epoll_fd = epoll_create(global.maxsock + 1);
if (epoll_fd < 0)
goto fail_fd;
epoll_events = (struct epoll_event*)
calloc(1, sizeof(struct epoll_event) * global.maxsock);
if (epoll_events == NULL)
goto fail_ee;
if ((spec_list = (uint32_t *)calloc(1, sizeof(uint32_t) * global.maxsock)) == NULL)
goto fail_spec;
fd_list = (struct fd_status *)calloc(1, sizeof(struct fd_status) * global.maxsock);
if (fd_list == NULL)
goto fail_fd_list;
return 1;
fail_fd_list:
free(spec_list);
fail_spec:
free(epoll_events);
fail_ee:
close(epoll_fd);
epoll_fd = 0;
fail_fd:
p->pref = 0;
return 0;
}
/*
* Termination of the speculative epoll() poller.
* Memory is released and the poller is marked as unselectable.
*/
REGPRM1 static void _do_term(struct poller *p)
{
if (fd_list)
free(fd_list);
if (spec_list)
free(spec_list);
if (epoll_events)
free(epoll_events);
close(epoll_fd);
epoll_fd = 0;
fd_list = NULL;
spec_list = NULL;
epoll_events = NULL;
p->private = NULL;
p->pref = 0;
}
/*
* Check that the poller works.
* Returns 1 if OK, otherwise 0.
*/
REGPRM1 static int _do_test(struct poller *p)
{
int fd;
fd = epoll_create(global.maxsock + 1);
if (fd < 0)
return 0;
close(fd);
return 1;
}
/*
* It is a constructor, which means that it will automatically be called before
* main(). This is GCC-specific but it works at least since 2.95.
* Special care must be taken so that it does not need any uninitialized data.
*/
__attribute__((constructor))
static void _do_register(void)
{
struct poller *p;
if (nbpollers >= MAX_POLLERS)
return;
p = &pollers[nbpollers++];
p->name = "sepoll";
p->pref = 400;
p->private = NULL;
p->test = _do_test;
p->init = _do_init;
p->term = _do_term;
p->poll = _do_poll;
p->is_set = __fd_is_set;
p->cond_s = p->set = __fd_set;
p->cond_c = p->clr = __fd_clr;
p->rem = __fd_rem;
p->clo = __fd_clo;
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/