| /* |
| * Connection management functions |
| * |
| * Copyright 2000-2012 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <errno.h> |
| |
| #include <import/ebmbtree.h> |
| |
| #include <haproxy/api.h> |
| #include <haproxy/cfgparse.h> |
| #include <haproxy/connection.h> |
| #include <haproxy/fd.h> |
| #include <haproxy/frontend.h> |
| #include <haproxy/hash.h> |
| #include <haproxy/list.h> |
| #include <haproxy/log-t.h> |
| #include <haproxy/namespace.h> |
| #include <haproxy/net_helper.h> |
| #include <haproxy/proto_tcp.h> |
| #include <haproxy/sample.h> |
| #include <haproxy/sc_strm.h> |
| #include <haproxy/session.h> |
| #include <haproxy/ssl_sock.h> |
| #include <haproxy/stconn.h> |
| #include <haproxy/tools.h> |
| #include <haproxy/xxhash.h> |
| |
| |
| DECLARE_POOL(pool_head_connection, "connection", sizeof(struct connection)); |
| DECLARE_POOL(pool_head_conn_hash_node, "conn_hash_node", sizeof(struct conn_hash_node)); |
| DECLARE_POOL(pool_head_sockaddr, "sockaddr", sizeof(struct sockaddr_storage)); |
| DECLARE_POOL(pool_head_authority, "authority", PP2_AUTHORITY_MAX); |
| |
| struct idle_conns idle_conns[MAX_THREADS] = { }; |
| struct xprt_ops *registered_xprt[XPRT_ENTRIES] = { NULL, }; |
| |
| /* List head of all known muxes for PROTO */ |
| struct mux_proto_list mux_proto_list = { |
| .list = LIST_HEAD_INIT(mux_proto_list.list) |
| }; |
| |
| struct mux_stopping_data mux_stopping_data[MAX_THREADS]; |
| |
| /* disables sending of proxy-protocol-v2's LOCAL command */ |
| static int pp2_never_send_local; |
| |
| void conn_delete_from_tree(struct ebmb_node *node) |
| { |
| ebmb_delete(node); |
| } |
| |
| int conn_create_mux(struct connection *conn) |
| { |
| if (conn_is_back(conn)) { |
| struct server *srv; |
| struct stconn *sc = conn->ctx; |
| struct session *sess = conn->owner; |
| |
| if (conn->flags & CO_FL_ERROR) |
| goto fail; |
| |
| if (sess && obj_type(sess->origin) == OBJ_TYPE_CHECK) { |
| if (conn_install_mux_chk(conn, conn->ctx, sess) < 0) |
| goto fail; |
| } |
| else if (conn_install_mux_be(conn, conn->ctx, sess, NULL) < 0) |
| goto fail; |
| srv = objt_server(conn->target); |
| |
| /* If we're doing http-reuse always, and the connection is not |
| * private with available streams (an http2 connection), add it |
| * to the available list, so that others can use it right |
| * away. If the connection is private, add it in the session |
| * server list. |
| */ |
| if (srv && ((srv->proxy->options & PR_O_REUSE_MASK) == PR_O_REUSE_ALWS) && |
| !(conn->flags & CO_FL_PRIVATE) && conn->mux->avail_streams(conn) > 0) |
| ebmb_insert(&srv->per_thr[tid].avail_conns, &conn->hash_node->node, sizeof(conn->hash_node->hash)); |
| else if (conn->flags & CO_FL_PRIVATE) { |
| /* If it fail now, the same will be done in mux->detach() callback */ |
| session_add_conn(sess, conn, conn->target); |
| } |
| return 0; |
| fail: |
| /* let the upper layer know the connection failed */ |
| sc->app_ops->wake(sc); |
| return -1; |
| } else |
| return conn_complete_session(conn); |
| |
| } |
| |
| /* This is used at the end of the socket IOCB to possibly create the mux if it |
| * was not done yet, or wake it up if flags changed compared to old_flags or if |
| * need_wake insists on this. It returns <0 if the connection was destroyed and |
| * must not be used, >=0 otherwise. |
| */ |
| int conn_notify_mux(struct connection *conn, int old_flags, int forced_wake) |
| { |
| int ret = 0; |
| |
| /* If we don't yet have a mux, that means we were waiting for |
| * information to create one, typically from the ALPN. If we're |
| * done with the handshake, attempt to create one. |
| */ |
| if (unlikely(!conn->mux) && !(conn->flags & CO_FL_WAIT_XPRT)) { |
| ret = conn_create_mux(conn); |
| if (ret < 0) |
| goto done; |
| } |
| |
| /* The wake callback is normally used to notify the data layer about |
| * data layer activity (successful send/recv), connection establishment, |
| * shutdown and fatal errors. We need to consider the following |
| * situations to wake up the data layer : |
| * - change among the CO_FL_NOTIFY_DONE flags : |
| * SOCK_{RD,WR}_SH, ERROR, |
| * - absence of any of {L4,L6}_CONN and CONNECTED, indicating the |
| * end of handshake and transition to CONNECTED |
| * - raise of CONNECTED with HANDSHAKE down |
| * - end of HANDSHAKE with CONNECTED set |
| * - regular data layer activity |
| * |
| * One tricky case is the wake up on read0 or error on an idle |
| * backend connection, that can happen on a connection that is still |
| * polled while at the same moment another thread is about to perform a |
| * takeover. The solution against this is to remove the connection from |
| * the idle list if it was in it, and possibly reinsert it at the end |
| * if the connection remains valid. The cost is non-null (locked tree |
| * removal) but remains low given that this is extremely rarely called. |
| * In any case it's guaranteed by the FD's thread_mask that we're |
| * called from the same thread the connection is queued in. |
| * |
| * Note that the wake callback is allowed to release the connection and |
| * the fd (and return < 0 in this case). |
| */ |
| if ((forced_wake || |
| ((conn->flags ^ old_flags) & CO_FL_NOTIFY_DONE) || |
| ((old_flags & CO_FL_WAIT_XPRT) && !(conn->flags & CO_FL_WAIT_XPRT))) && |
| conn->mux && conn->mux->wake) { |
| uint conn_in_list = conn->flags & CO_FL_LIST_MASK; |
| struct server *srv = objt_server(conn->target); |
| |
| if (conn_in_list) { |
| HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock); |
| conn_delete_from_tree(&conn->hash_node->node); |
| HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock); |
| } |
| |
| ret = conn->mux->wake(conn); |
| if (ret < 0) |
| goto done; |
| |
| if (conn_in_list) { |
| struct eb_root *root = (conn_in_list == CO_FL_SAFE_LIST) ? |
| &srv->per_thr[tid].safe_conns : |
| &srv->per_thr[tid].idle_conns; |
| |
| HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock); |
| ebmb_insert(root, &conn->hash_node->node, sizeof(conn->hash_node->hash)); |
| HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock); |
| } |
| } |
| done: |
| return ret; |
| } |
| |
| /* Change the mux for the connection. |
| * The caller should make sure he's not subscribed to the underlying XPRT. |
| */ |
| int conn_upgrade_mux_fe(struct connection *conn, void *ctx, struct buffer *buf, |
| struct ist mux_proto, int mode) |
| { |
| struct bind_conf *bind_conf = __objt_listener(conn->target)->bind_conf; |
| const struct mux_ops *old_mux, *new_mux; |
| void *old_mux_ctx; |
| const char *alpn_str = NULL; |
| int alpn_len = 0; |
| |
| if (!mux_proto.len) { |
| conn_get_alpn(conn, &alpn_str, &alpn_len); |
| mux_proto = ist2(alpn_str, alpn_len); |
| } |
| new_mux = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_FE, mode); |
| old_mux = conn->mux; |
| |
| /* No mux found */ |
| if (!new_mux) |
| return -1; |
| |
| /* Same mux, nothing to do */ |
| if (old_mux == new_mux) |
| return 0; |
| |
| old_mux_ctx = conn->ctx; |
| conn->mux = new_mux; |
| conn->ctx = ctx; |
| if (new_mux->init(conn, bind_conf->frontend, conn->owner, buf) == -1) { |
| /* The mux upgrade failed, so restore the old mux */ |
| conn->ctx = old_mux_ctx; |
| conn->mux = old_mux; |
| return -1; |
| } |
| |
| /* The mux was upgraded, destroy the old one */ |
| *buf = BUF_NULL; |
| old_mux->destroy(old_mux_ctx); |
| return 0; |
| } |
| |
| /* installs the best mux for incoming connection <conn> using the upper context |
| * <ctx>. If the mux protocol is forced, we use it to find the best |
| * mux. Otherwise we use the ALPN name, if any. Returns < 0 on error. |
| */ |
| int conn_install_mux_fe(struct connection *conn, void *ctx) |
| { |
| struct bind_conf *bind_conf = __objt_listener(conn->target)->bind_conf; |
| const struct mux_ops *mux_ops; |
| |
| if (bind_conf->mux_proto) |
| mux_ops = bind_conf->mux_proto->mux; |
| else { |
| struct ist mux_proto; |
| const char *alpn_str = NULL; |
| int alpn_len = 0; |
| int mode; |
| |
| if (bind_conf->frontend->mode == PR_MODE_HTTP) |
| mode = PROTO_MODE_HTTP; |
| else |
| mode = PROTO_MODE_TCP; |
| |
| conn_get_alpn(conn, &alpn_str, &alpn_len); |
| mux_proto = ist2(alpn_str, alpn_len); |
| mux_ops = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_FE, mode); |
| if (!mux_ops) |
| return -1; |
| } |
| return conn_install_mux(conn, mux_ops, ctx, bind_conf->frontend, conn->owner); |
| } |
| |
| /* installs the best mux for outgoing connection <conn> using the upper context |
| * <ctx>. If the server mux protocol is forced, we use it to find the best mux. |
| * It's also possible to specify an alternative mux protocol <force_mux_ops>, |
| * in which case it will be used instead of the default server mux protocol. |
| * |
| * Returns < 0 on error. |
| */ |
| int conn_install_mux_be(struct connection *conn, void *ctx, struct session *sess, |
| const struct mux_ops *force_mux_ops) |
| { |
| struct server *srv = objt_server(conn->target); |
| struct proxy *prx = objt_proxy(conn->target); |
| const struct mux_ops *mux_ops; |
| |
| if (srv) |
| prx = srv->proxy; |
| |
| if (!prx) // target must be either proxy or server |
| return -1; |
| |
| if (srv && srv->mux_proto && likely(!force_mux_ops)) { |
| mux_ops = srv->mux_proto->mux; |
| } |
| else if (srv && unlikely(force_mux_ops)) { |
| mux_ops = force_mux_ops; |
| } |
| else { |
| struct ist mux_proto; |
| const char *alpn_str = NULL; |
| int alpn_len = 0; |
| int mode; |
| |
| if (prx->mode == PR_MODE_HTTP) |
| mode = PROTO_MODE_HTTP; |
| else |
| mode = PROTO_MODE_TCP; |
| |
| conn_get_alpn(conn, &alpn_str, &alpn_len); |
| mux_proto = ist2(alpn_str, alpn_len); |
| |
| mux_ops = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_BE, mode); |
| if (!mux_ops) |
| return -1; |
| } |
| return conn_install_mux(conn, mux_ops, ctx, prx, sess); |
| } |
| |
| /* installs the best mux for outgoing connection <conn> for a check using the |
| * upper context <ctx>. If the mux protocol is forced by the check, we use it to |
| * find the best mux. Returns < 0 on error. |
| */ |
| int conn_install_mux_chk(struct connection *conn, void *ctx, struct session *sess) |
| { |
| struct check *check = objt_check(sess->origin); |
| struct server *srv = objt_server(conn->target); |
| struct proxy *prx = objt_proxy(conn->target); |
| const struct mux_ops *mux_ops; |
| |
| if (!check) // Check must be defined |
| return -1; |
| |
| if (srv) |
| prx = srv->proxy; |
| |
| if (!prx) // target must be either proxy or server |
| return -1; |
| |
| if (check->mux_proto) |
| mux_ops = check->mux_proto->mux; |
| else { |
| struct ist mux_proto; |
| const char *alpn_str = NULL; |
| int alpn_len = 0; |
| int mode; |
| |
| if ((check->tcpcheck_rules->flags & TCPCHK_RULES_PROTO_CHK) == TCPCHK_RULES_HTTP_CHK) |
| mode = PROTO_MODE_HTTP; |
| else |
| mode = PROTO_MODE_TCP; |
| |
| conn_get_alpn(conn, &alpn_str, &alpn_len); |
| mux_proto = ist2(alpn_str, alpn_len); |
| |
| mux_ops = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_BE, mode); |
| if (!mux_ops) |
| return -1; |
| } |
| return conn_install_mux(conn, mux_ops, ctx, prx, sess); |
| } |
| |
| /* Set the ALPN of connection <conn> to <alpn>. If force is false, <alpn> must |
| * be a subset or identical to the registered protos for the parent SSL_CTX. |
| * In this case <alpn> must be a single protocol value, not a list. |
| * |
| * Returns 0 if ALPN is updated else -1. |
| */ |
| int conn_update_alpn(struct connection *conn, const struct ist alpn, int force) |
| { |
| #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation |
| size_t alpn_len = istlen(alpn); |
| char *ctx_alpn_str = NULL; |
| int ctx_alpn_len = 0, found = 0; |
| |
| /* if not force, first search if alpn is a subset or identical to the |
| * parent SSL_CTX. |
| */ |
| if (!force) { |
| /* retrieve the SSL_CTX according to the connection side. */ |
| if (conn_is_back(conn)) { |
| if (obj_type(conn->target) == OBJ_TYPE_SERVER) { |
| struct server *srv = __objt_server(conn->target); |
| ctx_alpn_str = srv->ssl_ctx.alpn_str; |
| ctx_alpn_len = srv->ssl_ctx.alpn_len; |
| } |
| } |
| else { |
| struct session *sess = conn->owner; |
| struct listener *li = sess->listener; |
| |
| if (li->bind_conf && li->bind_conf->options & BC_O_USE_SSL) { |
| ctx_alpn_str = li->bind_conf->ssl_conf.alpn_str; |
| ctx_alpn_len = li->bind_conf->ssl_conf.alpn_len; |
| } |
| } |
| |
| if (ctx_alpn_str) { |
| /* search if ALPN is present in SSL_CTX ALPN before |
| * using it. |
| */ |
| while (ctx_alpn_len) { |
| /* skip ALPN whose size is not 8 */ |
| if (*ctx_alpn_str != alpn_len - 1) { |
| ctx_alpn_len -= *ctx_alpn_str + 1; |
| } |
| else { |
| if (isteqi(ist2(ctx_alpn_str, alpn_len), alpn)) { |
| found = 1; |
| break; |
| } |
| } |
| ctx_alpn_str += *ctx_alpn_str + 1; |
| |
| /* This indicates an invalid ALPN formatted |
| * string and should never happen. */ |
| BUG_ON(ctx_alpn_len < 0); |
| } |
| } |
| } |
| |
| if (found || force) { |
| ssl_sock_set_alpn(conn, (const uchar *)istptr(alpn), istlen(alpn)); |
| return 0; |
| } |
| |
| #endif |
| return -1; |
| } |
| |
| /* Initializes all required fields for a new connection. Note that it does the |
| * minimum acceptable initialization for a connection that already exists and |
| * is about to be reused. It also leaves the addresses untouched, which makes |
| * it usable across connection retries to reset a connection to a known state. |
| */ |
| void conn_init(struct connection *conn, void *target) |
| { |
| conn->obj_type = OBJ_TYPE_CONN; |
| conn->flags = CO_FL_NONE; |
| conn->mux = NULL; |
| conn->ctx = NULL; |
| conn->owner = NULL; |
| conn->send_proxy_ofs = 0; |
| conn->handle.fd = DEAD_FD_MAGIC; |
| conn->err_code = CO_ER_NONE; |
| conn->target = target; |
| conn->destroy_cb = NULL; |
| conn->proxy_netns = NULL; |
| MT_LIST_INIT(&conn->toremove_list); |
| if (conn_is_back(conn)) |
| LIST_INIT(&conn->session_list); |
| else |
| LIST_INIT(&conn->stopping_list); |
| conn->subs = NULL; |
| conn->src = NULL; |
| conn->dst = NULL; |
| conn->proxy_authority = IST_NULL; |
| conn->proxy_unique_id = IST_NULL; |
| conn->hash_node = NULL; |
| conn->xprt = NULL; |
| } |
| |
| /* Tries to allocate a new connection and initialized its main fields. The |
| * connection is returned on success, NULL on failure. The connection must |
| * be released using pool_free() or conn_free(). |
| */ |
| struct connection *conn_new(void *target) |
| { |
| struct connection *conn; |
| struct conn_hash_node *hash_node; |
| |
| conn = pool_alloc(pool_head_connection); |
| if (unlikely(!conn)) |
| return NULL; |
| |
| conn_init(conn, target); |
| |
| if (conn_is_back(conn)) { |
| if (obj_type(target) == OBJ_TYPE_SERVER) |
| srv_use_conn(__objt_server(target), conn); |
| |
| hash_node = conn_alloc_hash_node(conn); |
| if (unlikely(!hash_node)) { |
| pool_free(pool_head_connection, conn); |
| return NULL; |
| } |
| |
| conn->hash_node = hash_node; |
| } |
| |
| return conn; |
| } |
| |
| /* Releases a connection previously allocated by conn_new() */ |
| void conn_free(struct connection *conn) |
| { |
| /* If the connection is owned by the session, remove it from its list |
| */ |
| if (conn_is_back(conn) && LIST_INLIST(&conn->session_list)) { |
| session_unown_conn(conn->owner, conn); |
| } |
| else if (!(conn->flags & CO_FL_PRIVATE)) { |
| if (obj_type(conn->target) == OBJ_TYPE_SERVER) |
| srv_release_conn(__objt_server(conn->target), conn); |
| } |
| |
| /* Remove the conn from toremove_list. |
| * |
| * This is needed to prevent a double-free in case the connection was |
| * already scheduled from cleaning but is freed before via another |
| * call. |
| */ |
| MT_LIST_DELETE(&conn->toremove_list); |
| |
| sockaddr_free(&conn->src); |
| sockaddr_free(&conn->dst); |
| |
| pool_free(pool_head_authority, istptr(conn->proxy_authority)); |
| conn->proxy_authority = IST_NULL; |
| |
| pool_free(pool_head_uniqueid, istptr(conn->proxy_unique_id)); |
| conn->proxy_unique_id = IST_NULL; |
| |
| pool_free(pool_head_conn_hash_node, conn->hash_node); |
| conn->hash_node = NULL; |
| |
| conn_force_unsubscribe(conn); |
| pool_free(pool_head_connection, conn); |
| } |
| |
| struct conn_hash_node *conn_alloc_hash_node(struct connection *conn) |
| { |
| struct conn_hash_node *hash_node = NULL; |
| |
| hash_node = pool_zalloc(pool_head_conn_hash_node); |
| if (unlikely(!hash_node)) |
| return NULL; |
| |
| hash_node->conn = conn; |
| |
| return hash_node; |
| } |
| |
| /* Allocates a struct sockaddr from the pool if needed, assigns it to *sap and |
| * returns it. If <sap> is NULL, the address is always allocated and returned. |
| * if <sap> is non-null, an address will only be allocated if it points to a |
| * non-null pointer. In this case the allocated address will be assigned there. |
| * If <orig> is non-null and <len> positive, the address in <sa> will be copied |
| * into the allocated address. In both situations the new pointer is returned. |
| */ |
| struct sockaddr_storage *sockaddr_alloc(struct sockaddr_storage **sap, const struct sockaddr_storage *orig, socklen_t len) |
| { |
| struct sockaddr_storage *sa; |
| |
| if (sap && *sap) |
| return *sap; |
| |
| sa = pool_alloc(pool_head_sockaddr); |
| if (sa && orig && len > 0) |
| memcpy(sa, orig, len); |
| if (sap) |
| *sap = sa; |
| return sa; |
| } |
| |
| /* Releases the struct sockaddr potentially pointed to by <sap> to the pool. It |
| * may be NULL or may point to NULL. If <sap> is not NULL, a NULL is placed |
| * there. |
| */ |
| void sockaddr_free(struct sockaddr_storage **sap) |
| { |
| if (!sap) |
| return; |
| pool_free(pool_head_sockaddr, *sap); |
| *sap = NULL; |
| } |
| |
| /* Try to add a handshake pseudo-XPRT. If the connection's first XPRT is |
| * raw_sock, then just use the new XPRT as the connection XPRT, otherwise |
| * call the xprt's add_xprt() method. |
| * Returns 0 on success, or non-zero on failure. |
| */ |
| int xprt_add_hs(struct connection *conn) |
| { |
| void *xprt_ctx = NULL; |
| const struct xprt_ops *ops = xprt_get(XPRT_HANDSHAKE); |
| void *nextxprt_ctx = NULL; |
| const struct xprt_ops *nextxprt_ops = NULL; |
| |
| if (conn->flags & CO_FL_ERROR) |
| return -1; |
| if (ops->init(conn, &xprt_ctx) < 0) |
| return -1; |
| if (conn->xprt == xprt_get(XPRT_RAW)) { |
| nextxprt_ctx = conn->xprt_ctx; |
| nextxprt_ops = conn->xprt; |
| conn->xprt_ctx = xprt_ctx; |
| conn->xprt = ops; |
| } else { |
| if (conn->xprt->add_xprt(conn, conn->xprt_ctx, xprt_ctx, ops, |
| &nextxprt_ctx, &nextxprt_ops) != 0) { |
| ops->close(conn, xprt_ctx); |
| return -1; |
| } |
| } |
| if (ops->add_xprt(conn, xprt_ctx, nextxprt_ctx, nextxprt_ops, NULL, NULL) != 0) { |
| ops->close(conn, xprt_ctx); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* returns a human-readable error code for conn->err_code, or NULL if the code |
| * is unknown. |
| */ |
| const char *conn_err_code_str(struct connection *c) |
| { |
| switch (c->err_code) { |
| case CO_ER_NONE: return "Success"; |
| |
| case CO_ER_CONF_FDLIM: return "Reached configured maxconn value"; |
| case CO_ER_PROC_FDLIM: return "Too many sockets on the process"; |
| case CO_ER_SYS_FDLIM: return "Too many sockets on the system"; |
| case CO_ER_SYS_MEMLIM: return "Out of system buffers"; |
| case CO_ER_NOPROTO: return "Protocol or address family not supported"; |
| case CO_ER_SOCK_ERR: return "General socket error"; |
| case CO_ER_PORT_RANGE: return "Source port range exhausted"; |
| case CO_ER_CANT_BIND: return "Can't bind to source address"; |
| case CO_ER_FREE_PORTS: return "Out of local source ports on the system"; |
| case CO_ER_ADDR_INUSE: return "Local source address already in use"; |
| |
| case CO_ER_PRX_EMPTY: return "Connection closed while waiting for PROXY protocol header"; |
| case CO_ER_PRX_ABORT: return "Connection error while waiting for PROXY protocol header"; |
| case CO_ER_PRX_TIMEOUT: return "Timeout while waiting for PROXY protocol header"; |
| case CO_ER_PRX_TRUNCATED: return "Truncated PROXY protocol header received"; |
| case CO_ER_PRX_NOT_HDR: return "Received something which does not look like a PROXY protocol header"; |
| case CO_ER_PRX_BAD_HDR: return "Received an invalid PROXY protocol header"; |
| case CO_ER_PRX_BAD_PROTO: return "Received an unhandled protocol in the PROXY protocol header"; |
| |
| case CO_ER_CIP_EMPTY: return "Connection closed while waiting for NetScaler Client IP header"; |
| case CO_ER_CIP_ABORT: return "Connection error while waiting for NetScaler Client IP header"; |
| case CO_ER_CIP_TIMEOUT: return "Timeout while waiting for a NetScaler Client IP header"; |
| case CO_ER_CIP_TRUNCATED: return "Truncated NetScaler Client IP header received"; |
| case CO_ER_CIP_BAD_MAGIC: return "Received an invalid NetScaler Client IP magic number"; |
| case CO_ER_CIP_BAD_PROTO: return "Received an unhandled protocol in the NetScaler Client IP header"; |
| |
| case CO_ER_SSL_EMPTY: return "Connection closed during SSL handshake"; |
| case CO_ER_SSL_ABORT: return "Connection error during SSL handshake"; |
| case CO_ER_SSL_TIMEOUT: return "Timeout during SSL handshake"; |
| case CO_ER_SSL_TOO_MANY: return "Too many SSL connections"; |
| case CO_ER_SSL_NO_MEM: return "Out of memory when initializing an SSL connection"; |
| case CO_ER_SSL_RENEG: return "Rejected a client-initiated SSL renegotiation attempt"; |
| case CO_ER_SSL_CA_FAIL: return "SSL client CA chain cannot be verified"; |
| case CO_ER_SSL_CRT_FAIL: return "SSL client certificate not trusted"; |
| case CO_ER_SSL_MISMATCH: return "Server presented an SSL certificate different from the configured one"; |
| case CO_ER_SSL_MISMATCH_SNI: return "Server presented an SSL certificate different from the expected one"; |
| case CO_ER_SSL_HANDSHAKE: return "SSL handshake failure"; |
| case CO_ER_SSL_HANDSHAKE_HB: return "SSL handshake failure after heartbeat"; |
| case CO_ER_SSL_KILLED_HB: return "Stopped a TLSv1 heartbeat attack (CVE-2014-0160)"; |
| case CO_ER_SSL_NO_TARGET: return "Attempt to use SSL on an unknown target (internal error)"; |
| case CO_ER_SSL_EARLY_FAILED: return "Server refused early data"; |
| |
| case CO_ER_SOCKS4_SEND: return "SOCKS4 Proxy write error during handshake"; |
| case CO_ER_SOCKS4_RECV: return "SOCKS4 Proxy read error during handshake"; |
| case CO_ER_SOCKS4_DENY: return "SOCKS4 Proxy deny the request"; |
| case CO_ER_SOCKS4_ABORT: return "SOCKS4 Proxy handshake aborted by server"; |
| |
| case CO_ERR_SSL_FATAL: return "SSL fatal error"; |
| } |
| return NULL; |
| } |
| |
| /* Send a message over an established connection. It makes use of send() and |
| * returns the same return code and errno. If the socket layer is not ready yet |
| * then -1 is returned and ENOTSOCK is set into errno. If the fd is not marked |
| * as ready, or if EAGAIN or ENOTCONN is returned, then we return 0. It returns |
| * EMSGSIZE if called with a zero length message. The purpose is to simplify |
| * some rare attempts to directly write on the socket from above the connection |
| * (typically send_proxy). In case of EAGAIN, the fd is marked as "cant_send". |
| * It automatically retries on EINTR. Other errors cause the connection to be |
| * marked as in error state. It takes similar arguments as send() except the |
| * first one which is the connection instead of the file descriptor. <flags> |
| * only support CO_SFL_MSG_MORE. |
| */ |
| int conn_ctrl_send(struct connection *conn, const void *buf, int len, int flags) |
| { |
| const struct buffer buffer = b_make((char*)buf, len, 0, len); |
| const struct xprt_ops *xprt = xprt_get(XPRT_RAW); |
| int ret; |
| |
| ret = -1; |
| errno = ENOTSOCK; |
| |
| if (conn->flags & CO_FL_SOCK_WR_SH) |
| goto fail; |
| |
| if (!conn_ctrl_ready(conn)) |
| goto fail; |
| |
| errno = EMSGSIZE; |
| if (!len) |
| goto fail; |
| |
| /* snd_buf() already takes care of updating conn->flags and handling |
| * the FD polling status. |
| */ |
| ret = xprt->snd_buf(conn, NULL, &buffer, buffer.data, flags); |
| if (conn->flags & CO_FL_ERROR) |
| ret = -1; |
| return ret; |
| fail: |
| conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH | CO_FL_ERROR; |
| return ret; |
| } |
| |
| /* Called from the upper layer, to unsubscribe <es> from events <event_type>. |
| * The event subscriber <es> is not allowed to change from a previous call as |
| * long as at least one event is still subscribed. The <event_type> must only |
| * be a combination of SUB_RETRY_RECV and SUB_RETRY_SEND. It always returns 0. |
| */ |
| int conn_unsubscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es) |
| { |
| BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV)); |
| BUG_ON(conn->subs && conn->subs != es); |
| |
| es->events &= ~event_type; |
| if (!es->events) |
| conn->subs = NULL; |
| |
| if (conn_ctrl_ready(conn) && conn->ctrl->ignore_events) |
| conn->ctrl->ignore_events(conn, event_type); |
| |
| return 0; |
| } |
| |
| /* Called from the upper layer, to subscribe <es> to events <event_type>. |
| * The <es> struct is not allowed to differ from the one passed during a |
| * previous call to subscribe(). If the connection's ctrl layer is ready, |
| * the wait_event is immediately woken up and the subcription is cancelled. |
| * It always returns zero. |
| */ |
| int conn_subscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es) |
| { |
| int ret = 0; |
| |
| BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV)); |
| BUG_ON(conn->subs && conn->subs != es); |
| |
| if (conn->subs && (conn->subs->events & event_type) == event_type) |
| return 0; |
| |
| if (conn_ctrl_ready(conn) && conn->ctrl->check_events) { |
| ret = conn->ctrl->check_events(conn, event_type); |
| if (ret) |
| tasklet_wakeup(es->tasklet); |
| } |
| |
| es->events = (es->events | event_type) & ~ret; |
| conn->subs = es->events ? es : NULL; |
| return 0; |
| } |
| |
| /* Drains possibly pending incoming data on the connection and update the flags |
| * accordingly. This is used to know whether we need to disable lingering on |
| * close. Returns non-zero if it is safe to close without disabling lingering, |
| * otherwise zero. The CO_FL_SOCK_RD_SH flag may also be updated if the incoming |
| * shutdown was reported by the ->drain() function. |
| */ |
| int conn_ctrl_drain(struct connection *conn) |
| { |
| int ret = 0; |
| |
| if (!conn_ctrl_ready(conn) || conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH)) |
| ret = 1; |
| else if (conn->ctrl->drain) { |
| ret = conn->ctrl->drain(conn); |
| if (ret) |
| conn->flags |= CO_FL_SOCK_RD_SH; |
| } |
| return ret; |
| } |
| |
| /* |
| * Get data length from tlv |
| */ |
| static inline size_t get_tlv_length(const struct tlv *src) |
| { |
| return (src->length_hi << 8) | src->length_lo; |
| } |
| |
| /* This handshake handler waits a PROXY protocol header at the beginning of the |
| * raw data stream. The header looks like this : |
| * |
| * "PROXY" <SP> PROTO <SP> SRC3 <SP> DST3 <SP> SRC4 <SP> <DST4> "\r\n" |
| * |
| * There must be exactly one space between each field. Fields are : |
| * - PROTO : layer 4 protocol, which must be "TCP4" or "TCP6". |
| * - SRC3 : layer 3 (eg: IP) source address in standard text form |
| * - DST3 : layer 3 (eg: IP) destination address in standard text form |
| * - SRC4 : layer 4 (eg: TCP port) source address in standard text form |
| * - DST4 : layer 4 (eg: TCP port) destination address in standard text form |
| * |
| * This line MUST be at the beginning of the buffer and MUST NOT wrap. |
| * |
| * The header line is small and in all cases smaller than the smallest normal |
| * TCP MSS. So it MUST always be delivered as one segment, which ensures we |
| * can safely use MSG_PEEK and avoid buffering. |
| * |
| * Once the data is fetched, the values are set in the connection's address |
| * fields, and data are removed from the socket's buffer. The function returns |
| * zero if it needs to wait for more data or if it fails, or 1 if it completed |
| * and removed itself. |
| */ |
| int conn_recv_proxy(struct connection *conn, int flag) |
| { |
| struct session *sess = conn->owner; |
| char *line, *end; |
| struct proxy_hdr_v2 *hdr_v2; |
| const char v2sig[] = PP2_SIGNATURE; |
| size_t total_v2_len; |
| size_t tlv_offset = 0; |
| int ret; |
| |
| if (!conn_ctrl_ready(conn)) |
| goto fail; |
| |
| BUG_ON(conn->flags & CO_FL_FDLESS); |
| |
| if (!fd_recv_ready(conn->handle.fd)) |
| goto not_ready; |
| |
| while (1) { |
| ret = recv(conn->handle.fd, trash.area, trash.size, MSG_PEEK); |
| if (ret < 0) { |
| if (errno == EINTR) |
| continue; |
| if (errno == EAGAIN || errno == EWOULDBLOCK) { |
| fd_cant_recv(conn->handle.fd); |
| goto not_ready; |
| } |
| goto recv_abort; |
| } |
| trash.data = ret; |
| break; |
| } |
| |
| if (!trash.data) { |
| /* client shutdown */ |
| conn->err_code = CO_ER_PRX_EMPTY; |
| goto fail; |
| } |
| |
| conn->flags &= ~CO_FL_WAIT_L4_CONN; |
| |
| if (trash.data < 6) |
| goto missing; |
| |
| line = trash.area; |
| end = trash.area + trash.data; |
| |
| /* Decode a possible proxy request, fail early if it does not match */ |
| if (strncmp(line, "PROXY ", 6) != 0) |
| goto not_v1; |
| |
| line += 6; |
| if (trash.data < 9) /* shortest possible line */ |
| goto missing; |
| |
| if (memcmp(line, "TCP4 ", 5) == 0) { |
| u32 src3, dst3, sport, dport; |
| |
| line += 5; |
| |
| src3 = inetaddr_host_lim_ret(line, end, &line); |
| if (line == end) |
| goto missing; |
| if (*line++ != ' ') |
| goto bad_header; |
| |
| dst3 = inetaddr_host_lim_ret(line, end, &line); |
| if (line == end) |
| goto missing; |
| if (*line++ != ' ') |
| goto bad_header; |
| |
| sport = read_uint((const char **)&line, end); |
| if (line == end) |
| goto missing; |
| if (*line++ != ' ') |
| goto bad_header; |
| |
| dport = read_uint((const char **)&line, end); |
| if (line > end - 2) |
| goto missing; |
| if (*line++ != '\r') |
| goto bad_header; |
| if (*line++ != '\n') |
| goto bad_header; |
| |
| if (!sess || !sockaddr_alloc(&sess->src, NULL, 0) || !sockaddr_alloc(&sess->dst, NULL, 0)) |
| goto fail; |
| |
| /* update the session's addresses and mark them set */ |
| ((struct sockaddr_in *)sess->src)->sin_family = AF_INET; |
| ((struct sockaddr_in *)sess->src)->sin_addr.s_addr = htonl(src3); |
| ((struct sockaddr_in *)sess->src)->sin_port = htons(sport); |
| |
| ((struct sockaddr_in *)sess->dst)->sin_family = AF_INET; |
| ((struct sockaddr_in *)sess->dst)->sin_addr.s_addr = htonl(dst3); |
| ((struct sockaddr_in *)sess->dst)->sin_port = htons(dport); |
| } |
| else if (memcmp(line, "TCP6 ", 5) == 0) { |
| u32 sport, dport; |
| char *src_s; |
| char *dst_s, *sport_s, *dport_s; |
| struct in6_addr src3, dst3; |
| |
| line += 5; |
| |
| src_s = line; |
| dst_s = sport_s = dport_s = NULL; |
| while (1) { |
| if (line > end - 2) { |
| goto missing; |
| } |
| else if (*line == '\r') { |
| *line = 0; |
| line++; |
| if (*line++ != '\n') |
| goto bad_header; |
| break; |
| } |
| |
| if (*line == ' ') { |
| *line = 0; |
| if (!dst_s) |
| dst_s = line + 1; |
| else if (!sport_s) |
| sport_s = line + 1; |
| else if (!dport_s) |
| dport_s = line + 1; |
| } |
| line++; |
| } |
| |
| if (!dst_s || !sport_s || !dport_s) |
| goto bad_header; |
| |
| sport = read_uint((const char **)&sport_s,dport_s - 1); |
| if (*sport_s != 0) |
| goto bad_header; |
| |
| dport = read_uint((const char **)&dport_s,line - 2); |
| if (*dport_s != 0) |
| goto bad_header; |
| |
| if (inet_pton(AF_INET6, src_s, (void *)&src3) != 1) |
| goto bad_header; |
| |
| if (inet_pton(AF_INET6, dst_s, (void *)&dst3) != 1) |
| goto bad_header; |
| |
| if (!sess || !sockaddr_alloc(&sess->src, NULL, 0) || !sockaddr_alloc(&sess->dst, NULL, 0)) |
| goto fail; |
| |
| /* update the session's addresses and mark them set */ |
| ((struct sockaddr_in6 *)sess->src)->sin6_family = AF_INET6; |
| memcpy(&((struct sockaddr_in6 *)sess->src)->sin6_addr, &src3, sizeof(struct in6_addr)); |
| ((struct sockaddr_in6 *)sess->src)->sin6_port = htons(sport); |
| |
| ((struct sockaddr_in6 *)sess->dst)->sin6_family = AF_INET6; |
| memcpy(&((struct sockaddr_in6 *)sess->dst)->sin6_addr, &dst3, sizeof(struct in6_addr)); |
| ((struct sockaddr_in6 *)sess->dst)->sin6_port = htons(dport); |
| } |
| else if (memcmp(line, "UNKNOWN\r\n", 9) == 0) { |
| /* This can be a UNIX socket forwarded by an haproxy upstream */ |
| line += 9; |
| } |
| else { |
| /* The protocol does not match something known (TCP4/TCP6/UNKNOWN) */ |
| conn->err_code = CO_ER_PRX_BAD_PROTO; |
| goto fail; |
| } |
| |
| trash.data = line - trash.area; |
| goto eat_header; |
| |
| not_v1: |
| /* try PPv2 */ |
| if (trash.data < PP2_HEADER_LEN) |
| goto missing; |
| |
| hdr_v2 = (struct proxy_hdr_v2 *) trash.area; |
| |
| if (memcmp(hdr_v2->sig, v2sig, PP2_SIGNATURE_LEN) != 0 || |
| (hdr_v2->ver_cmd & PP2_VERSION_MASK) != PP2_VERSION) { |
| conn->err_code = CO_ER_PRX_NOT_HDR; |
| goto fail; |
| } |
| |
| total_v2_len = PP2_HEADER_LEN + ntohs(hdr_v2->len); |
| if (trash.data < total_v2_len) |
| goto missing; |
| |
| switch (hdr_v2->ver_cmd & PP2_CMD_MASK) { |
| case 0x01: /* PROXY command */ |
| switch (hdr_v2->fam) { |
| case 0x11: /* TCPv4 */ |
| if (ntohs(hdr_v2->len) < PP2_ADDR_LEN_INET) |
| goto bad_header; |
| |
| if (!sess || !sockaddr_alloc(&sess->src, NULL, 0) || !sockaddr_alloc(&sess->dst, NULL, 0)) |
| goto fail; |
| |
| ((struct sockaddr_in *)sess->src)->sin_family = AF_INET; |
| ((struct sockaddr_in *)sess->src)->sin_addr.s_addr = hdr_v2->addr.ip4.src_addr; |
| ((struct sockaddr_in *)sess->src)->sin_port = hdr_v2->addr.ip4.src_port; |
| ((struct sockaddr_in *)sess->dst)->sin_family = AF_INET; |
| ((struct sockaddr_in *)sess->dst)->sin_addr.s_addr = hdr_v2->addr.ip4.dst_addr; |
| ((struct sockaddr_in *)sess->dst)->sin_port = hdr_v2->addr.ip4.dst_port; |
| tlv_offset = PP2_HEADER_LEN + PP2_ADDR_LEN_INET; |
| break; |
| case 0x21: /* TCPv6 */ |
| if (ntohs(hdr_v2->len) < PP2_ADDR_LEN_INET6) |
| goto bad_header; |
| |
| if (!sess || !sockaddr_alloc(&sess->src, NULL, 0) || !sockaddr_alloc(&sess->dst, NULL, 0)) |
| goto fail; |
| |
| ((struct sockaddr_in6 *)sess->src)->sin6_family = AF_INET6; |
| memcpy(&((struct sockaddr_in6 *)sess->src)->sin6_addr, hdr_v2->addr.ip6.src_addr, 16); |
| ((struct sockaddr_in6 *)sess->src)->sin6_port = hdr_v2->addr.ip6.src_port; |
| ((struct sockaddr_in6 *)sess->dst)->sin6_family = AF_INET6; |
| memcpy(&((struct sockaddr_in6 *)sess->dst)->sin6_addr, hdr_v2->addr.ip6.dst_addr, 16); |
| ((struct sockaddr_in6 *)sess->dst)->sin6_port = hdr_v2->addr.ip6.dst_port; |
| tlv_offset = PP2_HEADER_LEN + PP2_ADDR_LEN_INET6; |
| break; |
| } |
| |
| /* TLV parsing */ |
| while (tlv_offset < total_v2_len) { |
| struct tlv *tlv_packet; |
| struct ist tlv; |
| |
| /* Verify that we have at least TLV_HEADER_SIZE bytes left */ |
| if (tlv_offset + TLV_HEADER_SIZE > total_v2_len) |
| goto bad_header; |
| |
| tlv_packet = (struct tlv *) &trash.area[tlv_offset]; |
| tlv = ist2((const char *)tlv_packet->value, get_tlv_length(tlv_packet)); |
| tlv_offset += istlen(tlv) + TLV_HEADER_SIZE; |
| |
| /* Verify that the TLV length does not exceed the total PROXYv2 length */ |
| if (tlv_offset > total_v2_len) |
| goto bad_header; |
| |
| switch (tlv_packet->type) { |
| case PP2_TYPE_CRC32C: { |
| uint32_t n_crc32c; |
| |
| /* Verify that this TLV is exactly 4 bytes long */ |
| if (istlen(tlv) != 4) |
| goto bad_header; |
| |
| n_crc32c = read_n32(istptr(tlv)); |
| write_n32(istptr(tlv), 0); // compute with CRC==0 |
| |
| if (hash_crc32c(trash.area, total_v2_len) != n_crc32c) |
| goto bad_header; |
| break; |
| } |
| #ifdef USE_NS |
| case PP2_TYPE_NETNS: { |
| const struct netns_entry *ns; |
| |
| ns = netns_store_lookup(istptr(tlv), istlen(tlv)); |
| if (ns) |
| conn->proxy_netns = ns; |
| break; |
| } |
| #endif |
| case PP2_TYPE_AUTHORITY: { |
| if (istlen(tlv) > PP2_AUTHORITY_MAX) |
| goto bad_header; |
| conn->proxy_authority = ist2(pool_alloc(pool_head_authority), 0); |
| if (!isttest(conn->proxy_authority)) |
| goto fail; |
| if (istcpy(&conn->proxy_authority, tlv, PP2_AUTHORITY_MAX) < 0) { |
| /* This is impossible, because we verified that the TLV value fits. */ |
| my_unreachable(); |
| goto fail; |
| } |
| break; |
| } |
| case PP2_TYPE_UNIQUE_ID: { |
| if (istlen(tlv) > UNIQUEID_LEN) |
| goto bad_header; |
| conn->proxy_unique_id = ist2(pool_alloc(pool_head_uniqueid), 0); |
| if (!isttest(conn->proxy_unique_id)) |
| goto fail; |
| if (istcpy(&conn->proxy_unique_id, tlv, UNIQUEID_LEN) < 0) { |
| /* This is impossible, because we verified that the TLV value fits. */ |
| my_unreachable(); |
| goto fail; |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| /* Verify that the PROXYv2 header ends at a TLV boundary. |
| * This is can not be true, because the TLV parsing already |
| * verifies that a TLV does not exceed the total length and |
| * also that there is space for a TLV header. |
| */ |
| BUG_ON(tlv_offset != total_v2_len); |
| |
| /* unsupported protocol, keep local connection address */ |
| break; |
| case 0x00: /* LOCAL command */ |
| /* keep local connection address for LOCAL */ |
| break; |
| default: |
| goto bad_header; /* not a supported command */ |
| } |
| |
| trash.data = total_v2_len; |
| goto eat_header; |
| |
| eat_header: |
| /* remove the PROXY line from the request. For this we re-read the |
| * exact line at once. If we don't get the exact same result, we |
| * fail. |
| */ |
| while (1) { |
| ssize_t len2 = recv(conn->handle.fd, trash.area, trash.data, 0); |
| |
| if (len2 < 0 && errno == EINTR) |
| continue; |
| if (len2 != trash.data) |
| goto recv_abort; |
| break; |
| } |
| |
| conn->flags &= ~flag; |
| conn->flags |= CO_FL_RCVD_PROXY; |
| return 1; |
| |
| not_ready: |
| return 0; |
| |
| missing: |
| /* Missing data. Since we're using MSG_PEEK, we can only poll again if |
| * we have not read anything. Otherwise we need to fail because we won't |
| * be able to poll anymore. |
| */ |
| conn->err_code = CO_ER_PRX_TRUNCATED; |
| goto fail; |
| |
| bad_header: |
| /* This is not a valid proxy protocol header */ |
| conn->err_code = CO_ER_PRX_BAD_HDR; |
| goto fail; |
| |
| recv_abort: |
| conn->err_code = CO_ER_PRX_ABORT; |
| conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH; |
| goto fail; |
| |
| fail: |
| conn->flags |= CO_FL_ERROR; |
| return 0; |
| } |
| |
| /* This callback is used to send a valid PROXY protocol line to a socket being |
| * established. It returns 0 if it fails in a fatal way or needs to poll to go |
| * further, otherwise it returns non-zero and removes itself from the connection's |
| * flags (the bit is provided in <flag> by the caller). It is designed to be |
| * called by the connection handler and relies on it to commit polling changes. |
| * Note that it can emit a PROXY line by relying on the other end's address |
| * when the connection is attached to a stream connector, or by resolving the |
| * local address otherwise (also called a LOCAL line). |
| */ |
| int conn_send_proxy(struct connection *conn, unsigned int flag) |
| { |
| if (!conn_ctrl_ready(conn)) |
| goto out_error; |
| |
| /* If we have a PROXY line to send, we'll use this to validate the |
| * connection, in which case the connection is validated only once |
| * we've sent the whole proxy line. Otherwise we use connect(). |
| */ |
| if (conn->send_proxy_ofs) { |
| struct stconn *sc; |
| int ret; |
| |
| /* If there is no mux attached to the connection, it means the |
| * connection context is a stream connector. |
| */ |
| sc = conn->mux ? conn_get_first_sc(conn) : conn->ctx; |
| |
| /* The target server expects a PROXY line to be sent first. |
| * If the send_proxy_ofs is negative, it corresponds to the |
| * offset to start sending from then end of the proxy string |
| * (which is recomputed every time since it's constant). If |
| * it is positive, it means we have to send from the start. |
| * We can only send a "normal" PROXY line when the connection |
| * is attached to a stream connector. Otherwise we can only |
| * send a LOCAL line (eg: for use with health checks). |
| */ |
| |
| if (sc && sc_strm(sc)) { |
| ret = make_proxy_line(trash.area, trash.size, |
| objt_server(conn->target), |
| sc_conn(sc_opposite(sc)), |
| __sc_strm(sc)); |
| } |
| else { |
| /* The target server expects a LOCAL line to be sent first. Retrieving |
| * local or remote addresses may fail until the connection is established. |
| */ |
| if (!conn_get_src(conn) || !conn_get_dst(conn)) |
| goto out_wait; |
| |
| ret = make_proxy_line(trash.area, trash.size, |
| objt_server(conn->target), conn, |
| NULL); |
| } |
| |
| if (!ret) |
| goto out_error; |
| |
| if (conn->send_proxy_ofs > 0) |
| conn->send_proxy_ofs = -ret; /* first call */ |
| |
| /* we have to send trash from (ret+sp for -sp bytes). If the |
| * data layer has a pending write, we'll also set MSG_MORE. |
| */ |
| ret = conn_ctrl_send(conn, |
| trash.area + ret + conn->send_proxy_ofs, |
| -conn->send_proxy_ofs, |
| (conn->subs && conn->subs->events & SUB_RETRY_SEND) ? CO_SFL_MSG_MORE : 0); |
| |
| if (ret < 0) |
| goto out_error; |
| |
| conn->send_proxy_ofs += ret; /* becomes zero once complete */ |
| if (conn->send_proxy_ofs != 0) |
| goto out_wait; |
| |
| /* OK we've sent the whole line, we're connected */ |
| } |
| |
| /* The connection is ready now, simply return and let the connection |
| * handler notify upper layers if needed. |
| */ |
| conn->flags &= ~CO_FL_WAIT_L4_CONN; |
| conn->flags &= ~flag; |
| return 1; |
| |
| out_error: |
| /* Write error on the file descriptor */ |
| conn->flags |= CO_FL_ERROR; |
| return 0; |
| |
| out_wait: |
| return 0; |
| } |
| |
| /* This handshake handler waits a NetScaler Client IP insertion header |
| * at the beginning of the raw data stream. The header format is |
| * described in doc/netscaler-client-ip-insertion-protocol.txt |
| * |
| * This line MUST be at the beginning of the buffer and MUST NOT be |
| * fragmented. |
| * |
| * The header line is small and in all cases smaller than the smallest normal |
| * TCP MSS. So it MUST always be delivered as one segment, which ensures we |
| * can safely use MSG_PEEK and avoid buffering. |
| * |
| * Once the data is fetched, the values are set in the connection's address |
| * fields, and data are removed from the socket's buffer. The function returns |
| * zero if it needs to wait for more data or if it fails, or 1 if it completed |
| * and removed itself. |
| */ |
| int conn_recv_netscaler_cip(struct connection *conn, int flag) |
| { |
| struct session *sess = conn->owner; |
| char *line; |
| uint32_t hdr_len; |
| uint8_t ip_ver; |
| int ret; |
| |
| if (!conn_ctrl_ready(conn)) |
| goto fail; |
| |
| BUG_ON(conn->flags & CO_FL_FDLESS); |
| |
| if (!fd_recv_ready(conn->handle.fd)) |
| goto not_ready; |
| |
| while (1) { |
| ret = recv(conn->handle.fd, trash.area, trash.size, MSG_PEEK); |
| if (ret < 0) { |
| if (errno == EINTR) |
| continue; |
| if (errno == EAGAIN || errno == EWOULDBLOCK) { |
| fd_cant_recv(conn->handle.fd); |
| goto not_ready; |
| } |
| goto recv_abort; |
| } |
| trash.data = ret; |
| break; |
| } |
| |
| conn->flags &= ~CO_FL_WAIT_L4_CONN; |
| |
| if (!trash.data) { |
| /* client shutdown */ |
| conn->err_code = CO_ER_CIP_EMPTY; |
| goto fail; |
| } |
| |
| /* Fail if buffer length is not large enough to contain |
| * CIP magic, header length or |
| * CIP magic, CIP length, CIP type, header length */ |
| if (trash.data < 12) |
| goto missing; |
| |
| line = trash.area; |
| |
| /* Decode a possible NetScaler Client IP request, fail early if |
| * it does not match */ |
| if (ntohl(read_u32(line)) != __objt_listener(conn->target)->bind_conf->ns_cip_magic) |
| goto bad_magic; |
| |
| /* Legacy CIP protocol */ |
| if ((trash.area[8] & 0xD0) == 0x40) { |
| hdr_len = ntohl(read_u32((line+4))); |
| line += 8; |
| } |
| /* Standard CIP protocol */ |
| else if (trash.area[8] == 0x00) { |
| hdr_len = ntohs(read_u32((line+10))); |
| line += 12; |
| } |
| /* Unknown CIP protocol */ |
| else { |
| conn->err_code = CO_ER_CIP_BAD_PROTO; |
| goto fail; |
| } |
| |
| /* Fail if buffer length is not large enough to contain |
| * a minimal IP header */ |
| if (trash.data < 20) |
| goto missing; |
| |
| /* Get IP version from the first four bits */ |
| ip_ver = (*line & 0xf0) >> 4; |
| |
| if (ip_ver == 4) { |
| struct ip *hdr_ip4; |
| struct my_tcphdr *hdr_tcp; |
| |
| hdr_ip4 = (struct ip *)line; |
| |
| if (trash.data < 40 || trash.data < hdr_len) { |
| /* Fail if buffer length is not large enough to contain |
| * IPv4 header, TCP header */ |
| goto missing; |
| } |
| else if (hdr_ip4->ip_p != IPPROTO_TCP) { |
| /* The protocol does not include a TCP header */ |
| conn->err_code = CO_ER_CIP_BAD_PROTO; |
| goto fail; |
| } |
| |
| hdr_tcp = (struct my_tcphdr *)(line + (hdr_ip4->ip_hl * 4)); |
| |
| if (!sess || !sockaddr_alloc(&sess->src, NULL, 0) || !sockaddr_alloc(&sess->dst, NULL, 0)) |
| goto fail; |
| |
| /* update the session's addresses and mark them set */ |
| ((struct sockaddr_in *)sess->src)->sin_family = AF_INET; |
| ((struct sockaddr_in *)sess->src)->sin_addr.s_addr = hdr_ip4->ip_src.s_addr; |
| ((struct sockaddr_in *)sess->src)->sin_port = hdr_tcp->source; |
| |
| ((struct sockaddr_in *)sess->dst)->sin_family = AF_INET; |
| ((struct sockaddr_in *)sess->dst)->sin_addr.s_addr = hdr_ip4->ip_dst.s_addr; |
| ((struct sockaddr_in *)sess->dst)->sin_port = hdr_tcp->dest; |
| } |
| else if (ip_ver == 6) { |
| struct ip6_hdr *hdr_ip6; |
| struct my_tcphdr *hdr_tcp; |
| |
| hdr_ip6 = (struct ip6_hdr *)line; |
| |
| if (trash.data < 60 || trash.data < hdr_len) { |
| /* Fail if buffer length is not large enough to contain |
| * IPv6 header, TCP header */ |
| goto missing; |
| } |
| else if (hdr_ip6->ip6_nxt != IPPROTO_TCP) { |
| /* The protocol does not include a TCP header */ |
| conn->err_code = CO_ER_CIP_BAD_PROTO; |
| goto fail; |
| } |
| |
| hdr_tcp = (struct my_tcphdr *)(line + sizeof(struct ip6_hdr)); |
| |
| if (!sess || !sockaddr_alloc(&sess->src, NULL, 0) || !sockaddr_alloc(&sess->dst, NULL, 0)) |
| goto fail; |
| |
| /* update the session's addresses and mark them set */ |
| ((struct sockaddr_in6 *)sess->src)->sin6_family = AF_INET6; |
| ((struct sockaddr_in6 *)sess->src)->sin6_addr = hdr_ip6->ip6_src; |
| ((struct sockaddr_in6 *)sess->src)->sin6_port = hdr_tcp->source; |
| |
| ((struct sockaddr_in6 *)sess->dst)->sin6_family = AF_INET6; |
| ((struct sockaddr_in6 *)sess->dst)->sin6_addr = hdr_ip6->ip6_dst; |
| ((struct sockaddr_in6 *)sess->dst)->sin6_port = hdr_tcp->dest; |
| } |
| else { |
| /* The protocol does not match something known (IPv4/IPv6) */ |
| conn->err_code = CO_ER_CIP_BAD_PROTO; |
| goto fail; |
| } |
| |
| line += hdr_len; |
| trash.data = line - trash.area; |
| |
| /* remove the NetScaler Client IP header from the request. For this |
| * we re-read the exact line at once. If we don't get the exact same |
| * result, we fail. |
| */ |
| while (1) { |
| int len2 = recv(conn->handle.fd, trash.area, trash.data, 0); |
| if (len2 < 0 && errno == EINTR) |
| continue; |
| if (len2 != trash.data) |
| goto recv_abort; |
| break; |
| } |
| |
| conn->flags &= ~flag; |
| return 1; |
| |
| not_ready: |
| return 0; |
| |
| missing: |
| /* Missing data. Since we're using MSG_PEEK, we can only poll again if |
| * we have not read anything. Otherwise we need to fail because we won't |
| * be able to poll anymore. |
| */ |
| conn->err_code = CO_ER_CIP_TRUNCATED; |
| goto fail; |
| |
| bad_magic: |
| conn->err_code = CO_ER_CIP_BAD_MAGIC; |
| goto fail; |
| |
| recv_abort: |
| conn->err_code = CO_ER_CIP_ABORT; |
| conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH; |
| goto fail; |
| |
| fail: |
| conn->flags |= CO_FL_ERROR; |
| return 0; |
| } |
| |
| |
| int conn_send_socks4_proxy_request(struct connection *conn) |
| { |
| struct socks4_request req_line; |
| |
| if (!conn_ctrl_ready(conn)) |
| goto out_error; |
| |
| if (!conn_get_dst(conn)) |
| goto out_error; |
| |
| req_line.version = 0x04; |
| req_line.command = 0x01; |
| req_line.port = get_net_port(conn->dst); |
| req_line.ip = is_inet_addr(conn->dst); |
| memcpy(req_line.user_id, "HAProxy\0", 8); |
| |
| if (conn->send_proxy_ofs > 0) { |
| /* |
| * This is the first call to send the request |
| */ |
| conn->send_proxy_ofs = -(int)sizeof(req_line); |
| } |
| |
| if (conn->send_proxy_ofs < 0) { |
| int ret = 0; |
| |
| /* we are sending the socks4_req_line here. If the data layer |
| * has a pending write, we'll also set MSG_MORE. |
| */ |
| ret = conn_ctrl_send( |
| conn, |
| ((char *)(&req_line)) + (sizeof(req_line)+conn->send_proxy_ofs), |
| -conn->send_proxy_ofs, |
| (conn->subs && conn->subs->events & SUB_RETRY_SEND) ? CO_SFL_MSG_MORE : 0); |
| |
| DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Before send remain is [%d], sent [%d]\n", |
| conn_fd(conn), -conn->send_proxy_ofs, ret); |
| |
| if (ret < 0) { |
| goto out_error; |
| } |
| |
| conn->send_proxy_ofs += ret; /* becomes zero once complete */ |
| if (conn->send_proxy_ofs != 0) { |
| goto out_wait; |
| } |
| } |
| |
| /* OK we've the whole request sent */ |
| conn->flags &= ~CO_FL_SOCKS4_SEND; |
| |
| /* The connection is ready now, simply return and let the connection |
| * handler notify upper layers if needed. |
| */ |
| conn->flags &= ~CO_FL_WAIT_L4_CONN; |
| |
| if (conn->flags & CO_FL_SEND_PROXY) { |
| /* |
| * Get the send_proxy_ofs ready for the send_proxy due to we are |
| * reusing the "send_proxy_ofs", and SOCKS4 handshake should be done |
| * before sending PROXY Protocol. |
| */ |
| conn->send_proxy_ofs = 1; |
| } |
| return 1; |
| |
| out_error: |
| /* Write error on the file descriptor */ |
| conn->flags |= CO_FL_ERROR; |
| if (conn->err_code == CO_ER_NONE) { |
| conn->err_code = CO_ER_SOCKS4_SEND; |
| } |
| return 0; |
| |
| out_wait: |
| return 0; |
| } |
| |
| int conn_recv_socks4_proxy_response(struct connection *conn) |
| { |
| char line[SOCKS4_HS_RSP_LEN]; |
| int ret; |
| |
| if (!conn_ctrl_ready(conn)) |
| goto fail; |
| |
| BUG_ON(conn->flags & CO_FL_FDLESS); |
| |
| if (!fd_recv_ready(conn->handle.fd)) |
| goto not_ready; |
| |
| while (1) { |
| /* SOCKS4 Proxy will response with 8 bytes, 0x00 | 0x5A | 0x00 0x00 | 0x00 0x00 0x00 0x00 |
| * Try to peek into it, before all 8 bytes ready. |
| */ |
| ret = recv(conn->handle.fd, line, SOCKS4_HS_RSP_LEN, MSG_PEEK); |
| |
| if (ret == 0) { |
| /* the socket has been closed or shutdown for send */ |
| DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Received ret[%d], errno[%d], looks like the socket has been closed or shutdown for send\n", |
| conn->handle.fd, ret, errno); |
| if (conn->err_code == CO_ER_NONE) { |
| conn->err_code = CO_ER_SOCKS4_RECV; |
| } |
| goto fail; |
| } |
| |
| if (ret > 0) { |
| if (ret == SOCKS4_HS_RSP_LEN) { |
| DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Received 8 bytes, the response is [%02X|%02X|%02X %02X|%02X %02X %02X %02X]\n", |
| conn->handle.fd, line[0], line[1], line[2], line[3], line[4], line[5], line[6], line[7]); |
| }else{ |
| DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Received ret[%d], first byte is [%02X], last bye is [%02X]\n", conn->handle.fd, ret, line[0], line[ret-1]); |
| } |
| } else { |
| DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Received ret[%d], errno[%d]\n", conn->handle.fd, ret, errno); |
| } |
| |
| if (ret < 0) { |
| if (errno == EINTR) { |
| continue; |
| } |
| if (errno == EAGAIN || errno == EWOULDBLOCK) { |
| fd_cant_recv(conn->handle.fd); |
| goto not_ready; |
| } |
| goto recv_abort; |
| } |
| break; |
| } |
| |
| conn->flags &= ~CO_FL_WAIT_L4_CONN; |
| |
| if (ret < SOCKS4_HS_RSP_LEN) { |
| /* Missing data. Since we're using MSG_PEEK, we can only poll again if |
| * we are not able to read enough data. |
| */ |
| goto not_ready; |
| } |
| |
| /* |
| * Base on the SOCSK4 protocol: |
| * |
| * +----+----+----+----+----+----+----+----+ |
| * | VN | CD | DSTPORT | DSTIP | |
| * +----+----+----+----+----+----+----+----+ |
| * # of bytes: 1 1 2 4 |
| * VN is the version of the reply code and should be 0. CD is the result |
| * code with one of the following values: |
| * 90: request granted |
| * 91: request rejected or failed |
| * 92: request rejected because SOCKS server cannot connect to identd on the client |
| * 93: request rejected because the client program and identd report different user-ids |
| * The remaining fields are ignored. |
| */ |
| if (line[1] != 90) { |
| conn->flags &= ~CO_FL_SOCKS4_RECV; |
| |
| DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: FAIL, the response is [%02X|%02X|%02X %02X|%02X %02X %02X %02X]\n", |
| conn->handle.fd, line[0], line[1], line[2], line[3], line[4], line[5], line[6], line[7]); |
| if (conn->err_code == CO_ER_NONE) { |
| conn->err_code = CO_ER_SOCKS4_DENY; |
| } |
| goto fail; |
| } |
| |
| /* remove the 8 bytes response from the stream */ |
| while (1) { |
| ret = recv(conn->handle.fd, line, SOCKS4_HS_RSP_LEN, 0); |
| if (ret < 0 && errno == EINTR) { |
| continue; |
| } |
| if (ret != SOCKS4_HS_RSP_LEN) { |
| if (conn->err_code == CO_ER_NONE) { |
| conn->err_code = CO_ER_SOCKS4_RECV; |
| } |
| goto fail; |
| } |
| break; |
| } |
| |
| conn->flags &= ~CO_FL_SOCKS4_RECV; |
| return 1; |
| |
| not_ready: |
| return 0; |
| |
| recv_abort: |
| if (conn->err_code == CO_ER_NONE) { |
| conn->err_code = CO_ER_SOCKS4_ABORT; |
| } |
| conn->flags |= (CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH); |
| goto fail; |
| |
| fail: |
| conn->flags |= CO_FL_ERROR; |
| return 0; |
| } |
| |
| /* registers proto mux list <list>. Modifies the list element! */ |
| void register_mux_proto(struct mux_proto_list *list) |
| { |
| LIST_APPEND(&mux_proto_list.list, &list->list); |
| } |
| |
| /* Lists the known proto mux on <out>. This function is used by "haproxy -vv" |
| * and is suitable for early boot just after the "REGISTER" stage because it |
| * doesn't depend on anything to be already allocated. |
| */ |
| void list_mux_proto(FILE *out) |
| { |
| struct mux_proto_list *item; |
| struct ist proto; |
| char *mode, *side; |
| int done; |
| |
| fprintf(out, "Available multiplexer protocols :\n" |
| "(protocols marked as <default> cannot be specified using 'proto' keyword)\n"); |
| list_for_each_entry(item, &mux_proto_list.list, list) { |
| proto = item->token; |
| |
| if (item->mode == PROTO_MODE_ANY) |
| mode = "TCP|HTTP"; |
| else if (item->mode == PROTO_MODE_TCP) |
| mode = "TCP"; |
| else if (item->mode == PROTO_MODE_HTTP) |
| mode = "HTTP"; |
| else |
| mode = "NONE"; |
| |
| if (item->side == PROTO_SIDE_BOTH) |
| side = "FE|BE"; |
| else if (item->side == PROTO_SIDE_FE) |
| side = "FE"; |
| else if (item->side == PROTO_SIDE_BE) |
| side = "BE"; |
| else |
| side = "NONE"; |
| |
| fprintf(out, " %10s : mode=%-5s side=%-6s mux=%-5s flags=", |
| (proto.len ? proto.ptr : "<default>"), mode, side, item->mux->name); |
| |
| done = 0; |
| |
| /* note: the block below could be simplied using macros but for only |
| * 4 flags it's not worth it. |
| */ |
| if (item->mux->flags & MX_FL_HTX) |
| done |= fprintf(out, "%sHTX", done ? "|" : ""); |
| |
| if (item->mux->flags & MX_FL_HOL_RISK) |
| done |= fprintf(out, "%sHOL_RISK", done ? "|" : ""); |
| |
| if (item->mux->flags & MX_FL_NO_UPG) |
| done |= fprintf(out, "%sNO_UPG", done ? "|" : ""); |
| |
| if (item->mux->flags & MX_FL_FRAMED) |
| done |= fprintf(out, "%sFRAMED", done ? "|" : ""); |
| |
| fprintf(out, "\n"); |
| } |
| } |
| |
| /* Makes a PROXY protocol line from the two addresses. The output is sent to |
| * buffer <buf> for a maximum size of <buf_len> (including the trailing zero). |
| * It returns the number of bytes composing this line (including the trailing |
| * LF), or zero in case of failure (eg: not enough space). It supports TCP4, |
| * TCP6 and "UNKNOWN" formats. If any of <src> or <dst> is null, UNKNOWN is |
| * emitted as well. |
| */ |
| static int make_proxy_line_v1(char *buf, int buf_len, const struct sockaddr_storage *src, const struct sockaddr_storage *dst) |
| { |
| int ret = 0; |
| char * protocol; |
| char src_str[MAX(INET_ADDRSTRLEN, INET6_ADDRSTRLEN)]; |
| char dst_str[MAX(INET_ADDRSTRLEN, INET6_ADDRSTRLEN)]; |
| in_port_t src_port; |
| in_port_t dst_port; |
| |
| if ( !src |
| || !dst |
| || (src->ss_family != AF_INET && src->ss_family != AF_INET6) |
| || (dst->ss_family != AF_INET && dst->ss_family != AF_INET6)) { |
| /* unknown family combination */ |
| ret = snprintf(buf, buf_len, "PROXY UNKNOWN\r\n"); |
| if (ret >= buf_len) |
| return 0; |
| |
| return ret; |
| } |
| |
| /* IPv4 for both src and dst */ |
| if (src->ss_family == AF_INET && dst->ss_family == AF_INET) { |
| protocol = "TCP4"; |
| if (!inet_ntop(AF_INET, &((struct sockaddr_in *)src)->sin_addr, src_str, sizeof(src_str))) |
| return 0; |
| src_port = ((struct sockaddr_in *)src)->sin_port; |
| if (!inet_ntop(AF_INET, &((struct sockaddr_in *)dst)->sin_addr, dst_str, sizeof(dst_str))) |
| return 0; |
| dst_port = ((struct sockaddr_in *)dst)->sin_port; |
| } |
| /* IPv6 for at least one of src and dst */ |
| else { |
| struct in6_addr tmp; |
| |
| protocol = "TCP6"; |
| |
| if (src->ss_family == AF_INET) { |
| /* Convert src to IPv6 */ |
| v4tov6(&tmp, &((struct sockaddr_in *)src)->sin_addr); |
| src_port = ((struct sockaddr_in *)src)->sin_port; |
| } |
| else { |
| tmp = ((struct sockaddr_in6 *)src)->sin6_addr; |
| src_port = ((struct sockaddr_in6 *)src)->sin6_port; |
| } |
| |
| if (!inet_ntop(AF_INET6, &tmp, src_str, sizeof(src_str))) |
| return 0; |
| |
| if (dst->ss_family == AF_INET) { |
| /* Convert dst to IPv6 */ |
| v4tov6(&tmp, &((struct sockaddr_in *)dst)->sin_addr); |
| dst_port = ((struct sockaddr_in *)dst)->sin_port; |
| } |
| else { |
| tmp = ((struct sockaddr_in6 *)dst)->sin6_addr; |
| dst_port = ((struct sockaddr_in6 *)dst)->sin6_port; |
| } |
| |
| if (!inet_ntop(AF_INET6, &tmp, dst_str, sizeof(dst_str))) |
| return 0; |
| } |
| |
| ret = snprintf(buf, buf_len, "PROXY %s %s %s %u %u\r\n", protocol, src_str, dst_str, ntohs(src_port), ntohs(dst_port)); |
| if (ret >= buf_len) |
| return 0; |
| |
| return ret; |
| } |
| |
| static int make_tlv(char *dest, int dest_len, char type, uint16_t length, const char *value) |
| { |
| struct tlv *tlv; |
| |
| if (!dest || (length + sizeof(*tlv) > dest_len)) |
| return 0; |
| |
| tlv = (struct tlv *)dest; |
| |
| tlv->type = type; |
| tlv->length_hi = length >> 8; |
| tlv->length_lo = length & 0x00ff; |
| memcpy(tlv->value, value, length); |
| return length + sizeof(*tlv); |
| } |
| |
| /* Note: <remote> is explicitly allowed to be NULL */ |
| static int make_proxy_line_v2(char *buf, int buf_len, struct server *srv, struct connection *remote, struct stream *strm) |
| { |
| const char pp2_signature[] = PP2_SIGNATURE; |
| void *tlv_crc32c_p = NULL; |
| int ret = 0; |
| struct proxy_hdr_v2 *hdr = (struct proxy_hdr_v2 *)buf; |
| struct sockaddr_storage null_addr = { .ss_family = 0 }; |
| const struct sockaddr_storage *src = &null_addr; |
| const struct sockaddr_storage *dst = &null_addr; |
| const char *value; |
| int value_len; |
| |
| if (buf_len < PP2_HEADER_LEN) |
| return 0; |
| memcpy(hdr->sig, pp2_signature, PP2_SIGNATURE_LEN); |
| |
| if (strm) { |
| src = sc_src(strm->scf); |
| dst = sc_dst(strm->scf); |
| } |
| else if (remote && conn_get_src(remote) && conn_get_dst(remote)) { |
| src = conn_src(remote); |
| dst = conn_dst(remote); |
| } |
| |
| /* At least one of src or dst is not of AF_INET or AF_INET6 */ |
| if ( !src |
| || !dst |
| || (!pp2_never_send_local && conn_is_back(remote)) // locally initiated connection |
| || (src->ss_family != AF_INET && src->ss_family != AF_INET6) |
| || (dst->ss_family != AF_INET && dst->ss_family != AF_INET6)) { |
| if (buf_len < PP2_HDR_LEN_UNSPEC) |
| return 0; |
| hdr->ver_cmd = PP2_VERSION | PP2_CMD_LOCAL; |
| hdr->fam = PP2_FAM_UNSPEC | PP2_TRANS_UNSPEC; |
| ret = PP2_HDR_LEN_UNSPEC; |
| } |
| else { |
| hdr->ver_cmd = PP2_VERSION | PP2_CMD_PROXY; |
| /* IPv4 for both src and dst */ |
| if (src->ss_family == AF_INET && dst->ss_family == AF_INET) { |
| if (buf_len < PP2_HDR_LEN_INET) |
| return 0; |
| hdr->fam = PP2_FAM_INET | PP2_TRANS_STREAM; |
| hdr->addr.ip4.src_addr = ((struct sockaddr_in *)src)->sin_addr.s_addr; |
| hdr->addr.ip4.src_port = ((struct sockaddr_in *)src)->sin_port; |
| hdr->addr.ip4.dst_addr = ((struct sockaddr_in *)dst)->sin_addr.s_addr; |
| hdr->addr.ip4.dst_port = ((struct sockaddr_in *)dst)->sin_port; |
| ret = PP2_HDR_LEN_INET; |
| } |
| /* IPv6 for at least one of src and dst */ |
| else { |
| struct in6_addr tmp; |
| |
| if (buf_len < PP2_HDR_LEN_INET6) |
| return 0; |
| hdr->fam = PP2_FAM_INET6 | PP2_TRANS_STREAM; |
| if (src->ss_family == AF_INET) { |
| v4tov6(&tmp, &((struct sockaddr_in *)src)->sin_addr); |
| memcpy(hdr->addr.ip6.src_addr, &tmp, 16); |
| hdr->addr.ip6.src_port = ((struct sockaddr_in *)src)->sin_port; |
| } |
| else { |
| memcpy(hdr->addr.ip6.src_addr, &((struct sockaddr_in6 *)src)->sin6_addr, 16); |
| hdr->addr.ip6.src_port = ((struct sockaddr_in6 *)src)->sin6_port; |
| } |
| if (dst->ss_family == AF_INET) { |
| v4tov6(&tmp, &((struct sockaddr_in *)dst)->sin_addr); |
| memcpy(hdr->addr.ip6.dst_addr, &tmp, 16); |
| hdr->addr.ip6.dst_port = ((struct sockaddr_in *)dst)->sin_port; |
| } |
| else { |
| memcpy(hdr->addr.ip6.dst_addr, &((struct sockaddr_in6 *)dst)->sin6_addr, 16); |
| hdr->addr.ip6.dst_port = ((struct sockaddr_in6 *)dst)->sin6_port; |
| } |
| |
| ret = PP2_HDR_LEN_INET6; |
| } |
| } |
| |
| if (srv->pp_opts & SRV_PP_V2_CRC32C) { |
| uint32_t zero_crc32c = 0; |
| |
| if ((buf_len - ret) < sizeof(struct tlv)) |
| return 0; |
| tlv_crc32c_p = (void *)((struct tlv *)&buf[ret])->value; |
| ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_CRC32C, sizeof(zero_crc32c), (const char *)&zero_crc32c); |
| } |
| |
| if (remote && conn_get_alpn(remote, &value, &value_len)) { |
| if ((buf_len - ret) < sizeof(struct tlv)) |
| return 0; |
| ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_ALPN, value_len, value); |
| } |
| |
| if (srv->pp_opts & SRV_PP_V2_AUTHORITY) { |
| value = NULL; |
| if (remote && isttest(remote->proxy_authority)) { |
| value = istptr(remote->proxy_authority); |
| value_len = istlen(remote->proxy_authority); |
| } |
| #ifdef USE_OPENSSL |
| else { |
| if ((value = ssl_sock_get_sni(remote))) |
| value_len = strlen(value); |
| } |
| #endif |
| if (value) { |
| if ((buf_len - ret) < sizeof(struct tlv)) |
| return 0; |
| ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_AUTHORITY, value_len, value); |
| } |
| } |
| |
| if (strm && (srv->pp_opts & SRV_PP_V2_UNIQUE_ID)) { |
| struct session* sess = strm_sess(strm); |
| struct ist unique_id = stream_generate_unique_id(strm, &sess->fe->format_unique_id); |
| |
| value = unique_id.ptr; |
| value_len = unique_id.len; |
| |
| if (value_len >= 0) { |
| if ((buf_len - ret) < sizeof(struct tlv)) |
| return 0; |
| ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_UNIQUE_ID, value_len, value); |
| } |
| } |
| |
| #ifdef USE_OPENSSL |
| if (srv->pp_opts & SRV_PP_V2_SSL) { |
| struct tlv_ssl *tlv; |
| int ssl_tlv_len = 0; |
| |
| if ((buf_len - ret) < sizeof(struct tlv_ssl)) |
| return 0; |
| tlv = (struct tlv_ssl *)&buf[ret]; |
| memset(tlv, 0, sizeof(struct tlv_ssl)); |
| ssl_tlv_len += sizeof(struct tlv_ssl); |
| tlv->tlv.type = PP2_TYPE_SSL; |
| if (conn_is_ssl(remote)) { |
| tlv->client |= PP2_CLIENT_SSL; |
| value = ssl_sock_get_proto_version(remote); |
| if (value) { |
| ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len-ret-ssl_tlv_len), PP2_SUBTYPE_SSL_VERSION, strlen(value), value); |
| } |
| if (ssl_sock_get_cert_used_sess(remote)) { |
| tlv->client |= PP2_CLIENT_CERT_SESS; |
| tlv->verify = htonl(ssl_sock_get_verify_result(remote)); |
| if (ssl_sock_get_cert_used_conn(remote)) |
| tlv->client |= PP2_CLIENT_CERT_CONN; |
| } |
| if (srv->pp_opts & SRV_PP_V2_SSL_CN) { |
| struct buffer *cn_trash = get_trash_chunk(); |
| if (ssl_sock_get_remote_common_name(remote, cn_trash) > 0) { |
| ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len - ret - ssl_tlv_len), PP2_SUBTYPE_SSL_CN, |
| cn_trash->data, |
| cn_trash->area); |
| } |
| } |
| if (srv->pp_opts & SRV_PP_V2_SSL_KEY_ALG) { |
| struct buffer *pkey_trash = get_trash_chunk(); |
| if (ssl_sock_get_pkey_algo(remote, pkey_trash) > 0) { |
| ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len - ret - ssl_tlv_len), PP2_SUBTYPE_SSL_KEY_ALG, |
| pkey_trash->data, |
| pkey_trash->area); |
| } |
| } |
| if (srv->pp_opts & SRV_PP_V2_SSL_SIG_ALG) { |
| value = ssl_sock_get_cert_sig(remote); |
| if (value) { |
| ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len - ret - ssl_tlv_len), PP2_SUBTYPE_SSL_SIG_ALG, strlen(value), value); |
| } |
| } |
| if (srv->pp_opts & SRV_PP_V2_SSL_CIPHER) { |
| value = ssl_sock_get_cipher_name(remote); |
| if (value) { |
| ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len - ret - ssl_tlv_len), PP2_SUBTYPE_SSL_CIPHER, strlen(value), value); |
| } |
| } |
| } |
| tlv->tlv.length_hi = (uint16_t)(ssl_tlv_len - sizeof(struct tlv)) >> 8; |
| tlv->tlv.length_lo = (uint16_t)(ssl_tlv_len - sizeof(struct tlv)) & 0x00ff; |
| ret += ssl_tlv_len; |
| } |
| #endif |
| |
| #ifdef USE_NS |
| if (remote && (remote->proxy_netns)) { |
| if ((buf_len - ret) < sizeof(struct tlv)) |
| return 0; |
| ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_NETNS, remote->proxy_netns->name_len, remote->proxy_netns->node.key); |
| } |
| #endif |
| |
| hdr->len = htons((uint16_t)(ret - PP2_HEADER_LEN)); |
| |
| if (tlv_crc32c_p) { |
| write_u32(tlv_crc32c_p, htonl(hash_crc32c(buf, ret))); |
| } |
| |
| return ret; |
| } |
| |
| /* Note: <remote> is explicitly allowed to be NULL */ |
| int make_proxy_line(char *buf, int buf_len, struct server *srv, struct connection *remote, struct stream *strm) |
| { |
| int ret = 0; |
| |
| if (srv && (srv->pp_opts & SRV_PP_V2)) { |
| ret = make_proxy_line_v2(buf, buf_len, srv, remote, strm); |
| } |
| else { |
| const struct sockaddr_storage *src = NULL; |
| const struct sockaddr_storage *dst = NULL; |
| |
| if (strm) { |
| src = sc_src(strm->scf); |
| dst = sc_dst(strm->scf); |
| } |
| else if (remote && conn_get_src(remote) && conn_get_dst(remote)) { |
| src = conn_src(remote); |
| dst = conn_dst(remote); |
| } |
| |
| if (src && dst) |
| ret = make_proxy_line_v1(buf, buf_len, src, dst); |
| else |
| ret = make_proxy_line_v1(buf, buf_len, NULL, NULL); |
| } |
| |
| return ret; |
| } |
| |
| /* returns 0 on success */ |
| static int cfg_parse_pp2_never_send_local(char **args, int section_type, struct proxy *curpx, |
| const struct proxy *defpx, const char *file, int line, |
| char **err) |
| { |
| if (too_many_args(0, args, err, NULL)) |
| return -1; |
| pp2_never_send_local = 1; |
| return 0; |
| } |
| |
| /* extracts some info from the connection and appends them to buffer <buf>. The |
| * connection's pointer, its direction, target (fe/be/srv), xprt/ctrl, source |
| * when set, destination when set, are printed in a compact human-readable format |
| * fitting on a single line. This is handy to complete traces or debug output. |
| * It is permitted to pass a NULL conn pointer. The number of characters emitted |
| * is returned. A prefix <pfx> might be prepended before the first field if not |
| * NULL. |
| */ |
| int conn_append_debug_info(struct buffer *buf, const struct connection *conn, const char *pfx) |
| { |
| const struct listener *li; |
| const struct server *sv; |
| const struct proxy *px; |
| char addr[40]; |
| int old_len = buf->data; |
| |
| if (!conn) |
| return 0; |
| |
| chunk_appendf(buf, "%sconn=%p(%s)", pfx ? pfx : "", conn, conn_is_back(conn) ? "OUT" : "IN"); |
| |
| if ((li = objt_listener(conn->target))) |
| chunk_appendf(buf, " fe=%s", li->bind_conf->frontend->id); |
| else if ((sv = objt_server(conn->target))) |
| chunk_appendf(buf, " sv=%s/%s", sv->proxy->id, sv->id); |
| else if ((px = objt_proxy(conn->target))) |
| chunk_appendf(buf, " be=%s", px->id); |
| |
| chunk_appendf(buf, " %s/%s", conn_get_xprt_name(conn), conn_get_ctrl_name(conn)); |
| |
| if (conn->src && addr_to_str(conn->src, addr, sizeof(addr))) |
| chunk_appendf(buf, " src=%s:%d", addr, get_host_port(conn->src)); |
| |
| if (conn->dst && addr_to_str(conn->dst, addr, sizeof(addr))) |
| chunk_appendf(buf, " dst=%s:%d", addr, get_host_port(conn->dst)); |
| |
| return buf->data - old_len; |
| } |
| |
| /* return the major HTTP version as 1 or 2 depending on how the request arrived |
| * before being processed. |
| * |
| * WARNING: Should be updated if a new major HTTP version is added. |
| */ |
| static int |
| smp_fetch_fc_http_major(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct connection *conn = NULL; |
| |
| if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) |
| conn = (kw[0] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; |
| else |
| conn = (kw[0] != 'b') ? objt_conn(smp->sess->origin) : |
| smp->strm ? sc_conn(smp->strm->scb) : NULL; |
| |
| /* No connection or a connection with a RAW muxx */ |
| if (!conn || (conn->mux && !(conn->mux->flags & MX_FL_HTX))) |
| return 0; |
| |
| /* No mux install, this may change */ |
| if (!conn->mux) { |
| smp->flags |= SMP_F_MAY_CHANGE; |
| return 0; |
| } |
| |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = (strcmp(conn_get_mux_name(conn), "H2") == 0) ? 2 : 1; |
| return 1; |
| } |
| |
| /* fetch if the received connection used a PROXY protocol header */ |
| int smp_fetch_fc_rcvd_proxy(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct connection *conn; |
| |
| conn = objt_conn(smp->sess->origin); |
| if (!conn) |
| return 0; |
| |
| if (conn->flags & CO_FL_WAIT_XPRT) { |
| smp->flags |= SMP_F_MAY_CHANGE; |
| return 0; |
| } |
| |
| smp->flags = 0; |
| smp->data.type = SMP_T_BOOL; |
| smp->data.u.sint = (conn->flags & CO_FL_RCVD_PROXY) ? 1 : 0; |
| |
| return 1; |
| } |
| |
| /* fetch the authority TLV from a PROXY protocol header */ |
| int smp_fetch_fc_pp_authority(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct connection *conn; |
| |
| conn = objt_conn(smp->sess->origin); |
| if (!conn) |
| return 0; |
| |
| if (conn->flags & CO_FL_WAIT_XPRT) { |
| smp->flags |= SMP_F_MAY_CHANGE; |
| return 0; |
| } |
| |
| if (!isttest(conn->proxy_authority)) |
| return 0; |
| |
| smp->flags = 0; |
| smp->data.type = SMP_T_STR; |
| smp->data.u.str.area = istptr(conn->proxy_authority); |
| smp->data.u.str.data = istlen(conn->proxy_authority); |
| |
| return 1; |
| } |
| |
| /* fetch the unique ID TLV from a PROXY protocol header */ |
| int smp_fetch_fc_pp_unique_id(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct connection *conn; |
| |
| conn = objt_conn(smp->sess->origin); |
| if (!conn) |
| return 0; |
| |
| if (conn->flags & CO_FL_WAIT_XPRT) { |
| smp->flags |= SMP_F_MAY_CHANGE; |
| return 0; |
| } |
| |
| if (!isttest(conn->proxy_unique_id)) |
| return 0; |
| |
| smp->flags = 0; |
| smp->data.type = SMP_T_STR; |
| smp->data.u.str.area = istptr(conn->proxy_unique_id); |
| smp->data.u.str.data = istlen(conn->proxy_unique_id); |
| |
| return 1; |
| } |
| |
| /* fetch the error code of a connection */ |
| int smp_fetch_fc_err(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct connection *conn; |
| |
| if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) |
| conn = (kw[0] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; |
| else |
| conn = (kw[0] != 'b') ? objt_conn(smp->sess->origin) : |
| smp->strm ? sc_conn(smp->strm->scb) : NULL; |
| |
| if (!conn) |
| return 0; |
| |
| if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { |
| smp->flags |= SMP_F_MAY_CHANGE; |
| return 0; |
| } |
| |
| smp->flags = 0; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = (unsigned long long int)conn->err_code; |
| |
| return 1; |
| } |
| |
| /* fetch a string representation of the error code of a connection */ |
| int smp_fetch_fc_err_str(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct connection *conn; |
| const char *err_code_str; |
| |
| if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK) |
| conn = (kw[0] == 'b') ? sc_conn(__objt_check(smp->sess->origin)->sc) : NULL; |
| else |
| conn = (kw[0] != 'b') ? objt_conn(smp->sess->origin) : |
| smp->strm ? sc_conn(smp->strm->scb) : NULL; |
| |
| if (!conn) |
| return 0; |
| |
| if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) { |
| smp->flags |= SMP_F_MAY_CHANGE; |
| return 0; |
| } |
| |
| err_code_str = conn_err_code_str(conn); |
| |
| if (!err_code_str) |
| return 0; |
| |
| smp->flags = 0; |
| smp->data.type = SMP_T_STR; |
| smp->data.u.str.area = (char*)err_code_str; |
| smp->data.u.str.data = strlen(err_code_str); |
| |
| return 1; |
| } |
| |
| /* Note: must not be declared <const> as its list will be overwritten. |
| * Note: fetches that may return multiple types must be declared as the lowest |
| * common denominator, the type that can be casted into all other ones. For |
| * instance v4/v6 must be declared v4. |
| */ |
| static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, { |
| { "bc_err", smp_fetch_fc_err, 0, NULL, SMP_T_SINT, SMP_USE_L4SRV }, |
| { "bc_err_str", smp_fetch_fc_err_str, 0, NULL, SMP_T_STR, SMP_USE_L4SRV }, |
| { "bc_http_major", smp_fetch_fc_http_major, 0, NULL, SMP_T_SINT, SMP_USE_L4SRV }, |
| { "fc_err", smp_fetch_fc_err, 0, NULL, SMP_T_SINT, SMP_USE_L4CLI }, |
| { "fc_err_str", smp_fetch_fc_err_str, 0, NULL, SMP_T_STR, SMP_USE_L4CLI }, |
| { "fc_http_major", smp_fetch_fc_http_major, 0, NULL, SMP_T_SINT, SMP_USE_L4CLI }, |
| { "fc_rcvd_proxy", smp_fetch_fc_rcvd_proxy, 0, NULL, SMP_T_BOOL, SMP_USE_L4CLI }, |
| { "fc_pp_authority", smp_fetch_fc_pp_authority, 0, NULL, SMP_T_STR, SMP_USE_L4CLI }, |
| { "fc_pp_unique_id", smp_fetch_fc_pp_unique_id, 0, NULL, SMP_T_STR, SMP_USE_L4CLI }, |
| { /* END */ }, |
| }}; |
| |
| INITCALL1(STG_REGISTER, sample_register_fetches, &sample_fetch_keywords); |
| |
| static struct cfg_kw_list cfg_kws = {ILH, { |
| { CFG_GLOBAL, "pp2-never-send-local", cfg_parse_pp2_never_send_local }, |
| { /* END */ }, |
| }}; |
| |
| INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws); |
| |
| /* private function to handle sockaddr as input for connection hash */ |
| static void conn_calculate_hash_sockaddr(const struct sockaddr_storage *ss, |
| char *buf, size_t *idx, |
| enum conn_hash_params_t *hash_flags, |
| enum conn_hash_params_t param_type_addr, |
| enum conn_hash_params_t param_type_port) |
| { |
| struct sockaddr_in *addr; |
| struct sockaddr_in6 *addr6; |
| |
| switch (ss->ss_family) { |
| case AF_INET: |
| addr = (struct sockaddr_in *)ss; |
| |
| conn_hash_update(buf, idx, |
| &addr->sin_addr, sizeof(addr->sin_addr), |
| hash_flags, param_type_addr); |
| |
| if (addr->sin_port) { |
| conn_hash_update(buf, idx, |
| &addr->sin_port, sizeof(addr->sin_port), |
| hash_flags, param_type_port); |
| } |
| |
| break; |
| |
| case AF_INET6: |
| addr6 = (struct sockaddr_in6 *)ss; |
| |
| conn_hash_update(buf, idx, |
| &addr6->sin6_addr, sizeof(addr6->sin6_addr), |
| hash_flags, param_type_addr); |
| |
| if (addr6->sin6_port) { |
| conn_hash_update(buf, idx, |
| &addr6->sin6_port, sizeof(addr6->sin6_port), |
| hash_flags, param_type_port); |
| } |
| |
| break; |
| } |
| } |
| |
| /* Generate the hash of a connection with params as input |
| * Each non-null field of params is taken into account for the hash calcul. |
| */ |
| uint64_t conn_hash_prehash(char *buf, size_t size) |
| { |
| return XXH64(buf, size, 0); |
| } |
| |
| /* Append <data> into <buf> at <idx> offset in preparation for connection hash |
| * calcul. <idx> is incremented beyond data <size>. In the same time, <flags> |
| * are updated with <type> for the hash header. |
| */ |
| void conn_hash_update(char *buf, size_t *idx, |
| const void *data, size_t size, |
| enum conn_hash_params_t *flags, |
| enum conn_hash_params_t type) |
| { |
| memcpy(&buf[*idx], data, size); |
| *idx += size; |
| *flags |= type; |
| } |
| |
| uint64_t conn_hash_digest(char *buf, size_t bufsize, |
| enum conn_hash_params_t flags) |
| { |
| const uint64_t flags_u64 = (uint64_t)flags; |
| const uint64_t hash = XXH64(buf, bufsize, 0); |
| |
| return (flags_u64 << CONN_HASH_PAYLOAD_LEN) | CONN_HASH_GET_PAYLOAD(hash); |
| } |
| |
| uint64_t conn_calculate_hash(const struct conn_hash_params *params) |
| { |
| char *buf; |
| size_t idx = 0; |
| uint64_t hash = 0; |
| enum conn_hash_params_t hash_flags = 0; |
| |
| buf = trash.area; |
| |
| conn_hash_update(buf, &idx, ¶ms->target, sizeof(params->target), &hash_flags, 0); |
| |
| if (params->sni_prehash) { |
| conn_hash_update(buf, &idx, |
| ¶ms->sni_prehash, sizeof(params->sni_prehash), |
| &hash_flags, CONN_HASH_PARAMS_TYPE_SNI); |
| } |
| |
| if (params->dst_addr) { |
| conn_calculate_hash_sockaddr(params->dst_addr, |
| buf, &idx, &hash_flags, |
| CONN_HASH_PARAMS_TYPE_DST_ADDR, |
| CONN_HASH_PARAMS_TYPE_DST_PORT); |
| } |
| |
| if (params->src_addr) { |
| conn_calculate_hash_sockaddr(params->src_addr, |
| buf, &idx, &hash_flags, |
| CONN_HASH_PARAMS_TYPE_SRC_ADDR, |
| CONN_HASH_PARAMS_TYPE_SRC_PORT); |
| } |
| |
| if (params->proxy_prehash) { |
| conn_hash_update(buf, &idx, |
| ¶ms->proxy_prehash, sizeof(params->proxy_prehash), |
| &hash_flags, CONN_HASH_PARAMS_TYPE_PROXY); |
| } |
| |
| hash = conn_hash_digest(buf, idx, hash_flags); |
| return hash; |
| } |
| |
| /* Handler of the task of mux_stopping_data. |
| * Called on soft-stop. |
| */ |
| static struct task *mux_stopping_process(struct task *t, void *ctx, unsigned int state) |
| { |
| struct connection *conn, *back; |
| |
| list_for_each_entry_safe(conn, back, &mux_stopping_data[tid].list, stopping_list) { |
| if (conn->mux && conn->mux->wake) |
| conn->mux->wake(conn); |
| } |
| |
| return t; |
| } |
| |
| static int allocate_mux_cleanup(void) |
| { |
| /* allocates the thread bound mux_stopping_data task */ |
| mux_stopping_data[tid].task = task_new_here(); |
| if (!mux_stopping_data[tid].task) { |
| ha_alert("Failed to allocate the task for connection cleanup on thread %d.\n", tid); |
| return 0; |
| } |
| |
| mux_stopping_data[tid].task->process = mux_stopping_process; |
| LIST_INIT(&mux_stopping_data[tid].list); |
| |
| return 1; |
| } |
| REGISTER_PER_THREAD_ALLOC(allocate_mux_cleanup); |
| |
| static int deallocate_mux_cleanup(void) |
| { |
| task_destroy(mux_stopping_data[tid].task); |
| return 1; |
| } |
| REGISTER_PER_THREAD_FREE(deallocate_mux_cleanup); |
| |
| static void deinit_idle_conns(void) |
| { |
| int i; |
| |
| for (i = 0; i < global.nbthread; i++) { |
| if (idle_conns[i].cleanup_task) |
| task_destroy(idle_conns[i].cleanup_task); |
| } |
| } |
| REGISTER_POST_DEINIT(deinit_idle_conns); |