| /* |
| * Stream management functions. |
| * |
| * Copyright 2000-2012 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <stdlib.h> |
| #include <unistd.h> |
| #include <fcntl.h> |
| |
| #include <common/cfgparse.h> |
| #include <common/config.h> |
| #include <common/buffer.h> |
| #include <common/debug.h> |
| #include <common/memory.h> |
| |
| #include <types/applet.h> |
| #include <types/capture.h> |
| #include <types/filters.h> |
| #include <types/global.h> |
| |
| #include <proto/acl.h> |
| #include <proto/action.h> |
| #include <proto/arg.h> |
| #include <proto/backend.h> |
| #include <proto/channel.h> |
| #include <proto/checks.h> |
| #include <proto/connection.h> |
| #include <proto/dumpstats.h> |
| #include <proto/fd.h> |
| #include <proto/filters.h> |
| #include <proto/freq_ctr.h> |
| #include <proto/frontend.h> |
| #include <proto/hdr_idx.h> |
| #include <proto/hlua.h> |
| #include <proto/listener.h> |
| #include <proto/log.h> |
| #include <proto/raw_sock.h> |
| #include <proto/session.h> |
| #include <proto/stream.h> |
| #include <proto/pipe.h> |
| #include <proto/proto_http.h> |
| #include <proto/proto_tcp.h> |
| #include <proto/proxy.h> |
| #include <proto/queue.h> |
| #include <proto/server.h> |
| #include <proto/sample.h> |
| #include <proto/stick_table.h> |
| #include <proto/stream_interface.h> |
| #include <proto/task.h> |
| #include <proto/vars.h> |
| |
| struct pool_head *pool2_stream; |
| struct list streams; |
| |
| /* list of streams waiting for at least one buffer */ |
| struct list buffer_wq = LIST_HEAD_INIT(buffer_wq); |
| |
| /* List of all use-service keywords. */ |
| static struct list service_keywords = LIST_HEAD_INIT(service_keywords); |
| |
| /* This function is called from the session handler which detects the end of |
| * handshake, in order to complete initialization of a valid stream. It must be |
| * called with a session (which may be embryonic). It returns the pointer to |
| * the newly created stream, or NULL in case of fatal error. The client-facing |
| * end point is assigned to <origin>, which must be valid. The task's context |
| * is set to the new stream, and its function is set to process_stream(). |
| * Target and analysers are null. |
| */ |
| struct stream *stream_new(struct session *sess, struct task *t, enum obj_type *origin) |
| { |
| struct stream *s; |
| struct connection *conn = objt_conn(origin); |
| struct appctx *appctx = objt_appctx(origin); |
| |
| if (unlikely((s = pool_alloc2(pool2_stream)) == NULL)) |
| return s; |
| |
| /* minimum stream initialization required for an embryonic stream is |
| * fairly low. We need very little to execute L4 ACLs, then we need a |
| * task to make the client-side connection live on its own. |
| * - flags |
| * - stick-entry tracking |
| */ |
| s->flags = 0; |
| s->logs.logwait = sess->fe->to_log; |
| s->logs.level = 0; |
| s->logs.accept_date = sess->accept_date; /* user-visible date for logging */ |
| s->logs.tv_accept = sess->tv_accept; /* corrected date for internal use */ |
| tv_zero(&s->logs.tv_request); |
| s->logs.t_queue = -1; |
| s->logs.t_connect = -1; |
| s->logs.t_data = -1; |
| s->logs.t_close = 0; |
| s->logs.bytes_in = s->logs.bytes_out = 0; |
| s->logs.prx_queue_size = 0; /* we get the number of pending conns before us */ |
| s->logs.srv_queue_size = 0; /* we will get this number soon */ |
| |
| /* default logging function */ |
| s->do_log = strm_log; |
| |
| /* default error reporting function, may be changed by analysers */ |
| s->srv_error = default_srv_error; |
| |
| /* Initialise the current rule list pointer to NULL. We are sure that |
| * any rulelist match the NULL pointer. |
| */ |
| s->current_rule_list = NULL; |
| s->current_rule = NULL; |
| |
| /* Copy SC counters for the stream. We don't touch refcounts because |
| * any reference we have is inherited from the session. Since the stream |
| * doesn't exist without the session, the session's existence guarantees |
| * we don't lose the entry. During the store operation, the stream won't |
| * touch these ones. |
| */ |
| memcpy(s->stkctr, sess->stkctr, sizeof(s->stkctr)); |
| |
| s->sess = sess; |
| s->si[0].flags = SI_FL_NONE; |
| s->si[1].flags = SI_FL_ISBACK; |
| |
| s->uniq_id = global.req_count++; |
| |
| /* OK, we're keeping the stream, so let's properly initialize the stream */ |
| LIST_ADDQ(&streams, &s->list); |
| LIST_INIT(&s->back_refs); |
| LIST_INIT(&s->buffer_wait); |
| |
| s->flags |= SF_INITIALIZED; |
| s->unique_id = NULL; |
| |
| s->task = t; |
| t->process = process_stream; |
| t->context = s; |
| t->expire = TICK_ETERNITY; |
| |
| /* Note: initially, the stream's backend points to the frontend. |
| * This changes later when switching rules are executed or |
| * when the default backend is assigned. |
| */ |
| s->be = sess->fe; |
| s->req.buf = s->res.buf = NULL; |
| s->req_cap = NULL; |
| s->res_cap = NULL; |
| |
| /* Initialise all the variables contexts even if not used. |
| * This permits to prune these contexts without errors. |
| */ |
| vars_init(&s->vars_txn, SCOPE_TXN); |
| vars_init(&s->vars_reqres, SCOPE_REQ); |
| |
| /* this part should be common with other protocols */ |
| si_reset(&s->si[0]); |
| si_set_state(&s->si[0], SI_ST_EST); |
| |
| /* attach the incoming connection to the stream interface now. */ |
| if (conn) |
| si_attach_conn(&s->si[0], conn); |
| else if (appctx) |
| si_attach_appctx(&s->si[0], appctx); |
| |
| if (likely(sess->fe->options2 & PR_O2_INDEPSTR)) |
| s->si[0].flags |= SI_FL_INDEP_STR; |
| |
| /* pre-initialize the other side's stream interface to an INIT state. The |
| * callbacks will be initialized before attempting to connect. |
| */ |
| si_reset(&s->si[1]); |
| |
| if (likely(sess->fe->options2 & PR_O2_INDEPSTR)) |
| s->si[1].flags |= SI_FL_INDEP_STR; |
| |
| stream_init_srv_conn(s); |
| s->target = NULL; |
| s->pend_pos = NULL; |
| |
| /* init store persistence */ |
| s->store_count = 0; |
| |
| channel_init(&s->req); |
| s->req.flags |= CF_READ_ATTACHED; /* the producer is already connected */ |
| s->req.analysers = 0; |
| channel_auto_connect(&s->req); /* don't wait to establish connection */ |
| channel_auto_close(&s->req); /* let the producer forward close requests */ |
| |
| s->req.rto = sess->fe->timeout.client; |
| s->req.wto = TICK_ETERNITY; |
| s->req.rex = TICK_ETERNITY; |
| s->req.wex = TICK_ETERNITY; |
| s->req.analyse_exp = TICK_ETERNITY; |
| |
| channel_init(&s->res); |
| s->res.flags |= CF_ISRESP; |
| s->res.analysers = 0; |
| |
| if (sess->fe->options2 & PR_O2_NODELAY) { |
| s->req.flags |= CF_NEVER_WAIT; |
| s->res.flags |= CF_NEVER_WAIT; |
| } |
| |
| s->res.wto = sess->fe->timeout.client; |
| s->res.rto = TICK_ETERNITY; |
| s->res.rex = TICK_ETERNITY; |
| s->res.wex = TICK_ETERNITY; |
| s->res.analyse_exp = TICK_ETERNITY; |
| |
| s->txn = NULL; |
| |
| HLUA_INIT(&s->hlua); |
| |
| if (flt_stream_init(s) < 0 || flt_stream_start(s) < 0) |
| goto out_fail_accept; |
| |
| /* finish initialization of the accepted file descriptor */ |
| if (conn) |
| conn_data_want_recv(conn); |
| else if (appctx) |
| si_applet_want_get(&s->si[0]); |
| |
| if (sess->fe->accept && sess->fe->accept(s) < 0) |
| goto out_fail_accept; |
| |
| /* it is important not to call the wakeup function directly but to |
| * pass through task_wakeup(), because this one knows how to apply |
| * priorities to tasks. |
| */ |
| task_wakeup(t, TASK_WOKEN_INIT); |
| return s; |
| |
| /* Error unrolling */ |
| out_fail_accept: |
| flt_stream_release(s, 0); |
| LIST_DEL(&s->list); |
| pool_free2(pool2_stream, s); |
| return NULL; |
| } |
| |
| /* |
| * frees the context associated to a stream. It must have been removed first. |
| */ |
| static void stream_free(struct stream *s) |
| { |
| struct session *sess = strm_sess(s); |
| struct proxy *fe = sess->fe; |
| struct bref *bref, *back; |
| struct connection *cli_conn = objt_conn(sess->origin); |
| int i; |
| |
| if (s->pend_pos) |
| pendconn_free(s->pend_pos); |
| |
| if (objt_server(s->target)) { /* there may be requests left pending in queue */ |
| if (s->flags & SF_CURR_SESS) { |
| s->flags &= ~SF_CURR_SESS; |
| objt_server(s->target)->cur_sess--; |
| } |
| if (may_dequeue_tasks(objt_server(s->target), s->be)) |
| process_srv_queue(objt_server(s->target)); |
| } |
| |
| if (unlikely(s->srv_conn)) { |
| /* the stream still has a reserved slot on a server, but |
| * it should normally be only the same as the one above, |
| * so this should not happen in fact. |
| */ |
| sess_change_server(s, NULL); |
| } |
| |
| if (s->req.pipe) |
| put_pipe(s->req.pipe); |
| |
| if (s->res.pipe) |
| put_pipe(s->res.pipe); |
| |
| /* We may still be present in the buffer wait queue */ |
| if (!LIST_ISEMPTY(&s->buffer_wait)) { |
| LIST_DEL(&s->buffer_wait); |
| LIST_INIT(&s->buffer_wait); |
| } |
| |
| b_drop(&s->req.buf); |
| b_drop(&s->res.buf); |
| if (!LIST_ISEMPTY(&buffer_wq)) |
| stream_offer_buffers(); |
| |
| hlua_ctx_destroy(&s->hlua); |
| if (s->txn) |
| http_end_txn(s); |
| |
| /* ensure the client-side transport layer is destroyed */ |
| if (cli_conn) |
| conn_force_close(cli_conn); |
| |
| for (i = 0; i < s->store_count; i++) { |
| if (!s->store[i].ts) |
| continue; |
| stksess_free(s->store[i].table, s->store[i].ts); |
| s->store[i].ts = NULL; |
| } |
| |
| if (s->txn) { |
| pool_free2(pool2_hdr_idx, s->txn->hdr_idx.v); |
| pool_free2(pool2_http_txn, s->txn); |
| s->txn = NULL; |
| } |
| |
| flt_stream_stop(s); |
| flt_stream_release(s, 0); |
| |
| if (fe) { |
| pool_free2(fe->rsp_cap_pool, s->res_cap); |
| pool_free2(fe->req_cap_pool, s->req_cap); |
| } |
| |
| /* Cleanup all variable contexts. */ |
| vars_prune(&s->vars_txn, s->sess, s); |
| vars_prune(&s->vars_reqres, s->sess, s); |
| |
| stream_store_counters(s); |
| |
| list_for_each_entry_safe(bref, back, &s->back_refs, users) { |
| /* we have to unlink all watchers. We must not relink them if |
| * this stream was the last one in the list. |
| */ |
| LIST_DEL(&bref->users); |
| LIST_INIT(&bref->users); |
| if (s->list.n != &streams) |
| LIST_ADDQ(&LIST_ELEM(s->list.n, struct stream *, list)->back_refs, &bref->users); |
| bref->ref = s->list.n; |
| } |
| LIST_DEL(&s->list); |
| si_release_endpoint(&s->si[1]); |
| si_release_endpoint(&s->si[0]); |
| |
| /* FIXME: for now we have a 1:1 relation between stream and session so |
| * the stream must free the session. |
| */ |
| pool_free2(pool2_stream, s); |
| session_free(sess); |
| |
| /* We may want to free the maximum amount of pools if the proxy is stopping */ |
| if (fe && unlikely(fe->state == PR_STSTOPPED)) { |
| pool_flush2(pool2_buffer); |
| pool_flush2(pool2_http_txn); |
| pool_flush2(pool2_hdr_idx); |
| pool_flush2(pool2_requri); |
| pool_flush2(pool2_capture); |
| pool_flush2(pool2_stream); |
| pool_flush2(pool2_session); |
| pool_flush2(pool2_connection); |
| pool_flush2(pool2_pendconn); |
| pool_flush2(fe->req_cap_pool); |
| pool_flush2(fe->rsp_cap_pool); |
| } |
| } |
| |
| /* Allocates a receive buffer for channel <chn>, but only if it's guaranteed |
| * that it's not the last available buffer or it's the response buffer. Unless |
| * the buffer is the response buffer, an extra control is made so that we always |
| * keep <tune.buffers.reserved> buffers available after this allocation. To be |
| * called at the beginning of recv() callbacks to ensure that the required |
| * buffers are properly allocated. Returns 0 in case of failure, non-zero |
| * otherwise. |
| */ |
| int stream_alloc_recv_buffer(struct channel *chn) |
| { |
| struct stream *s; |
| struct buffer *b; |
| int margin = 0; |
| |
| if (!(chn->flags & CF_ISRESP)) |
| margin = global.tune.reserved_bufs; |
| |
| s = chn_strm(chn); |
| |
| b = b_alloc_margin(&chn->buf, margin); |
| if (b) |
| return 1; |
| |
| if (LIST_ISEMPTY(&s->buffer_wait)) |
| LIST_ADDQ(&buffer_wq, &s->buffer_wait); |
| return 0; |
| } |
| |
| /* Allocates a work buffer for stream <s>. It is meant to be called inside |
| * process_stream(). It will only allocate the side needed for the function |
| * to work fine, which is the response buffer so that an error message may be |
| * built and returned. Response buffers may be allocated from the reserve, this |
| * is critical to ensure that a response may always flow and will never block a |
| * server from releasing a connection. Returns 0 in case of failure, non-zero |
| * otherwise. |
| */ |
| int stream_alloc_work_buffer(struct stream *s) |
| { |
| if (!LIST_ISEMPTY(&s->buffer_wait)) { |
| LIST_DEL(&s->buffer_wait); |
| LIST_INIT(&s->buffer_wait); |
| } |
| |
| if (b_alloc_margin(&s->res.buf, 0)) |
| return 1; |
| |
| LIST_ADDQ(&buffer_wq, &s->buffer_wait); |
| return 0; |
| } |
| |
| /* releases unused buffers after processing. Typically used at the end of the |
| * update() functions. It will try to wake up as many tasks as the number of |
| * buffers that it releases. In practice, most often streams are blocked on |
| * a single buffer, so it makes sense to try to wake two up when two buffers |
| * are released at once. |
| */ |
| void stream_release_buffers(struct stream *s) |
| { |
| if (s->req.buf->size && buffer_empty(s->req.buf)) |
| b_free(&s->req.buf); |
| |
| if (s->res.buf->size && buffer_empty(s->res.buf)) |
| b_free(&s->res.buf); |
| |
| /* if we're certain to have at least 1 buffer available, and there is |
| * someone waiting, we can wake up a waiter and offer them. |
| */ |
| if (!LIST_ISEMPTY(&buffer_wq)) |
| stream_offer_buffers(); |
| } |
| |
| /* Runs across the list of pending streams waiting for a buffer and wakes one |
| * up if buffers are available. Will stop when the run queue reaches <rqlimit>. |
| * Should not be called directly, use stream_offer_buffers() instead. |
| */ |
| void __stream_offer_buffers(int rqlimit) |
| { |
| struct stream *sess, *bak; |
| |
| list_for_each_entry_safe(sess, bak, &buffer_wq, buffer_wait) { |
| if (rqlimit <= run_queue) |
| break; |
| |
| if (sess->task->state & TASK_RUNNING) |
| continue; |
| |
| LIST_DEL(&sess->buffer_wait); |
| LIST_INIT(&sess->buffer_wait); |
| task_wakeup(sess->task, TASK_WOKEN_RES); |
| } |
| } |
| |
| /* perform minimal intializations, report 0 in case of error, 1 if OK. */ |
| int init_stream() |
| { |
| LIST_INIT(&streams); |
| pool2_stream = create_pool("stream", sizeof(struct stream), MEM_F_SHARED); |
| return pool2_stream != NULL; |
| } |
| |
| void stream_process_counters(struct stream *s) |
| { |
| struct session *sess = s->sess; |
| unsigned long long bytes; |
| void *ptr1,*ptr2; |
| int i; |
| |
| bytes = s->req.total - s->logs.bytes_in; |
| s->logs.bytes_in = s->req.total; |
| if (bytes) { |
| sess->fe->fe_counters.bytes_in += bytes; |
| |
| s->be->be_counters.bytes_in += bytes; |
| |
| if (objt_server(s->target)) |
| objt_server(s->target)->counters.bytes_in += bytes; |
| |
| if (sess->listener && sess->listener->counters) |
| sess->listener->counters->bytes_in += bytes; |
| |
| for (i = 0; i < MAX_SESS_STKCTR; i++) { |
| struct stkctr *stkctr = &s->stkctr[i]; |
| |
| if (!stkctr_entry(stkctr)) { |
| stkctr = &sess->stkctr[i]; |
| if (!stkctr_entry(stkctr)) |
| continue; |
| } |
| |
| ptr1 = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_IN_CNT); |
| if (ptr1) |
| stktable_data_cast(ptr1, bytes_in_cnt) += bytes; |
| |
| ptr2 = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_IN_RATE); |
| if (ptr2) |
| update_freq_ctr_period(&stktable_data_cast(ptr2, bytes_in_rate), |
| stkctr->table->data_arg[STKTABLE_DT_BYTES_IN_RATE].u, bytes); |
| |
| /* If data was modified, we need to touch to re-schedule sync */ |
| if (ptr1 || ptr2) |
| stktable_touch(stkctr->table, stkctr_entry(stkctr), 1); |
| } |
| } |
| |
| bytes = s->res.total - s->logs.bytes_out; |
| s->logs.bytes_out = s->res.total; |
| if (bytes) { |
| sess->fe->fe_counters.bytes_out += bytes; |
| |
| s->be->be_counters.bytes_out += bytes; |
| |
| if (objt_server(s->target)) |
| objt_server(s->target)->counters.bytes_out += bytes; |
| |
| if (sess->listener && sess->listener->counters) |
| sess->listener->counters->bytes_out += bytes; |
| |
| for (i = 0; i < MAX_SESS_STKCTR; i++) { |
| struct stkctr *stkctr = &s->stkctr[i]; |
| |
| if (!stkctr_entry(stkctr)) { |
| stkctr = &sess->stkctr[i]; |
| if (!stkctr_entry(stkctr)) |
| continue; |
| } |
| |
| ptr1 = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_OUT_CNT); |
| if (ptr1) |
| stktable_data_cast(ptr1, bytes_out_cnt) += bytes; |
| |
| ptr2 = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_OUT_RATE); |
| if (ptr2) |
| update_freq_ctr_period(&stktable_data_cast(ptr2, bytes_out_rate), |
| stkctr->table->data_arg[STKTABLE_DT_BYTES_OUT_RATE].u, bytes); |
| |
| /* If data was modified, we need to touch to re-schedule sync */ |
| if (ptr1 || ptr2) |
| stktable_touch(stkctr->table, stkctr_entry(stkctr), 1); |
| } |
| } |
| } |
| |
| /* This function is called with (si->state == SI_ST_CON) meaning that a |
| * connection was attempted and that the file descriptor is already allocated. |
| * We must check for establishment, error and abort. Possible output states |
| * are SI_ST_EST (established), SI_ST_CER (error), SI_ST_DIS (abort), and |
| * SI_ST_CON (no change). The function returns 0 if it switches to SI_ST_CER, |
| * otherwise 1. This only works with connection-based streams. |
| */ |
| static int sess_update_st_con_tcp(struct stream *s) |
| { |
| struct stream_interface *si = &s->si[1]; |
| struct channel *req = &s->req; |
| struct channel *rep = &s->res; |
| struct connection *srv_conn = __objt_conn(si->end); |
| |
| /* If we got an error, or if nothing happened and the connection timed |
| * out, we must give up. The CER state handler will take care of retry |
| * attempts and error reports. |
| */ |
| if (unlikely(si->flags & (SI_FL_EXP|SI_FL_ERR))) { |
| if (unlikely(req->flags & CF_WRITE_PARTIAL)) { |
| /* Some data were sent past the connection establishment, |
| * so we need to pretend we're established to log correctly |
| * and let later states handle the failure. |
| */ |
| si->state = SI_ST_EST; |
| si->err_type = SI_ET_DATA_ERR; |
| rep->flags |= CF_READ_ERROR | CF_WRITE_ERROR; |
| return 1; |
| } |
| si->exp = TICK_ETERNITY; |
| si->state = SI_ST_CER; |
| |
| conn_force_close(srv_conn); |
| |
| if (si->err_type) |
| return 0; |
| |
| if (si->flags & SI_FL_ERR) |
| si->err_type = SI_ET_CONN_ERR; |
| else |
| si->err_type = SI_ET_CONN_TO; |
| return 0; |
| } |
| |
| /* OK, maybe we want to abort */ |
| if (!(req->flags & CF_WRITE_PARTIAL) && |
| unlikely((rep->flags & CF_SHUTW) || |
| ((req->flags & CF_SHUTW_NOW) && /* FIXME: this should not prevent a connection from establishing */ |
| ((!(req->flags & CF_WRITE_ACTIVITY) && channel_is_empty(req)) || |
| s->be->options & PR_O_ABRT_CLOSE)))) { |
| /* give up */ |
| si_shutw(si); |
| si->err_type |= SI_ET_CONN_ABRT; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return 1; |
| } |
| |
| /* we need to wait a bit more if there was no activity either */ |
| if (!(req->flags & CF_WRITE_ACTIVITY)) |
| return 1; |
| |
| /* OK, this means that a connection succeeded. The caller will be |
| * responsible for handling the transition from CON to EST. |
| */ |
| si->state = SI_ST_EST; |
| si->err_type = SI_ET_NONE; |
| return 1; |
| } |
| |
| /* This function is called with (si->state == SI_ST_CER) meaning that a |
| * previous connection attempt has failed and that the file descriptor |
| * has already been released. Possible causes include asynchronous error |
| * notification and time out. Possible output states are SI_ST_CLO when |
| * retries are exhausted, SI_ST_TAR when a delay is wanted before a new |
| * connection attempt, SI_ST_ASS when it's wise to retry on the same server, |
| * and SI_ST_REQ when an immediate redispatch is wanted. The buffers are |
| * marked as in error state. It returns 0. |
| */ |
| static int sess_update_st_cer(struct stream *s) |
| { |
| struct stream_interface *si = &s->si[1]; |
| |
| /* we probably have to release last stream from the server */ |
| if (objt_server(s->target)) { |
| health_adjust(objt_server(s->target), HANA_STATUS_L4_ERR); |
| |
| if (s->flags & SF_CURR_SESS) { |
| s->flags &= ~SF_CURR_SESS; |
| objt_server(s->target)->cur_sess--; |
| } |
| } |
| |
| /* ensure that we have enough retries left */ |
| si->conn_retries--; |
| if (si->conn_retries < 0) { |
| if (!si->err_type) { |
| si->err_type = SI_ET_CONN_ERR; |
| } |
| |
| if (objt_server(s->target)) |
| objt_server(s->target)->counters.failed_conns++; |
| s->be->be_counters.failed_conns++; |
| sess_change_server(s, NULL); |
| if (may_dequeue_tasks(objt_server(s->target), s->be)) |
| process_srv_queue(objt_server(s->target)); |
| |
| /* shutw is enough so stop a connecting socket */ |
| si_shutw(si); |
| s->req.flags |= CF_WRITE_ERROR; |
| s->res.flags |= CF_READ_ERROR; |
| |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return 0; |
| } |
| |
| /* If the "redispatch" option is set on the backend, we are allowed to |
| * retry on another server. By default this redispatch occurs on the |
| * last retry, but if configured we allow redispatches to occur on |
| * configurable intervals, e.g. on every retry. In order to achieve this, |
| * we must mark the stream unassigned, and eventually clear the DIRECT |
| * bit to ignore any persistence cookie. We won't count a retry nor a |
| * redispatch yet, because this will depend on what server is selected. |
| * If the connection is not persistent, the balancing algorithm is not |
| * determinist (round robin) and there is more than one active server, |
| * we accept to perform an immediate redispatch without waiting since |
| * we don't care about this particular server. |
| */ |
| if (objt_server(s->target) && |
| (s->be->options & PR_O_REDISP) && !(s->flags & SF_FORCE_PRST) && |
| ((__objt_server(s->target)->state < SRV_ST_RUNNING) || |
| (((s->be->redispatch_after > 0) && |
| ((s->be->conn_retries - si->conn_retries) % |
| s->be->redispatch_after == 0)) || |
| ((s->be->redispatch_after < 0) && |
| ((s->be->conn_retries - si->conn_retries) % |
| (s->be->conn_retries + 1 + s->be->redispatch_after) == 0))) || |
| (!(s->flags & SF_DIRECT) && s->be->srv_act > 1 && |
| ((s->be->lbprm.algo & BE_LB_KIND) == BE_LB_KIND_RR)))) { |
| sess_change_server(s, NULL); |
| if (may_dequeue_tasks(objt_server(s->target), s->be)) |
| process_srv_queue(objt_server(s->target)); |
| |
| s->flags &= ~(SF_DIRECT | SF_ASSIGNED | SF_ADDR_SET); |
| si->state = SI_ST_REQ; |
| } else { |
| if (objt_server(s->target)) |
| objt_server(s->target)->counters.retries++; |
| s->be->be_counters.retries++; |
| si->state = SI_ST_ASS; |
| } |
| |
| if (si->flags & SI_FL_ERR) { |
| /* The error was an asynchronous connection error, and we will |
| * likely have to retry connecting to the same server, most |
| * likely leading to the same result. To avoid this, we wait |
| * MIN(one second, connect timeout) before retrying. |
| */ |
| |
| int delay = 1000; |
| |
| if (s->be->timeout.connect && s->be->timeout.connect < delay) |
| delay = s->be->timeout.connect; |
| |
| if (!si->err_type) |
| si->err_type = SI_ET_CONN_ERR; |
| |
| /* only wait when we're retrying on the same server */ |
| if (si->state == SI_ST_ASS || |
| (s->be->lbprm.algo & BE_LB_KIND) != BE_LB_KIND_RR || |
| (s->be->srv_act <= 1)) { |
| si->state = SI_ST_TAR; |
| si->exp = tick_add(now_ms, MS_TO_TICKS(delay)); |
| } |
| return 0; |
| } |
| return 0; |
| } |
| |
| /* |
| * This function handles the transition between the SI_ST_CON state and the |
| * SI_ST_EST state. It must only be called after switching from SI_ST_CON (or |
| * SI_ST_INI) to SI_ST_EST, but only when a ->proto is defined. |
| */ |
| static void sess_establish(struct stream *s) |
| { |
| struct stream_interface *si = &s->si[1]; |
| struct channel *req = &s->req; |
| struct channel *rep = &s->res; |
| |
| /* First, centralize the timers information */ |
| s->logs.t_connect = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->exp = TICK_ETERNITY; |
| |
| if (objt_server(s->target)) |
| health_adjust(objt_server(s->target), HANA_STATUS_L4_OK); |
| |
| if (s->be->mode == PR_MODE_TCP) { /* let's allow immediate data connection in this case */ |
| /* if the user wants to log as soon as possible, without counting |
| * bytes from the server, then this is the right moment. */ |
| if (!LIST_ISEMPTY(&strm_fe(s)->logformat) && !(s->logs.logwait & LW_BYTES)) { |
| s->logs.t_close = s->logs.t_connect; /* to get a valid end date */ |
| s->do_log(s); |
| } |
| } |
| else { |
| rep->flags |= CF_READ_DONTWAIT; /* a single read is enough to get response headers */ |
| } |
| |
| rep->analysers |= strm_fe(s)->fe_rsp_ana | s->be->be_rsp_ana; |
| |
| /* Be sure to filter response headers if the backend is an HTTP proxy |
| * and if there are filters attached to the stream. */ |
| if (s->be->mode == PR_MODE_HTTP && HAS_FILTERS(s)) |
| rep->analysers |= AN_FLT_HTTP_HDRS; |
| |
| rep->flags |= CF_READ_ATTACHED; /* producer is now attached */ |
| if (req->flags & CF_WAKE_CONNECT) { |
| req->flags |= CF_WAKE_ONCE; |
| req->flags &= ~CF_WAKE_CONNECT; |
| } |
| if (objt_conn(si->end)) { |
| /* real connections have timeouts */ |
| req->wto = s->be->timeout.server; |
| rep->rto = s->be->timeout.server; |
| } |
| req->wex = TICK_ETERNITY; |
| } |
| |
| /* Check if the connection request is in such a state that it can be aborted. */ |
| static int check_req_may_abort(struct channel *req, struct stream *s) |
| { |
| return ((req->flags & (CF_READ_ERROR)) || |
| ((req->flags & CF_SHUTW_NOW) && /* empty and client aborted */ |
| (channel_is_empty(req) || s->be->options & PR_O_ABRT_CLOSE))); |
| } |
| |
| /* Update back stream interface status for input states SI_ST_ASS, SI_ST_QUE, |
| * SI_ST_TAR. Other input states are simply ignored. |
| * Possible output states are SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ, SI_ST_CON |
| * and SI_ST_EST. Flags must have previously been updated for timeouts and other |
| * conditions. |
| */ |
| static void sess_update_stream_int(struct stream *s) |
| { |
| struct server *srv = objt_server(s->target); |
| struct stream_interface *si = &s->si[1]; |
| struct channel *req = &s->req; |
| |
| DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%d rqt=%d rph=%d rpt=%d cs=%d ss=%d\n", |
| now_ms, __FUNCTION__, |
| s, |
| req, &s->res, |
| req->rex, s->res.wex, |
| req->flags, s->res.flags, |
| req->buf->i, req->buf->o, s->res.buf->i, s->res.buf->o, s->si[0].state, s->si[1].state); |
| |
| if (si->state == SI_ST_ASS) { |
| /* Server assigned to connection request, we have to try to connect now */ |
| int conn_err; |
| |
| /* Before we try to initiate the connection, see if the |
| * request may be aborted instead. |
| */ |
| if (check_req_may_abort(req, s)) { |
| si->err_type |= SI_ET_CONN_ABRT; |
| goto abort_connection; |
| } |
| |
| conn_err = connect_server(s); |
| srv = objt_server(s->target); |
| |
| if (conn_err == SF_ERR_NONE) { |
| /* state = SI_ST_CON or SI_ST_EST now */ |
| if (srv) |
| srv_inc_sess_ctr(srv); |
| if (srv) |
| srv_set_sess_last(srv); |
| return; |
| } |
| |
| /* We have received a synchronous error. We might have to |
| * abort, retry immediately or redispatch. |
| */ |
| if (conn_err == SF_ERR_INTERNAL) { |
| if (!si->err_type) { |
| si->err_type = SI_ET_CONN_OTHER; |
| } |
| |
| if (srv) |
| srv_inc_sess_ctr(srv); |
| if (srv) |
| srv_set_sess_last(srv); |
| if (srv) |
| srv->counters.failed_conns++; |
| s->be->be_counters.failed_conns++; |
| |
| /* release other streams waiting for this server */ |
| sess_change_server(s, NULL); |
| if (may_dequeue_tasks(srv, s->be)) |
| process_srv_queue(srv); |
| |
| /* Failed and not retryable. */ |
| si_shutr(si); |
| si_shutw(si); |
| req->flags |= CF_WRITE_ERROR; |
| |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| |
| /* no stream was ever accounted for this server */ |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| /* We are facing a retryable error, but we don't want to run a |
| * turn-around now, as the problem is likely a source port |
| * allocation problem, so we want to retry now. |
| */ |
| si->state = SI_ST_CER; |
| si->flags &= ~SI_FL_ERR; |
| sess_update_st_cer(s); |
| /* now si->state is one of SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ */ |
| return; |
| } |
| else if (si->state == SI_ST_QUE) { |
| /* connection request was queued, check for any update */ |
| if (!s->pend_pos) { |
| /* The connection is not in the queue anymore. Either |
| * we have a server connection slot available and we |
| * go directly to the assigned state, or we need to |
| * load-balance first and go to the INI state. |
| */ |
| si->exp = TICK_ETERNITY; |
| if (unlikely(!(s->flags & SF_ASSIGNED))) |
| si->state = SI_ST_REQ; |
| else { |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->state = SI_ST_ASS; |
| } |
| return; |
| } |
| |
| /* Connection request still in queue... */ |
| if (si->flags & SI_FL_EXP) { |
| /* ... and timeout expired */ |
| si->exp = TICK_ETERNITY; |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| if (srv) |
| srv->counters.failed_conns++; |
| s->be->be_counters.failed_conns++; |
| si_shutr(si); |
| si_shutw(si); |
| req->flags |= CF_WRITE_TIMEOUT; |
| if (!si->err_type) |
| si->err_type = SI_ET_QUEUE_TO; |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| /* Connection remains in queue, check if we have to abort it */ |
| if (check_req_may_abort(req, s)) { |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->err_type |= SI_ET_QUEUE_ABRT; |
| goto abort_connection; |
| } |
| |
| /* Nothing changed */ |
| return; |
| } |
| else if (si->state == SI_ST_TAR) { |
| /* Connection request might be aborted */ |
| if (check_req_may_abort(req, s)) { |
| si->err_type |= SI_ET_CONN_ABRT; |
| goto abort_connection; |
| } |
| |
| if (!(si->flags & SI_FL_EXP)) |
| return; /* still in turn-around */ |
| |
| si->exp = TICK_ETERNITY; |
| |
| /* we keep trying on the same server as long as the stream is |
| * marked "assigned". |
| * FIXME: Should we force a redispatch attempt when the server is down ? |
| */ |
| if (s->flags & SF_ASSIGNED) |
| si->state = SI_ST_ASS; |
| else |
| si->state = SI_ST_REQ; |
| return; |
| } |
| return; |
| |
| abort_connection: |
| /* give up */ |
| si->exp = TICK_ETERNITY; |
| si_shutr(si); |
| si_shutw(si); |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| /* Set correct stream termination flags in case no analyser has done it. It |
| * also counts a failed request if the server state has not reached the request |
| * stage. |
| */ |
| static void sess_set_term_flags(struct stream *s) |
| { |
| if (!(s->flags & SF_FINST_MASK)) { |
| if (s->si[1].state < SI_ST_REQ) { |
| |
| strm_fe(s)->fe_counters.failed_req++; |
| if (strm_li(s) && strm_li(s)->counters) |
| strm_li(s)->counters->failed_req++; |
| |
| s->flags |= SF_FINST_R; |
| } |
| else if (s->si[1].state == SI_ST_QUE) |
| s->flags |= SF_FINST_Q; |
| else if (s->si[1].state < SI_ST_EST) |
| s->flags |= SF_FINST_C; |
| else if (s->si[1].state == SI_ST_EST || s->si[1].prev_state == SI_ST_EST) |
| s->flags |= SF_FINST_D; |
| else |
| s->flags |= SF_FINST_L; |
| } |
| } |
| |
| /* This function initiates a server connection request on a stream interface |
| * already in SI_ST_REQ state. Upon success, the state goes to SI_ST_ASS for |
| * a real connection to a server, indicating that a server has been assigned, |
| * or SI_ST_EST for a successful connection to an applet. It may also return |
| * SI_ST_QUE, or SI_ST_CLO upon error. |
| */ |
| static void sess_prepare_conn_req(struct stream *s) |
| { |
| struct stream_interface *si = &s->si[1]; |
| |
| DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%d rqt=%d rph=%d rpt=%d cs=%d ss=%d\n", |
| now_ms, __FUNCTION__, |
| s, |
| &s->req, &s->res, |
| s->req.rex, s->res.wex, |
| s->req.flags, s->res.flags, |
| s->req.buf->i, s->req.buf->o, s->res.buf->i, s->res.buf->o, s->si[0].state, s->si[1].state); |
| |
| if (si->state != SI_ST_REQ) |
| return; |
| |
| if (unlikely(obj_type(s->target) == OBJ_TYPE_APPLET)) { |
| /* the applet directly goes to the EST state */ |
| struct appctx *appctx = objt_appctx(si->end); |
| |
| if (!appctx || appctx->applet != __objt_applet(s->target)) |
| appctx = stream_int_register_handler(si, objt_applet(s->target)); |
| |
| if (!appctx) { |
| /* No more memory, let's immediately abort. Force the |
| * error code to ignore the ERR_LOCAL which is not a |
| * real error. |
| */ |
| s->flags &= ~(SF_ERR_MASK | SF_FINST_MASK); |
| |
| si_shutr(si); |
| si_shutw(si); |
| s->req.flags |= CF_WRITE_ERROR; |
| si->err_type = SI_ET_CONN_RES; |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->state = SI_ST_EST; |
| si->err_type = SI_ET_NONE; |
| be_set_sess_last(s->be); |
| /* let sess_establish() finish the job */ |
| return; |
| } |
| |
| /* Try to assign a server */ |
| if (srv_redispatch_connect(s) != 0) { |
| /* We did not get a server. Either we queued the |
| * connection request, or we encountered an error. |
| */ |
| if (si->state == SI_ST_QUE) |
| return; |
| |
| /* we did not get any server, let's check the cause */ |
| si_shutr(si); |
| si_shutw(si); |
| s->req.flags |= CF_WRITE_ERROR; |
| if (!si->err_type) |
| si->err_type = SI_ET_CONN_OTHER; |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| /* The server is assigned */ |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->state = SI_ST_ASS; |
| be_set_sess_last(s->be); |
| } |
| |
| /* This function parses the use-service action ruleset. It executes |
| * the associated ACL and set an applet as a stream or txn final node. |
| * it returns ACT_RET_ERR if an error occurs, the proxy left in |
| * consistent state. It returns ACT_RET_STOP in succes case because |
| * use-service must be a terminal action. Returns ACT_RET_YIELD |
| * if the initialisation function require more data. |
| */ |
| enum act_return process_use_service(struct act_rule *rule, struct proxy *px, |
| struct session *sess, struct stream *s, int flags) |
| |
| { |
| struct appctx *appctx; |
| |
| /* Initialises the applet if it is required. */ |
| if (flags & ACT_FLAG_FIRST) { |
| /* Register applet. this function schedules the applet. */ |
| s->target = &rule->applet.obj_type; |
| if (unlikely(!stream_int_register_handler(&s->si[1], objt_applet(s->target)))) |
| return ACT_RET_ERR; |
| |
| /* Initialise the context. */ |
| appctx = si_appctx(&s->si[1]); |
| memset(&appctx->ctx, 0, sizeof(appctx->ctx)); |
| appctx->rule = rule; |
| } |
| else |
| appctx = si_appctx(&s->si[1]); |
| |
| /* Stops the applet sheduling, in case of the init function miss |
| * some data. |
| */ |
| appctx_pause(appctx); |
| si_applet_stop_get(&s->si[1]); |
| |
| /* Call initialisation. */ |
| if (rule->applet.init) |
| switch (rule->applet.init(appctx, px, s)) { |
| case 0: return ACT_RET_ERR; |
| case 1: break; |
| default: return ACT_RET_YIELD; |
| } |
| |
| /* Now we can schedule the applet. */ |
| si_applet_cant_get(&s->si[1]); |
| appctx_wakeup(appctx); |
| |
| if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */ |
| sess->fe->fe_counters.intercepted_req++; |
| |
| /* The flag SF_ASSIGNED prevent from server assignment. */ |
| s->flags |= SF_ASSIGNED; |
| |
| return ACT_RET_STOP; |
| } |
| |
| /* This stream analyser checks the switching rules and changes the backend |
| * if appropriate. The default_backend rule is also considered, then the |
| * target backend's forced persistence rules are also evaluated last if any. |
| * It returns 1 if the processing can continue on next analysers, or zero if it |
| * either needs more data or wants to immediately abort the request. |
| */ |
| static int process_switching_rules(struct stream *s, struct channel *req, int an_bit) |
| { |
| struct persist_rule *prst_rule; |
| struct session *sess = s->sess; |
| struct proxy *fe = sess->fe; |
| |
| req->analysers &= ~an_bit; |
| req->analyse_exp = TICK_ETERNITY; |
| |
| DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| req, |
| req->rex, req->wex, |
| req->flags, |
| req->buf->i, |
| req->analysers); |
| |
| /* now check whether we have some switching rules for this request */ |
| if (!(s->flags & SF_BE_ASSIGNED)) { |
| struct switching_rule *rule; |
| |
| list_for_each_entry(rule, &fe->switching_rules, list) { |
| int ret = 1; |
| |
| if (rule->cond) { |
| ret = acl_exec_cond(rule->cond, fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| /* If the backend name is dynamic, try to resolve the name. |
| * If we can't resolve the name, or if any error occurs, break |
| * the loop and fallback to the default backend. |
| */ |
| struct proxy *backend; |
| |
| if (rule->dynamic) { |
| struct chunk *tmp = get_trash_chunk(); |
| if (!build_logline(s, tmp->str, tmp->size, &rule->be.expr)) |
| break; |
| backend = proxy_be_by_name(tmp->str); |
| if (!backend) |
| break; |
| } |
| else |
| backend = rule->be.backend; |
| |
| if (!stream_set_backend(s, backend)) |
| goto sw_failed; |
| break; |
| } |
| } |
| |
| /* To ensure correct connection accounting on the backend, we |
| * have to assign one if it was not set (eg: a listen). This |
| * measure also takes care of correctly setting the default |
| * backend if any. |
| */ |
| if (!(s->flags & SF_BE_ASSIGNED)) |
| if (!stream_set_backend(s, fe->defbe.be ? fe->defbe.be : s->be)) |
| goto sw_failed; |
| } |
| |
| /* we don't want to run the TCP or HTTP filters again if the backend has not changed */ |
| if (fe == s->be) { |
| s->req.analysers &= ~AN_REQ_INSPECT_BE; |
| s->req.analysers &= ~AN_REQ_HTTP_PROCESS_BE; |
| s->req.analysers &= ~AN_FLT_START_BE; |
| } |
| |
| /* as soon as we know the backend, we must check if we have a matching forced or ignored |
| * persistence rule, and report that in the stream. |
| */ |
| list_for_each_entry(prst_rule, &s->be->persist_rules, list) { |
| int ret = 1; |
| |
| if (prst_rule->cond) { |
| ret = acl_exec_cond(prst_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (prst_rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| /* no rule, or the rule matches */ |
| if (prst_rule->type == PERSIST_TYPE_FORCE) { |
| s->flags |= SF_FORCE_PRST; |
| } else { |
| s->flags |= SF_IGNORE_PRST; |
| } |
| break; |
| } |
| } |
| |
| return 1; |
| |
| sw_failed: |
| /* immediately abort this request in case of allocation failure */ |
| channel_abort(&s->req); |
| channel_abort(&s->res); |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_RESOURCE; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_R; |
| |
| if (s->txn) |
| s->txn->status = 500; |
| s->req.analysers &= AN_FLT_END; |
| s->req.analyse_exp = TICK_ETERNITY; |
| return 0; |
| } |
| |
| /* This stream analyser works on a request. It applies all use-server rules on |
| * it then returns 1. The data must already be present in the buffer otherwise |
| * they won't match. It always returns 1. |
| */ |
| static int process_server_rules(struct stream *s, struct channel *req, int an_bit) |
| { |
| struct proxy *px = s->be; |
| struct session *sess = s->sess; |
| struct server_rule *rule; |
| |
| DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| req, |
| req->rex, req->wex, |
| req->flags, |
| req->buf->i + req->buf->o, |
| req->analysers); |
| |
| if (!(s->flags & SF_ASSIGNED)) { |
| list_for_each_entry(rule, &px->server_rules, list) { |
| int ret; |
| |
| ret = acl_exec_cond(rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| |
| if (ret) { |
| struct server *srv = rule->srv.ptr; |
| |
| if ((srv->state != SRV_ST_STOPPED) || |
| (px->options & PR_O_PERSIST) || |
| (s->flags & SF_FORCE_PRST)) { |
| s->flags |= SF_DIRECT | SF_ASSIGNED; |
| s->target = &srv->obj_type; |
| break; |
| } |
| /* if the server is not UP, let's go on with next rules |
| * just in case another one is suited. |
| */ |
| } |
| } |
| } |
| |
| req->analysers &= ~an_bit; |
| req->analyse_exp = TICK_ETERNITY; |
| return 1; |
| } |
| |
| /* This stream analyser works on a request. It applies all sticking rules on |
| * it then returns 1. The data must already be present in the buffer otherwise |
| * they won't match. It always returns 1. |
| */ |
| static int process_sticking_rules(struct stream *s, struct channel *req, int an_bit) |
| { |
| struct proxy *px = s->be; |
| struct session *sess = s->sess; |
| struct sticking_rule *rule; |
| |
| DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| req, |
| req->rex, req->wex, |
| req->flags, |
| req->buf->i, |
| req->analysers); |
| |
| list_for_each_entry(rule, &px->sticking_rules, list) { |
| int ret = 1 ; |
| int i; |
| |
| /* Only the first stick store-request of each table is applied |
| * and other ones are ignored. The purpose is to allow complex |
| * configurations which look for multiple entries by decreasing |
| * order of precision and to stop at the first which matches. |
| * An example could be a store of the IP address from an HTTP |
| * header first, then from the source if not found. |
| */ |
| for (i = 0; i < s->store_count; i++) { |
| if (rule->table.t == s->store[i].table) |
| break; |
| } |
| |
| if (i != s->store_count) |
| continue; |
| |
| if (rule->cond) { |
| ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| struct stktable_key *key; |
| |
| key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->expr, NULL); |
| if (!key) |
| continue; |
| |
| if (rule->flags & STK_IS_MATCH) { |
| struct stksess *ts; |
| |
| if ((ts = stktable_lookup_key(rule->table.t, key)) != NULL) { |
| if (!(s->flags & SF_ASSIGNED)) { |
| struct eb32_node *node; |
| void *ptr; |
| |
| /* srv found in table */ |
| ptr = stktable_data_ptr(rule->table.t, ts, STKTABLE_DT_SERVER_ID); |
| node = eb32_lookup(&px->conf.used_server_id, stktable_data_cast(ptr, server_id)); |
| if (node) { |
| struct server *srv; |
| |
| srv = container_of(node, struct server, conf.id); |
| if ((srv->state != SRV_ST_STOPPED) || |
| (px->options & PR_O_PERSIST) || |
| (s->flags & SF_FORCE_PRST)) { |
| s->flags |= SF_DIRECT | SF_ASSIGNED; |
| s->target = &srv->obj_type; |
| } |
| } |
| } |
| stktable_touch(rule->table.t, ts, 1); |
| } |
| } |
| if (rule->flags & STK_IS_STORE) { |
| if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) { |
| struct stksess *ts; |
| |
| ts = stksess_new(rule->table.t, key); |
| if (ts) { |
| s->store[s->store_count].table = rule->table.t; |
| s->store[s->store_count++].ts = ts; |
| } |
| } |
| } |
| } |
| } |
| |
| req->analysers &= ~an_bit; |
| req->analyse_exp = TICK_ETERNITY; |
| return 1; |
| } |
| |
| /* This stream analyser works on a response. It applies all store rules on it |
| * then returns 1. The data must already be present in the buffer otherwise |
| * they won't match. It always returns 1. |
| */ |
| static int process_store_rules(struct stream *s, struct channel *rep, int an_bit) |
| { |
| struct proxy *px = s->be; |
| struct session *sess = s->sess; |
| struct sticking_rule *rule; |
| int i; |
| int nbreq = s->store_count; |
| |
| DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| rep, |
| rep->rex, rep->wex, |
| rep->flags, |
| rep->buf->i, |
| rep->analysers); |
| |
| list_for_each_entry(rule, &px->storersp_rules, list) { |
| int ret = 1 ; |
| |
| /* Only the first stick store-response of each table is applied |
| * and other ones are ignored. The purpose is to allow complex |
| * configurations which look for multiple entries by decreasing |
| * order of precision and to stop at the first which matches. |
| * An example could be a store of a set-cookie value, with a |
| * fallback to a parameter found in a 302 redirect. |
| * |
| * The store-response rules are not allowed to override the |
| * store-request rules for the same table, but they may coexist. |
| * Thus we can have up to one store-request entry and one store- |
| * response entry for the same table at any time. |
| */ |
| for (i = nbreq; i < s->store_count; i++) { |
| if (rule->table.t == s->store[i].table) |
| break; |
| } |
| |
| /* skip existing entries for this table */ |
| if (i < s->store_count) |
| continue; |
| |
| if (rule->cond) { |
| ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| struct stktable_key *key; |
| |
| key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL, rule->expr, NULL); |
| if (!key) |
| continue; |
| |
| if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) { |
| struct stksess *ts; |
| |
| ts = stksess_new(rule->table.t, key); |
| if (ts) { |
| s->store[s->store_count].table = rule->table.t; |
| s->store[s->store_count++].ts = ts; |
| } |
| } |
| } |
| } |
| |
| /* process store request and store response */ |
| for (i = 0; i < s->store_count; i++) { |
| struct stksess *ts; |
| void *ptr; |
| |
| if (objt_server(s->target) && objt_server(s->target)->flags & SRV_F_NON_STICK) { |
| stksess_free(s->store[i].table, s->store[i].ts); |
| s->store[i].ts = NULL; |
| continue; |
| } |
| |
| ts = stktable_lookup(s->store[i].table, s->store[i].ts); |
| if (ts) { |
| /* the entry already existed, we can free ours */ |
| stktable_touch(s->store[i].table, ts, 1); |
| stksess_free(s->store[i].table, s->store[i].ts); |
| } |
| else |
| ts = stktable_store(s->store[i].table, s->store[i].ts, 1); |
| |
| s->store[i].ts = NULL; |
| ptr = stktable_data_ptr(s->store[i].table, ts, STKTABLE_DT_SERVER_ID); |
| stktable_data_cast(ptr, server_id) = objt_server(s->target)->puid; |
| } |
| s->store_count = 0; /* everything is stored */ |
| |
| rep->analysers &= ~an_bit; |
| rep->analyse_exp = TICK_ETERNITY; |
| return 1; |
| } |
| |
| /* This macro is very specific to the function below. See the comments in |
| * process_stream() below to understand the logic and the tests. |
| */ |
| #define UPDATE_ANALYSERS(real, list, back, flag) { \ |
| list = (((list) & ~(flag)) | ~(back)) & (real); \ |
| back = real; \ |
| if (!(list)) \ |
| break; \ |
| if (((list) ^ ((list) & ((list) - 1))) < (flag)) \ |
| continue; \ |
| } |
| |
| /* Processes the client, server, request and response jobs of a stream task, |
| * then puts it back to the wait queue in a clean state, or cleans up its |
| * resources if it must be deleted. Returns in <next> the date the task wants |
| * to be woken up, or TICK_ETERNITY. In order not to call all functions for |
| * nothing too many times, the request and response buffers flags are monitored |
| * and each function is called only if at least another function has changed at |
| * least one flag it is interested in. |
| */ |
| struct task *process_stream(struct task *t) |
| { |
| struct server *srv; |
| struct stream *s = t->context; |
| struct session *sess = s->sess; |
| unsigned int rqf_last, rpf_last; |
| unsigned int rq_prod_last, rq_cons_last; |
| unsigned int rp_cons_last, rp_prod_last; |
| unsigned int req_ana_back; |
| struct channel *req, *res; |
| struct stream_interface *si_f, *si_b; |
| |
| req = &s->req; |
| res = &s->res; |
| |
| si_f = &s->si[0]; |
| si_b = &s->si[1]; |
| |
| //DPRINTF(stderr, "%s:%d: cs=%d ss=%d(%d) rqf=0x%08x rpf=0x%08x\n", __FUNCTION__, __LINE__, |
| // si_f->state, si_b->state, si_b->err_type, req->flags, res->flags); |
| |
| /* this data may be no longer valid, clear it */ |
| if (s->txn) |
| memset(&s->txn->auth, 0, sizeof(s->txn->auth)); |
| |
| /* This flag must explicitly be set every time */ |
| req->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE); |
| res->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE); |
| |
| /* Keep a copy of req/rep flags so that we can detect shutdowns */ |
| rqf_last = req->flags & ~CF_MASK_ANALYSER; |
| rpf_last = res->flags & ~CF_MASK_ANALYSER; |
| |
| /* we don't want the stream interface functions to recursively wake us up */ |
| si_f->flags |= SI_FL_DONT_WAKE; |
| si_b->flags |= SI_FL_DONT_WAKE; |
| |
| /* 1a: Check for low level timeouts if needed. We just set a flag on |
| * stream interfaces when their timeouts have expired. |
| */ |
| if (unlikely(t->state & TASK_WOKEN_TIMER)) { |
| stream_int_check_timeouts(si_f); |
| stream_int_check_timeouts(si_b); |
| |
| /* check channel timeouts, and close the corresponding stream interfaces |
| * for future reads or writes. Note: this will also concern upper layers |
| * but we do not touch any other flag. We must be careful and correctly |
| * detect state changes when calling them. |
| */ |
| |
| channel_check_timeouts(req); |
| |
| if (unlikely((req->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) { |
| si_b->flags |= SI_FL_NOLINGER; |
| si_shutw(si_b); |
| } |
| |
| if (unlikely((req->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) { |
| if (si_f->flags & SI_FL_NOHALF) |
| si_f->flags |= SI_FL_NOLINGER; |
| si_shutr(si_f); |
| } |
| |
| channel_check_timeouts(res); |
| |
| if (unlikely((res->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) { |
| si_f->flags |= SI_FL_NOLINGER; |
| si_shutw(si_f); |
| } |
| |
| if (unlikely((res->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) { |
| if (si_b->flags & SI_FL_NOHALF) |
| si_b->flags |= SI_FL_NOLINGER; |
| si_shutr(si_b); |
| } |
| |
| /* Once in a while we're woken up because the task expires. But |
| * this does not necessarily mean that a timeout has been reached. |
| * So let's not run a whole stream processing if only an expiration |
| * timeout needs to be refreshed. |
| */ |
| if (!((req->flags | res->flags) & |
| (CF_SHUTR|CF_READ_ACTIVITY|CF_READ_TIMEOUT|CF_SHUTW| |
| CF_WRITE_ACTIVITY|CF_WRITE_TIMEOUT|CF_ANA_TIMEOUT)) && |
| !((si_f->flags | si_b->flags) & (SI_FL_EXP|SI_FL_ERR)) && |
| ((t->state & TASK_WOKEN_ANY) == TASK_WOKEN_TIMER)) { |
| si_f->flags &= ~SI_FL_DONT_WAKE; |
| si_b->flags &= ~SI_FL_DONT_WAKE; |
| goto update_exp_and_leave; |
| } |
| } |
| |
| /* below we may emit error messages so we have to ensure that we have |
| * our buffers properly allocated. |
| */ |
| if (!stream_alloc_work_buffer(s)) { |
| /* No buffer available, we've been subscribed to the list of |
| * buffer waiters, let's wait for our turn. |
| */ |
| si_f->flags &= ~SI_FL_DONT_WAKE; |
| si_b->flags &= ~SI_FL_DONT_WAKE; |
| goto update_exp_and_leave; |
| } |
| |
| /* 1b: check for low-level errors reported at the stream interface. |
| * First we check if it's a retryable error (in which case we don't |
| * want to tell the buffer). Otherwise we report the error one level |
| * upper by setting flags into the buffers. Note that the side towards |
| * the client cannot have connect (hence retryable) errors. Also, the |
| * connection setup code must be able to deal with any type of abort. |
| */ |
| srv = objt_server(s->target); |
| if (unlikely(si_f->flags & SI_FL_ERR)) { |
| if (si_f->state == SI_ST_EST || si_f->state == SI_ST_DIS) { |
| si_shutr(si_f); |
| si_shutw(si_f); |
| stream_int_report_error(si_f); |
| if (!(req->analysers) && !(res->analysers)) { |
| s->be->be_counters.cli_aborts++; |
| sess->fe->fe_counters.cli_aborts++; |
| if (srv) |
| srv->counters.cli_aborts++; |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_CLICL; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_D; |
| } |
| } |
| } |
| |
| if (unlikely(si_b->flags & SI_FL_ERR)) { |
| if (si_b->state == SI_ST_EST || si_b->state == SI_ST_DIS) { |
| si_shutr(si_b); |
| si_shutw(si_b); |
| stream_int_report_error(si_b); |
| s->be->be_counters.failed_resp++; |
| if (srv) |
| srv->counters.failed_resp++; |
| if (!(req->analysers) && !(res->analysers)) { |
| s->be->be_counters.srv_aborts++; |
| sess->fe->fe_counters.srv_aborts++; |
| if (srv) |
| srv->counters.srv_aborts++; |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_SRVCL; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_D; |
| } |
| } |
| /* note: maybe we should process connection errors here ? */ |
| } |
| |
| if (si_b->state == SI_ST_CON) { |
| /* we were trying to establish a connection on the server side, |
| * maybe it succeeded, maybe it failed, maybe we timed out, ... |
| */ |
| if (unlikely(!sess_update_st_con_tcp(s))) |
| sess_update_st_cer(s); |
| else if (si_b->state == SI_ST_EST) |
| sess_establish(s); |
| |
| /* state is now one of SI_ST_CON (still in progress), SI_ST_EST |
| * (established), SI_ST_DIS (abort), SI_ST_CLO (last error), |
| * SI_ST_ASS/SI_ST_TAR/SI_ST_REQ for retryable errors. |
| */ |
| } |
| |
| rq_prod_last = si_f->state; |
| rq_cons_last = si_b->state; |
| rp_cons_last = si_f->state; |
| rp_prod_last = si_b->state; |
| |
| resync_stream_interface: |
| /* Check for connection closure */ |
| |
| DPRINTF(stderr, |
| "[%u] %s:%d: task=%p s=%p, sfl=0x%08x, rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%d rqt=%d rph=%d rpt=%d cs=%d ss=%d, cet=0x%x set=0x%x retr=%d\n", |
| now_ms, __FUNCTION__, __LINE__, |
| t, |
| s, s->flags, |
| req, res, |
| req->rex, res->wex, |
| req->flags, res->flags, |
| req->buf->i, req->buf->o, res->buf->i, res->buf->o, si_f->state, si_b->state, |
| si_f->err_type, si_b->err_type, |
| si_b->conn_retries); |
| |
| /* nothing special to be done on client side */ |
| if (unlikely(si_f->state == SI_ST_DIS)) |
| si_f->state = SI_ST_CLO; |
| |
| /* When a server-side connection is released, we have to count it and |
| * check for pending connections on this server. |
| */ |
| if (unlikely(si_b->state == SI_ST_DIS)) { |
| si_b->state = SI_ST_CLO; |
| srv = objt_server(s->target); |
| if (srv) { |
| if (s->flags & SF_CURR_SESS) { |
| s->flags &= ~SF_CURR_SESS; |
| srv->cur_sess--; |
| } |
| sess_change_server(s, NULL); |
| if (may_dequeue_tasks(srv, s->be)) |
| process_srv_queue(srv); |
| } |
| } |
| |
| /* |
| * Note: of the transient states (REQ, CER, DIS), only REQ may remain |
| * at this point. |
| */ |
| |
| resync_request: |
| /* Analyse request */ |
| if (((req->flags & ~rqf_last) & CF_MASK_ANALYSER) || |
| ((req->flags ^ rqf_last) & CF_MASK_STATIC) || |
| si_f->state != rq_prod_last || |
| si_b->state != rq_cons_last || |
| s->task->state & TASK_WOKEN_MSG) { |
| unsigned int flags = req->flags; |
| |
| if (si_f->state >= SI_ST_EST) { |
| int max_loops = global.tune.maxpollevents; |
| unsigned int ana_list; |
| unsigned int ana_back; |
| |
| /* it's up to the analysers to stop new connections, |
| * disable reading or closing. Note: if an analyser |
| * disables any of these bits, it is responsible for |
| * enabling them again when it disables itself, so |
| * that other analysers are called in similar conditions. |
| */ |
| channel_auto_read(req); |
| channel_auto_connect(req); |
| channel_auto_close(req); |
| |
| /* We will call all analysers for which a bit is set in |
| * req->analysers, following the bit order from LSB |
| * to MSB. The analysers must remove themselves from |
| * the list when not needed. Any analyser may return 0 |
| * to break out of the loop, either because of missing |
| * data to take a decision, or because it decides to |
| * kill the stream. We loop at least once through each |
| * analyser, and we may loop again if other analysers |
| * are added in the middle. |
| * |
| * We build a list of analysers to run. We evaluate all |
| * of these analysers in the order of the lower bit to |
| * the higher bit. This ordering is very important. |
| * An analyser will often add/remove other analysers, |
| * including itself. Any changes to itself have no effect |
| * on the loop. If it removes any other analysers, we |
| * want those analysers not to be called anymore during |
| * this loop. If it adds an analyser that is located |
| * after itself, we want it to be scheduled for being |
| * processed during the loop. If it adds an analyser |
| * which is located before it, we want it to switch to |
| * it immediately, even if it has already been called |
| * once but removed since. |
| * |
| * In order to achieve this, we compare the analyser |
| * list after the call with a copy of it before the |
| * call. The work list is fed with analyser bits that |
| * appeared during the call. Then we compare previous |
| * work list with the new one, and check the bits that |
| * appeared. If the lowest of these bits is lower than |
| * the current bit, it means we have enabled a previous |
| * analyser and must immediately loop again. |
| */ |
| |
| ana_list = ana_back = req->analysers; |
| while (ana_list && max_loops--) { |
| /* Warning! ensure that analysers are always placed in ascending order! */ |
| if (ana_list & AN_FLT_START_FE) { |
| if (!flt_start_analyze(s, req, AN_FLT_START_FE)) |
| break; |
| UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_FLT_START_FE); |
| } |
| |
| if (ana_list & AN_REQ_INSPECT_FE) { |
| CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_INSPECT_FE); |
| if (!tcp_inspect_request(s, req, AN_REQ_INSPECT_FE)) |
| break; |
| UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_INSPECT_FE); |
| } |
| |
| if (ana_list & AN_REQ_WAIT_HTTP) { |
| CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_WAIT_HTTP); |
| if (!http_wait_for_request(s, req, AN_REQ_WAIT_HTTP)) |
| break; |
| UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_WAIT_HTTP); |
| } |
| |
| if (ana_list & AN_REQ_HTTP_BODY) { |
| CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_HTTP_BODY); |
| if (!http_wait_for_request_body(s, req, AN_REQ_HTTP_BODY)) |
| break; |
| UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_HTTP_BODY); |
| } |
| |
| if (ana_list & AN_REQ_HTTP_PROCESS_FE) { |
| CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_HTTP_PROCESS_FE); |
| if (!http_process_req_common(s, req, AN_REQ_HTTP_PROCESS_FE, sess->fe)) |
| break; |
| UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_HTTP_PROCESS_FE); |
| } |
| |
| if (ana_list & AN_REQ_SWITCHING_RULES) { |
| CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_SWITCHING_RULES); |
| if (!process_switching_rules(s, req, AN_REQ_SWITCHING_RULES)) |
| break; |
| UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_SWITCHING_RULES); |
| } |
| |
| if (ana_list & AN_FLT_START_BE) { |
| if (!flt_start_analyze(s, req, AN_FLT_START_BE)) |
| break; |
| UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_FLT_START_BE); |
| } |
| |
| if (ana_list & AN_REQ_INSPECT_BE) { |
| CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_INSPECT_BE); |
| if (!tcp_inspect_request(s, req, AN_REQ_INSPECT_BE)) |
| break; |
| UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_INSPECT_BE); |
| } |
| |
| if (ana_list & AN_REQ_HTTP_PROCESS_BE) { |
| CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_HTTP_PROCESS_BE); |
| if (!http_process_req_common(s, req, AN_REQ_HTTP_PROCESS_BE, s->be)) |
| break; |
| UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_HTTP_PROCESS_BE); |
| } |
| |
| if (ana_list & AN_REQ_HTTP_TARPIT) { |
| CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_HTTP_TARPIT); |
| if (!http_process_tarpit(s, req, AN_REQ_HTTP_TARPIT)) |
| break; |
| UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_HTTP_TARPIT); |
| } |
| |
| if (ana_list & AN_REQ_SRV_RULES) { |
| CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_SRV_RULES); |
| if (!process_server_rules(s, req, AN_REQ_SRV_RULES)) |
| break; |
| UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_SRV_RULES); |
| } |
| |
| if (ana_list & AN_REQ_HTTP_INNER) { |
| CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_HTTP_INNER); |
| if (!http_process_request(s, req, AN_REQ_HTTP_INNER)) |
| break; |
| UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_HTTP_INNER); |
| } |
| |
| if (ana_list & AN_REQ_PRST_RDP_COOKIE) { |
| CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_PRST_RDP_COOKIE); |
| if (!tcp_persist_rdp_cookie(s, req, AN_REQ_PRST_RDP_COOKIE)) |
| break; |
| UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_PRST_RDP_COOKIE); |
| } |
| |
| if (ana_list & AN_REQ_STICKING_RULES) { |
| CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_STICKING_RULES); |
| if (!process_sticking_rules(s, req, AN_REQ_STICKING_RULES)) |
| break; |
| UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_STICKING_RULES); |
| } |
| |
| if (ana_list & AN_FLT_HTTP_HDRS) { |
| if (!flt_analyze_http_headers(s, req, AN_FLT_HTTP_HDRS)) |
| break; |
| UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_FLT_HTTP_HDRS); |
| } |
| |
| if (ana_list & AN_FLT_XFER_DATA) { |
| if (!flt_xfer_data(s, req, AN_FLT_XFER_DATA)) |
| break; |
| UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_FLT_XFER_DATA); |
| } |
| |
| if (ana_list & AN_REQ_HTTP_XFER_BODY) { |
| if (!http_request_forward_body(s, req, AN_REQ_HTTP_XFER_BODY)) |
| break; |
| UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_HTTP_XFER_BODY); |
| } |
| |
| if (ana_list & AN_FLT_END) { |
| if (!flt_end_analyze(s, req, AN_FLT_END)) |
| break; |
| UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_FLT_END); |
| } |
| break; |
| } |
| } |
| |
| rq_prod_last = si_f->state; |
| rq_cons_last = si_b->state; |
| req->flags &= ~CF_WAKE_ONCE; |
| rqf_last = req->flags; |
| |
| if ((req->flags ^ flags) & CF_MASK_STATIC) |
| goto resync_request; |
| } |
| |
| /* we'll monitor the request analysers while parsing the response, |
| * because some response analysers may indirectly enable new request |
| * analysers (eg: HTTP keep-alive). |
| */ |
| req_ana_back = req->analysers; |
| |
| resync_response: |
| /* Analyse response */ |
| |
| if (((res->flags & ~rpf_last) & CF_MASK_ANALYSER) || |
| (res->flags ^ rpf_last) & CF_MASK_STATIC || |
| si_f->state != rp_cons_last || |
| si_b->state != rp_prod_last || |
| s->task->state & TASK_WOKEN_MSG) { |
| unsigned int flags = res->flags; |
| |
| if ((res->flags & CF_MASK_ANALYSER) && |
| (res->analysers & AN_REQ_ALL)) { |
| /* Due to HTTP pipelining, the HTTP request analyser might be waiting |
| * for some free space in the response buffer, so we might need to call |
| * it when something changes in the response buffer, but still we pass |
| * it the request buffer. Note that the SI state might very well still |
| * be zero due to us returning a flow of redirects! |
| */ |
| res->analysers &= ~AN_REQ_ALL; |
| req->flags |= CF_WAKE_ONCE; |
| } |
| |
| if (si_b->state >= SI_ST_EST) { |
| int max_loops = global.tune.maxpollevents; |
| unsigned int ana_list; |
| unsigned int ana_back; |
| |
| /* it's up to the analysers to stop disable reading or |
| * closing. Note: if an analyser disables any of these |
| * bits, it is responsible for enabling them again when |
| * it disables itself, so that other analysers are called |
| * in similar conditions. |
| */ |
| channel_auto_read(res); |
| channel_auto_close(res); |
| |
| /* We will call all analysers for which a bit is set in |
| * res->analysers, following the bit order from LSB |
| * to MSB. The analysers must remove themselves from |
| * the list when not needed. Any analyser may return 0 |
| * to break out of the loop, either because of missing |
| * data to take a decision, or because it decides to |
| * kill the stream. We loop at least once through each |
| * analyser, and we may loop again if other analysers |
| * are added in the middle. |
| */ |
| |
| ana_list = ana_back = res->analysers; |
| while (ana_list && max_loops--) { |
| /* Warning! ensure that analysers are always placed in ascending order! */ |
| if (ana_list & AN_FLT_START_FE) { |
| if (!flt_start_analyze(s, res, AN_FLT_START_FE)) |
| break; |
| UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_FLT_START_FE); |
| } |
| |
| if (ana_list & AN_FLT_START_BE) { |
| if (!flt_start_analyze(s, res, AN_FLT_START_BE)) |
| break; |
| UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_FLT_START_BE); |
| } |
| |
| if (ana_list & AN_RES_INSPECT) { |
| CALL_FILTER_ANALYZER(flt_analyze, s, res, AN_RES_INSPECT); |
| if (!tcp_inspect_response(s, res, AN_RES_INSPECT)) |
| break; |
| UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_RES_INSPECT); |
| } |
| |
| if (ana_list & AN_RES_WAIT_HTTP) { |
| CALL_FILTER_ANALYZER(flt_analyze, s, res, AN_RES_WAIT_HTTP); |
| if (!http_wait_for_response(s, res, AN_RES_WAIT_HTTP)) |
| break; |
| UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_RES_WAIT_HTTP); |
| } |
| |
| if (ana_list & AN_RES_STORE_RULES) { |
| CALL_FILTER_ANALYZER(flt_analyze, s, res, AN_RES_STORE_RULES); |
| if (!process_store_rules(s, res, AN_RES_STORE_RULES)) |
| break; |
| UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_RES_STORE_RULES); |
| } |
| |
| if (ana_list & AN_RES_HTTP_PROCESS_BE) { |
| CALL_FILTER_ANALYZER(flt_analyze, s, res, AN_RES_HTTP_PROCESS_BE); |
| if (!http_process_res_common(s, res, AN_RES_HTTP_PROCESS_BE, s->be)) |
| break; |
| UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_RES_HTTP_PROCESS_BE); |
| } |
| |
| if (ana_list & AN_FLT_HTTP_HDRS) { |
| if (!flt_analyze_http_headers(s, res, AN_FLT_HTTP_HDRS)) |
| break; |
| UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_FLT_HTTP_HDRS); |
| } |
| |
| if (ana_list & AN_FLT_XFER_DATA) { |
| if (!flt_xfer_data(s, res, AN_FLT_XFER_DATA)) |
| break; |
| UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_FLT_XFER_DATA); |
| } |
| |
| if (ana_list & AN_RES_HTTP_XFER_BODY) { |
| if (!http_response_forward_body(s, res, AN_RES_HTTP_XFER_BODY)) |
| break; |
| UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_RES_HTTP_XFER_BODY); |
| } |
| |
| if (ana_list & AN_FLT_END) { |
| if (!flt_end_analyze(s, res, AN_FLT_END)) |
| break; |
| UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_FLT_END); |
| } |
| break; |
| } |
| } |
| |
| rp_cons_last = si_f->state; |
| rp_prod_last = si_b->state; |
| rpf_last = res->flags; |
| |
| if ((res->flags ^ flags) & CF_MASK_STATIC) |
| goto resync_response; |
| } |
| |
| /* maybe someone has added some request analysers, so we must check and loop */ |
| if (req->analysers & ~req_ana_back) |
| goto resync_request; |
| |
| if ((req->flags & ~rqf_last) & CF_MASK_ANALYSER) |
| goto resync_request; |
| |
| /* FIXME: here we should call protocol handlers which rely on |
| * both buffers. |
| */ |
| |
| |
| /* |
| * Now we propagate unhandled errors to the stream. Normally |
| * we're just in a data phase here since it means we have not |
| * seen any analyser who could set an error status. |
| */ |
| srv = objt_server(s->target); |
| if (unlikely(!(s->flags & SF_ERR_MASK))) { |
| if (req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) { |
| /* Report it if the client got an error or a read timeout expired */ |
| req->analysers = 0; |
| if (req->flags & CF_READ_ERROR) { |
| s->be->be_counters.cli_aborts++; |
| sess->fe->fe_counters.cli_aborts++; |
| if (srv) |
| srv->counters.cli_aborts++; |
| s->flags |= SF_ERR_CLICL; |
| } |
| else if (req->flags & CF_READ_TIMEOUT) { |
| s->be->be_counters.cli_aborts++; |
| sess->fe->fe_counters.cli_aborts++; |
| if (srv) |
| srv->counters.cli_aborts++; |
| s->flags |= SF_ERR_CLITO; |
| } |
| else if (req->flags & CF_WRITE_ERROR) { |
| s->be->be_counters.srv_aborts++; |
| sess->fe->fe_counters.srv_aborts++; |
| if (srv) |
| srv->counters.srv_aborts++; |
| s->flags |= SF_ERR_SRVCL; |
| } |
| else { |
| s->be->be_counters.srv_aborts++; |
| sess->fe->fe_counters.srv_aborts++; |
| if (srv) |
| srv->counters.srv_aborts++; |
| s->flags |= SF_ERR_SRVTO; |
| } |
| sess_set_term_flags(s); |
| } |
| else if (res->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) { |
| /* Report it if the server got an error or a read timeout expired */ |
| res->analysers = 0; |
| if (res->flags & CF_READ_ERROR) { |
| s->be->be_counters.srv_aborts++; |
| sess->fe->fe_counters.srv_aborts++; |
| if (srv) |
| srv->counters.srv_aborts++; |
| s->flags |= SF_ERR_SRVCL; |
| } |
| else if (res->flags & CF_READ_TIMEOUT) { |
| s->be->be_counters.srv_aborts++; |
| sess->fe->fe_counters.srv_aborts++; |
| if (srv) |
| srv->counters.srv_aborts++; |
| s->flags |= SF_ERR_SRVTO; |
| } |
| else if (res->flags & CF_WRITE_ERROR) { |
| s->be->be_counters.cli_aborts++; |
| sess->fe->fe_counters.cli_aborts++; |
| if (srv) |
| srv->counters.cli_aborts++; |
| s->flags |= SF_ERR_CLICL; |
| } |
| else { |
| s->be->be_counters.cli_aborts++; |
| sess->fe->fe_counters.cli_aborts++; |
| if (srv) |
| srv->counters.cli_aborts++; |
| s->flags |= SF_ERR_CLITO; |
| } |
| sess_set_term_flags(s); |
| } |
| } |
| |
| /* |
| * Here we take care of forwarding unhandled data. This also includes |
| * connection establishments and shutdown requests. |
| */ |
| |
| |
| /* If noone is interested in analysing data, it's time to forward |
| * everything. We configure the buffer to forward indefinitely. |
| * Note that we're checking CF_SHUTR_NOW as an indication of a possible |
| * recent call to channel_abort(). |
| */ |
| if (unlikely(!req->analysers && |
| !(req->flags & (CF_SHUTW|CF_SHUTR_NOW)) && |
| (si_f->state >= SI_ST_EST) && |
| (req->to_forward != CHN_INFINITE_FORWARD))) { |
| /* This buffer is freewheeling, there's no analyser |
| * attached to it. If any data are left in, we'll permit them to |
| * move. |
| */ |
| channel_auto_read(req); |
| channel_auto_connect(req); |
| channel_auto_close(req); |
| buffer_flush(req->buf); |
| |
| /* We'll let data flow between the producer (if still connected) |
| * to the consumer (which might possibly not be connected yet). |
| */ |
| if (!(req->flags & (CF_SHUTR|CF_SHUTW_NOW))) |
| channel_forward_forever(req); |
| |
| /* Just in order to support fetching HTTP contents after start |
| * of forwarding when the HTTP forwarding analyser is not used, |
| * we simply reset msg->sov so that HTTP rewinding points to the |
| * headers. |
| */ |
| if (s->txn) |
| s->txn->req.sov = s->txn->req.eoh + s->txn->req.eol - req->buf->o; |
| } |
| |
| /* check if it is wise to enable kernel splicing to forward request data */ |
| if (!(req->flags & (CF_KERN_SPLICING|CF_SHUTR)) && |
| req->to_forward && |
| (global.tune.options & GTUNE_USE_SPLICE) && |
| (objt_conn(si_f->end) && __objt_conn(si_f->end)->xprt && __objt_conn(si_f->end)->xprt->rcv_pipe) && |
| (objt_conn(si_b->end) && __objt_conn(si_b->end)->xprt && __objt_conn(si_b->end)->xprt->snd_pipe) && |
| (pipes_used < global.maxpipes) && |
| (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_REQ) || |
| (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) && |
| (req->flags & CF_STREAMER_FAST)))) { |
| req->flags |= CF_KERN_SPLICING; |
| } |
| |
| /* reflect what the L7 analysers have seen last */ |
| rqf_last = req->flags; |
| |
| /* |
| * Now forward all shutdown requests between both sides of the buffer |
| */ |
| |
| /* first, let's check if the request buffer needs to shutdown(write), which may |
| * happen either because the input is closed or because we want to force a close |
| * once the server has begun to respond. If a half-closed timeout is set, we adjust |
| * the other side's timeout as well. |
| */ |
| if (unlikely((req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) == |
| (CF_AUTO_CLOSE|CF_SHUTR))) { |
| channel_shutw_now(req); |
| } |
| |
| /* shutdown(write) pending */ |
| if (unlikely((req->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW && |
| channel_is_empty(req))) { |
| if (req->flags & CF_READ_ERROR) |
| si_b->flags |= SI_FL_NOLINGER; |
| si_shutw(si_b); |
| if (tick_isset(s->be->timeout.serverfin)) { |
| res->rto = s->be->timeout.serverfin; |
| res->rex = tick_add(now_ms, res->rto); |
| } |
| } |
| |
| /* shutdown(write) done on server side, we must stop the client too */ |
| if (unlikely((req->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW && |
| !req->analysers)) |
| channel_shutr_now(req); |
| |
| /* shutdown(read) pending */ |
| if (unlikely((req->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) { |
| if (si_f->flags & SI_FL_NOHALF) |
| si_f->flags |= SI_FL_NOLINGER; |
| si_shutr(si_f); |
| } |
| |
| /* it's possible that an upper layer has requested a connection setup or abort. |
| * There are 2 situations where we decide to establish a new connection : |
| * - there are data scheduled for emission in the buffer |
| * - the CF_AUTO_CONNECT flag is set (active connection) |
| */ |
| if (si_b->state == SI_ST_INI) { |
| if (!(req->flags & CF_SHUTW)) { |
| if ((req->flags & CF_AUTO_CONNECT) || !channel_is_empty(req)) { |
| /* If we have an appctx, there is no connect method, so we |
| * immediately switch to the connected state, otherwise we |
| * perform a connection request. |
| */ |
| si_b->state = SI_ST_REQ; /* new connection requested */ |
| si_b->conn_retries = s->be->conn_retries; |
| } |
| } |
| else { |
| si_b->state = SI_ST_CLO; /* shutw+ini = abort */ |
| channel_shutw_now(req); /* fix buffer flags upon abort */ |
| channel_shutr_now(res); |
| } |
| } |
| |
| |
| /* we may have a pending connection request, or a connection waiting |
| * for completion. |
| */ |
| if (si_b->state >= SI_ST_REQ && si_b->state < SI_ST_CON) { |
| |
| /* prune the request variables and swap to the response variables. */ |
| if (s->vars_reqres.scope != SCOPE_RES) { |
| vars_prune(&s->vars_reqres, s->sess, s); |
| vars_init(&s->vars_reqres, SCOPE_RES); |
| } |
| |
| do { |
| /* nb: step 1 might switch from QUE to ASS, but we first want |
| * to give a chance to step 2 to perform a redirect if needed. |
| */ |
| if (si_b->state != SI_ST_REQ) |
| sess_update_stream_int(s); |
| if (si_b->state == SI_ST_REQ) |
| sess_prepare_conn_req(s); |
| |
| /* applets directly go to the ESTABLISHED state. Similarly, |
| * servers experience the same fate when their connection |
| * is reused. |
| */ |
| if (unlikely(si_b->state == SI_ST_EST)) |
| sess_establish(s); |
| |
| /* Now we can add the server name to a header (if requested) */ |
| /* check for HTTP mode and proxy server_name_hdr_name != NULL */ |
| if ((si_b->state >= SI_ST_CON) && (si_b->state < SI_ST_CLO) && |
| (s->be->server_id_hdr_name != NULL) && |
| (s->be->mode == PR_MODE_HTTP) && |
| objt_server(s->target)) { |
| http_send_name_header(s->txn, s->be, objt_server(s->target)->id); |
| } |
| |
| srv = objt_server(s->target); |
| if (si_b->state == SI_ST_ASS && srv && srv->rdr_len && (s->flags & SF_REDIRECTABLE)) |
| http_perform_server_redirect(s, si_b); |
| } while (si_b->state == SI_ST_ASS); |
| } |
| |
| /* Benchmarks have shown that it's optimal to do a full resync now */ |
| if (si_f->state == SI_ST_DIS || si_b->state == SI_ST_DIS) |
| goto resync_stream_interface; |
| |
| /* otherwise we want to check if we need to resync the req buffer or not */ |
| if ((req->flags ^ rqf_last) & CF_MASK_STATIC) |
| goto resync_request; |
| |
| /* perform output updates to the response buffer */ |
| |
| /* If noone is interested in analysing data, it's time to forward |
| * everything. We configure the buffer to forward indefinitely. |
| * Note that we're checking CF_SHUTR_NOW as an indication of a possible |
| * recent call to channel_abort(). |
| */ |
| if (unlikely(!res->analysers && |
| !(res->flags & (CF_SHUTW|CF_SHUTR_NOW)) && |
| (si_b->state >= SI_ST_EST) && |
| (res->to_forward != CHN_INFINITE_FORWARD))) { |
| /* This buffer is freewheeling, there's no analyser |
| * attached to it. If any data are left in, we'll permit them to |
| * move. |
| */ |
| channel_auto_read(res); |
| channel_auto_close(res); |
| buffer_flush(res->buf); |
| |
| /* We'll let data flow between the producer (if still connected) |
| * to the consumer. |
| */ |
| if (!(res->flags & (CF_SHUTR|CF_SHUTW_NOW))) |
| channel_forward_forever(res); |
| |
| /* Just in order to support fetching HTTP contents after start |
| * of forwarding when the HTTP forwarding analyser is not used, |
| * we simply reset msg->sov so that HTTP rewinding points to the |
| * headers. |
| */ |
| if (s->txn) |
| s->txn->rsp.sov = s->txn->rsp.eoh + s->txn->rsp.eol - res->buf->o; |
| |
| /* if we have no analyser anymore in any direction and have a |
| * tunnel timeout set, use it now. Note that we must respect |
| * the half-closed timeouts as well. |
| */ |
| if (!req->analysers && s->be->timeout.tunnel) { |
| req->rto = req->wto = res->rto = res->wto = |
| s->be->timeout.tunnel; |
| |
| if ((req->flags & CF_SHUTR) && tick_isset(sess->fe->timeout.clientfin)) |
| res->wto = sess->fe->timeout.clientfin; |
| if ((req->flags & CF_SHUTW) && tick_isset(s->be->timeout.serverfin)) |
| res->rto = s->be->timeout.serverfin; |
| if ((res->flags & CF_SHUTR) && tick_isset(s->be->timeout.serverfin)) |
| req->wto = s->be->timeout.serverfin; |
| if ((res->flags & CF_SHUTW) && tick_isset(sess->fe->timeout.clientfin)) |
| req->rto = sess->fe->timeout.clientfin; |
| |
| req->rex = tick_add(now_ms, req->rto); |
| req->wex = tick_add(now_ms, req->wto); |
| res->rex = tick_add(now_ms, res->rto); |
| res->wex = tick_add(now_ms, res->wto); |
| } |
| } |
| |
| /* check if it is wise to enable kernel splicing to forward response data */ |
| if (!(res->flags & (CF_KERN_SPLICING|CF_SHUTR)) && |
| res->to_forward && |
| (global.tune.options & GTUNE_USE_SPLICE) && |
| (objt_conn(si_f->end) && __objt_conn(si_f->end)->xprt && __objt_conn(si_f->end)->xprt->snd_pipe) && |
| (objt_conn(si_b->end) && __objt_conn(si_b->end)->xprt && __objt_conn(si_b->end)->xprt->rcv_pipe) && |
| (pipes_used < global.maxpipes) && |
| (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_RTR) || |
| (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) && |
| (res->flags & CF_STREAMER_FAST)))) { |
| res->flags |= CF_KERN_SPLICING; |
| } |
| |
| /* reflect what the L7 analysers have seen last */ |
| rpf_last = res->flags; |
| |
| /* |
| * Now forward all shutdown requests between both sides of the buffer |
| */ |
| |
| /* |
| * FIXME: this is probably where we should produce error responses. |
| */ |
| |
| /* first, let's check if the response buffer needs to shutdown(write) */ |
| if (unlikely((res->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) == |
| (CF_AUTO_CLOSE|CF_SHUTR))) { |
| channel_shutw_now(res); |
| } |
| |
| /* shutdown(write) pending */ |
| if (unlikely((res->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW && |
| channel_is_empty(res))) { |
| si_shutw(si_f); |
| if (tick_isset(sess->fe->timeout.clientfin)) { |
| req->rto = sess->fe->timeout.clientfin; |
| req->rex = tick_add(now_ms, req->rto); |
| } |
| } |
| |
| /* shutdown(write) done on the client side, we must stop the server too */ |
| if (unlikely((res->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW) && |
| !res->analysers) |
| channel_shutr_now(res); |
| |
| /* shutdown(read) pending */ |
| if (unlikely((res->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) { |
| if (si_b->flags & SI_FL_NOHALF) |
| si_b->flags |= SI_FL_NOLINGER; |
| si_shutr(si_b); |
| } |
| |
| if (si_f->state == SI_ST_DIS || si_b->state == SI_ST_DIS) |
| goto resync_stream_interface; |
| |
| if (req->flags != rqf_last) |
| goto resync_request; |
| |
| if ((res->flags ^ rpf_last) & CF_MASK_STATIC) |
| goto resync_response; |
| |
| /* we're interested in getting wakeups again */ |
| si_f->flags &= ~SI_FL_DONT_WAKE; |
| si_b->flags &= ~SI_FL_DONT_WAKE; |
| |
| /* This is needed only when debugging is enabled, to indicate |
| * client-side or server-side close. Please note that in the unlikely |
| * event where both sides would close at once, the sequence is reported |
| * on the server side first. |
| */ |
| if (unlikely((global.mode & MODE_DEBUG) && |
| (!(global.mode & MODE_QUIET) || |
| (global.mode & MODE_VERBOSE)))) { |
| if (si_b->state == SI_ST_CLO && |
| si_b->prev_state == SI_ST_EST) { |
| chunk_printf(&trash, "%08x:%s.srvcls[%04x:%04x]\n", |
| s->uniq_id, s->be->id, |
| objt_conn(si_f->end) ? (unsigned short)objt_conn(si_f->end)->t.sock.fd : -1, |
| objt_conn(si_b->end) ? (unsigned short)objt_conn(si_b->end)->t.sock.fd : -1); |
| shut_your_big_mouth_gcc(write(1, trash.str, trash.len)); |
| } |
| |
| if (si_f->state == SI_ST_CLO && |
| si_f->prev_state == SI_ST_EST) { |
| chunk_printf(&trash, "%08x:%s.clicls[%04x:%04x]\n", |
| s->uniq_id, s->be->id, |
| objt_conn(si_f->end) ? (unsigned short)objt_conn(si_f->end)->t.sock.fd : -1, |
| objt_conn(si_b->end) ? (unsigned short)objt_conn(si_b->end)->t.sock.fd : -1); |
| shut_your_big_mouth_gcc(write(1, trash.str, trash.len)); |
| } |
| } |
| |
| if (likely((si_f->state != SI_ST_CLO) || |
| (si_b->state > SI_ST_INI && si_b->state < SI_ST_CLO))) { |
| |
| if ((sess->fe->options & PR_O_CONTSTATS) && (s->flags & SF_BE_ASSIGNED)) |
| stream_process_counters(s); |
| |
| if (si_f->state == SI_ST_EST) |
| si_update(si_f); |
| |
| if (si_b->state == SI_ST_EST) |
| si_update(si_b); |
| |
| req->flags &= ~(CF_READ_NULL|CF_READ_PARTIAL|CF_WRITE_NULL|CF_WRITE_PARTIAL|CF_READ_ATTACHED); |
| res->flags &= ~(CF_READ_NULL|CF_READ_PARTIAL|CF_WRITE_NULL|CF_WRITE_PARTIAL|CF_READ_ATTACHED); |
| si_f->prev_state = si_f->state; |
| si_b->prev_state = si_b->state; |
| si_f->flags &= ~(SI_FL_ERR|SI_FL_EXP); |
| si_b->flags &= ~(SI_FL_ERR|SI_FL_EXP); |
| |
| /* Trick: if a request is being waiting for the server to respond, |
| * and if we know the server can timeout, we don't want the timeout |
| * to expire on the client side first, but we're still interested |
| * in passing data from the client to the server (eg: POST). Thus, |
| * we can cancel the client's request timeout if the server's |
| * request timeout is set and the server has not yet sent a response. |
| */ |
| |
| if ((res->flags & (CF_AUTO_CLOSE|CF_SHUTR)) == 0 && |
| (tick_isset(req->wex) || tick_isset(res->rex))) { |
| req->flags |= CF_READ_NOEXP; |
| req->rex = TICK_ETERNITY; |
| } |
| |
| update_exp_and_leave: |
| /* Note: please ensure that if you branch here you disable SI_FL_DONT_WAKE */ |
| t->expire = tick_first(tick_first(req->rex, req->wex), |
| tick_first(res->rex, res->wex)); |
| if (req->analysers) |
| t->expire = tick_first(t->expire, req->analyse_exp); |
| |
| if (si_f->exp) |
| t->expire = tick_first(t->expire, si_f->exp); |
| |
| if (si_b->exp) |
| t->expire = tick_first(t->expire, si_b->exp); |
| |
| #ifdef DEBUG_FULL |
| fprintf(stderr, |
| "[%u] queuing with exp=%u req->rex=%u req->wex=%u req->ana_exp=%u" |
| " rep->rex=%u rep->wex=%u, si[0].exp=%u, si[1].exp=%u, cs=%d, ss=%d\n", |
| now_ms, t->expire, req->rex, req->wex, req->analyse_exp, |
| res->rex, res->wex, si_f->exp, si_b->exp, si_f->state, si_b->state); |
| #endif |
| |
| #ifdef DEBUG_DEV |
| /* this may only happen when no timeout is set or in case of an FSM bug */ |
| if (!tick_isset(t->expire)) |
| ABORT_NOW(); |
| #endif |
| stream_release_buffers(s); |
| return t; /* nothing more to do */ |
| } |
| |
| sess->fe->feconn--; |
| if (s->flags & SF_BE_ASSIGNED) |
| s->be->beconn--; |
| jobs--; |
| if (sess->listener) { |
| if (!(sess->listener->options & LI_O_UNLIMITED)) |
| actconn--; |
| sess->listener->nbconn--; |
| if (sess->listener->state == LI_FULL) |
| resume_listener(sess->listener); |
| |
| /* Dequeues all of the listeners waiting for a resource */ |
| if (!LIST_ISEMPTY(&global_listener_queue)) |
| dequeue_all_listeners(&global_listener_queue); |
| |
| if (!LIST_ISEMPTY(&sess->fe->listener_queue) && |
| (!sess->fe->fe_sps_lim || freq_ctr_remain(&sess->fe->fe_sess_per_sec, sess->fe->fe_sps_lim, 0) > 0)) |
| dequeue_all_listeners(&sess->fe->listener_queue); |
| } |
| |
| if (unlikely((global.mode & MODE_DEBUG) && |
| (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) { |
| chunk_printf(&trash, "%08x:%s.closed[%04x:%04x]\n", |
| s->uniq_id, s->be->id, |
| objt_conn(si_f->end) ? (unsigned short)objt_conn(si_f->end)->t.sock.fd : -1, |
| objt_conn(si_b->end) ? (unsigned short)objt_conn(si_b->end)->t.sock.fd : -1); |
| shut_your_big_mouth_gcc(write(1, trash.str, trash.len)); |
| } |
| |
| s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| stream_process_counters(s); |
| |
| if (s->txn && s->txn->status) { |
| int n; |
| |
| n = s->txn->status / 100; |
| if (n < 1 || n > 5) |
| n = 0; |
| |
| if (sess->fe->mode == PR_MODE_HTTP) { |
| sess->fe->fe_counters.p.http.rsp[n]++; |
| } |
| if ((s->flags & SF_BE_ASSIGNED) && |
| (s->be->mode == PR_MODE_HTTP)) { |
| s->be->be_counters.p.http.rsp[n]++; |
| s->be->be_counters.p.http.cum_req++; |
| } |
| } |
| |
| /* let's do a final log if we need it */ |
| if (!LIST_ISEMPTY(&sess->fe->logformat) && s->logs.logwait && |
| !(s->flags & SF_MONITOR) && |
| (!(sess->fe->options & PR_O_NULLNOLOG) || req->total)) { |
| s->do_log(s); |
| } |
| |
| /* update time stats for this stream */ |
| stream_update_time_stats(s); |
| |
| /* the task MUST not be in the run queue anymore */ |
| stream_free(s); |
| task_delete(t); |
| task_free(t); |
| return NULL; |
| } |
| |
| /* Update the stream's backend and server time stats */ |
| void stream_update_time_stats(struct stream *s) |
| { |
| int t_request; |
| int t_queue; |
| int t_connect; |
| int t_data; |
| int t_close; |
| struct server *srv; |
| |
| t_request = 0; |
| t_queue = s->logs.t_queue; |
| t_connect = s->logs.t_connect; |
| t_close = s->logs.t_close; |
| t_data = s->logs.t_data; |
| |
| if (s->be->mode != PR_MODE_HTTP) |
| t_data = t_connect; |
| |
| if (t_connect < 0 || t_data < 0) |
| return; |
| |
| if (tv_isge(&s->logs.tv_request, &s->logs.tv_accept)) |
| t_request = tv_ms_elapsed(&s->logs.tv_accept, &s->logs.tv_request); |
| |
| t_data -= t_connect; |
| t_connect -= t_queue; |
| t_queue -= t_request; |
| |
| srv = objt_server(s->target); |
| if (srv) { |
| swrate_add(&srv->counters.q_time, TIME_STATS_SAMPLES, t_queue); |
| swrate_add(&srv->counters.c_time, TIME_STATS_SAMPLES, t_connect); |
| swrate_add(&srv->counters.d_time, TIME_STATS_SAMPLES, t_data); |
| swrate_add(&srv->counters.t_time, TIME_STATS_SAMPLES, t_close); |
| } |
| swrate_add(&s->be->be_counters.q_time, TIME_STATS_SAMPLES, t_queue); |
| swrate_add(&s->be->be_counters.c_time, TIME_STATS_SAMPLES, t_connect); |
| swrate_add(&s->be->be_counters.d_time, TIME_STATS_SAMPLES, t_data); |
| swrate_add(&s->be->be_counters.t_time, TIME_STATS_SAMPLES, t_close); |
| } |
| |
| /* |
| * This function adjusts sess->srv_conn and maintains the previous and new |
| * server's served stream counts. Setting newsrv to NULL is enough to release |
| * current connection slot. This function also notifies any LB algo which might |
| * expect to be informed about any change in the number of active streams on a |
| * server. |
| */ |
| void sess_change_server(struct stream *sess, struct server *newsrv) |
| { |
| if (sess->srv_conn == newsrv) |
| return; |
| |
| if (sess->srv_conn) { |
| sess->srv_conn->served--; |
| if (sess->srv_conn->proxy->lbprm.server_drop_conn) |
| sess->srv_conn->proxy->lbprm.server_drop_conn(sess->srv_conn); |
| stream_del_srv_conn(sess); |
| } |
| |
| if (newsrv) { |
| newsrv->served++; |
| if (newsrv->proxy->lbprm.server_take_conn) |
| newsrv->proxy->lbprm.server_take_conn(newsrv); |
| stream_add_srv_conn(sess, newsrv); |
| } |
| } |
| |
| /* Handle server-side errors for default protocols. It is called whenever a a |
| * connection setup is aborted or a request is aborted in queue. It sets the |
| * stream termination flags so that the caller does not have to worry about |
| * them. It's installed as ->srv_error for the server-side stream_interface. |
| */ |
| void default_srv_error(struct stream *s, struct stream_interface *si) |
| { |
| int err_type = si->err_type; |
| int err = 0, fin = 0; |
| |
| if (err_type & SI_ET_QUEUE_ABRT) { |
| err = SF_ERR_CLICL; |
| fin = SF_FINST_Q; |
| } |
| else if (err_type & SI_ET_CONN_ABRT) { |
| err = SF_ERR_CLICL; |
| fin = SF_FINST_C; |
| } |
| else if (err_type & SI_ET_QUEUE_TO) { |
| err = SF_ERR_SRVTO; |
| fin = SF_FINST_Q; |
| } |
| else if (err_type & SI_ET_QUEUE_ERR) { |
| err = SF_ERR_SRVCL; |
| fin = SF_FINST_Q; |
| } |
| else if (err_type & SI_ET_CONN_TO) { |
| err = SF_ERR_SRVTO; |
| fin = SF_FINST_C; |
| } |
| else if (err_type & SI_ET_CONN_ERR) { |
| err = SF_ERR_SRVCL; |
| fin = SF_FINST_C; |
| } |
| else if (err_type & SI_ET_CONN_RES) { |
| err = SF_ERR_RESOURCE; |
| fin = SF_FINST_C; |
| } |
| else /* SI_ET_CONN_OTHER and others */ { |
| err = SF_ERR_INTERNAL; |
| fin = SF_FINST_C; |
| } |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= err; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= fin; |
| } |
| |
| /* kill a stream and set the termination flags to <why> (one of SF_ERR_*) */ |
| void stream_shutdown(struct stream *stream, int why) |
| { |
| if (stream->req.flags & (CF_SHUTW|CF_SHUTW_NOW)) |
| return; |
| |
| channel_shutw_now(&stream->req); |
| channel_shutr_now(&stream->res); |
| stream->task->nice = 1024; |
| if (!(stream->flags & SF_ERR_MASK)) |
| stream->flags |= why; |
| task_wakeup(stream->task, TASK_WOKEN_OTHER); |
| } |
| |
| /************************************************************************/ |
| /* All supported ACL keywords must be declared here. */ |
| /************************************************************************/ |
| |
| /* Returns a pointer to a stkctr depending on the fetch keyword name. |
| * It is designed to be called as sc[0-9]_* sc_* or src_* exclusively. |
| * sc[0-9]_* will return a pointer to the respective field in the |
| * stream <l4>. sc_* requires an UINT argument specifying the stick |
| * counter number. src_* will fill a locally allocated structure with |
| * the table and entry corresponding to what is specified with src_*. |
| * NULL may be returned if the designated stkctr is not tracked. For |
| * the sc_* and sc[0-9]_* forms, an optional table argument may be |
| * passed. When present, the currently tracked key is then looked up |
| * in the specified table instead of the current table. The purpose is |
| * to be able to convery multiple values per key (eg: have gpc0 from |
| * multiple tables). <strm> is allowed to be NULL, in which case only |
| * the session will be consulted. |
| */ |
| struct stkctr * |
| smp_fetch_sc_stkctr(struct session *sess, struct stream *strm, const struct arg *args, const char *kw) |
| { |
| static struct stkctr stkctr; |
| struct stkctr *stkptr; |
| struct stksess *stksess; |
| unsigned int num = kw[2] - '0'; |
| int arg = 0; |
| |
| if (num == '_' - '0') { |
| /* sc_* variant, args[0] = ctr# (mandatory) */ |
| num = args[arg++].data.sint; |
| if (num >= MAX_SESS_STKCTR) |
| return NULL; |
| } |
| else if (num > 9) { /* src_* variant, args[0] = table */ |
| struct stktable_key *key; |
| struct connection *conn = objt_conn(sess->origin); |
| struct sample smp; |
| |
| if (!conn) |
| return NULL; |
| |
| /* Fetch source adress in a sample. */ |
| smp.px = NULL; |
| smp.sess = sess; |
| smp.strm = strm; |
| if (!smp_fetch_src(NULL, &smp, NULL, NULL)) |
| return NULL; |
| |
| /* Converts into key. */ |
| key = smp_to_stkey(&smp, &args->data.prx->table); |
| if (!key) |
| return NULL; |
| |
| stkctr.table = &args->data.prx->table; |
| stkctr_set_entry(&stkctr, stktable_lookup_key(stkctr.table, key)); |
| return &stkctr; |
| } |
| |
| /* Here, <num> contains the counter number from 0 to 9 for |
| * the sc[0-9]_ form, or even higher using sc_(num) if needed. |
| * args[arg] is the first optional argument. We first lookup the |
| * ctr form the stream, then from the session if it was not there. |
| */ |
| |
| if (strm) |
| stkptr = &strm->stkctr[num]; |
| if (!strm || !stkctr_entry(stkptr)) { |
| stkptr = &sess->stkctr[num]; |
| if (!stkctr_entry(stkptr)) |
| return NULL; |
| } |
| |
| stksess = stkctr_entry(stkptr); |
| if (!stksess) |
| return NULL; |
| |
| if (unlikely(args[arg].type == ARGT_TAB)) { |
| /* an alternate table was specified, let's look up the same key there */ |
| stkctr.table = &args[arg].data.prx->table; |
| stkctr_set_entry(&stkctr, stktable_lookup(stkctr.table, stksess)); |
| return &stkctr; |
| } |
| return stkptr; |
| } |
| |
| /* same as smp_fetch_sc_stkctr() but dedicated to src_* and can create |
| * the entry if it doesn't exist yet. This is needed for a few fetch |
| * functions which need to create an entry, such as src_inc_gpc* and |
| * src_clr_gpc*. |
| */ |
| struct stkctr * |
| smp_create_src_stkctr(struct session *sess, struct stream *strm, const struct arg *args, const char *kw) |
| { |
| static struct stkctr stkctr; |
| struct stktable_key *key; |
| struct connection *conn = objt_conn(sess->origin); |
| struct sample smp; |
| |
| if (strncmp(kw, "src_", 4) != 0) |
| return NULL; |
| |
| if (!conn) |
| return NULL; |
| |
| /* Fetch source adress in a sample. */ |
| smp.px = NULL; |
| smp.sess = sess; |
| smp.strm = strm; |
| if (!smp_fetch_src(NULL, &smp, NULL, NULL)) |
| return NULL; |
| |
| /* Converts into key. */ |
| key = smp_to_stkey(&smp, &args->data.prx->table); |
| if (!key) |
| return NULL; |
| |
| stkctr.table = &args->data.prx->table; |
| stkctr_set_entry(&stkctr, stktable_update_key(stkctr.table, key)); |
| return &stkctr; |
| } |
| |
| /* set return a boolean indicating if the requested stream counter is |
| * currently being tracked or not. |
| * Supports being called as "sc[0-9]_tracked" only. |
| */ |
| static int |
| smp_fetch_sc_tracked(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_BOOL; |
| smp->data.u.sint = !!smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| return 1; |
| } |
| |
| /* set <smp> to the General Purpose Flag 0 value from the stream's tracked |
| * frontend counters or from the src. |
| * Supports being called as "sc[0-9]_get_gpc0" or "src_get_gpt0" only. Value |
| * zero is returned if the key is new. |
| */ |
| static int |
| smp_fetch_sc_get_gpt0(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct stkctr *stkctr; |
| |
| stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| if (!stkctr) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| |
| if (stkctr_entry(stkctr) != NULL) { |
| void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPT0); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.u.sint = stktable_data_cast(ptr, gpt0); |
| } |
| return 1; |
| } |
| |
| /* set <smp> to the General Purpose Counter 0 value from the stream's tracked |
| * frontend counters or from the src. |
| * Supports being called as "sc[0-9]_get_gpc0" or "src_get_gpc0" only. Value |
| * zero is returned if the key is new. |
| */ |
| static int |
| smp_fetch_sc_get_gpc0(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct stkctr *stkctr; |
| |
| stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| if (!stkctr) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| |
| if (stkctr_entry(stkctr) != NULL) { |
| void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.u.sint = stktable_data_cast(ptr, gpc0); |
| } |
| return 1; |
| } |
| |
| /* set <smp> to the General Purpose Counter 0's event rate from the stream's |
| * tracked frontend counters or from the src. |
| * Supports being called as "sc[0-9]_gpc0_rate" or "src_gpc0_rate" only. |
| * Value zero is returned if the key is new. |
| */ |
| static int |
| smp_fetch_sc_gpc0_rate(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct stkctr *stkctr; |
| |
| stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| if (!stkctr) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| if (stkctr_entry(stkctr) != NULL) { |
| void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0_RATE); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, gpc0_rate), |
| stkctr->table->data_arg[STKTABLE_DT_GPC0_RATE].u); |
| } |
| return 1; |
| } |
| |
| /* Increment the General Purpose Counter 0 value from the stream's tracked |
| * frontend counters and return it into temp integer. |
| * Supports being called as "sc[0-9]_inc_gpc0" or "src_inc_gpc0" only. |
| */ |
| static int |
| smp_fetch_sc_inc_gpc0(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct stkctr *stkctr; |
| |
| stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| if (!stkctr) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| |
| if (stkctr_entry(stkctr) == NULL) |
| stkctr = smp_create_src_stkctr(smp->sess, smp->strm, args, kw); |
| |
| if (stkctr_entry(stkctr) != NULL) { |
| void *ptr1,*ptr2; |
| |
| /* First, update gpc0_rate if it's tracked. Second, update its |
| * gpc0 if tracked. Returns gpc0's value otherwise the curr_ctr. |
| */ |
| ptr1 = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0_RATE); |
| if (ptr1) { |
| update_freq_ctr_period(&stktable_data_cast(ptr1, gpc0_rate), |
| stkctr->table->data_arg[STKTABLE_DT_GPC0_RATE].u, 1); |
| smp->data.u.sint = (&stktable_data_cast(ptr1, gpc0_rate))->curr_ctr; |
| } |
| |
| ptr2 = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0); |
| if (ptr2) |
| smp->data.u.sint = ++stktable_data_cast(ptr2, gpc0); |
| |
| /* If data was modified, we need to touch to re-schedule sync */ |
| if (ptr1 || ptr2) |
| stktable_touch(stkctr->table, stkctr_entry(stkctr), 1); |
| } |
| return 1; |
| } |
| |
| /* Clear the General Purpose Counter 0 value from the stream's tracked |
| * frontend counters and return its previous value into temp integer. |
| * Supports being called as "sc[0-9]_clr_gpc0" or "src_clr_gpc0" only. |
| */ |
| static int |
| smp_fetch_sc_clr_gpc0(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct stkctr *stkctr; |
| |
| stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| if (!stkctr) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| |
| if (stkctr_entry(stkctr) == NULL) |
| stkctr = smp_create_src_stkctr(smp->sess, smp->strm, args, kw); |
| |
| if (stkctr_entry(stkctr) != NULL) { |
| void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.u.sint = stktable_data_cast(ptr, gpc0); |
| stktable_data_cast(ptr, gpc0) = 0; |
| /* If data was modified, we need to touch to re-schedule sync */ |
| stktable_touch(stkctr->table, stkctr_entry(stkctr), 1); |
| } |
| return 1; |
| } |
| |
| /* set <smp> to the cumulated number of connections from the stream's tracked |
| * frontend counters. Supports being called as "sc[0-9]_conn_cnt" or |
| * "src_conn_cnt" only. |
| */ |
| static int |
| smp_fetch_sc_conn_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct stkctr *stkctr; |
| |
| stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| if (!stkctr) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| if (stkctr_entry(stkctr) != NULL) { |
| void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_CONN_CNT); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.u.sint = stktable_data_cast(ptr, conn_cnt); |
| } |
| return 1; |
| } |
| |
| /* set <smp> to the connection rate from the stream's tracked frontend |
| * counters. Supports being called as "sc[0-9]_conn_rate" or "src_conn_rate" |
| * only. |
| */ |
| static int |
| smp_fetch_sc_conn_rate(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct stkctr *stkctr; |
| |
| stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| if (!stkctr) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| if (stkctr_entry(stkctr) != NULL) { |
| void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_CONN_RATE); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, conn_rate), |
| stkctr->table->data_arg[STKTABLE_DT_CONN_RATE].u); |
| } |
| return 1; |
| } |
| |
| /* set temp integer to the number of connections from the stream's source address |
| * in the table pointed to by expr, after updating it. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| smp_fetch_src_updt_conn_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct connection *conn = objt_conn(smp->sess->origin); |
| struct stksess *ts; |
| struct stktable_key *key; |
| void *ptr; |
| struct proxy *px; |
| |
| if (!conn) |
| return 0; |
| |
| /* Fetch source adress in a sample. */ |
| if (!smp_fetch_src(NULL, smp, NULL, NULL)) |
| return 0; |
| |
| /* Converts into key. */ |
| key = smp_to_stkey(smp, &args->data.prx->table); |
| if (!key) |
| return 0; |
| |
| px = args->data.prx; |
| |
| if ((ts = stktable_update_key(&px->table, key)) == NULL) |
| /* entry does not exist and could not be created */ |
| return 0; |
| |
| ptr = stktable_data_ptr(&px->table, ts, STKTABLE_DT_CONN_CNT); |
| if (!ptr) |
| return 0; /* parameter not stored in this table */ |
| |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = ++stktable_data_cast(ptr, conn_cnt); |
| /* Touch was previously performed by stktable_update_key */ |
| smp->flags = SMP_F_VOL_TEST; |
| return 1; |
| } |
| |
| /* set <smp> to the number of concurrent connections from the stream's tracked |
| * frontend counters. Supports being called as "sc[0-9]_conn_cur" or |
| * "src_conn_cur" only. |
| */ |
| static int |
| smp_fetch_sc_conn_cur(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct stkctr *stkctr; |
| |
| stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| if (!stkctr) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| if (stkctr_entry(stkctr) != NULL) { |
| void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_CONN_CUR); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.u.sint = stktable_data_cast(ptr, conn_cur); |
| } |
| return 1; |
| } |
| |
| /* set <smp> to the cumulated number of streams from the stream's tracked |
| * frontend counters. Supports being called as "sc[0-9]_sess_cnt" or |
| * "src_sess_cnt" only. |
| */ |
| static int |
| smp_fetch_sc_sess_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct stkctr *stkctr; |
| |
| stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| if (!stkctr) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| if (stkctr_entry(stkctr) != NULL) { |
| void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_SESS_CNT); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.u.sint = stktable_data_cast(ptr, sess_cnt); |
| } |
| return 1; |
| } |
| |
| /* set <smp> to the stream rate from the stream's tracked frontend counters. |
| * Supports being called as "sc[0-9]_sess_rate" or "src_sess_rate" only. |
| */ |
| static int |
| smp_fetch_sc_sess_rate(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct stkctr *stkctr; |
| |
| stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| if (!stkctr) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| if (stkctr_entry(stkctr) != NULL) { |
| void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_SESS_RATE); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, sess_rate), |
| stkctr->table->data_arg[STKTABLE_DT_SESS_RATE].u); |
| } |
| return 1; |
| } |
| |
| /* set <smp> to the cumulated number of HTTP requests from the stream's tracked |
| * frontend counters. Supports being called as "sc[0-9]_http_req_cnt" or |
| * "src_http_req_cnt" only. |
| */ |
| static int |
| smp_fetch_sc_http_req_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct stkctr *stkctr; |
| |
| stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| if (!stkctr) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| if (stkctr_entry(stkctr) != NULL) { |
| void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_REQ_CNT); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.u.sint = stktable_data_cast(ptr, http_req_cnt); |
| } |
| return 1; |
| } |
| |
| /* set <smp> to the HTTP request rate from the stream's tracked frontend |
| * counters. Supports being called as "sc[0-9]_http_req_rate" or |
| * "src_http_req_rate" only. |
| */ |
| static int |
| smp_fetch_sc_http_req_rate(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct stkctr *stkctr; |
| |
| stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| if (!stkctr) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| if (stkctr_entry(stkctr) != NULL) { |
| void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_REQ_RATE); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, http_req_rate), |
| stkctr->table->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u); |
| } |
| return 1; |
| } |
| |
| /* set <smp> to the cumulated number of HTTP requests errors from the stream's |
| * tracked frontend counters. Supports being called as "sc[0-9]_http_err_cnt" or |
| * "src_http_err_cnt" only. |
| */ |
| static int |
| smp_fetch_sc_http_err_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct stkctr *stkctr; |
| |
| stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| if (!stkctr) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| if (stkctr_entry(stkctr) != NULL) { |
| void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_ERR_CNT); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.u.sint = stktable_data_cast(ptr, http_err_cnt); |
| } |
| return 1; |
| } |
| |
| /* set <smp> to the HTTP request error rate from the stream's tracked frontend |
| * counters. Supports being called as "sc[0-9]_http_err_rate" or |
| * "src_http_err_rate" only. |
| */ |
| static int |
| smp_fetch_sc_http_err_rate(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct stkctr *stkctr; |
| |
| stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| if (!stkctr) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| if (stkctr_entry(stkctr) != NULL) { |
| void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_ERR_RATE); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, http_err_rate), |
| stkctr->table->data_arg[STKTABLE_DT_HTTP_ERR_RATE].u); |
| } |
| return 1; |
| } |
| |
| /* set <smp> to the number of kbytes received from clients, as found in the |
| * stream's tracked frontend counters. Supports being called as |
| * "sc[0-9]_kbytes_in" or "src_kbytes_in" only. |
| */ |
| static int |
| smp_fetch_sc_kbytes_in(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct stkctr *stkctr; |
| |
| stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| if (!stkctr) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| if (stkctr_entry(stkctr) != NULL) { |
| void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_IN_CNT); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.u.sint = stktable_data_cast(ptr, bytes_in_cnt) >> 10; |
| } |
| return 1; |
| } |
| |
| /* set <smp> to the data rate received from clients in bytes/s, as found |
| * in the stream's tracked frontend counters. Supports being called as |
| * "sc[0-9]_bytes_in_rate" or "src_bytes_in_rate" only. |
| */ |
| static int |
| smp_fetch_sc_bytes_in_rate(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct stkctr *stkctr; |
| |
| stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| if (!stkctr) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| if (stkctr_entry(stkctr) != NULL) { |
| void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_IN_RATE); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, bytes_in_rate), |
| stkctr->table->data_arg[STKTABLE_DT_BYTES_IN_RATE].u); |
| } |
| return 1; |
| } |
| |
| /* set <smp> to the number of kbytes sent to clients, as found in the |
| * stream's tracked frontend counters. Supports being called as |
| * "sc[0-9]_kbytes_out" or "src_kbytes_out" only. |
| */ |
| static int |
| smp_fetch_sc_kbytes_out(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct stkctr *stkctr; |
| |
| stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| if (!stkctr) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| if (stkctr_entry(stkctr) != NULL) { |
| void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_OUT_CNT); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.u.sint = stktable_data_cast(ptr, bytes_out_cnt) >> 10; |
| } |
| return 1; |
| } |
| |
| /* set <smp> to the data rate sent to clients in bytes/s, as found in the |
| * stream's tracked frontend counters. Supports being called as |
| * "sc[0-9]_bytes_out_rate" or "src_bytes_out_rate" only. |
| */ |
| static int |
| smp_fetch_sc_bytes_out_rate(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct stkctr *stkctr; |
| |
| stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| if (!stkctr) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| if (stkctr_entry(stkctr) != NULL) { |
| void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_OUT_RATE); |
| if (!ptr) |
| return 0; /* parameter not stored */ |
| smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, bytes_out_rate), |
| stkctr->table->data_arg[STKTABLE_DT_BYTES_OUT_RATE].u); |
| } |
| return 1; |
| } |
| |
| /* set <smp> to the number of active trackers on the SC entry in the stream's |
| * tracked frontend counters. Supports being called as "sc[0-9]_trackers" only. |
| */ |
| static int |
| smp_fetch_sc_trackers(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct stkctr *stkctr; |
| |
| stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw); |
| if (!stkctr) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = stkctr_entry(stkctr)->ref_cnt; |
| return 1; |
| } |
| |
| /* set temp integer to the number of used entries in the table pointed to by expr. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| smp_fetch_table_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = args->data.prx->table.current; |
| return 1; |
| } |
| |
| /* set temp integer to the number of free entries in the table pointed to by expr. |
| * Accepts exactly 1 argument of type table. |
| */ |
| static int |
| smp_fetch_table_avl(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct proxy *px; |
| |
| px = args->data.prx; |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = px->table.size - px->table.current; |
| return 1; |
| } |
| |
| /* 0=OK, <0=Alert, >0=Warning */ |
| static enum act_parse_ret stream_parse_use_service(const char **args, int *cur_arg, |
| struct proxy *px, struct act_rule *rule, |
| char **err) |
| { |
| struct action_kw *kw; |
| |
| /* Check if the service name exists. */ |
| if (*(args[*cur_arg]) == 0) { |
| memprintf(err, "'%s' expects a service name.", args[0]); |
| return ACT_RET_PRS_ERR; |
| } |
| |
| /* lookup for keyword corresponding to a service. */ |
| kw = action_lookup(&service_keywords, args[*cur_arg]); |
| if (!kw) { |
| memprintf(err, "'%s' unknown service name.", args[1]); |
| return ACT_RET_PRS_ERR; |
| } |
| (*cur_arg)++; |
| |
| /* executes specific rule parser. */ |
| rule->kw = kw; |
| if (kw->parse((const char **)args, cur_arg, px, rule, err) == ACT_RET_PRS_ERR) |
| return ACT_RET_PRS_ERR; |
| |
| /* Register processing function. */ |
| rule->action_ptr = process_use_service; |
| rule->action = ACT_CUSTOM; |
| |
| return ACT_RET_PRS_OK; |
| } |
| |
| void service_keywords_register(struct action_kw_list *kw_list) |
| { |
| LIST_ADDQ(&service_keywords, &kw_list->list); |
| } |
| |
| /* main configuration keyword registration. */ |
| static struct action_kw_list stream_tcp_keywords = { ILH, { |
| { "use-service", stream_parse_use_service }, |
| { /* END */ } |
| }}; |
| |
| static struct action_kw_list stream_http_keywords = { ILH, { |
| { "use-service", stream_parse_use_service }, |
| { /* END */ } |
| }}; |
| |
| /* Note: must not be declared <const> as its list will be overwritten. |
| * Please take care of keeping this list alphabetically sorted. |
| */ |
| static struct acl_kw_list acl_kws = {ILH, { |
| { /* END */ }, |
| }}; |
| |
| /* Note: must not be declared <const> as its list will be overwritten. |
| * Please take care of keeping this list alphabetically sorted. |
| */ |
| static struct sample_fetch_kw_list smp_fetch_keywords = {ILH, { |
| { "sc_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc_conn_cnt", smp_fetch_sc_conn_cnt, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc_conn_cur", smp_fetch_sc_conn_cur, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc_conn_rate", smp_fetch_sc_conn_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc_get_gpt0", smp_fetch_sc_get_gpt0, ARG2(1,SINT,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, }, |
| { "sc_get_gpc0", smp_fetch_sc_get_gpc0, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc_http_err_rate", smp_fetch_sc_http_err_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc_http_req_rate", smp_fetch_sc_http_req_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc_kbytes_in", smp_fetch_sc_kbytes_in, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "sc_kbytes_out", smp_fetch_sc_kbytes_out, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "sc_sess_cnt", smp_fetch_sc_sess_cnt, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc_sess_rate", smp_fetch_sc_sess_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc_tracked", smp_fetch_sc_tracked, ARG2(1,SINT,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, }, |
| { "sc_trackers", smp_fetch_sc_trackers, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc0_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc0_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc0_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc0_conn_cnt", smp_fetch_sc_conn_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc0_conn_cur", smp_fetch_sc_conn_cur, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc0_conn_rate", smp_fetch_sc_conn_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc0_get_gpt0", smp_fetch_sc_get_gpt0, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, }, |
| { "sc0_get_gpc0", smp_fetch_sc_get_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc0_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc0_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc0_http_err_rate", smp_fetch_sc_http_err_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc0_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc0_http_req_rate", smp_fetch_sc_http_req_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc0_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc0_kbytes_in", smp_fetch_sc_kbytes_in, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "sc0_kbytes_out", smp_fetch_sc_kbytes_out, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "sc0_sess_cnt", smp_fetch_sc_sess_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc0_sess_rate", smp_fetch_sc_sess_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc0_tracked", smp_fetch_sc_tracked, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, }, |
| { "sc0_trackers", smp_fetch_sc_trackers, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc1_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc1_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc1_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc1_conn_cnt", smp_fetch_sc_conn_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc1_conn_cur", smp_fetch_sc_conn_cur, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc1_conn_rate", smp_fetch_sc_conn_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc1_get_gpt0", smp_fetch_sc_get_gpt0, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, }, |
| { "sc1_get_gpc0", smp_fetch_sc_get_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc1_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc1_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc1_http_err_rate", smp_fetch_sc_http_err_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc1_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc1_http_req_rate", smp_fetch_sc_http_req_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc1_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc1_kbytes_in", smp_fetch_sc_kbytes_in, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "sc1_kbytes_out", smp_fetch_sc_kbytes_out, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "sc1_sess_cnt", smp_fetch_sc_sess_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc1_sess_rate", smp_fetch_sc_sess_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc1_tracked", smp_fetch_sc_tracked, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, }, |
| { "sc1_trackers", smp_fetch_sc_trackers, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc2_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc2_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc2_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc2_conn_cnt", smp_fetch_sc_conn_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc2_conn_cur", smp_fetch_sc_conn_cur, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc2_conn_rate", smp_fetch_sc_conn_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc2_get_gpt0", smp_fetch_sc_get_gpt0, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, }, |
| { "sc2_get_gpc0", smp_fetch_sc_get_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc2_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc2_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc2_http_err_rate", smp_fetch_sc_http_err_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc2_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc2_http_req_rate", smp_fetch_sc_http_req_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc2_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc2_kbytes_in", smp_fetch_sc_kbytes_in, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "sc2_kbytes_out", smp_fetch_sc_kbytes_out, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "sc2_sess_cnt", smp_fetch_sc_sess_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc2_sess_rate", smp_fetch_sc_sess_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "sc2_tracked", smp_fetch_sc_tracked, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, }, |
| { "sc2_trackers", smp_fetch_sc_trackers, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "src_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "src_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "src_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "src_conn_cnt", smp_fetch_sc_conn_cnt, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "src_conn_cur", smp_fetch_sc_conn_cur, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "src_conn_rate", smp_fetch_sc_conn_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "src_get_gpt0", smp_fetch_sc_get_gpt0, ARG1(1,TAB), NULL, SMP_T_BOOL, SMP_USE_L4CLI, }, |
| { "src_get_gpc0", smp_fetch_sc_get_gpc0, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "src_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "src_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "src_http_err_rate", smp_fetch_sc_http_err_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "src_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "src_http_req_rate", smp_fetch_sc_http_req_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "src_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "src_kbytes_in", smp_fetch_sc_kbytes_in, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "src_kbytes_out", smp_fetch_sc_kbytes_out, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "src_sess_cnt", smp_fetch_sc_sess_cnt, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "src_sess_rate", smp_fetch_sc_sess_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "src_updt_conn_cnt", smp_fetch_src_updt_conn_cnt, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, }, |
| { "table_avl", smp_fetch_table_avl, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "table_cnt", smp_fetch_table_cnt, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { /* END */ }, |
| }}; |
| |
| __attribute__((constructor)) |
| static void __stream_init(void) |
| { |
| sample_register_fetches(&smp_fetch_keywords); |
| acl_register_keywords(&acl_kws); |
| tcp_req_cont_keywords_register(&stream_tcp_keywords); |
| http_req_keywords_register(&stream_http_keywords); |
| } |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |