blob: 82c7329916526ccb068228a671642657868c5edc [file] [log] [blame]
/*
* Name server resolution
*
* Copyright 2014 Baptiste Assmann <bedis9@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <common/time.h>
#include <common/ticks.h>
#include <common/net_helper.h>
#include <import/lru.h>
#include <import/xxhash.h>
#include <types/applet.h>
#include <types/cli.h>
#include <types/global.h>
#include <types/dns.h>
#include <types/proto_udp.h>
#include <types/stats.h>
#include <proto/channel.h>
#include <proto/cli.h>
#include <proto/checks.h>
#include <proto/dns.h>
#include <proto/fd.h>
#include <proto/log.h>
#include <proto/server.h>
#include <proto/task.h>
#include <proto/proto_udp.h>
#include <proto/stream_interface.h>
struct list dns_resolvers = LIST_HEAD_INIT(dns_resolvers);
struct dns_resolution *resolution = NULL;
static int64_t dns_query_id_seed; /* random seed */
static struct lru64_head *dns_lru_tree;
static int dns_cache_size = 1024; /* arbitrary DNS cache size */
static struct pool_head *dns_answer_item_pool;
/* proto_udp callback functions for a DNS resolution */
struct dgram_data_cb resolve_dgram_cb = {
.recv = dns_resolve_recv,
.send = dns_resolve_send,
};
/* local function prototypes */
static int dns_run_resolution(struct dns_requester *requester);
#if DEBUG
/*
* go through the resolutions associated to a resolvers section and print the ID and hostname in
* domain name format
* should be used for debug purpose only
*/
void dns_print_current_resolutions(struct dns_resolvers *resolvers)
{
list_for_each_entry(resolution, &resolvers->resolution.curr, list) {
printf(" resolution %d for %s\n", resolution->query_id, resolution->hostname_dn);
}
}
#endif
void dump_dns_config()
{
struct dns_resolvers *curr_resolvers = NULL;
struct dns_nameserver *curr_nameserver = NULL;
struct dns_resolution *curr_resolution = NULL;
struct dns_requester *curr_requester = NULL;
printf("===============\n");
list_for_each_entry(curr_resolvers, &dns_resolvers, list) {
printf("Resolvers: %s\n", curr_resolvers->id);
printf(" nameservers:\n");
list_for_each_entry(curr_nameserver, &curr_resolvers->nameserver_list, list) {
printf(" %s\n", curr_nameserver->id);
}
/*
printf(" resolution.pool list:\n");
list_for_each_entry(curr_resolution, &curr_resolvers->resolution.pool, list) {
printf(" %p\n", curr_resolution);
}
*/
printf(" resolution.wait list:\n");
list_for_each_entry(curr_resolution, &curr_resolvers->resolution.wait, list) {
printf(" %p %s\n", curr_resolution, curr_resolution->hostname_dn);
printf(" requester.wait list:\n");
list_for_each_entry(curr_requester, &curr_resolution->requester.wait, list) {
switch (obj_type(curr_requester->requester)) {
case OBJ_TYPE_SERVER:
printf(" %p SRV %s %d\n", curr_requester, objt_server(curr_requester->requester)->id, curr_requester->prefered_query_type);
break;
case OBJ_TYPE_SRVRQ:
printf(" %p SRVRQ %s %d\n", curr_requester, objt_dns_srvrq(curr_requester->requester)->name, curr_requester->prefered_query_type);
break;
case OBJ_TYPE_NONE:
default:
;;
}
}
printf(" requester.curr list:\n");
list_for_each_entry(curr_requester, &curr_resolution->requester.curr, list) {
switch (obj_type(curr_requester->requester)) {
case OBJ_TYPE_SERVER:
printf(" %p SRV %s %d\n", curr_requester, objt_server(curr_requester->requester)->id, curr_requester->prefered_query_type);
break;
case OBJ_TYPE_SRVRQ:
printf(" %p SRVRQ %s %d\n", curr_requester, objt_dns_srvrq(curr_requester->requester)->name, curr_requester->prefered_query_type);
break;
case OBJ_TYPE_NONE:
default:
;;
}
}
}
printf(" resolution.curr list:\n");
list_for_each_entry(curr_resolution, &curr_resolvers->resolution.curr, list) {
printf(" %p %s\n", curr_resolution, curr_resolution->hostname_dn);
printf(" requester.wait list:\n");
list_for_each_entry(curr_requester, &curr_resolution->requester.wait, list) {
switch (obj_type(curr_requester->requester)) {
case OBJ_TYPE_SERVER:
printf(" %p SRV %s %d\n", curr_requester, objt_server(curr_requester->requester)->id, curr_requester->prefered_query_type);
break;
case OBJ_TYPE_SRVRQ:
printf(" %p SRVRQ %s %d\n", curr_requester, objt_dns_srvrq(curr_requester->requester)->name, curr_requester->prefered_query_type);
break;
case OBJ_TYPE_NONE:
default:
;;
}
}
printf(" requester.curr list:\n");
list_for_each_entry(curr_requester, &curr_resolution->requester.curr, list) {
switch (obj_type(curr_requester->requester)) {
case OBJ_TYPE_SERVER:
printf(" %p SRV %s %d\n", curr_requester, objt_server(curr_requester->requester)->id, curr_requester->prefered_query_type);
break;
case OBJ_TYPE_SRVRQ:
printf(" %p SRVRQ %s %d\n", curr_requester, objt_dns_srvrq(curr_requester->requester)->name, curr_requester->prefered_query_type);
break;
case OBJ_TYPE_NONE:
default:
;;
}
}
}
}
printf("===============\n");
}
/*
* Initiates a new name resolution:
* - generates a query id
* - configure the resolution structure
* - startup the resolvers task if required
*
* returns:
* - 0 if everything started properly
* - -1 in case of error or if resolution already running
*/
int dns_trigger_resolution(struct dns_resolution *resolution)
{
struct dns_requester *requester = NULL, *tmprequester;
struct dns_resolvers *resolvers = NULL;
int inter;
/* process the element of the wait queue */
list_for_each_entry_safe(requester, tmprequester, &resolution->requester.wait, list) {
inter = 0;
switch (obj_type(requester->requester)) {
case OBJ_TYPE_SERVER:
inter = objt_server(requester->requester)->check.inter;
resolvers = objt_server(requester->requester)->resolvers;
break;
case OBJ_TYPE_SRVRQ:
inter = objt_dns_srvrq(requester->requester)->inter;
resolvers = objt_dns_srvrq(requester->requester)->resolvers;
break;
case OBJ_TYPE_NONE:
default:
return -1;
}
/* if data is fresh enough, let's use it */
if (!tick_is_expired(tick_add(resolution->last_resolution, inter), now_ms)) {
/* we only use cache if the response there is valid.
* If not valid, we run the resolution and move the requester to
* the run queue. */
if (resolution->status != RSLV_STATUS_VALID) {
LIST_DEL(&requester->list);
LIST_ADDQ(&resolution->requester.curr, &requester->list);
dns_run_resolution(requester);
continue;
}
requester->requester_cb(requester, NULL);
resolvers = NULL;
}
else {
LIST_DEL(&requester->list);
LIST_ADDQ(&resolution->requester.curr, &requester->list);
dns_run_resolution(requester);
}
}
if (resolvers)
dns_update_resolvers_timeout(resolvers);
return 0;
}
/*
* Prepare and send a DNS resolution.
*
* Return code:
* - 0 if no error occured
* - -1 in case of error
*/
static int
dns_run_resolution(struct dns_requester *requester)
{
struct dns_resolution *resolution;
struct dns_resolvers *resolvers;
int query_id, query_type, i;
struct proxy *proxy;
resolution = NULL;
resolvers = NULL;
proxy = NULL;
query_type = -1;
switch (obj_type(requester->requester)) {
case OBJ_TYPE_SERVER:
resolution = objt_server(requester->requester)->resolution;
resolvers = objt_server(requester->requester)->resolvers;
proxy = objt_server(requester->requester)->proxy;
query_type = requester->prefered_query_type;
break;
case OBJ_TYPE_SRVRQ:
resolution = objt_dns_srvrq(requester->requester)->resolution;
resolvers = objt_dns_srvrq(requester->requester)->resolvers;
proxy = objt_dns_srvrq(requester->requester)->proxy;
query_type = DNS_RTYPE_SRV;
break;
case OBJ_TYPE_NONE:
default:
return -1;
}
/*
* Avoid sending requests for resolutions that don't yet have
* an hostname, ie resolutions linked to servers that do not yet
* have an fqdn
*/
if (!resolution->hostname_dn)
return 0;
/*
* check if a resolution has already been started for this server
* return directly to avoid resolution pill up.
*/
if (resolution->step != RSLV_STEP_NONE)
return 0;
/* generates a query id */
i = 0;
do {
query_id = dns_rnd16();
/* we do try only 100 times to find a free query id */
if (i++ > 100) {
chunk_printf(&trash, "could not generate a query id for %s, in resolvers %s",
resolution->hostname_dn, resolvers->id);
if (proxy)
send_log(proxy, LOG_NOTICE, "%s.\n", trash.str);
return -1;
}
} while (eb32_lookup(&resolvers->query_ids, query_id));
/* move the resolution into the run queue */
LIST_DEL(&resolution->list);
LIST_ADDQ(&resolvers->resolution.curr, &resolution->list);
/* now update resolution parameters */
resolution->query_id = query_id;
resolution->qid.key = query_id;
resolution->step = RSLV_STEP_RUNNING;
resolution->query_type = query_type;
resolution->try = resolvers->resolve_retries;
resolution->try_cname = 0;
resolution->nb_responses = 0;
eb32_insert(&resolvers->query_ids, &resolution->qid);
dns_send_query(resolution);
resolution->try -= 1;
/* update wakeup date if this resolution is the only one in the FIFO list */
if (dns_check_resolution_queue(resolvers) == 1) {
/* update task timeout */
dns_update_resolvers_timeout(resolvers);
task_queue(resolvers->t);
}
return 0;
}
/*
* check if there is more than 1 resolution in the resolver's resolution list
* return value:
* 0: empty list
* 1: exactly one entry in the list
* 2: more than one entry in the list
*/
int dns_check_resolution_queue(struct dns_resolvers *resolvers)
{
if (LIST_ISEMPTY(&resolvers->resolution.curr))
return 0;
if ((resolvers->resolution.curr.n) && (resolvers->resolution.curr.n == resolvers->resolution.curr.p))
return 1;
if (! ((resolvers->resolution.curr.n == resolvers->resolution.curr.p)
&& (&resolvers->resolution.curr != resolvers->resolution.curr.n)))
return 2;
return 0;
}
/*
* reset some resolution parameters to initial values and also delete the
* query ID from the resolver's tree.
*/
void dns_reset_resolution(struct dns_resolution *resolution)
{
/* update resolution status */
resolution->step = RSLV_STEP_NONE;
resolution->try = 0;
resolution->try_cname = 0;
resolution->last_resolution = now_ms;
resolution->nb_responses = 0;
/* clean up query id */
eb32_delete(&resolution->qid);
resolution->query_id = 0;
resolution->qid.key = 0;
}
static inline void free_dns_answer_item(struct dns_answer_item *item)
{
pool_free2(dns_answer_item_pool, item);
}
/*
* function called when a network IO is generated on a name server socket for an incoming packet
* It performs the following actions:
* - check if the packet requires processing (not outdated resolution)
* - ensure the DNS packet received is valid and call requester's callback
* - call requester's error callback if invalid response
* - check the dn_name in the packet against the one sent
*/
void dns_resolve_recv(struct dgram_conn *dgram)
{
struct dns_nameserver *nameserver, *tmpnameserver;
struct dns_resolvers *resolvers;
struct dns_resolution *resolution = NULL;
struct dns_query_item *query;
unsigned char buf[DNS_MAX_UDP_MESSAGE + 1];
unsigned char *bufend;
int fd, buflen, dns_resp, need_resend = 0;
int max_answer_records = 0;
unsigned short query_id;
struct eb32_node *eb;
struct lru64 *lru = NULL;
struct dns_requester *requester = NULL, *tmprequester = NULL;
struct dns_answer_item *item1, *item2 = NULL;
fd = dgram->t.sock.fd;
/* check if ready for reading */
if (!fd_recv_ready(fd))
return;
/* no need to go further if we can't retrieve the nameserver */
if ((nameserver = dgram->owner) == NULL)
return;
resolvers = nameserver->resolvers;
/* process all pending input messages */
while (1) {
int removed_reso = 0;
/* read message received */
memset(buf, '\0', resolvers->accepted_payload_size + 1);
if ((buflen = recv(fd, (char*)buf , resolvers->accepted_payload_size + 1, 0)) < 0) {
/* FIXME : for now we consider EAGAIN only */
fd_cant_recv(fd);
break;
}
/* message too big */
if (buflen > resolvers->accepted_payload_size) {
nameserver->counters.too_big += 1;
continue;
}
/* initializing variables */
bufend = buf + buflen; /* pointer to mark the end of the buffer */
/* read the query id from the packet (16 bits) */
if (buf + 2 > bufend) {
nameserver->counters.invalid += 1;
continue;
}
query_id = dns_response_get_query_id(buf);
/* search the query_id in the pending resolution tree */
eb = eb32_lookup(&resolvers->query_ids, query_id);
if (eb == NULL) {
/* unknown query id means an outdated response and can be safely ignored */
nameserver->counters.outdated += 1;
continue;
}
/* known query id means a resolution in prgress */
resolution = eb32_entry(eb, struct dns_resolution, qid);
if (!resolution) {
nameserver->counters.outdated += 1;
continue;
}
/* number of responses received */
resolution->nb_responses += 1;
max_answer_records = (resolvers->accepted_payload_size - DNS_HEADER_SIZE) / DNS_MIN_RECORD_SIZE;
dns_resp = dns_validate_dns_response(buf, bufend, resolution, max_answer_records);
switch (dns_resp) {
case DNS_RESP_VALID:
need_resend = 0;
break;
case DNS_RESP_INVALID:
case DNS_RESP_QUERY_COUNT_ERROR:
case DNS_RESP_WRONG_NAME:
if (resolution->status != RSLV_STATUS_INVALID) {
resolution->status = RSLV_STATUS_INVALID;
resolution->last_status_change = now_ms;
}
nameserver->counters.invalid += 1;
need_resend = 0;
break;
case DNS_RESP_ANCOUNT_ZERO:
if (resolution->status != RSLV_STATUS_OTHER) {
resolution->status = RSLV_STATUS_OTHER;
resolution->last_status_change = now_ms;
}
nameserver->counters.any_err += 1;
need_resend = 1;
break;
case DNS_RESP_NX_DOMAIN:
if (resolution->status != RSLV_STATUS_NX) {
resolution->status = RSLV_STATUS_NX;
resolution->last_status_change = now_ms;
}
nameserver->counters.nx += 1;
need_resend = 0;
break;
case DNS_RESP_REFUSED:
if (resolution->status != RSLV_STATUS_REFUSED) {
resolution->status = RSLV_STATUS_REFUSED;
resolution->last_status_change = now_ms;
}
nameserver->counters.refused += 1;
need_resend = 0;
break;
case DNS_RESP_CNAME_ERROR:
if (resolution->status != RSLV_STATUS_OTHER) {
resolution->status = RSLV_STATUS_OTHER;
resolution->last_status_change = now_ms;
}
nameserver->counters.cname_error += 1;
need_resend = 1;
break;
case DNS_RESP_TRUNCATED:
if (resolution->status != RSLV_STATUS_OTHER) {
resolution->status = RSLV_STATUS_OTHER;
resolution->last_status_change = now_ms;
}
nameserver->counters.truncated += 1;
need_resend = 1;
break;
case DNS_RESP_NO_EXPECTED_RECORD:
if (resolution->status != RSLV_STATUS_OTHER) {
resolution->status = RSLV_STATUS_OTHER;
resolution->last_status_change = now_ms;
}
nameserver->counters.other += 1;
need_resend = 1;
break;
case DNS_RESP_ERROR:
case DNS_RESP_INTERNAL:
if (resolution->status != RSLV_STATUS_OTHER) {
resolution->status = RSLV_STATUS_OTHER;
resolution->last_status_change = now_ms;
}
nameserver->counters.other += 1;
need_resend = 1;
break;
}
/* Check for any obsolete record, also identify any SRV request, and try to find a corresponding server */
list_for_each_entry_safe(item1, item2, &resolution->response.answer_list,
list) {
if (item1->last_seen + nameserver->resolvers->hold.obsolete / 1000 < now.tv_sec) {
LIST_DEL(&item1->list);
if (item1->type == DNS_RTYPE_SRV && !LIST_ISEMPTY(&resolution->requester.curr)) {
struct dns_srvrq *srvrq;
list_for_each_entry_safe(requester, tmprequester, &resolution->requester.curr, list) {
srvrq = objt_dns_srvrq(requester->requester);
/* We're removing an obsolete entry, remove any associated server */
if (srvrq) {
struct server *srv;
for (srv = srvrq->proxy->srv; srv != NULL; srv = srv->next) {
if (srv->srvrq == srvrq &&
item1->data_len ==
srv->hostname_dn_len &&
!memcmp(srv->hostname_dn, item1->target, item1->data_len) &&
srv->svc_port == item1->port) {
snr_update_srv_status(srv, 1);
free(srv->hostname);
srv->hostname = NULL;
srv->hostname_dn_len = 0;
free(srv->hostname_dn);
srv->hostname_dn = NULL;
srv_free_from_resolution(srv);
}
}
}
} /* end of list_for_each(requester) */
}
free_dns_answer_item(item1);
continue;
}
if (item1->type == DNS_RTYPE_SRV) {
struct server *srv = NULL;
struct dns_srvrq *srvrq = NULL;
if (LIST_ISEMPTY(&resolution->requester.curr))
continue;
list_for_each_entry_safe(requester, tmprequester, &resolution->requester.curr, list) {
srvrq = objt_dns_srvrq(requester->requester);
if (!srvrq)
continue;
/* Check if a server already uses that hostname */
for (srv = srvrq->proxy->srv; srv != NULL; srv = srv->next) {
if (srv->srvrq == srvrq &&
item1->data_len == srv->hostname_dn_len &&
!memcmp(srv->hostname_dn, item1->target, item1->data_len) &&
srv->svc_port == item1->port) {
if (srv->uweight != item1->weight) {
char weight[9];
snprintf(weight, sizeof(weight),
"%d", item1->weight);
server_parse_weight_change_request(srv, weight);
}
break;
}
}
/* If not, try to find a server that is down */
if (!srv) {
for (srv = srvrq->proxy->srv; srv != NULL; srv = srv->next) {
if (srv->srvrq == srvrq &&
!srv->hostname_dn)
break;
}
if (srv) {
char weight[9];
const char *msg = NULL;
char hostname[DNS_MAX_NAME_SIZE];
if (item1->data_len > DNS_MAX_NAME_SIZE)
continue;
dns_dn_label_to_str(item1->target, hostname, item1->data_len);
msg = update_server_fqdn(srv, hostname, "SRV record");
if (msg)
send_log(srv->proxy, LOG_NOTICE, "%s", msg);
srv->svc_port = item1->port;
srv->flags &= ~SRV_F_MAPPORTS;
if ((srv->check.state & CHK_ST_CONFIGURED) && !(srv->flags & SRV_F_CHECKPORT))
srv->check.port = item1->port;
snprintf(weight, sizeof(weight),
"%d", item1->weight);
server_parse_weight_change_request(srv, weight);
}
}
}
}
}
if (removed_reso)
goto next_packet;
/* some error codes trigger a re-send of the query, but switching the
* query type.
* This is the case for the following error codes:
* DNS_RESP_ANCOUNT_ZERO
* DNS_RESP_TRUNCATED
* DNS_RESP_ERROR
* DNS_RESP_INTERNAL
* DNS_RESP_NO_EXPECTED_RECORD
* DNS_RESP_CNAME_ERROR
*/
if (need_resend) {
int family_prio;
int res_preferred_afinet, res_preferred_afinet6;
requester = LIST_NEXT(&resolution->requester.curr, struct dns_requester *, list);
switch (obj_type(requester->requester)) {
case OBJ_TYPE_SERVER:
family_prio = objt_server(requester->requester)->dns_opts.family_prio;
break;
case OBJ_TYPE_NONE:
default:
family_prio = AF_INET6;
}
res_preferred_afinet = family_prio == AF_INET && resolution->query_type == DNS_RTYPE_A;
res_preferred_afinet6 = family_prio == AF_INET6 && resolution->query_type == DNS_RTYPE_AAAA;
if ((res_preferred_afinet || res_preferred_afinet6)
|| (resolution->try > 0)) {
/* let's change the query type */
if (res_preferred_afinet6) {
/* fallback from AAAA to A */
resolution->query_type = DNS_RTYPE_A;
}
else if (res_preferred_afinet) {
/* fallback from A to AAAA */
resolution->query_type = DNS_RTYPE_AAAA;
}
else {
resolution->try -= 1;
if (family_prio == AF_INET) {
resolution->query_type = DNS_RTYPE_A;
} else {
resolution->query_type = DNS_RTYPE_AAAA;
}
}
dns_send_query(resolution);
/*
* move the resolution to the last element of the FIFO queue
* and update timeout wakeup based on the new first entry
*/
if (dns_check_resolution_queue(resolvers) > 1) {
/* second resolution becomes first one */
LIST_DEL(&resolution->list);
/* ex first resolution goes to the end of the queue */
LIST_ADDQ(&resolvers->resolution.curr, &resolution->list);
}
dns_update_resolvers_timeout(resolvers);
goto next_packet;
}
/* if we're there, this means that we already ran out of chances to re-send
* the query */
list_for_each_entry_safe(requester, tmprequester, &resolution->requester.curr, list) {
requester->requester_error_cb(requester, dns_resp);
}
goto next_packet;
}
/* now processing those error codes only:
* DNS_RESP_NX_DOMAIN
* DNS_RESP_REFUSED
*/
if (dns_resp != DNS_RESP_VALID) {
/* now parse list of requesters currently waiting for this resolution */
list_for_each_entry_safe(requester, tmprequester, &resolution->requester.curr, list) {
requester->requester_error_cb(requester, dns_resp);
/* we can move the requester the wait queue */
LIST_DEL(&requester->list);
LIST_ADDQ(&resolution->requester.wait, &requester->list);
}
goto next_packet;
}
/* Now let's check the query's dname corresponds to the one we sent.
* We can check only the first query of the list. We send one query at a time
* so we get one query in the response */
query = LIST_NEXT(&resolution->response.query_list, struct dns_query_item *, list);
if (!resolution->hostname_dn)
abort();
if (query && memcmp(query->name, resolution->hostname_dn, resolution->hostname_dn_len) != 0) {
nameserver->counters.other += 1;
/* now parse list of requesters currently waiting for this resolution */
list_for_each_entry_safe(requester, tmprequester, &resolution->requester.curr, list) {
requester->requester_error_cb(requester, DNS_RESP_WRONG_NAME);
/* we can move the requester the wait queue */
LIST_DEL(&requester->list);
LIST_ADDQ(&resolution->requester.wait, &requester->list);
}
goto next_packet;
}
/* no errors, we can save the response in the cache */
if (dns_lru_tree) {
unsigned long long seed = 1;
struct chunk *buf = get_trash_chunk();
struct chunk *tmp = NULL;
chunk_reset(buf);
tmp = dns_cache_key(resolution->query_type, resolution->hostname_dn,
resolution->hostname_dn_len, buf);
if (!tmp) {
nameserver->counters.other += 1;
/* now parse list of requesters currently waiting for this resolution */
list_for_each_entry_safe(requester, tmprequester, &resolution->requester.curr, list) {
requester->requester_error_cb(requester, DNS_RESP_ERROR);
/* we can move the requester the wait queue */
LIST_DEL(&requester->list);
LIST_ADDQ(&resolution->requester.wait, &requester->list);
}
goto next_packet;
}
lru = lru64_get(XXH64(buf->str, buf->len, seed),
dns_lru_tree, nameserver->resolvers, 1);
lru64_commit(lru, resolution, nameserver->resolvers, 1, NULL);
}
if (resolution->status != RSLV_STATUS_VALID) {
resolution->status = RSLV_STATUS_VALID;
resolution->last_status_change = now_ms;
}
nameserver->counters.valid += 1;
/* now parse list of requesters currently waiting for this resolution */
tmpnameserver = nameserver;
list_for_each_entry_safe(requester, tmprequester, &resolution->requester.curr, list) {
requester->requester_cb(requester, tmpnameserver);
/* we can move the requester the wait queue */
LIST_DEL(&requester->list);
LIST_ADDQ(&resolution->requester.wait, &requester->list);
/* first response is managed by the server, others are from the cache */
tmpnameserver = NULL;
}
next_packet:
/* resolution may be NULL when we receive an ICMP unreachable packet */
if (resolution && LIST_ISEMPTY(&resolution->requester.curr)) {
/* move the resolution into the wait queue */
LIST_DEL(&resolution->list);
LIST_ADDQ(&resolvers->resolution.wait, &resolution->list);
/* update last resolution date and time */
resolution->last_resolution = now_ms;
/* reset current status flag */
resolution->step = RSLV_STEP_NONE;
/* reset values */
dns_reset_resolution(resolution);
}
} // end of while "packets" loop
dns_update_resolvers_timeout(nameserver->resolvers);
}
/*
* function called when a resolvers network socket is ready to send data
* It performs the following actions:
*/
void dns_resolve_send(struct dgram_conn *dgram)
{
int fd;
struct dns_nameserver *nameserver;
struct dns_resolvers *resolvers;
struct dns_resolution *resolution;
fd = dgram->t.sock.fd;
/* check if ready for sending */
if (!fd_send_ready(fd))
return;
/* we don't want/need to be waked up any more for sending */
fd_stop_send(fd);
/* no need to go further if we can't retrieve the nameserver */
if ((nameserver = dgram->owner) == NULL)
return;
resolvers = nameserver->resolvers;
resolution = LIST_NEXT(&resolvers->resolution.curr, struct dns_resolution *, list);
dns_send_query(resolution);
dns_update_resolvers_timeout(resolvers);
}
/*
* forge and send a DNS query to resolvers associated to a resolution
* It performs the following actions:
* returns:
* 0 in case of error or safe ignorance
* 1 if no error
*/
int dns_send_query(struct dns_resolution *resolution)
{
struct dns_resolvers *resolvers = NULL;
struct dns_nameserver *nameserver;
struct dns_requester *requester = NULL;
int ret, bufsize, fd;
/* nothing to do */
if (LIST_ISEMPTY(&resolution->requester.curr))
return 0;
requester = LIST_NEXT(&resolution->requester.curr, struct dns_requester *, list);
switch (obj_type(requester->requester)) {
case OBJ_TYPE_SERVER:
resolvers = objt_server(requester->requester)->resolvers;
break;
case OBJ_TYPE_SRVRQ:
resolvers = objt_dns_srvrq(requester->requester)->resolvers;
break;
case OBJ_TYPE_NONE:
default:
return 0;
}
if (!resolvers)
return 0;
bufsize = dns_build_query(resolution->query_id, resolution->query_type, resolvers->accepted_payload_size,
resolution->hostname_dn, resolution->hostname_dn_len, trash.str, trash.size);
if (bufsize == -1)
return 0;
list_for_each_entry(nameserver, &resolvers->nameserver_list, list) {
fd = nameserver->dgram->t.sock.fd;
errno = 0;
ret = send(fd, trash.str, bufsize, 0);
if (ret > 0)
nameserver->counters.sent += 1;
if (ret == 0 || errno == EAGAIN) {
/* nothing written, let's update the poller that we wanted to send
* but we were not able to */
fd_want_send(fd);
fd_cant_send(fd);
}
}
/* update resolution */
resolution->nb_responses = 0;
resolution->last_sent_packet = now_ms;
return 1;
}
/*
* update a resolvers' task timeout for next wake up
*/
void dns_update_resolvers_timeout(struct dns_resolvers *resolvers)
{
struct dns_resolution *resolution;
struct dns_requester *requester;
if ((LIST_ISEMPTY(&resolvers->resolution.curr)) && (LIST_ISEMPTY(&resolvers->resolution.wait))) {
resolvers->t->expire = TICK_ETERNITY;
}
else if (!LIST_ISEMPTY(&resolvers->resolution.curr)) {
resolution = LIST_NEXT(&resolvers->resolution.curr, struct dns_resolution *, list);
if (!resolvers->t->expire || tick_is_le(resolvers->t->expire, tick_add(resolution->last_sent_packet, resolvers->timeout.retry))) {
resolvers->t->expire = tick_add(resolution->last_sent_packet, resolvers->timeout.retry);
}
}
else if (!LIST_ISEMPTY(&resolvers->resolution.wait)) {
int valid_period, inter, need_wakeup;
struct dns_resolution *res_back;
need_wakeup = 0;
list_for_each_entry_safe(resolution, res_back, &resolvers->resolution.wait, list) {
valid_period = 0;
inter = 0;
requester = LIST_NEXT(&resolution->requester.wait, struct dns_requester *, list);
switch (obj_type(requester->requester)) {
case OBJ_TYPE_SERVER:
valid_period = objt_server(requester->requester)->check.inter;
break;
case OBJ_TYPE_SRVRQ:
valid_period = objt_dns_srvrq(requester->requester)->inter;
break;
case OBJ_TYPE_NONE:
default:
continue;
}
if (resolvers->hold.valid < valid_period)
inter = resolvers->hold.valid;
else
inter = valid_period;
if (tick_is_expired(tick_add(resolution->last_resolution, inter), now_ms)) {
switch (obj_type(requester->requester)) {
case OBJ_TYPE_SERVER:
dns_trigger_resolution(objt_server(requester->requester)->resolution);
break;
case OBJ_TYPE_SRVRQ:
dns_trigger_resolution(objt_dns_srvrq(requester->requester)->resolution);
break;
case OBJ_TYPE_NONE:
default:
;;
}
}
else {
need_wakeup = 1;
}
}
/* in such case, we wake up in 1s */
if (need_wakeup) {
int r = 1000;
resolution = LIST_NEXT(&resolvers->resolution.wait, struct dns_resolution *, list);
if (tick_is_le(resolvers->t->expire, tick_add(now_ms, r)))
resolvers->t->expire = tick_add(now_ms, r);
resolvers->t->expire = tick_add(now_ms, 1000);
}
}
task_queue(resolvers->t);
}
/*
* Analyse, re-build and copy the name <name> from the DNS response packet <buffer>.
* <name> must point to the 'data_len' information or pointer 'c0' for compressed data.
* The result is copied into <dest>, ensuring we don't overflow using <dest_len>
* Returns the number of bytes the caller can move forward. If 0 it means an error occured
* while parsing the name.
* <offset> is the number of bytes the caller could move forward.
*/
int dns_read_name(unsigned char *buffer, unsigned char *bufend, unsigned char *name, char *destination, int dest_len, int *offset)
{
int nb_bytes = 0, n = 0;
int label_len;
unsigned char *reader = name;
char *dest = destination;
while (1) {
/* name compression is in use */
if ((*reader & 0xc0) == 0xc0) {
/* a pointer must point BEFORE current position */
if ((buffer + reader[1]) > reader) {
goto out_error;
}
n = dns_read_name(buffer, bufend, buffer + reader[1], dest, dest_len - nb_bytes, offset);
if (n == 0)
goto out_error;
dest += n;
nb_bytes += n;
goto out;
}
label_len = *reader;
if (label_len == 0)
goto out;
/* Check if:
* - we won't read outside the buffer
* - there is enough place in the destination
*/
if ((reader + label_len >= bufend) || (nb_bytes + label_len >= dest_len))
goto out_error;
/* +1 to take label len + label string */
label_len += 1;
memcpy(dest, reader, label_len);
dest += label_len;
nb_bytes += label_len;
reader += label_len;
}
out:
/* offset computation:
* parse from <name> until finding either NULL or a pointer "c0xx"
*/
reader = name;
*offset = 0;
while (reader < bufend) {
if ((reader[0] & 0xc0) == 0xc0) {
*offset += 2;
break;
}
else if (*reader == 0) {
*offset += 1;
break;
}
*offset += 1;
++reader;
}
return nb_bytes;
out_error:
return 0;
}
/*
* Function to validate that the buffer DNS response provided in <resp> and
* finishing before <bufend> is valid from a DNS protocol point of view.
*
* The result is stored in <resolution>' response, buf_response, response_query_records
* and response_answer_records members.
*
* This function returns one of the DNS_RESP_* code to indicate the type of
* error found.
*/
int dns_validate_dns_response(unsigned char *resp, unsigned char *bufend, struct dns_resolution *resolution, int max_answer_records)
{
unsigned char *reader;
char *previous_dname, tmpname[DNS_MAX_NAME_SIZE];
int len, flags, offset;
int dns_query_record_id;
int nb_saved_records;
struct dns_query_item *dns_query;
struct dns_answer_item *dns_answer_record, *tmp_record;
struct dns_response_packet *dns_p;
int found = 0;
int i;
reader = resp;
len = 0;
previous_dname = NULL;
dns_query = NULL;
/* initialization of response buffer and structure */
dns_p = &resolution->response;
/* query id */
if (reader + 2 >= bufend)
return DNS_RESP_INVALID;
dns_p->header.id = reader[0] * 256 + reader[1];
reader += 2;
/*
* flags and rcode are stored over 2 bytes
* First byte contains:
* - response flag (1 bit)
* - opcode (4 bits)
* - authoritative (1 bit)
* - truncated (1 bit)
* - recursion desired (1 bit)
*/
if (reader + 2 >= bufend)
return DNS_RESP_INVALID;
flags = reader[0] * 256 + reader[1];
if ((flags & DNS_FLAG_REPLYCODE) != DNS_RCODE_NO_ERROR) {
if ((flags & DNS_FLAG_REPLYCODE) == DNS_RCODE_NX_DOMAIN)
return DNS_RESP_NX_DOMAIN;
else if ((flags & DNS_FLAG_REPLYCODE) == DNS_RCODE_REFUSED)
return DNS_RESP_REFUSED;
return DNS_RESP_ERROR;
}
/* move forward 2 bytes for flags */
reader += 2;
/* 2 bytes for question count */
if (reader + 2 >= bufend)
return DNS_RESP_INVALID;
dns_p->header.qdcount = reader[0] * 256 + reader[1];
/* (for now) we send one query only, so we expect only one in the response too */
if (dns_p->header.qdcount != 1)
return DNS_RESP_QUERY_COUNT_ERROR;
if (dns_p->header.qdcount > DNS_MAX_QUERY_RECORDS)
return DNS_RESP_INVALID;
reader += 2;
/* 2 bytes for answer count */
if (reader + 2 >= bufend)
return DNS_RESP_INVALID;
dns_p->header.ancount = reader[0] * 256 + reader[1];
if (dns_p->header.ancount == 0)
return DNS_RESP_ANCOUNT_ZERO;
/* check if too many records are announced */
if (dns_p->header.ancount > max_answer_records)
return DNS_RESP_INVALID;
reader += 2;
/* 2 bytes authority count */
if (reader + 2 >= bufend)
return DNS_RESP_INVALID;
dns_p->header.nscount = reader[0] * 256 + reader[1];
reader += 2;
/* 2 bytes additional count */
if (reader + 2 >= bufend)
return DNS_RESP_INVALID;
dns_p->header.arcount = reader[0] * 256 + reader[1];
reader += 2;
/* parsing dns queries */
LIST_INIT(&dns_p->query_list);
for (dns_query_record_id = 0; dns_query_record_id < dns_p->header.qdcount; dns_query_record_id++) {
/* use next pre-allocated dns_query_item after ensuring there is
* still one available.
* It's then added to our packet query list.
*/
if (dns_query_record_id > DNS_MAX_QUERY_RECORDS)
return DNS_RESP_INVALID;
dns_query = &resolution->response_query_records[dns_query_record_id];
LIST_ADDQ(&dns_p->query_list, &dns_query->list);
/* name is a NULL terminated string in our case, since we have
* one query per response and the first one can't be compressed
* (using the 0x0c format)
*/
offset = 0;
len = dns_read_name(resp, bufend, reader, dns_query->name, DNS_MAX_NAME_SIZE, &offset);
if (len == 0)
return DNS_RESP_INVALID;
reader += offset;
previous_dname = dns_query->name;
/* move forward 2 bytes for question type */
if (reader + 2 >= bufend)
return DNS_RESP_INVALID;
dns_query->type = reader[0] * 256 + reader[1];
reader += 2;
/* move forward 2 bytes for question class */
if (reader + 2 >= bufend)
return DNS_RESP_INVALID;
dns_query->class = reader[0] * 256 + reader[1];
reader += 2;
}
/* TRUNCATED flag must be checked after we could read the query type
* because a TRUNCATED SRV query type response can still be exploited
*/
if (dns_query->type != DNS_RTYPE_SRV && flags & DNS_FLAG_TRUNCATED)
return DNS_RESP_TRUNCATED;
/* now parsing response records */
nb_saved_records = 0;
for (i = 0; i < dns_p->header.ancount; i++) {
if (reader >= bufend)
return DNS_RESP_INVALID;
dns_answer_record = pool_alloc2(dns_answer_item_pool);
if (dns_answer_record == NULL)
return (DNS_RESP_INVALID);
offset = 0;
len = dns_read_name(resp, bufend, reader, tmpname, DNS_MAX_NAME_SIZE, &offset);
if (len == 0) {
free_dns_answer_item(dns_answer_record);
return DNS_RESP_INVALID;
}
/* check if the current record dname is valid.
* previous_dname points either to queried dname or last CNAME target
*/
if (dns_query->type != DNS_RTYPE_SRV && memcmp(previous_dname, tmpname, len) != 0) {
free_dns_answer_item(dns_answer_record);
if (i == 0) {
/* first record, means a mismatch issue between queried dname
* and dname found in the first record */
return DNS_RESP_INVALID;
} else {
/* if not the first record, this means we have a CNAME resolution
* error */
return DNS_RESP_CNAME_ERROR;
}
}
memcpy(dns_answer_record->name, tmpname, len);
dns_answer_record->name[len] = 0;
reader += offset;
if (reader >= bufend) {
free_dns_answer_item(dns_answer_record);
return DNS_RESP_INVALID;
}
if (reader >= bufend) {
free_dns_answer_item(dns_answer_record);
return DNS_RESP_INVALID;
}
/* 2 bytes for record type (A, AAAA, CNAME, etc...) */
if (reader + 2 > bufend) {
free_dns_answer_item(dns_answer_record);
return DNS_RESP_INVALID;
}
dns_answer_record->type = reader[0] * 256 + reader[1];
reader += 2;
/* 2 bytes for class (2) */
if (reader + 2 > bufend) {
free_dns_answer_item(dns_answer_record);
return DNS_RESP_INVALID;
}
dns_answer_record->class = reader[0] * 256 + reader[1];
reader += 2;
/* 4 bytes for ttl (4) */
if (reader + 4 > bufend) {
free_dns_answer_item(dns_answer_record);
return DNS_RESP_INVALID;
}
dns_answer_record->ttl = reader[0] * 16777216 + reader[1] * 65536
+ reader[2] * 256 + reader[3];
reader += 4;
/* now reading data len */
if (reader + 2 > bufend) {
free_dns_answer_item(dns_answer_record);
return DNS_RESP_INVALID;
}
dns_answer_record->data_len = reader[0] * 256 + reader[1];
/* move forward 2 bytes for data len */
reader += 2;
/* analyzing record content */
switch (dns_answer_record->type) {
case DNS_RTYPE_A:
/* ipv4 is stored on 4 bytes */
if (dns_answer_record->data_len != 4) {
free_dns_answer_item(dns_answer_record);
return DNS_RESP_INVALID;
}
dns_answer_record->address.sa_family = AF_INET;
memcpy(&(((struct sockaddr_in *)&dns_answer_record->address)->sin_addr),
reader, dns_answer_record->data_len);
break;
case DNS_RTYPE_CNAME:
/* check if this is the last record and update the caller about the status:
* no IP could be found and last record was a CNAME. Could be triggered
* by a wrong query type
*
* + 1 because dns_answer_record_id starts at 0 while number of answers
* is an integer and starts at 1.
*/
if (i + 1 == dns_p->header.ancount) {
free_dns_answer_item(dns_answer_record);
return DNS_RESP_CNAME_ERROR;
}
offset = 0;
len = dns_read_name(resp, bufend, reader, tmpname, DNS_MAX_NAME_SIZE, &offset);
if (len == 0) {
free_dns_answer_item(dns_answer_record);
return DNS_RESP_INVALID;
}
memcpy(dns_answer_record->target, tmpname, len);
dns_answer_record->target[len] = 0;
previous_dname = dns_answer_record->target;
break;
case DNS_RTYPE_SRV:
/*
* Answer must contain :
* - 2 bytes for the priority
* - 2 bytes for the weight
* - 2 bytes for the port
* - the target hostname
*/
if (dns_answer_record->data_len <= 6) {
free_dns_answer_item(dns_answer_record);
return DNS_RESP_INVALID;
}
dns_answer_record->priority = readn16(reader);
reader += sizeof(uint16_t);
dns_answer_record->weight = readn16(reader);
reader += sizeof(uint16_t);
dns_answer_record->port = readn16(reader);
reader += sizeof(uint16_t);
offset = 0;
len = dns_read_name(resp, bufend, reader, tmpname, DNS_MAX_NAME_SIZE, &offset);
if (len == 0) {
free_dns_answer_item(dns_answer_record);
return DNS_RESP_INVALID;
}
dns_answer_record->data_len = len;
memcpy(dns_answer_record->target, tmpname, len);
dns_answer_record->target[len] = 0;
break;
case DNS_RTYPE_AAAA:
/* ipv6 is stored on 16 bytes */
if (dns_answer_record->data_len != 16) {
free_dns_answer_item(dns_answer_record);
return DNS_RESP_INVALID;
}
dns_answer_record->address.sa_family = AF_INET6;
memcpy(&(((struct sockaddr_in6 *)&dns_answer_record->address)->sin6_addr),
reader, dns_answer_record->data_len);
break;
} /* switch (record type) */
/* increment the counter for number of records saved into our local response */
nb_saved_records += 1;
/* move forward dns_answer_record->data_len for analyzing next record in the response */
if (dns_answer_record->type == DNS_RTYPE_SRV)
reader += offset;
else
reader += dns_answer_record->data_len;
/* Lookup to see if we already had this entry */
found = 0;
list_for_each_entry(tmp_record, &dns_p->answer_list, list) {
if (tmp_record->type != dns_answer_record->type)
continue;
switch (tmp_record->type) {
case DNS_RTYPE_A:
if (!memcmp(&((struct sockaddr_in *)&dns_answer_record->address)->sin_addr,
&((struct sockaddr_in *)&tmp_record->address)->sin_addr, sizeof(in_addr_t)))
found = 1;
break;
case DNS_RTYPE_AAAA:
if (!memcmp(&((struct sockaddr_in6 *)&dns_answer_record->address)->sin6_addr,
&((struct sockaddr_in6 *)&tmp_record->address)->sin6_addr, sizeof(struct in6_addr)))
found = 1;
break;
case DNS_RTYPE_SRV:
if (dns_answer_record->data_len == tmp_record->data_len &&
!memcmp(dns_answer_record->target,
tmp_record->target, dns_answer_record->data_len) &&
dns_answer_record->port == tmp_record->port) {
tmp_record->weight = dns_answer_record->weight;
found = 1;
}
break;
default:
break;
}
if (found == 1)
break;
}
if (found == 1) {
tmp_record->last_seen = now.tv_sec;
free_dns_answer_item(dns_answer_record);
} else {
dns_answer_record->last_seen = now.tv_sec;
LIST_ADDQ(&dns_p->answer_list, &dns_answer_record->list);
}
} /* for i 0 to ancount */
/* save the number of records we really own */
dns_p->header.ancount = nb_saved_records;
return DNS_RESP_VALID;
}
/*
* search dn_name resolution in resp.
* If existing IP not found, return the first IP matching family_priority,
* otherwise, first ip found
* The following tasks are the responsibility of the caller:
* - <dns_p> contains an error free DNS response
* For both cases above, dns_validate_dns_response is required
* returns one of the DNS_UPD_* code
*/
#define DNS_MAX_IP_REC 20
int dns_get_ip_from_response(struct dns_response_packet *dns_p,
struct dns_options *dns_opts, void *currentip,
short currentip_sin_family,
void **newip, short *newip_sin_family,
void *owner)
{
struct dns_answer_item *record;
int family_priority;
int currentip_found;
unsigned char *newip4, *newip6;
int currentip_sel;
int j;
int score, max_score;
family_priority = dns_opts->family_prio;
*newip = newip4 = newip6 = NULL;
currentip_found = 0;
*newip_sin_family = AF_UNSPEC;
max_score = -1;
/* Select an IP regarding configuration preference.
* Top priority is the prefered network ip version,
* second priority is the prefered network.
* the last priority is the currently used IP,
*
* For these three priorities, a score is calculated. The
* weight are:
* 8 - prefered netwok ip version.
* 4 - prefered network.
* 2 - if the ip in the record is not affected to any other server in the same backend (duplication)
* 1 - current ip.
* The result with the biggest score is returned.
*/
list_for_each_entry(record, &dns_p->answer_list, list) {
void *ip;
unsigned char ip_type;
if (record->type == DNS_RTYPE_A) {
ip = &(((struct sockaddr_in *)&record->address)->sin_addr);
ip_type = AF_INET;
} else if (record->type == DNS_RTYPE_AAAA) {
ip_type = AF_INET6;
ip = &(((struct sockaddr_in6 *)&record->address)->sin6_addr);
} else
continue;
score = 0;
/* Check for prefered ip protocol. */
if (ip_type == family_priority)
score += 8;
/* Check for prefered network. */
for (j = 0; j < dns_opts->pref_net_nb; j++) {
/* Compare only the same adresses class. */
if (dns_opts->pref_net[j].family != ip_type)
continue;
if ((ip_type == AF_INET &&
in_net_ipv4(ip,
&dns_opts->pref_net[j].mask.in4,
&dns_opts->pref_net[j].addr.in4)) ||
(ip_type == AF_INET6 &&
in_net_ipv6(ip,
&dns_opts->pref_net[j].mask.in6,
&dns_opts->pref_net[j].addr.in6))) {
score += 4;
break;
}
}
/* Check if the IP found in the record is already affected to a member of a group.
* If yes, the score should be incremented by 2.
*/
if (owner) {
if (snr_check_ip_callback(owner, ip, &ip_type))
{
continue;
}
}
/* Check for current ip matching. */
if (ip_type == currentip_sin_family &&
((currentip_sin_family == AF_INET &&
memcmp(ip, currentip, 4) == 0) ||
(currentip_sin_family == AF_INET6 &&
memcmp(ip, currentip, 16) == 0))) {
score += 1;
currentip_sel = 1;
} else
currentip_sel = 0;
/* Keep the address if the score is better than the previous
* score. The maximum score is 15, if this value is reached,
* we break the parsing. Implicitly, this score is reached
* the ip selected is the current ip.
*/
if (score > max_score) {
if (ip_type == AF_INET)
newip4 = ip;
else
newip6 = ip;
currentip_found = currentip_sel;
if (score == 15)
return DNS_UPD_NO;
max_score = score;
}
} /* list for each record entries */
/* no IP found in the response */
if (!newip4 && !newip6)
return DNS_UPD_NO_IP_FOUND;
/* case when the caller looks first for an IPv4 address */
if (family_priority == AF_INET) {
if (newip4) {
*newip = newip4;
*newip_sin_family = AF_INET;
if (currentip_found == 1)
return DNS_UPD_NO;
goto return_DNS_UPD_SRVIP_NOT_FOUND;
}
else if (newip6) {
*newip = newip6;
*newip_sin_family = AF_INET6;
if (currentip_found == 1)
return DNS_UPD_NO;
goto return_DNS_UPD_SRVIP_NOT_FOUND;
}
}
/* case when the caller looks first for an IPv6 address */
else if (family_priority == AF_INET6) {
if (newip6) {
*newip = newip6;
*newip_sin_family = AF_INET6;
if (currentip_found == 1)
return DNS_UPD_NO;
goto return_DNS_UPD_SRVIP_NOT_FOUND;
}
else if (newip4) {
*newip = newip4;
*newip_sin_family = AF_INET;
if (currentip_found == 1)
return DNS_UPD_NO;
goto return_DNS_UPD_SRVIP_NOT_FOUND;
}
}
/* case when the caller have no preference (we prefer IPv6) */
else if (family_priority == AF_UNSPEC) {
if (newip6) {
*newip = newip6;
*newip_sin_family = AF_INET6;
if (currentip_found == 1)
return DNS_UPD_NO;
goto return_DNS_UPD_SRVIP_NOT_FOUND;
}
else if (newip4) {
*newip = newip4;
*newip_sin_family = AF_INET;
if (currentip_found == 1)
return DNS_UPD_NO;
goto return_DNS_UPD_SRVIP_NOT_FOUND;
}
}
/* no reason why we should change the server's IP address */
return DNS_UPD_NO;
return_DNS_UPD_SRVIP_NOT_FOUND:
list_for_each_entry(record, &dns_p->answer_list, list) {
/* move the first record to the end of the list, for internal round robin */
if (record) {
LIST_DEL(&record->list);
LIST_ADDQ(&dns_p->answer_list, &record->list);
break;
}
}
return DNS_UPD_SRVIP_NOT_FOUND;
}
/*
* returns the query id contained in a DNS response
*/
unsigned short dns_response_get_query_id(unsigned char *resp)
{
/* read the query id from the response */
return resp[0] * 256 + resp[1];
}
/*
* used during haproxy's init phase
* parses resolvers sections and initializes:
* - task (time events) for each resolvers section
* - the datagram layer (network IO events) for each nameserver
* It takes one argument:
* - close_first takes 2 values: 0 or 1. If 1, the connection is closed first.
* returns:
* 0 in case of error
* 1 when no error
*/
int dns_init_resolvers(int close_socket)
{
struct dns_resolvers *curr_resolvers;
struct dns_nameserver *curnameserver;
struct dns_resolution *resolution, *res_back;
struct dgram_conn *dgram;
struct task *t;
int fd;
/* initialize our DNS resolution cache */
dns_lru_tree = lru64_new(dns_cache_size);
/* give a first random value to our dns query_id seed */
dns_query_id_seed = random();
/* Initialize the answer items pool */
dns_answer_item_pool = create_pool("dns_answer_item",
sizeof(struct dns_answer_item), MEM_F_SHARED);
if (dns_answer_item_pool == NULL) {
Alert("Failed to create the dns answer items pool");
return 0;
}
/* run through the resolvers section list */
list_for_each_entry(curr_resolvers, &dns_resolvers, list) {
/* create the task associated to the resolvers section */
if ((t = task_new()) == NULL) {
Alert("Starting [%s] resolvers: out of memory.\n", curr_resolvers->id);
return 0;
}
/* update task's parameters */
t->process = dns_process_resolve;
t->context = curr_resolvers;
/* no need to keep the new task if one is already affected to our resolvers
* section */
if (!curr_resolvers->t)
curr_resolvers->t = t;
else
task_free(t);
list_for_each_entry(curnameserver, &curr_resolvers->nameserver_list, list) {
dgram = NULL;
if (close_socket == 1) {
if (curnameserver->dgram) {
fd_delete(curnameserver->dgram->t.sock.fd);
memset(curnameserver->dgram, '\0', sizeof(*dgram));
dgram = curnameserver->dgram;
}
}
/* allocate memory only if it has not already been allocated
* by a previous call to this function */
if (!dgram && (dgram = calloc(1, sizeof(*dgram))) == NULL) {
Alert("Starting [%s/%s] nameserver: out of memory.\n", curr_resolvers->id,
curnameserver->id);
return 0;
}
/* update datagram's parameters */
dgram->owner = (void *)curnameserver;
dgram->data = &resolve_dgram_cb;
/* create network UDP socket for this nameserver */
if ((fd = socket(curnameserver->addr.ss_family, SOCK_DGRAM, IPPROTO_UDP)) == -1) {
Alert("Starting [%s/%s] nameserver: can't create socket.\n", curr_resolvers->id,
curnameserver->id);
free(dgram);
dgram = NULL;
return 0;
}
/* "connect" the UDP socket to the name server IP */
if (connect(fd, (struct sockaddr*)&curnameserver->addr, get_addr_len(&curnameserver->addr)) == -1) {
Alert("Starting [%s/%s] nameserver: can't connect socket.\n", curr_resolvers->id,
curnameserver->id);
close(fd);
free(dgram);
dgram = NULL;
return 0;
}
/* make the socket non blocking */
fcntl(fd, F_SETFL, O_NONBLOCK);
/* add the fd in the fd list and update its parameters */
fd_insert(fd);
fdtab[fd].owner = dgram;
fdtab[fd].iocb = dgram_fd_handler;
fd_want_recv(fd);
dgram->t.sock.fd = fd;
/* update nameserver's datagram property */
curnameserver->dgram = dgram;
continue;
}
if (close_socket == 0)
continue;
/* now, we can trigger DNS resolution */
list_for_each_entry_safe(resolution, res_back, &curr_resolvers->resolution.wait, list) {
/* if there is no requester in the wait queue, no need to trigger the resolution */
if (LIST_ISEMPTY(&resolution->requester.wait))
continue;
dns_trigger_resolution(resolution);
}
/* task can be queued */
task_queue(t);
}
return 1;
}
/*
* Allocate a pool of resolution to a resolvers section.
* Each resolution is associated with a UUID.
*
* Return code:
* - 0 if everything went smoothly
* - -1 if an error occured
*/
int dns_alloc_resolution_pool(struct dns_resolvers *resolvers)
{
int i;
struct dns_resolution *resolution;
/* return if a pool has already been set for this resolvers */
if (!LIST_ISEMPTY(&resolvers->resolution.pool)) {
return 0;
}
for (i = 0; i < resolvers->resolution_pool_size; i++) {
resolution = dns_alloc_resolution();
if (!resolution) {
Alert("Starting [%s] resolvers: can't allocate memory for DNS resolution pool.\n", resolvers->id);
return -1;
}
resolution->uuid = i;
LIST_ADDQ(&resolvers->resolution.pool, &resolution->list);
}
return 0;
}
/*
* Forge a DNS query. It needs the following information from the caller:
* - <query_id>: the DNS query id corresponding to this query
* - <query_type>: DNS_RTYPE_* request DNS record type (A, AAAA, ANY, etc...)
* - <hostname_dn>: hostname in domain name format
* - <hostname_dn_len>: length of <hostname_dn>
* To store the query, the caller must pass a buffer <buf> and its size <bufsize>
*
* the DNS query is stored in <buf>
* returns:
* -1 if <buf> is too short
*/
int dns_build_query(int query_id, int query_type, unsigned int accepted_payload_size, char *hostname_dn, int hostname_dn_len, char *buf, int bufsize)
{
struct dns_header *dns;
struct dns_question qinfo;
struct dns_additional_record edns;
char *ptr, *bufend;
memset(buf, '\0', bufsize);
ptr = buf;
bufend = buf + bufsize;
/* check if there is enough room for DNS headers */
if (ptr + sizeof(struct dns_header) >= bufend)
return -1;
/* set dns query headers */
dns = (struct dns_header *)ptr;
dns->id = (unsigned short) htons(query_id);
dns->flags = htons(0x0100); /* qr=0, opcode=0, aa=0, tc=0, rd=1, ra=0, z=0, rcode=0 */
dns->qdcount = htons(1); /* 1 question */
dns->ancount = 0;
dns->nscount = 0;
dns->arcount = htons(1);
/* move forward ptr */
ptr += sizeof(struct dns_header);
/* check if there is enough room for query hostname */
if ((ptr + hostname_dn_len) >= bufend)
return -1;
/* set up query hostname */
memcpy(ptr, hostname_dn, hostname_dn_len);
ptr[hostname_dn_len + 1] = '\0';
/* move forward ptr */
ptr += (hostname_dn_len + 1);
/* check if there is enough room for query hostname*/
if (ptr + sizeof(struct dns_question) >= bufend)
return -1;
/* set up query info (type and class) */
qinfo.qtype = htons(query_type);
qinfo.qclass = htons(DNS_RCLASS_IN);
memcpy(ptr, &qinfo, sizeof(qinfo));
ptr += sizeof(struct dns_question);
/* check if there is enough room for additional records */
if (ptr + sizeof(edns) >= bufend)
return -1;
/* set the DNS extension */
edns.name = 0;
edns.type = htons(DNS_RTYPE_OPT);
edns.udp_payload_size = htons(accepted_payload_size);
edns.extension = 0;
edns.data_length = 0;
memcpy(ptr, &edns, sizeof(edns));
ptr += sizeof(edns);
return ptr - buf;
}
/* Turn a domain name label into a string */
void dns_dn_label_to_str(char *dn, char *str, int dn_len)
{
int remain_size = 0;
int i;
for (i = 0; i < dn_len; i++) {
if (remain_size == 0) {
remain_size = dn[i];
if (i != 0) {
str[i - 1] = '.';
}
} else {
str[i - 1] = dn[i];
remain_size--;
}
}
str[dn_len - 1] = 0;
}
/*
* turn a string into domain name label:
* www.haproxy.org into 3www7haproxy3org
* if dn memory is pre-allocated, you must provide its size in dn_len
* if dn memory isn't allocated, dn_len must be set to 0.
* In the second case, memory will be allocated.
* in case of error, -1 is returned, otherwise, number of bytes copied in dn
*/
char *dns_str_to_dn_label(const char *string, char *dn, int dn_len)
{
char *c, *d;
int i, offset;
/* offset between string size and theorical dn size */
offset = 1;
/*
* first, get the size of the string turned into its domain name version
* This function also validates the string respect the RFC
*/
if ((i = dns_str_to_dn_label_len(string)) == -1)
return NULL;
/* yes, so let's check there is enough memory */
if (dn_len < i + offset)
return NULL;
i = strlen(string);
memcpy(dn + offset, string, i);
dn[i + offset] = '\0';
/* avoid a '\0' at the beginning of dn string which may prevent the for loop
* below from working.
* Actually, this is the reason of the offset. */
dn[0] = '0';
for (c = dn; *c ; ++c) {
/* c points to the first '0' char or a dot, which we don't want to read */
d = c + offset;
i = 0;
while (*d != '.' && *d) {
i++;
d++;
}
*c = i;
c = d - 1; /* because of c++ of the for loop */
}
return dn;
}
/*
* compute and return the length of <string> it it were translated into domain name
* label:
* www.haproxy.org into 3www7haproxy3org would return 16
* NOTE: add +1 for '\0' when allocating memory ;)
*/
int dns_str_to_dn_label_len(const char *string)
{
return strlen(string) + 1;
}
/*
* validates host name:
* - total size
* - each label size individually
* returns:
* 0 in case of error. If <err> is not NULL, an error message is stored there.
* 1 when no error. <err> is left unaffected.
*/
int dns_hostname_validation(const char *string, char **err)
{
const char *c, *d;
int i;
if (strlen(string) > DNS_MAX_NAME_SIZE) {
if (err)
*err = DNS_TOO_LONG_FQDN;
return 0;
}
c = string;
while (*c) {
d = c;
i = 0;
while (*d != '.' && *d && i <= DNS_MAX_LABEL_SIZE) {
i++;
if (!((*d == '-') || (*d == '_') ||
((*d >= 'a') && (*d <= 'z')) ||
((*d >= 'A') && (*d <= 'Z')) ||
((*d >= '0') && (*d <= '9')))) {
if (err)
*err = DNS_INVALID_CHARACTER;
return 0;
}
d++;
}
if ((i >= DNS_MAX_LABEL_SIZE) && (d[i] != '.')) {
if (err)
*err = DNS_LABEL_TOO_LONG;
return 0;
}
if (*d == '\0')
goto out;
c = ++d;
}
out:
return 1;
}
/*
* 2 bytes random generator to generate DNS query ID
*/
uint16_t dns_rnd16(void)
{
dns_query_id_seed ^= dns_query_id_seed << 13;
dns_query_id_seed ^= dns_query_id_seed >> 7;
dns_query_id_seed ^= dns_query_id_seed << 17;
return dns_query_id_seed;
}
/*
* function called when a timeout occurs during name resolution process
* if max number of tries is reached, then stop, otherwise, retry.
*/
struct task *dns_process_resolve(struct task *t)
{
struct dns_resolvers *resolvers = t->context;
struct dns_resolution *resolution, *res_back;
int res_preferred_afinet, res_preferred_afinet6;
struct dns_options *dns_opts = NULL;
/* if both there is no resolution in the run queue, we can re-schedule a wake up */
if (LIST_ISEMPTY(&resolvers->resolution.curr)) {
/* no first entry, so wake up was useless */
dns_update_resolvers_timeout(resolvers);
return t;
}
/* look for the first resolution which is not expired */
list_for_each_entry_safe(resolution, res_back, &resolvers->resolution.curr, list) {
struct dns_requester *requester = NULL;
/* when we find the first resolution in the future, then we can stop here */
if (tick_is_le(now_ms, resolution->last_sent_packet))
goto out;
if (LIST_ISEMPTY(&resolution->requester.curr))
goto out;
/*
* if current resolution has been tried too many times and finishes in timeout
* we update its status and remove it from the list
*/
if (resolution->try <= 0) {
struct dns_requester *tmprequester;
/* clean up resolution information and remove from the list */
dns_reset_resolution(resolution);
LIST_DEL(&resolution->list);
LIST_ADDQ(&resolvers->resolution.wait, &resolution->list);
if (resolution->status != RSLV_STATUS_TIMEOUT) {
resolution->status = RSLV_STATUS_TIMEOUT;
resolution->last_status_change = now_ms;
}
/* notify the result to the requesters */
list_for_each_entry_safe(requester, tmprequester, &resolution->requester.curr, list) {
requester->requester_error_cb(requester, DNS_RESP_TIMEOUT);
LIST_DEL(&requester->list);
LIST_ADDQ(&resolution->requester.wait, &requester->list);
}
/* this might be triggered by too big UDP packets dropped
* somewhere on the network, so lowering the accepted_payload_size
* announced */
if (resolvers->accepted_payload_size > 1280)
resolvers->accepted_payload_size = 1280;
goto out;
}
resolution->try -= 1;
/* running queue is empty, nothing to do but wait */
if (LIST_ISEMPTY(&resolution->requester.curr))
goto out;
requester = LIST_NEXT(&resolution->requester.curr, struct dns_requester *, list);
switch (obj_type(requester->requester)) {
case OBJ_TYPE_SERVER:
dns_opts = &(objt_server(requester->requester)->dns_opts);
res_preferred_afinet = dns_opts->family_prio == AF_INET && resolution->query_type == DNS_RTYPE_A;
res_preferred_afinet6 = dns_opts->family_prio == AF_INET6 && resolution->query_type == DNS_RTYPE_AAAA;
/* let's change the query type if needed */
if (res_preferred_afinet6) {
/* fallback from AAAA to A */
resolution->query_type = DNS_RTYPE_A;
}
else if (res_preferred_afinet) {
/* fallback from A to AAAA */
resolution->query_type = DNS_RTYPE_AAAA;
}
break;
case OBJ_TYPE_SRVRQ:
break;
case OBJ_TYPE_NONE:
default:
/* clean up resolution information and remove from the list */
dns_reset_resolution(resolution);
LIST_DEL(&resolution->list);
LIST_ADDQ(&resolvers->resolution.wait, &resolution->list);
/* notify the result to the requester */
requester->requester_error_cb(requester, DNS_RESP_INTERNAL);
goto out;
}
/* resend the DNS query */
dns_send_query(resolution);
/* check if we have more than one resolution in the list */
if (dns_check_resolution_queue(resolvers) > 1) {
/* move the rsolution to the end of the list */
LIST_DEL(&resolution->list);
LIST_ADDQ(&resolvers->resolution.curr, &resolution->list);
}
}
out:
dns_update_resolvers_timeout(resolvers);
return t;
}
/*
* build a dns cache key composed as follow:
* <query type>#<hostname in domain name format>
* and store it into <str>.
* It's up to the caller to allocate <buf> and to reset it.
* The function returns NULL in case of error (IE <buf> too small) or a pointer
* to buf if successful
*/
struct chunk *
dns_cache_key(int query_type, char *hostname_dn, int hostname_dn_len, struct chunk *buf)
{
int len, size;
char *str;
str = buf->str;
len = buf->len;
size = buf->size;
switch (query_type) {
case DNS_RTYPE_A:
if (len + 1 > size)
return NULL;
memcpy(&str[len], "A", 1);
len += 1;
break;
case DNS_RTYPE_AAAA:
if (len + 4 > size)
return NULL;
memcpy(&str[len], "AAAA", 4);
len += 4;
break;
default:
return NULL;
}
if (len + 1 > size)
return NULL;
memcpy(&str[len], "#", 1);
len += 1;
if (len + hostname_dn_len + 1 > size) // +1 for trailing zero
return NULL;
memcpy(&str[len], hostname_dn, hostname_dn_len);
len += hostname_dn_len;
str[len] = '\0';
return buf;
}
/*
* returns a pointer to a cache entry which may still be considered as up to date
* by the caller.
* returns NULL if no entry can be found or if the data found is outdated.
*/
struct lru64 *
dns_cache_lookup(int query_type, char *hostname_dn, int hostname_dn_len, int valid_period, void *cache_domain) {
struct lru64 *elem = NULL;
struct dns_resolution *resolution = NULL;
struct dns_resolvers *resolvers = NULL;
struct dns_requester *requester = NULL;
int inter = 0;
struct chunk *buf = get_trash_chunk();
struct chunk *tmp = NULL;
if (!dns_lru_tree)
return NULL;
chunk_reset(buf);
tmp = dns_cache_key(query_type, hostname_dn, hostname_dn_len, buf);
if (tmp == NULL)
return NULL;
elem = lru64_lookup(XXH64(buf->str, buf->len, 1), dns_lru_tree, cache_domain, 1);
if (!elem || !elem->data)
return NULL;
resolution = elem->data;
/* since we can change the fqdn of a server at run time, it may happen that
* we got an innacurate elem.
* This is because resolution->hostname_dn points to (owner)->hostname_dn (which
* may be changed at run time)
*/
if ((hostname_dn_len == resolution->hostname_dn_len) &&
(memcmp(hostname_dn, resolution->hostname_dn, hostname_dn_len) != 0)) {
return NULL;
}
requester = LIST_NEXT(&resolution->requester.wait, struct dns_requester *, list);
switch (obj_type(requester->requester)) {
case OBJ_TYPE_SERVER:
resolvers = objt_server(requester->requester)->resolvers;
break;
case OBJ_TYPE_SRVRQ:
resolvers = objt_dns_srvrq(requester->requester)->resolvers;
break;
case OBJ_TYPE_NONE:
default:
return NULL;
}
if (!resolvers)
return NULL;
if (resolvers->hold.valid < valid_period)
inter = resolvers->hold.valid;
else
inter = valid_period;
if (!tick_is_expired(tick_add(resolution->last_resolution, inter), now_ms))
return elem;
return NULL;
}
/* if an arg is found, it sets the resolvers section pointer into cli.p0 */
static int cli_parse_stat_resolvers(char **args, struct appctx *appctx, void *private)
{
struct dns_resolvers *presolvers;
if (*args[3]) {
list_for_each_entry(presolvers, &dns_resolvers, list) {
if (strcmp(presolvers->id, args[3]) == 0) {
appctx->ctx.cli.p0 = presolvers;
break;
}
}
if (appctx->ctx.cli.p0 == NULL) {
appctx->ctx.cli.msg = "Can't find that resolvers section\n";
appctx->st0 = CLI_ST_PRINT;
return 1;
}
}
return 0;
}
/*
* if <resolution> is provided, then the function skips the memory allocation part.
* It does the linking only.
*
* if <resolution> is NULL, the function links a dns resolution to a requester:
* - it allocates memory for the struct requester used to link
* the resolution to the requester
* - it configures the resolution if this is the first requester to be linked to it
* - it updates the requester with a pointer to the resolution
*
* Return code:
* - 0 if everything happened smoothly
* - -1 if an error occured. Of course, no resolution is linked to the requester
*/
int dns_link_resolution(void *requester, int requester_type, struct dns_resolution *resolution)
{
struct dns_resolution *tmpresolution = NULL;
struct dns_requester *tmprequester = NULL;
struct dns_resolvers *resolvers = NULL;
char *hostname_dn = NULL;
int new_resolution;
if (!resolution) {
tmprequester = calloc(1, sizeof(*tmprequester));
if (!tmprequester)
return -1;
switch (requester_type) {
case OBJ_TYPE_SERVER:
tmprequester->requester = &((struct server *)requester)->obj_type;
hostname_dn = objt_server(tmprequester->requester)->hostname_dn;
resolvers = objt_server(tmprequester->requester)->resolvers;
switch (objt_server(tmprequester->requester)->dns_opts.family_prio) {
case AF_INET:
tmprequester->prefered_query_type = DNS_RTYPE_A;
break;
default:
tmprequester->prefered_query_type = DNS_RTYPE_AAAA;
}
break;
case OBJ_TYPE_SRVRQ:
tmprequester->requester = &((struct dns_srvrq *)requester)->obj_type;
hostname_dn = objt_dns_srvrq(requester)->hostname_dn;
resolvers = objt_dns_srvrq(requester)->resolvers;
break;
case OBJ_TYPE_NONE:
default:
free(tmprequester);
return -1;
}
/* get a resolution from the resolvers' wait queue or pool */
tmpresolution = dns_resolution_list_get(resolvers, hostname_dn, tmprequester->prefered_query_type);
if (!tmpresolution) {
free(tmprequester);
return -1;
}
}
else {
tmpresolution = resolution;
switch (requester_type) {
case OBJ_TYPE_SERVER:
tmprequester = ((struct server *)requester)->dns_requester;
resolvers = ((struct server *)requester)->resolvers;
break;
case OBJ_TYPE_SRVRQ:
tmprequester = objt_dns_srvrq(requester)->dns_requester;
resolvers = objt_dns_srvrq(requester)->resolvers;
break;
case OBJ_TYPE_NONE:
default:
return -1;
}
}
/* flag this resolution as NEW if applicable (not already linked to any requester).
* this is required to decide which parameters we have to update on the resolution.
* If new, it means we pulled up the resolution from the resolvers' pool.
*/
if (LIST_ISEMPTY(&tmpresolution->requester.wait)) {
new_resolution = 1;
}
else
new_resolution = 0;
/* those parameters are related to the requester type */
switch (obj_type(tmprequester->requester)) {
case OBJ_TYPE_SERVER:
/* some parameters should be set only if the resolution is brand new */
if (new_resolution) {
tmpresolution->query_type = tmprequester->prefered_query_type;
tmpresolution->hostname_dn = objt_server(tmprequester->requester)->hostname_dn;
tmpresolution->hostname_dn_len = objt_server(tmprequester->requester)->hostname_dn_len;
}
/* update requester as well, only if we just allocated it */
objt_server(tmprequester->requester)->resolution = tmpresolution;
if (!resolution) {
tmprequester->requester_cb = snr_resolution_cb;
tmprequester->requester_error_cb = snr_resolution_error_cb;
objt_server(tmprequester->requester)->dns_requester = tmprequester;
}
break;
case OBJ_TYPE_SRVRQ:
/* some parameters should be set only if the resolution is brand new */
if (new_resolution) {
tmpresolution->query_type = DNS_RTYPE_SRV;
tmpresolution->hostname_dn = objt_dns_srvrq(tmprequester->requester)->hostname_dn;
tmpresolution->hostname_dn_len = objt_dns_srvrq(tmprequester->requester)->hostname_dn_len;
}
/* update requester as well, only if we just allocated it */
objt_dns_srvrq(tmprequester->requester)->resolution = tmpresolution;
if (!resolution) {
tmprequester->requester_cb = snr_resolution_cb;
tmprequester->requester_error_cb = snr_resolution_error_cb;
objt_dns_srvrq(tmprequester->requester)->dns_requester = tmprequester;
}
break;
case OBJ_TYPE_NONE:
default:
free(tmprequester);
return -1;
}
/* update some parameters only if this is a brand new resolution */
if (new_resolution) {
/* move the resolution to the requesters' wait queue */
LIST_DEL(&tmpresolution->list);
LIST_ADDQ(&resolvers->resolution.wait, &tmpresolution->list);
tmpresolution->status = RSLV_STATUS_NONE;
tmpresolution->step = RSLV_STEP_NONE;
tmpresolution->revision = 1;
LIST_INIT(&tmpresolution->response.answer_list);
}
/* add the requester to the resolution's wait queue */
if (resolution)
LIST_DEL(&tmprequester->list);
LIST_ADDQ(&tmpresolution->requester.wait, &tmprequester->list);
return 0;
}
/*
* pick up an available resolution from the different resolution list associated to a resolvers section,
* in this order:
* 1. check in resolution.curr for the same hostname and query_type
* 2. check in resolution.wait for the same hostname and query_type
* 3. take an available resolution from resolution.pool
*
* return an available resolution, NULL if none found.
*/
struct dns_resolution *dns_resolution_list_get(struct dns_resolvers *resolvers, char *hostname_dn, int query_type)
{
struct dns_resolution *resolution, *tmpresolution;
struct dns_requester *requester;
if (hostname_dn) {
/* search for same hostname and query type in resolution.curr */
list_for_each_entry_safe(resolution, tmpresolution, &resolvers->resolution.curr, list) {
requester = NULL;
if (!LIST_ISEMPTY(&resolution->requester.wait))
requester = LIST_NEXT(&resolution->requester.wait, struct dns_requester *, list);
else if (!LIST_ISEMPTY(&resolution->requester.curr))
requester = LIST_NEXT(&resolution->requester.curr, struct dns_requester *, list);
if (!requester)
continue;
if ((query_type == requester->prefered_query_type) &&
(resolution->hostname_dn &&
strcmp(hostname_dn, resolution->hostname_dn) == 0)) {
return resolution;
}
}
/* search for same hostname and query type in resolution.wait */
list_for_each_entry_safe(resolution, tmpresolution, &resolvers->resolution.wait, list) {
requester = NULL;
if (!LIST_ISEMPTY(&resolution->requester.wait))
requester = LIST_NEXT(&resolution->requester.wait, struct dns_requester *, list);
else if (!LIST_ISEMPTY(&resolution->requester.curr))
requester = LIST_NEXT(&resolution->requester.curr, struct dns_requester *, list);
if (!requester)
continue;
if ((query_type == requester->prefered_query_type) &&
(resolution->hostname_dn &&
strcmp(hostname_dn, resolution->hostname_dn) == 0)) {
return resolution;
}
}
}
/* take the first one (hopefully) from the pool */
list_for_each_entry_safe(resolution, tmpresolution, &resolvers->resolution.pool, list) {
if (LIST_ISEMPTY(&resolution->requester.wait)) {
return resolution;
}
}
return NULL;
}
/* This function allocates memory for a DNS resolution structure.
* It's up to the caller to set the parameters
* Returns a pointer to the structure resolution or NULL if memory could
* not be allocated.
*/
struct dns_resolution *dns_alloc_resolution(void)
{
struct dns_resolution *resolution = NULL;
char *buffer = NULL;
resolution = calloc(1, sizeof(*resolution));
buffer = calloc(1, global.tune.bufsize);
if (!resolution || !buffer) {
free(buffer);
free(resolution);
return NULL;
}
LIST_INIT(&resolution->requester.wait);
LIST_INIT(&resolution->requester.curr);
return resolution;
}
/* This function free the memory allocated to a DNS resolution */
void dns_free_resolution(struct dns_resolution *resolution)
{
free(resolution);
return;
}
/* this function free a resolution from its requester(s) and move it back to the pool */
void dns_resolution_free(struct dns_resolvers *resolvers, struct dns_resolution *resolution)
{
struct dns_requester *requester, *tmprequester;
/* clean up configuration */
dns_reset_resolution(resolution);
resolution->hostname_dn = NULL;
resolution->hostname_dn_len = 0;
list_for_each_entry_safe(requester, tmprequester, &resolution->requester.wait, list) {
LIST_DEL(&requester->list);
}
list_for_each_entry_safe(requester, tmprequester, &resolution->requester.curr, list) {
LIST_DEL(&requester->list);
}
LIST_DEL(&resolution->list);
LIST_ADDQ(&resolvers->resolution.pool, &resolution->list);
return;
}
/*
* this function remove a requester from a resolution
* and takes care of all the consequences.
* It also cleans up some parameters from the requester
*/
void dns_rm_requester_from_resolution(struct dns_requester *requester, struct dns_resolution *resolution)
{
char *hostname_dn;
struct dns_requester *tmprequester;
/* resolution is still used by other requesters, we need to move
* some pointers to an other requester if needed
*/
switch (obj_type(requester->requester)) {
case OBJ_TYPE_SERVER:
hostname_dn = objt_server(requester->requester)->hostname_dn;
break;
case OBJ_TYPE_SRVRQ:
hostname_dn = objt_dns_srvrq(requester->requester)->hostname_dn;
break;
case OBJ_TYPE_NONE:
default:
hostname_dn = NULL;
break;
}
if (resolution->hostname_dn != hostname_dn)
return;
/* First, we need to find this other requester */
tmprequester = NULL;
list_for_each_entry(tmprequester, &resolution->requester.wait, list) {
if (tmprequester != requester)
break;
}
if (!tmprequester) {
/* if we can't find it in wait queue, let's get one in run queue */
list_for_each_entry(tmprequester, &resolution->requester.curr, list) {
if (tmprequester != requester)
break;
}
}
/* move hostname_dn related pointers to the next requester */
switch (obj_type(tmprequester->requester)) {
case OBJ_TYPE_SERVER:
resolution->hostname_dn = objt_server(tmprequester->requester)->hostname_dn;
resolution->hostname_dn_len = objt_server(tmprequester->requester)->hostname_dn_len;
break;
case OBJ_TYPE_SRVRQ:
resolution->hostname_dn = objt_dns_srvrq(tmprequester->requester)->hostname_dn;
resolution->hostname_dn_len = objt_dns_srvrq(tmprequester->requester)->hostname_dn_len;
break;
case OBJ_TYPE_NONE:
default:
;;
}
/* clean up the requester */
LIST_DEL(&requester->list);
switch (obj_type(requester->requester)) {
case OBJ_TYPE_SERVER:
objt_server(requester->requester)->resolution = NULL;
break;
case OBJ_TYPE_SRVRQ:
objt_dns_srvrq(requester->requester)->resolution = NULL;
break;
case OBJ_TYPE_NONE:
default:
;;
}
}
/* This function dumps counters from all resolvers section and associated name
* servers. It returns 0 if the output buffer is full and it needs to be called
* again, otherwise non-zero. It may limit itself to the resolver pointed to by
* <cli.p0> if it's not null.
*/
static int cli_io_handler_dump_resolvers_to_buffer(struct appctx *appctx)
{
struct stream_interface *si = appctx->owner;
struct dns_resolvers *presolvers;
struct dns_nameserver *pnameserver;
chunk_reset(&trash);
switch (appctx->st2) {
case STAT_ST_INIT:
appctx->st2 = STAT_ST_LIST; /* let's start producing data */
/* fall through */
case STAT_ST_LIST:
if (LIST_ISEMPTY(&dns_resolvers)) {
chunk_appendf(&trash, "No resolvers found\n");
}
else {
list_for_each_entry(presolvers, &dns_resolvers, list) {
if (appctx->ctx.cli.p0 != NULL && appctx->ctx.cli.p0 != presolvers)
continue;
chunk_appendf(&trash, "Resolvers section %s\n", presolvers->id);
list_for_each_entry(pnameserver, &presolvers->nameserver_list, list) {
chunk_appendf(&trash, " nameserver %s:\n", pnameserver->id);
chunk_appendf(&trash, " sent: %ld\n", pnameserver->counters.sent);
chunk_appendf(&trash, " valid: %ld\n", pnameserver->counters.valid);
chunk_appendf(&trash, " update: %ld\n", pnameserver->counters.update);
chunk_appendf(&trash, " cname: %ld\n", pnameserver->counters.cname);
chunk_appendf(&trash, " cname_error: %ld\n", pnameserver->counters.cname_error);
chunk_appendf(&trash, " any_err: %ld\n", pnameserver->counters.any_err);
chunk_appendf(&trash, " nx: %ld\n", pnameserver->counters.nx);
chunk_appendf(&trash, " timeout: %ld\n", pnameserver->counters.timeout);
chunk_appendf(&trash, " refused: %ld\n", pnameserver->counters.refused);
chunk_appendf(&trash, " other: %ld\n", pnameserver->counters.other);
chunk_appendf(&trash, " invalid: %ld\n", pnameserver->counters.invalid);
chunk_appendf(&trash, " too_big: %ld\n", pnameserver->counters.too_big);
chunk_appendf(&trash, " truncated: %ld\n", pnameserver->counters.truncated);
chunk_appendf(&trash, " outdated: %ld\n", pnameserver->counters.outdated);
}
}
}
/* display response */
if (bi_putchk(si_ic(si), &trash) == -1) {
/* let's try again later from this session. We add ourselves into
* this session's users so that it can remove us upon termination.
*/
si->flags |= SI_FL_WAIT_ROOM;
return 0;
}
appctx->st2 = STAT_ST_FIN;
/* fall through */
default:
appctx->st2 = STAT_ST_FIN;
return 1;
}
}
/* register cli keywords */
static struct cli_kw_list cli_kws = {{ },{
{ { "show", "stat", "resolvers", NULL }, "show stat resolvers [id]: dumps counters from all resolvers section and\n"
" associated name servers",
cli_parse_stat_resolvers, cli_io_handler_dump_resolvers_to_buffer },
{{},}
}};
__attribute__((constructor))
static void __dns_init(void)
{
cli_register_kw(&cli_kws);
}