blob: 6f7b26406626d5816f2bf75d1ad34251cdc238c6 [file] [log] [blame]
/*
* Task management functions.
*
* Copyright 2000-2009 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <string.h>
#include <common/config.h>
#include <common/eb32tree.h>
#include <common/memory.h>
#include <common/mini-clist.h>
#include <common/standard.h>
#include <common/time.h>
#include <proto/proxy.h>
#include <proto/session.h>
#include <proto/task.h>
struct pool_head *pool2_task;
unsigned int run_queue = 0;
unsigned int niced_tasks = 0; /* number of niced tasks in the run queue */
struct task *last_timer = NULL; /* optimization: last queued timer */
static struct eb_root timers[TIMER_TREES]; /* trees with MSB 00, 01, 10 and 11 */
static struct eb_root rqueue[TIMER_TREES]; /* trees constituting the run queue */
static unsigned int rqueue_ticks; /* insertion count */
/* Puts the task <t> in run queue at a position depending on t->nice. <t> is
* returned. The nice value assigns boosts in 32th of the run queue size. A
* nice value of -1024 sets the task to -run_queue*32, while a nice value of
* 1024 sets the task to run_queue*32. The state flags are cleared, so the
* caller will have to set its flags after this call.
* The task must not already be in the run queue. If unsure, use the safer
* task_wakeup() function.
*/
struct task *__task_wakeup(struct task *t)
{
run_queue++;
t->rq.key = ++rqueue_ticks;
if (likely(t->nice)) {
int offset;
niced_tasks++;
if (likely(t->nice > 0))
offset = (unsigned)((run_queue * (unsigned int)t->nice) / 32U);
else
offset = -(unsigned)((run_queue * (unsigned int)-t->nice) / 32U);
t->rq.key += offset;
}
/* clear state flags at the same time */
t->state &= ~TASK_WOKEN_ANY;
eb32_insert(&rqueue[timer_to_tree(t->rq.key)], &t->rq);
return t;
}
/*
* __task_queue()
*
* Inserts a task into the wait queue at the position given by its expiration
* date. It does not matter if the task was already in the wait queue or not,
* as it will be unlinked. The task must not have an infinite expiration timer.
* Last, tasks must not be queued further than the end of the next tree, which
* is between <now_ms> and <now_ms> + TIMER_SIGN_BIT ms (now+12days..24days in
* 32bit).
*
* This function should not be used directly, it is meant to be called by the
* inline version of task_queue() which performs a few cheap preliminary tests
* before deciding to call __task_queue().
*/
void __task_queue(struct task *task)
{
if (likely(task_in_wq(task)))
__task_unlink_wq(task);
/* the task is not in the queue now */
if (unlikely(!tick_isset(task->expire)))
return;
task->wq.key = tick_to_timer(task->expire);
#ifdef DEBUG_CHECK_INVALID_EXPIRATION_DATES
if ((task->wq.key - tick_to_timer(now_ms)) & TIMER_SIGN_BIT)
/* we're queuing too far away or in the past (most likely) */
return;
#endif
if (likely(last_timer &&
last_timer->wq.key == task->wq.key &&
last_timer->wq.node.bit == -1 &&
last_timer->wq.node.node_p)) {
/* Most often, last queued timer has the same expiration date, so
* if it's not queued at the root, let's queue a dup directly there.
* Note that we can only use dups at the dup tree's root (bit==-1).
*/
eb_insert_dup(&last_timer->wq.node, &task->wq.node);
return;
}
eb32_insert(&timers[timer_to_tree(task->wq.key)], &task->wq);
if (task->wq.node.bit == -1)
last_timer = task; /* we only want dup a tree's root */
return;
}
/*
* Extract all expired timers from the timer queue, and wakes up all
* associated tasks. Returns the date of next event (or eternity).
*/
void wake_expired_tasks(int *next)
{
struct task *task;
struct eb32_node *eb;
unsigned int now_tree;
unsigned int tree;
/* In theory, we should :
* - wake all tasks from the <previous> tree
* - wake all expired tasks from the <current> tree
* - scan <next> trees for next expiration date if not found earlier.
* But we can do all this more easily : we scan all 3 trees before we
* wrap, and wake everything expired from there, then stop on the first
* non-expired entry.
*/
now_tree = timer_to_tree(tick_to_timer(now_ms));
tree = (now_tree - 1) & TIMER_TREE_MASK;
do {
eb = eb32_first(&timers[tree]);
while (eb) {
task = eb32_entry(eb, struct task, wq);
if (likely((tick_to_timer(now_ms) - eb->key) & TIMER_SIGN_BIT)) {
/* note that we don't need this check for the <previous>
* tree, but it's cheaper than duplicating the code.
*/
*next = timer_to_tick(eb->key);
return;
}
/* detach the task from the queue and add the task to the run queue */
eb = eb32_next(eb);
__task_unlink_wq(task);
/* It is possible that this task was left at an earlier place in the
* tree because a recent call to task_queue() has not moved it. This
* happens when the new expiration date is later than the old one.
* Since it is very unlikely that we reach a timeout anyway, it's a
* lot cheaper to proceed like this because we almost never update
* the tree. We may also find disabled expiration dates there. Since
* we have detached the task from the tree, we simply call task_queue
* to take care of this.
*/
if (!tick_is_expired(task->expire, now_ms)) {
task_queue(task);
continue;
}
task_wakeup(task, TASK_WOKEN_TIMER);
}
tree = (tree + 1) & TIMER_TREE_MASK;
} while (((tree - now_tree) & TIMER_TREE_MASK) < TIMER_TREES/2);
/* We have found no task to expire in any tree */
*next = TICK_ETERNITY;
return;
}
/* The run queue is chronologically sorted in a tree. An insertion counter is
* used to assign a position to each task. This counter may be combined with
* other variables (eg: nice value) to set the final position in the tree. The
* counter may wrap without a problem, of course. We then limit the number of
* tasks processed at once to 1/4 of the number of tasks in the queue, and to
* 200 max in any case, so that general latency remains low and so that task
* positions have a chance to be considered. It also reduces the number of
* trees to be evaluated when no task remains.
*
* Just like with timers, we start with tree[(current - 1)], which holds past
* values, and stop when we reach the middle of the list. In practise, we visit
* 3 out of 4 trees.
*
* The function adjusts <next> if a new event is closer.
*/
void process_runnable_tasks(int *next)
{
struct task *t;
struct eb32_node *eb;
unsigned int tree, stop;
unsigned int max_processed;
int expire;
if (!run_queue)
return;
max_processed = run_queue;
if (max_processed > 200)
max_processed = 200;
if (likely(niced_tasks))
max_processed /= 4;
tree = timer_to_tree(rqueue_ticks);
stop = (tree + TIMER_TREES / 2) & TIMER_TREE_MASK;
tree = (tree - 1) & TIMER_TREE_MASK;
expire = *next;
do {
eb = eb32_first(&rqueue[tree]);
while (eb) {
/* Note: this loop is one of the fastest code path in
* the whole program. It should not be re-arranged
* without a good reason.
*/
t = eb32_entry(eb, struct task, rq);
/* detach the task from the queue and add the task to the run queue */
eb = eb32_next(eb);
__task_unlink_rq(t);
t->state |= TASK_RUNNING;
/* This is an optimisation to help the processor's branch
* predictor take this most common call.
*/
if (likely(t->process == process_session))
t = process_session(t);
else
t = t->process(t);
if (likely(t != NULL)) {
t->state &= ~TASK_RUNNING;
if (t->expire) {
task_queue(t);
expire = tick_first_2nz(expire, t->expire);
}
}
if (!--max_processed)
goto out;
}
tree = (tree + 1) & TIMER_TREE_MASK;
} while (tree != stop);
out:
*next = expire;
}
/* perform minimal intializations, report 0 in case of error, 1 if OK. */
int init_task()
{
memset(&timers, 0, sizeof(timers));
memset(&rqueue, 0, sizeof(rqueue));
pool2_task = create_pool("task", sizeof(struct task), MEM_F_SHARED);
return pool2_task != NULL;
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/