| /* |
| * HTTP protocol analyzer |
| * |
| * Copyright 2000-2011 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <ctype.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <syslog.h> |
| #include <time.h> |
| |
| #include <sys/socket.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| |
| #include <common/base64.h> |
| #include <common/cfgparse.h> |
| #include <common/chunk.h> |
| #include <common/compat.h> |
| #include <common/config.h> |
| #include <common/debug.h> |
| #include <common/h1.h> |
| #include <common/memory.h> |
| #include <common/mini-clist.h> |
| #include <common/standard.h> |
| #include <common/ticks.h> |
| #include <common/time.h> |
| #include <common/uri_auth.h> |
| #include <common/version.h> |
| |
| #include <types/capture.h> |
| #include <types/cli.h> |
| #include <types/filters.h> |
| #include <types/global.h> |
| #include <types/cache.h> |
| #include <types/stats.h> |
| |
| #include <proto/acl.h> |
| #include <proto/action.h> |
| #include <proto/arg.h> |
| #include <proto/auth.h> |
| #include <proto/backend.h> |
| #include <proto/channel.h> |
| #include <proto/checks.h> |
| #include <proto/cli.h> |
| #include <proto/compression.h> |
| #include <proto/stats.h> |
| #include <proto/fd.h> |
| #include <proto/filters.h> |
| #include <proto/frontend.h> |
| #include <proto/log.h> |
| #include <proto/hdr_idx.h> |
| #include <proto/hlua.h> |
| #include <proto/pattern.h> |
| #include <proto/proto_tcp.h> |
| #include <proto/proto_http.h> |
| #include <proto/proxy.h> |
| #include <proto/queue.h> |
| #include <proto/sample.h> |
| #include <proto/server.h> |
| #include <proto/session.h> |
| #include <proto/stream.h> |
| #include <proto/stream_interface.h> |
| #include <proto/task.h> |
| #include <proto/pattern.h> |
| #include <proto/vars.h> |
| |
| /* status codes available for the stats admin page (strictly 4 chars length) */ |
| const char *stat_status_codes[STAT_STATUS_SIZE] = { |
| [STAT_STATUS_DENY] = "DENY", |
| [STAT_STATUS_DONE] = "DONE", |
| [STAT_STATUS_ERRP] = "ERRP", |
| [STAT_STATUS_EXCD] = "EXCD", |
| [STAT_STATUS_NONE] = "NONE", |
| [STAT_STATUS_PART] = "PART", |
| [STAT_STATUS_UNKN] = "UNKN", |
| }; |
| |
| /* This function handles a server error at the stream interface level. The |
| * stream interface is assumed to be already in a closed state. An optional |
| * message is copied into the input buffer. |
| * The error flags are set to the values in arguments. Any pending request |
| * in this buffer will be lost. |
| */ |
| static void http_server_error(struct stream *s, struct stream_interface *si, |
| int err, int finst, const struct buffer *msg) |
| { |
| if (IS_HTX_STRM(s)) |
| return htx_server_error(s, si, err, finst, msg); |
| |
| FLT_STRM_CB(s, flt_http_reply(s, s->txn->status, msg)); |
| channel_auto_read(si_oc(si)); |
| channel_abort(si_oc(si)); |
| channel_auto_close(si_oc(si)); |
| channel_erase(si_oc(si)); |
| channel_auto_close(si_ic(si)); |
| channel_auto_read(si_ic(si)); |
| if (msg) |
| co_inject(si_ic(si), msg->area, msg->data); |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= err; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= finst; |
| } |
| |
| /* This function returns the appropriate error location for the given stream |
| * and message. |
| */ |
| |
| struct buffer *http_error_message(struct stream *s) |
| { |
| const int msgnum = http_get_status_idx(s->txn->status); |
| |
| if (IS_HTX_STRM(s)) |
| return htx_error_message(s); |
| |
| if (s->be->errmsg[msgnum].area) |
| return &s->be->errmsg[msgnum]; |
| else if (strm_fe(s)->errmsg[msgnum].area) |
| return &strm_fe(s)->errmsg[msgnum]; |
| else |
| return &http_err_chunks[msgnum]; |
| } |
| |
| void |
| http_reply_and_close(struct stream *s, short status, struct buffer *msg) |
| { |
| if (IS_HTX_STRM(s)) |
| return htx_reply_and_close(s, status, msg); |
| |
| s->txn->flags &= ~TX_WAIT_NEXT_RQ; |
| FLT_STRM_CB(s, flt_http_reply(s, status, msg)); |
| stream_int_retnclose(&s->si[0], msg); |
| } |
| |
| /* Parse the URI from the given transaction (which is assumed to be in request |
| * phase) and look for the "/" beginning the PATH. If not found, return NULL. |
| * It is returned otherwise. |
| */ |
| char *http_txn_get_path(const struct http_txn *txn) |
| { |
| struct ist ret; |
| |
| if (!txn->req.chn->buf.size) |
| return NULL; |
| |
| ret = http_get_path(ist2(ci_head(txn->req.chn) + txn->req.sl.rq.u, txn->req.sl.rq.u_l)); |
| |
| return ret.ptr; |
| } |
| |
| /* Returns a 302 for a redirectable request that reaches a server working in |
| * in redirect mode. This may only be called just after the stream interface |
| * has moved to SI_ST_ASS. Unprocessable requests are left unchanged and will |
| * follow normal proxy processing. NOTE: this function is designed to support |
| * being called once data are scheduled for forwarding. |
| */ |
| void http_perform_server_redirect(struct stream *s, struct stream_interface *si) |
| { |
| struct http_txn *txn; |
| struct server *srv; |
| char *path; |
| int len, rewind; |
| |
| if (IS_HTX_STRM(s)) |
| return htx_perform_server_redirect(s, si); |
| |
| /* 1: create the response header */ |
| trash.data = strlen(HTTP_302); |
| memcpy(trash.area, HTTP_302, trash.data); |
| |
| srv = __objt_server(s->target); |
| |
| /* 2: add the server's prefix */ |
| if (trash.data + srv->rdr_len > trash.size) |
| return; |
| |
| /* special prefix "/" means don't change URL */ |
| if (srv->rdr_len != 1 || *srv->rdr_pfx != '/') { |
| memcpy(trash.area + trash.data, srv->rdr_pfx, srv->rdr_len); |
| trash.data += srv->rdr_len; |
| } |
| |
| /* 3: add the request URI. Since it was already forwarded, we need |
| * to temporarily rewind the buffer. |
| */ |
| txn = s->txn; |
| c_rew(&s->req, rewind = http_hdr_rewind(&txn->req)); |
| |
| path = http_txn_get_path(txn); |
| len = b_dist(&s->req.buf, path, c_ptr(&s->req, txn->req.sl.rq.u + txn->req.sl.rq.u_l)); |
| |
| c_adv(&s->req, rewind); |
| |
| if (!path) |
| return; |
| |
| if (trash.data + len > trash.size - 4) /* 4 for CRLF-CRLF */ |
| return; |
| |
| memcpy(trash.area + trash.data, path, len); |
| trash.data += len; |
| |
| if (unlikely(txn->flags & TX_USE_PX_CONN)) { |
| memcpy(trash.area + trash.data, |
| "\r\nProxy-Connection: close\r\n\r\n", 29); |
| trash.data += 29; |
| } else { |
| memcpy(trash.area + trash.data, |
| "\r\nConnection: close\r\n\r\n", 23); |
| trash.data += 23; |
| } |
| |
| /* prepare to return without error. */ |
| si_shutr(si); |
| si_shutw(si); |
| si->err_type = SI_ET_NONE; |
| si->state = SI_ST_CLO; |
| |
| /* send the message */ |
| txn->status = 302; |
| http_server_error(s, si, SF_ERR_LOCAL, SF_FINST_C, &trash); |
| |
| /* FIXME: we should increase a counter of redirects per server and per backend. */ |
| srv_inc_sess_ctr(srv); |
| srv_set_sess_last(srv); |
| } |
| |
| /* Return the error message corresponding to si->err_type. It is assumed |
| * that the server side is closed. Note that err_type is actually a |
| * bitmask, where almost only aborts may be cumulated with other |
| * values. We consider that aborted operations are more important |
| * than timeouts or errors due to the fact that nobody else in the |
| * logs might explain incomplete retries. All others should avoid |
| * being cumulated. It should normally not be possible to have multiple |
| * aborts at once, but just in case, the first one in sequence is reported. |
| * Note that connection errors appearing on the second request of a keep-alive |
| * connection are not reported since this allows the client to retry. |
| */ |
| void http_return_srv_error(struct stream *s, struct stream_interface *si) |
| { |
| int err_type = si->err_type; |
| |
| /* set s->txn->status for http_error_message(s) */ |
| s->txn->status = 503; |
| |
| if (err_type & SI_ET_QUEUE_ABRT) |
| http_server_error(s, si, SF_ERR_CLICL, SF_FINST_Q, |
| http_error_message(s)); |
| else if (err_type & SI_ET_CONN_ABRT) |
| http_server_error(s, si, SF_ERR_CLICL, SF_FINST_C, |
| (s->txn->flags & TX_NOT_FIRST) ? NULL : |
| http_error_message(s)); |
| else if (err_type & SI_ET_QUEUE_TO) |
| http_server_error(s, si, SF_ERR_SRVTO, SF_FINST_Q, |
| http_error_message(s)); |
| else if (err_type & SI_ET_QUEUE_ERR) |
| http_server_error(s, si, SF_ERR_SRVCL, SF_FINST_Q, |
| http_error_message(s)); |
| else if (err_type & SI_ET_CONN_TO) |
| http_server_error(s, si, SF_ERR_SRVTO, SF_FINST_C, |
| (s->txn->flags & TX_NOT_FIRST) ? NULL : |
| http_error_message(s)); |
| else if (err_type & SI_ET_CONN_ERR) |
| http_server_error(s, si, SF_ERR_SRVCL, SF_FINST_C, |
| (s->flags & SF_SRV_REUSED) ? NULL : |
| http_error_message(s)); |
| else if (err_type & SI_ET_CONN_RES) |
| http_server_error(s, si, SF_ERR_RESOURCE, SF_FINST_C, |
| (s->txn->flags & TX_NOT_FIRST) ? NULL : |
| http_error_message(s)); |
| else { /* SI_ET_CONN_OTHER and others */ |
| s->txn->status = 500; |
| http_server_error(s, si, SF_ERR_INTERNAL, SF_FINST_C, |
| http_error_message(s)); |
| } |
| } |
| |
| extern const char sess_term_cond[8]; |
| extern const char sess_fin_state[8]; |
| extern const char *monthname[12]; |
| |
| DECLARE_POOL(pool_head_http_txn, "http_txn", sizeof(struct http_txn)); |
| DECLARE_POOL(pool_head_uniqueid, "uniqueid", UNIQUEID_LEN); |
| |
| struct pool_head *pool_head_requri = NULL; |
| struct pool_head *pool_head_capture = NULL; |
| |
| /* |
| * Capture headers from message starting at <som> according to header list |
| * <cap_hdr>, and fill the <cap> pointers appropriately. |
| */ |
| void http_capture_headers(char *som, struct hdr_idx *idx, |
| char **cap, struct cap_hdr *cap_hdr) |
| { |
| char *eol, *sol, *col, *sov; |
| int cur_idx; |
| struct cap_hdr *h; |
| int len; |
| |
| sol = som + hdr_idx_first_pos(idx); |
| cur_idx = hdr_idx_first_idx(idx); |
| |
| while (cur_idx) { |
| eol = sol + idx->v[cur_idx].len; |
| |
| col = sol; |
| while (col < eol && *col != ':') |
| col++; |
| |
| sov = col + 1; |
| while (sov < eol && HTTP_IS_LWS(*sov)) |
| sov++; |
| |
| for (h = cap_hdr; h; h = h->next) { |
| if (h->namelen && (h->namelen == col - sol) && |
| (strncasecmp(sol, h->name, h->namelen) == 0)) { |
| if (cap[h->index] == NULL) |
| cap[h->index] = |
| pool_alloc(h->pool); |
| |
| if (cap[h->index] == NULL) { |
| ha_alert("HTTP capture : out of memory.\n"); |
| continue; |
| } |
| |
| len = eol - sov; |
| if (len > h->len) |
| len = h->len; |
| |
| memcpy(cap[h->index], sov, len); |
| cap[h->index][len]=0; |
| } |
| } |
| sol = eol + idx->v[cur_idx].cr + 1; |
| cur_idx = idx->v[cur_idx].next; |
| } |
| } |
| |
| /* convert an HTTP/0.9 request into an HTTP/1.0 request. Returns 1 if the |
| * conversion succeeded, 0 in case of error. If the request was already 1.X, |
| * nothing is done and 1 is returned. |
| */ |
| int http_upgrade_v09_to_v10(struct http_txn *txn) |
| { |
| int delta; |
| char *cur_end; |
| struct http_msg *msg = &txn->req; |
| |
| if (msg->sl.rq.v_l != 0) |
| return 1; |
| |
| /* RFC 1945 allows only GET for HTTP/0.9 requests */ |
| if (txn->meth != HTTP_METH_GET) |
| return 0; |
| |
| cur_end = ci_head(msg->chn) + msg->sl.rq.l; |
| |
| if (msg->sl.rq.u_l == 0) { |
| /* HTTP/0.9 requests *must* have a request URI, per RFC 1945 */ |
| return 0; |
| } |
| /* add HTTP version */ |
| delta = b_rep_blk(&msg->chn->buf, cur_end, cur_end, " HTTP/1.0\r\n", 11); |
| http_msg_move_end(msg, delta); |
| cur_end += delta; |
| cur_end = (char *)http_parse_reqline(msg, |
| HTTP_MSG_RQMETH, |
| ci_head(msg->chn), cur_end + 1, |
| NULL, NULL); |
| if (unlikely(!cur_end)) |
| return 0; |
| |
| /* we have a full HTTP/1.0 request now and we know that |
| * we have either a CR or an LF at <ptr>. |
| */ |
| hdr_idx_set_start(&txn->hdr_idx, msg->sl.rq.l, *cur_end == '\r'); |
| return 1; |
| } |
| |
| /* Parse the Connection: header of an HTTP request, looking for both "close" |
| * and "keep-alive" values. If we already know that some headers may safely |
| * be removed, we remove them now. The <to_del> flags are used for that : |
| * - bit 0 means remove "close" headers (in HTTP/1.0 requests/responses) |
| * - bit 1 means remove "keep-alive" headers (in HTTP/1.1 reqs/resp to 1.1). |
| * Presence of the "Upgrade" token is also checked and reported. |
| * The TX_HDR_CONN_* flags are adjusted in txn->flags depending on what was |
| * found, and TX_CON_*_SET is adjusted depending on what is left so only |
| * harmless combinations may be removed. Do not call that after changes have |
| * been processed. |
| */ |
| void http_parse_connection_header(struct http_txn *txn, struct http_msg *msg, int to_del) |
| { |
| struct hdr_ctx ctx; |
| const char *hdr_val = "Connection"; |
| int hdr_len = 10; |
| |
| if (txn->flags & TX_HDR_CONN_PRS) |
| return; |
| |
| if (unlikely(txn->flags & TX_USE_PX_CONN)) { |
| hdr_val = "Proxy-Connection"; |
| hdr_len = 16; |
| } |
| |
| ctx.idx = 0; |
| txn->flags &= ~(TX_CON_KAL_SET|TX_CON_CLO_SET); |
| while (http_find_header2(hdr_val, hdr_len, ci_head(msg->chn), &txn->hdr_idx, &ctx)) { |
| if (ctx.vlen >= 10 && word_match(ctx.line + ctx.val, ctx.vlen, "keep-alive", 10)) { |
| txn->flags |= TX_HDR_CONN_KAL; |
| if (to_del & 2) |
| http_remove_header2(msg, &txn->hdr_idx, &ctx); |
| else |
| txn->flags |= TX_CON_KAL_SET; |
| } |
| else if (ctx.vlen >= 5 && word_match(ctx.line + ctx.val, ctx.vlen, "close", 5)) { |
| txn->flags |= TX_HDR_CONN_CLO; |
| if (to_del & 1) |
| http_remove_header2(msg, &txn->hdr_idx, &ctx); |
| else |
| txn->flags |= TX_CON_CLO_SET; |
| } |
| else if (ctx.vlen >= 7 && word_match(ctx.line + ctx.val, ctx.vlen, "upgrade", 7)) { |
| txn->flags |= TX_HDR_CONN_UPG; |
| } |
| } |
| |
| txn->flags |= TX_HDR_CONN_PRS; |
| return; |
| } |
| |
| /* Apply desired changes on the Connection: header. Values may be removed and/or |
| * added depending on the <wanted> flags, which are exclusively composed of |
| * TX_CON_CLO_SET and TX_CON_KAL_SET, depending on what flags are desired. The |
| * TX_CON_*_SET flags are adjusted in txn->flags depending on what is left. |
| */ |
| void http_change_connection_header(struct http_txn *txn, struct http_msg *msg, int wanted) |
| { |
| struct hdr_ctx ctx; |
| const char *hdr_val = "Connection"; |
| int hdr_len = 10; |
| |
| ctx.idx = 0; |
| |
| |
| if (unlikely(txn->flags & TX_USE_PX_CONN)) { |
| hdr_val = "Proxy-Connection"; |
| hdr_len = 16; |
| } |
| |
| txn->flags &= ~(TX_CON_CLO_SET | TX_CON_KAL_SET); |
| while (http_find_header2(hdr_val, hdr_len, ci_head(msg->chn), &txn->hdr_idx, &ctx)) { |
| if (ctx.vlen >= 10 && word_match(ctx.line + ctx.val, ctx.vlen, "keep-alive", 10)) { |
| if (wanted & TX_CON_KAL_SET) |
| txn->flags |= TX_CON_KAL_SET; |
| else |
| http_remove_header2(msg, &txn->hdr_idx, &ctx); |
| } |
| else if (ctx.vlen >= 5 && word_match(ctx.line + ctx.val, ctx.vlen, "close", 5)) { |
| if (wanted & TX_CON_CLO_SET) |
| txn->flags |= TX_CON_CLO_SET; |
| else |
| http_remove_header2(msg, &txn->hdr_idx, &ctx); |
| } |
| } |
| |
| if (wanted == (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET))) |
| return; |
| |
| if ((wanted & TX_CON_CLO_SET) && !(txn->flags & TX_CON_CLO_SET)) { |
| txn->flags |= TX_CON_CLO_SET; |
| hdr_val = "Connection: close"; |
| hdr_len = 17; |
| if (unlikely(txn->flags & TX_USE_PX_CONN)) { |
| hdr_val = "Proxy-Connection: close"; |
| hdr_len = 23; |
| } |
| http_header_add_tail2(msg, &txn->hdr_idx, hdr_val, hdr_len); |
| } |
| |
| if ((wanted & TX_CON_KAL_SET) && !(txn->flags & TX_CON_KAL_SET)) { |
| txn->flags |= TX_CON_KAL_SET; |
| hdr_val = "Connection: keep-alive"; |
| hdr_len = 22; |
| if (unlikely(txn->flags & TX_USE_PX_CONN)) { |
| hdr_val = "Proxy-Connection: keep-alive"; |
| hdr_len = 28; |
| } |
| http_header_add_tail2(msg, &txn->hdr_idx, hdr_val, hdr_len); |
| } |
| return; |
| } |
| |
| void http_adjust_conn_mode(struct stream *s, struct http_txn *txn, struct http_msg *msg) |
| { |
| struct proxy *fe = strm_fe(s); |
| int tmp = TX_CON_WANT_KAL; |
| |
| if (IS_HTX_STRM(s)) |
| return htx_adjust_conn_mode(s, txn); |
| |
| if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_TUN || |
| (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_TUN) |
| tmp = TX_CON_WANT_TUN; |
| |
| if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_SCL || |
| (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_SCL) |
| tmp = TX_CON_WANT_SCL; |
| |
| if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_CLO || |
| (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_CLO) |
| tmp = TX_CON_WANT_CLO; |
| |
| if ((txn->flags & TX_CON_WANT_MSK) < tmp) |
| txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | tmp; |
| |
| if (!(txn->flags & TX_HDR_CONN_PRS) && |
| (txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) { |
| /* parse the Connection header and possibly clean it */ |
| int to_del = 0; |
| if ((msg->flags & HTTP_MSGF_VER_11) || |
| ((txn->flags & TX_CON_WANT_MSK) >= TX_CON_WANT_SCL && |
| !((fe->options2|s->be->options2) & PR_O2_FAKE_KA))) |
| to_del |= 2; /* remove "keep-alive" */ |
| if (!(msg->flags & HTTP_MSGF_VER_11)) |
| to_del |= 1; /* remove "close" */ |
| http_parse_connection_header(txn, msg, to_del); |
| } |
| |
| /* check if client or config asks for explicit close in KAL/SCL */ |
| if (((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL || |
| (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) && |
| ((txn->flags & TX_HDR_CONN_CLO) || /* "connection: close" */ |
| (!(msg->flags & HTTP_MSGF_VER_11) && !(txn->flags & TX_HDR_CONN_KAL)) || /* no "connection: k-a" in 1.0 */ |
| !(msg->flags & HTTP_MSGF_XFER_LEN) || /* no length known => close */ |
| fe->state == PR_STSTOPPED)) /* frontend is stopping */ |
| txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO; |
| } |
| |
| /* This stream analyser waits for a complete HTTP request. It returns 1 if the |
| * processing can continue on next analysers, or zero if it either needs more |
| * data or wants to immediately abort the request (eg: timeout, error, ...). It |
| * is tied to AN_REQ_WAIT_HTTP and may may remove itself from s->req.analysers |
| * when it has nothing left to do, and may remove any analyser when it wants to |
| * abort. |
| */ |
| int http_wait_for_request(struct stream *s, struct channel *req, int an_bit) |
| { |
| /* |
| * We will parse the partial (or complete) lines. |
| * We will check the request syntax, and also join multi-line |
| * headers. An index of all the lines will be elaborated while |
| * parsing. |
| * |
| * For the parsing, we use a 28 states FSM. |
| * |
| * Here is the information we currently have : |
| * ci_head(req) = beginning of request |
| * ci_head(req) + msg->eoh = end of processed headers / start of current one |
| * ci_tail(req) = end of input data |
| * msg->eol = end of current header or line (LF or CRLF) |
| * msg->next = first non-visited byte |
| * |
| * At end of parsing, we may perform a capture of the error (if any), and |
| * we will set a few fields (txn->meth, sn->flags/SF_REDIRECTABLE). |
| * We also check for monitor-uri, logging, HTTP/0.9 to 1.0 conversion, and |
| * finally headers capture. |
| */ |
| |
| int cur_idx; |
| struct session *sess = s->sess; |
| struct http_txn *txn = s->txn; |
| struct http_msg *msg = &txn->req; |
| struct hdr_ctx ctx; |
| |
| if (IS_HTX_STRM(s)) |
| return htx_wait_for_request(s, req, an_bit); |
| |
| DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| req, |
| req->rex, req->wex, |
| req->flags, |
| ci_data(req), |
| req->analysers); |
| |
| /* we're speaking HTTP here, so let's speak HTTP to the client */ |
| s->srv_error = http_return_srv_error; |
| |
| /* If there is data available for analysis, log the end of the idle time. */ |
| if (c_data(req) && s->logs.t_idle == -1) |
| s->logs.t_idle = tv_ms_elapsed(&s->logs.tv_accept, &now) - s->logs.t_handshake; |
| |
| /* There's a protected area at the end of the buffer for rewriting |
| * purposes. We don't want to start to parse the request if the |
| * protected area is affected, because we may have to move processed |
| * data later, which is much more complicated. |
| */ |
| if (c_data(req) && msg->msg_state < HTTP_MSG_ERROR) { |
| if (txn->flags & TX_NOT_FIRST) { |
| if (unlikely(!channel_is_rewritable(req))) { |
| if (req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) |
| goto failed_keep_alive; |
| /* some data has still not left the buffer, wake us once that's done */ |
| channel_dont_connect(req); |
| req->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */ |
| req->flags |= CF_WAKE_WRITE; |
| return 0; |
| } |
| if (unlikely(ci_tail(req) < c_ptr(req, msg->next) || |
| ci_tail(req) > b_wrap(&req->buf) - global.tune.maxrewrite)) |
| channel_slow_realign(req, trash.area); |
| } |
| |
| if (likely(msg->next < ci_data(req))) /* some unparsed data are available */ |
| http_msg_analyzer(msg, &txn->hdr_idx); |
| } |
| |
| /* 1: we might have to print this header in debug mode */ |
| if (unlikely((global.mode & MODE_DEBUG) && |
| (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) && |
| msg->msg_state >= HTTP_MSG_BODY)) { |
| char *eol, *sol; |
| |
| sol = ci_head(req); |
| /* this is a bit complex : in case of error on the request line, |
| * we know that rq.l is still zero, so we display only the part |
| * up to the end of the line (truncated by debug_hdr). |
| */ |
| eol = sol + (msg->sl.rq.l ? msg->sl.rq.l : ci_data(req)); |
| debug_hdr("clireq", s, sol, eol); |
| |
| sol += hdr_idx_first_pos(&txn->hdr_idx); |
| cur_idx = hdr_idx_first_idx(&txn->hdr_idx); |
| |
| while (cur_idx) { |
| eol = sol + txn->hdr_idx.v[cur_idx].len; |
| debug_hdr("clihdr", s, sol, eol); |
| sol = eol + txn->hdr_idx.v[cur_idx].cr + 1; |
| cur_idx = txn->hdr_idx.v[cur_idx].next; |
| } |
| } |
| |
| |
| /* |
| * Now we quickly check if we have found a full valid request. |
| * If not so, we check the FD and buffer states before leaving. |
| * A full request is indicated by the fact that we have seen |
| * the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid |
| * requests are checked first. When waiting for a second request |
| * on a keep-alive stream, if we encounter and error, close, t/o, |
| * we note the error in the stream flags but don't set any state. |
| * Since the error will be noted there, it will not be counted by |
| * process_stream() as a frontend error. |
| * Last, we may increase some tracked counters' http request errors on |
| * the cases that are deliberately the client's fault. For instance, |
| * a timeout or connection reset is not counted as an error. However |
| * a bad request is. |
| */ |
| |
| if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { |
| /* |
| * First, let's catch bad requests. |
| */ |
| if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) { |
| stream_inc_http_req_ctr(s); |
| stream_inc_http_err_ctr(s); |
| proxy_inc_fe_req_ctr(sess->fe); |
| goto return_bad_req; |
| } |
| |
| /* 1: Since we are in header mode, if there's no space |
| * left for headers, we won't be able to free more |
| * later, so the stream will never terminate. We |
| * must terminate it now. |
| */ |
| if (unlikely(channel_full(req, global.tune.maxrewrite))) { |
| /* FIXME: check if URI is set and return Status |
| * 414 Request URI too long instead. |
| */ |
| stream_inc_http_req_ctr(s); |
| stream_inc_http_err_ctr(s); |
| proxy_inc_fe_req_ctr(sess->fe); |
| if (msg->err_pos < 0) |
| msg->err_pos = ci_data(req); |
| goto return_bad_req; |
| } |
| |
| /* 2: have we encountered a read error ? */ |
| else if (req->flags & CF_READ_ERROR) { |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_CLICL; |
| |
| if (txn->flags & TX_WAIT_NEXT_RQ) |
| goto failed_keep_alive; |
| |
| if (sess->fe->options & PR_O_IGNORE_PRB) |
| goto failed_keep_alive; |
| |
| /* we cannot return any message on error */ |
| if (msg->err_pos >= 0) { |
| http_capture_bad_message(sess->fe, s, msg, msg->err_state, sess->fe); |
| stream_inc_http_err_ctr(s); |
| } |
| |
| txn->status = 400; |
| msg->err_state = msg->msg_state; |
| msg->msg_state = HTTP_MSG_ERROR; |
| http_reply_and_close(s, txn->status, NULL); |
| req->analysers &= AN_REQ_FLT_END; |
| stream_inc_http_req_ctr(s); |
| proxy_inc_fe_req_ctr(sess->fe); |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); |
| if (sess->listener->counters) |
| HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); |
| |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_R; |
| return 0; |
| } |
| |
| /* 3: has the read timeout expired ? */ |
| else if (req->flags & CF_READ_TIMEOUT || tick_is_expired(req->analyse_exp, now_ms)) { |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_CLITO; |
| |
| if (txn->flags & TX_WAIT_NEXT_RQ) |
| goto failed_keep_alive; |
| |
| if (sess->fe->options & PR_O_IGNORE_PRB) |
| goto failed_keep_alive; |
| |
| /* read timeout : give up with an error message. */ |
| if (msg->err_pos >= 0) { |
| http_capture_bad_message(sess->fe, s, msg, msg->err_state, sess->fe); |
| stream_inc_http_err_ctr(s); |
| } |
| txn->status = 408; |
| msg->err_state = msg->msg_state; |
| msg->msg_state = HTTP_MSG_ERROR; |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| req->analysers &= AN_REQ_FLT_END; |
| |
| stream_inc_http_req_ctr(s); |
| proxy_inc_fe_req_ctr(sess->fe); |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); |
| if (sess->listener->counters) |
| HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); |
| |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_R; |
| return 0; |
| } |
| |
| /* 4: have we encountered a close ? */ |
| else if (req->flags & CF_SHUTR) { |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_CLICL; |
| |
| if (txn->flags & TX_WAIT_NEXT_RQ) |
| goto failed_keep_alive; |
| |
| if (sess->fe->options & PR_O_IGNORE_PRB) |
| goto failed_keep_alive; |
| |
| if (msg->err_pos >= 0) |
| http_capture_bad_message(sess->fe, s, msg, msg->err_state, sess->fe); |
| txn->status = 400; |
| msg->err_state = msg->msg_state; |
| msg->msg_state = HTTP_MSG_ERROR; |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| req->analysers &= AN_REQ_FLT_END; |
| stream_inc_http_err_ctr(s); |
| stream_inc_http_req_ctr(s); |
| proxy_inc_fe_req_ctr(sess->fe); |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); |
| if (sess->listener->counters) |
| HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); |
| |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_R; |
| return 0; |
| } |
| |
| channel_dont_connect(req); |
| req->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */ |
| s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */ |
| |
| if (sess->listener->options & LI_O_NOQUICKACK && ci_data(req)) { |
| /* We need more data, we have to re-enable quick-ack in case we |
| * previously disabled it, otherwise we might cause the client |
| * to delay next data. |
| */ |
| conn_set_quickack(objt_conn(sess->origin), 1); |
| } |
| |
| if ((msg->msg_state != HTTP_MSG_RQBEFORE) && (txn->flags & TX_WAIT_NEXT_RQ)) { |
| /* If the client starts to talk, let's fall back to |
| * request timeout processing. |
| */ |
| txn->flags &= ~TX_WAIT_NEXT_RQ; |
| req->analyse_exp = TICK_ETERNITY; |
| } |
| |
| /* just set the request timeout once at the beginning of the request */ |
| if (!tick_isset(req->analyse_exp)) { |
| if ((msg->msg_state == HTTP_MSG_RQBEFORE) && |
| (txn->flags & TX_WAIT_NEXT_RQ) && |
| tick_isset(s->be->timeout.httpka)) |
| req->analyse_exp = tick_add(now_ms, s->be->timeout.httpka); |
| else |
| req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq); |
| } |
| |
| /* we're not ready yet */ |
| return 0; |
| |
| failed_keep_alive: |
| /* Here we process low-level errors for keep-alive requests. In |
| * short, if the request is not the first one and it experiences |
| * a timeout, read error or shutdown, we just silently close so |
| * that the client can try again. |
| */ |
| txn->status = 0; |
| msg->msg_state = HTTP_MSG_RQBEFORE; |
| req->analysers &= AN_REQ_FLT_END; |
| s->logs.logwait = 0; |
| s->logs.level = 0; |
| s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */ |
| http_reply_and_close(s, txn->status, NULL); |
| return 0; |
| } |
| |
| /* OK now we have a complete HTTP request with indexed headers. Let's |
| * complete the request parsing by setting a few fields we will need |
| * later. At this point, we have the last CRLF at req->buf.data + msg->eoh. |
| * If the request is in HTTP/0.9 form, the rule is still true, and eoh |
| * points to the CRLF of the request line. msg->next points to the first |
| * byte after the last LF. msg->sov points to the first byte of data. |
| * msg->eol cannot be trusted because it may have been left uninitialized |
| * (for instance in the absence of headers). |
| */ |
| |
| stream_inc_http_req_ctr(s); |
| proxy_inc_fe_req_ctr(sess->fe); /* one more valid request for this FE */ |
| |
| if (txn->flags & TX_WAIT_NEXT_RQ) { |
| /* kill the pending keep-alive timeout */ |
| txn->flags &= ~TX_WAIT_NEXT_RQ; |
| req->analyse_exp = TICK_ETERNITY; |
| } |
| |
| |
| /* Maybe we found in invalid header name while we were configured not |
| * to block on that, so we have to capture it now. |
| */ |
| if (unlikely(msg->err_pos >= 0)) |
| http_capture_bad_message(sess->fe, s, msg, msg->err_state, sess->fe); |
| |
| /* |
| * 1: identify the method |
| */ |
| txn->meth = find_http_meth(ci_head(req), msg->sl.rq.m_l); |
| |
| /* we can make use of server redirect on GET and HEAD */ |
| if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD) |
| s->flags |= SF_REDIRECTABLE; |
| else if (txn->meth == HTTP_METH_OTHER && |
| msg->sl.rq.m_l == 3 && memcmp(ci_head(req), "PRI", 3) == 0) { |
| /* PRI is reserved for the HTTP/2 preface */ |
| msg->err_pos = 0; |
| goto return_bad_req; |
| } |
| |
| /* |
| * 2: check if the URI matches the monitor_uri. |
| * We have to do this for every request which gets in, because |
| * the monitor-uri is defined by the frontend. |
| */ |
| if (unlikely((sess->fe->monitor_uri_len != 0) && |
| (sess->fe->monitor_uri_len == msg->sl.rq.u_l) && |
| !memcmp(ci_head(req) + msg->sl.rq.u, |
| sess->fe->monitor_uri, |
| sess->fe->monitor_uri_len))) { |
| /* |
| * We have found the monitor URI |
| */ |
| struct acl_cond *cond; |
| |
| s->flags |= SF_MONITOR; |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.intercepted_req, 1); |
| |
| /* Check if we want to fail this monitor request or not */ |
| list_for_each_entry(cond, &sess->fe->mon_fail_cond, list) { |
| int ret = acl_exec_cond(cond, sess->fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| |
| ret = acl_pass(ret); |
| if (cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| |
| if (ret) { |
| /* we fail this request, let's return 503 service unavail */ |
| txn->status = 503; |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */ |
| goto return_prx_cond; |
| } |
| } |
| |
| /* nothing to fail, let's reply normally */ |
| txn->status = 200; |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */ |
| goto return_prx_cond; |
| } |
| |
| /* |
| * 3: Maybe we have to copy the original REQURI for the logs ? |
| * Note: we cannot log anymore if the request has been |
| * classified as invalid. |
| */ |
| if (unlikely(s->logs.logwait & LW_REQ)) { |
| /* we have a complete HTTP request that we must log */ |
| if ((txn->uri = pool_alloc(pool_head_requri)) != NULL) { |
| int urilen = msg->sl.rq.l; |
| |
| if (urilen >= global.tune.requri_len ) |
| urilen = global.tune.requri_len - 1; |
| memcpy(txn->uri, ci_head(req), urilen); |
| txn->uri[urilen] = 0; |
| |
| if (!(s->logs.logwait &= ~(LW_REQ|LW_INIT))) |
| s->do_log(s); |
| } else { |
| ha_alert("HTTP logging : out of memory.\n"); |
| } |
| } |
| |
| /* RFC7230#2.6 has enforced the format of the HTTP version string to be |
| * exactly one digit "." one digit. This check may be disabled using |
| * option accept-invalid-http-request. |
| */ |
| if (!(sess->fe->options2 & PR_O2_REQBUG_OK)) { |
| if (msg->sl.rq.v_l != 8) { |
| msg->err_pos = msg->sl.rq.v; |
| goto return_bad_req; |
| } |
| |
| if (ci_head(req)[msg->sl.rq.v + 4] != '/' || |
| !isdigit((unsigned char)ci_head(req)[msg->sl.rq.v + 5]) || |
| ci_head(req)[msg->sl.rq.v + 6] != '.' || |
| !isdigit((unsigned char)ci_head(req)[msg->sl.rq.v + 7])) { |
| msg->err_pos = msg->sl.rq.v + 4; |
| goto return_bad_req; |
| } |
| } |
| else { |
| /* 4. We may have to convert HTTP/0.9 requests to HTTP/1.0 */ |
| if (unlikely(msg->sl.rq.v_l == 0) && !http_upgrade_v09_to_v10(txn)) |
| goto return_bad_req; |
| } |
| |
| /* ... and check if the request is HTTP/1.1 or above */ |
| if ((msg->sl.rq.v_l == 8) && |
| ((ci_head(req)[msg->sl.rq.v + 5] > '1') || |
| ((ci_head(req)[msg->sl.rq.v + 5] == '1') && |
| (ci_head(req)[msg->sl.rq.v + 7] >= '1')))) |
| msg->flags |= HTTP_MSGF_VER_11; |
| |
| /* "connection" has not been parsed yet */ |
| txn->flags &= ~(TX_HDR_CONN_PRS | TX_HDR_CONN_CLO | TX_HDR_CONN_KAL | TX_HDR_CONN_UPG); |
| |
| /* if the frontend has "option http-use-proxy-header", we'll check if |
| * we have what looks like a proxied connection instead of a connection, |
| * and in this case set the TX_USE_PX_CONN flag to use Proxy-connection. |
| * Note that this is *not* RFC-compliant, however browsers and proxies |
| * happen to do that despite being non-standard :-( |
| * We consider that a request not beginning with either '/' or '*' is |
| * a proxied connection, which covers both "scheme://location" and |
| * CONNECT ip:port. |
| */ |
| if ((sess->fe->options2 & PR_O2_USE_PXHDR) && |
| ci_head(req)[msg->sl.rq.u] != '/' && ci_head(req)[msg->sl.rq.u] != '*') |
| txn->flags |= TX_USE_PX_CONN; |
| |
| /* transfer length unknown*/ |
| msg->flags &= ~HTTP_MSGF_XFER_LEN; |
| |
| /* 5: we may need to capture headers */ |
| if (unlikely((s->logs.logwait & LW_REQHDR) && s->req_cap)) |
| http_capture_headers(ci_head(req), &txn->hdr_idx, |
| s->req_cap, sess->fe->req_cap); |
| |
| /* 6: determine the transfer-length according to RFC2616 #4.4, updated |
| * by RFC7230#3.3.3 : |
| * |
| * The length of a message body is determined by one of the following |
| * (in order of precedence): |
| * |
| * 1. Any response to a HEAD request and any response with a 1xx |
| * (Informational), 204 (No Content), or 304 (Not Modified) status |
| * code is always terminated by the first empty line after the |
| * header fields, regardless of the header fields present in the |
| * message, and thus cannot contain a message body. |
| * |
| * 2. Any 2xx (Successful) response to a CONNECT request implies that |
| * the connection will become a tunnel immediately after the empty |
| * line that concludes the header fields. A client MUST ignore any |
| * Content-Length or Transfer-Encoding header fields received in |
| * such a message. |
| * |
| * 3. If a Transfer-Encoding header field is present and the chunked |
| * transfer coding (Section 4.1) is the final encoding, the message |
| * body length is determined by reading and decoding the chunked |
| * data until the transfer coding indicates the data is complete. |
| * |
| * If a Transfer-Encoding header field is present in a response and |
| * the chunked transfer coding is not the final encoding, the |
| * message body length is determined by reading the connection until |
| * it is closed by the server. If a Transfer-Encoding header field |
| * is present in a request and the chunked transfer coding is not |
| * the final encoding, the message body length cannot be determined |
| * reliably; the server MUST respond with the 400 (Bad Request) |
| * status code and then close the connection. |
| * |
| * If a message is received with both a Transfer-Encoding and a |
| * Content-Length header field, the Transfer-Encoding overrides the |
| * Content-Length. Such a message might indicate an attempt to |
| * perform request smuggling (Section 9.5) or response splitting |
| * (Section 9.4) and ought to be handled as an error. A sender MUST |
| * remove the received Content-Length field prior to forwarding such |
| * a message downstream. |
| * |
| * 4. If a message is received without Transfer-Encoding and with |
| * either multiple Content-Length header fields having differing |
| * field-values or a single Content-Length header field having an |
| * invalid value, then the message framing is invalid and the |
| * recipient MUST treat it as an unrecoverable error. If this is a |
| * request message, the server MUST respond with a 400 (Bad Request) |
| * status code and then close the connection. If this is a response |
| * message received by a proxy, the proxy MUST close the connection |
| * to the server, discard the received response, and send a 502 (Bad |
| * Gateway) response to the client. If this is a response message |
| * received by a user agent, the user agent MUST close the |
| * connection to the server and discard the received response. |
| * |
| * 5. If a valid Content-Length header field is present without |
| * Transfer-Encoding, its decimal value defines the expected message |
| * body length in octets. If the sender closes the connection or |
| * the recipient times out before the indicated number of octets are |
| * received, the recipient MUST consider the message to be |
| * incomplete and close the connection. |
| * |
| * 6. If this is a request message and none of the above are true, then |
| * the message body length is zero (no message body is present). |
| * |
| * 7. Otherwise, this is a response message without a declared message |
| * body length, so the message body length is determined by the |
| * number of octets received prior to the server closing the |
| * connection. |
| */ |
| |
| ctx.idx = 0; |
| /* set TE_CHNK and XFER_LEN only if "chunked" is seen last */ |
| while (http_find_header2("Transfer-Encoding", 17, ci_head(req), &txn->hdr_idx, &ctx)) { |
| if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0) |
| msg->flags |= HTTP_MSGF_TE_CHNK; |
| else if (msg->flags & HTTP_MSGF_TE_CHNK) { |
| /* chunked not last, return badreq */ |
| goto return_bad_req; |
| } |
| } |
| |
| /* Chunked requests must have their content-length removed */ |
| ctx.idx = 0; |
| if (msg->flags & HTTP_MSGF_TE_CHNK) { |
| while (http_find_header2("Content-Length", 14, ci_head(req), &txn->hdr_idx, &ctx)) |
| http_remove_header2(msg, &txn->hdr_idx, &ctx); |
| } |
| else while (http_find_header2("Content-Length", 14, ci_head(req), &txn->hdr_idx, &ctx)) { |
| signed long long cl; |
| |
| if (!ctx.vlen) { |
| msg->err_pos = ctx.line + ctx.val - ci_head(req); |
| goto return_bad_req; |
| } |
| |
| if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) { |
| msg->err_pos = ctx.line + ctx.val - ci_head(req); |
| goto return_bad_req; /* parse failure */ |
| } |
| |
| if (cl < 0) { |
| msg->err_pos = ctx.line + ctx.val - ci_head(req); |
| goto return_bad_req; |
| } |
| |
| if ((msg->flags & HTTP_MSGF_CNT_LEN) && (msg->chunk_len != cl)) { |
| msg->err_pos = ctx.line + ctx.val - ci_head(req); |
| goto return_bad_req; /* already specified, was different */ |
| } |
| |
| msg->flags |= HTTP_MSGF_CNT_LEN; |
| msg->body_len = msg->chunk_len = cl; |
| } |
| |
| /* even bodyless requests have a known length */ |
| msg->flags |= HTTP_MSGF_XFER_LEN; |
| |
| /* Until set to anything else, the connection mode is set as Keep-Alive. It will |
| * only change if both the request and the config reference something else. |
| * Option httpclose by itself sets tunnel mode where headers are mangled. |
| * However, if another mode is set, it will affect it (eg: server-close/ |
| * keep-alive + httpclose = close). Note that we avoid to redo the same work |
| * if FE and BE have the same settings (common). The method consists in |
| * checking if options changed between the two calls (implying that either |
| * one is non-null, or one of them is non-null and we are there for the first |
| * time. |
| */ |
| if (!(txn->flags & TX_HDR_CONN_PRS) || |
| ((sess->fe->options & PR_O_HTTP_MODE) != (s->be->options & PR_O_HTTP_MODE))) |
| http_adjust_conn_mode(s, txn, msg); |
| |
| /* we may have to wait for the request's body */ |
| if ((s->be->options & PR_O_WREQ_BODY) && |
| (msg->body_len || (msg->flags & HTTP_MSGF_TE_CHNK))) |
| req->analysers |= AN_REQ_HTTP_BODY; |
| |
| /* |
| * RFC7234#4: |
| * A cache MUST write through requests with methods |
| * that are unsafe (Section 4.2.1 of [RFC7231]) to |
| * the origin server; i.e., a cache is not allowed |
| * to generate a reply to such a request before |
| * having forwarded the request and having received |
| * a corresponding response. |
| * |
| * RFC7231#4.2.1: |
| * Of the request methods defined by this |
| * specification, the GET, HEAD, OPTIONS, and TRACE |
| * methods are defined to be safe. |
| */ |
| if (likely(txn->meth == HTTP_METH_GET || |
| txn->meth == HTTP_METH_HEAD || |
| txn->meth == HTTP_METH_OPTIONS || |
| txn->meth == HTTP_METH_TRACE)) |
| txn->flags |= TX_CACHEABLE | TX_CACHE_COOK; |
| |
| /* end of job, return OK */ |
| req->analysers &= ~an_bit; |
| req->analyse_exp = TICK_ETERNITY; |
| return 1; |
| |
| return_bad_req: |
| /* We centralize bad requests processing here */ |
| if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) { |
| /* we detected a parsing error. We want to archive this request |
| * in the dedicated proxy area for later troubleshooting. |
| */ |
| http_capture_bad_message(sess->fe, s, msg, msg->err_state, sess->fe); |
| } |
| |
| txn->req.err_state = txn->req.msg_state; |
| txn->req.msg_state = HTTP_MSG_ERROR; |
| txn->status = 400; |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); |
| if (sess->listener->counters) |
| HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); |
| |
| return_prx_cond: |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_PRXCOND; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_R; |
| |
| req->analysers &= AN_REQ_FLT_END; |
| req->analyse_exp = TICK_ETERNITY; |
| return 0; |
| } |
| |
| |
| /* This function prepares an applet to handle the stats. It can deal with the |
| * "100-continue" expectation, check that admin rules are met for POST requests, |
| * and program a response message if something was unexpected. It cannot fail |
| * and always relies on the stats applet to complete the job. It does not touch |
| * analysers nor counters, which are left to the caller. It does not touch |
| * s->target which is supposed to already point to the stats applet. The caller |
| * is expected to have already assigned an appctx to the stream. |
| */ |
| int http_handle_stats(struct stream *s, struct channel *req) |
| { |
| struct stats_admin_rule *stats_admin_rule; |
| struct stream_interface *si = &s->si[1]; |
| struct session *sess = s->sess; |
| struct http_txn *txn = s->txn; |
| struct http_msg *msg = &txn->req; |
| struct uri_auth *uri_auth = s->be->uri_auth; |
| const char *uri, *h, *lookup; |
| struct appctx *appctx; |
| |
| appctx = si_appctx(si); |
| memset(&appctx->ctx.stats, 0, sizeof(appctx->ctx.stats)); |
| appctx->st1 = appctx->st2 = 0; |
| appctx->ctx.stats.st_code = STAT_STATUS_INIT; |
| appctx->ctx.stats.flags |= STAT_FMT_HTML; /* assume HTML mode by default */ |
| if ((msg->flags & HTTP_MSGF_VER_11) && (s->txn->meth != HTTP_METH_HEAD)) |
| appctx->ctx.stats.flags |= STAT_CHUNKED; |
| |
| uri = ci_head(msg->chn) + msg->sl.rq.u; |
| lookup = uri + uri_auth->uri_len; |
| |
| for (h = lookup; h <= uri + msg->sl.rq.u_l - 3; h++) { |
| if (memcmp(h, ";up", 3) == 0) { |
| appctx->ctx.stats.flags |= STAT_HIDE_DOWN; |
| break; |
| } |
| } |
| |
| if (uri_auth->refresh) { |
| for (h = lookup; h <= uri + msg->sl.rq.u_l - 10; h++) { |
| if (memcmp(h, ";norefresh", 10) == 0) { |
| appctx->ctx.stats.flags |= STAT_NO_REFRESH; |
| break; |
| } |
| } |
| } |
| |
| for (h = lookup; h <= uri + msg->sl.rq.u_l - 4; h++) { |
| if (memcmp(h, ";csv", 4) == 0) { |
| appctx->ctx.stats.flags &= ~STAT_FMT_HTML; |
| break; |
| } |
| } |
| |
| for (h = lookup; h <= uri + msg->sl.rq.u_l - 6; h++) { |
| if (memcmp(h, ";typed", 6) == 0) { |
| appctx->ctx.stats.flags &= ~STAT_FMT_HTML; |
| appctx->ctx.stats.flags |= STAT_FMT_TYPED; |
| break; |
| } |
| } |
| |
| for (h = lookup; h <= uri + msg->sl.rq.u_l - 8; h++) { |
| if (memcmp(h, ";st=", 4) == 0) { |
| int i; |
| h += 4; |
| appctx->ctx.stats.st_code = STAT_STATUS_UNKN; |
| for (i = STAT_STATUS_INIT + 1; i < STAT_STATUS_SIZE; i++) { |
| if (strncmp(stat_status_codes[i], h, 4) == 0) { |
| appctx->ctx.stats.st_code = i; |
| break; |
| } |
| } |
| break; |
| } |
| } |
| |
| appctx->ctx.stats.scope_str = 0; |
| appctx->ctx.stats.scope_len = 0; |
| for (h = lookup; h <= uri + msg->sl.rq.u_l - 8; h++) { |
| if (memcmp(h, STAT_SCOPE_INPUT_NAME "=", strlen(STAT_SCOPE_INPUT_NAME) + 1) == 0) { |
| int itx = 0; |
| const char *h2; |
| char scope_txt[STAT_SCOPE_TXT_MAXLEN + 1]; |
| const char *err; |
| |
| h += strlen(STAT_SCOPE_INPUT_NAME) + 1; |
| h2 = h; |
| appctx->ctx.stats.scope_str = h2 - ci_head(msg->chn); |
| while (*h != ';' && *h != '\0' && *h != '&' && *h != ' ' && *h != '\n') { |
| itx++; |
| h++; |
| } |
| |
| if (itx > STAT_SCOPE_TXT_MAXLEN) |
| itx = STAT_SCOPE_TXT_MAXLEN; |
| appctx->ctx.stats.scope_len = itx; |
| |
| /* scope_txt = search query, appctx->ctx.stats.scope_len is always <= STAT_SCOPE_TXT_MAXLEN */ |
| memcpy(scope_txt, h2, itx); |
| scope_txt[itx] = '\0'; |
| err = invalid_char(scope_txt); |
| if (err) { |
| /* bad char in search text => clear scope */ |
| appctx->ctx.stats.scope_str = 0; |
| appctx->ctx.stats.scope_len = 0; |
| } |
| break; |
| } |
| } |
| |
| /* now check whether we have some admin rules for this request */ |
| list_for_each_entry(stats_admin_rule, &uri_auth->admin_rules, list) { |
| int ret = 1; |
| |
| if (stats_admin_rule->cond) { |
| ret = acl_exec_cond(stats_admin_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (stats_admin_rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| /* no rule, or the rule matches */ |
| appctx->ctx.stats.flags |= STAT_ADMIN; |
| break; |
| } |
| } |
| |
| /* Was the status page requested with a POST ? */ |
| if (unlikely(txn->meth == HTTP_METH_POST && txn->req.body_len > 0)) { |
| if (appctx->ctx.stats.flags & STAT_ADMIN) { |
| /* we'll need the request body, possibly after sending 100-continue */ |
| if (msg->msg_state < HTTP_MSG_CHUNK_SIZE) |
| req->analysers |= AN_REQ_HTTP_BODY; |
| appctx->st0 = STAT_HTTP_POST; |
| } |
| else { |
| appctx->ctx.stats.st_code = STAT_STATUS_DENY; |
| appctx->st0 = STAT_HTTP_LAST; |
| } |
| } |
| else { |
| /* So it was another method (GET/HEAD) */ |
| appctx->st0 = STAT_HTTP_HEAD; |
| } |
| |
| s->task->nice = -32; /* small boost for HTTP statistics */ |
| return 1; |
| } |
| |
| int http_transform_header_str(struct stream* s, struct http_msg *msg, |
| const char* name, unsigned int name_len, |
| const char *str, struct my_regex *re, |
| int action) |
| { |
| struct hdr_idx *idx = &s->txn->hdr_idx; |
| struct buffer *output = get_trash_chunk(); |
| |
| /* Choose the header browsing function. */ |
| switch (action) { |
| case ACT_HTTP_REPLACE_VAL: |
| return http_legacy_replace_header(idx, msg, name, name_len, str, re, output); |
| case ACT_HTTP_REPLACE_HDR: |
| return http_legacy_replace_full_header(idx, msg, name, name_len, str, re, output); |
| default: /* impossible */ |
| return -1; |
| } |
| } |
| |
| static int http_transform_header(struct stream* s, struct http_msg *msg, |
| const char* name, unsigned int name_len, |
| struct list *fmt, struct my_regex *re, |
| int action) |
| { |
| struct buffer *replace; |
| int ret = -1; |
| |
| replace = alloc_trash_chunk(); |
| if (!replace) |
| goto leave; |
| |
| replace->data = build_logline(s, replace->area, replace->size, fmt); |
| if (replace->data >= replace->size - 1) |
| goto leave; |
| |
| ret = http_transform_header_str(s, msg, name, name_len, replace->area, |
| re, action); |
| |
| leave: |
| free_trash_chunk(replace); |
| return ret; |
| } |
| |
| /* |
| * Build an HTTP Early Hint HTTP 103 response header with <name> as name and with a value |
| * built according to <fmt> log line format. |
| * If <early_hints> is NULL, it is allocated and the HTTP 103 response first |
| * line is inserted before the header. If an error occurred <early_hints> is |
| * released and NULL is returned. On success the updated buffer is returned. |
| */ |
| static struct buffer *http_apply_early_hint_rule(struct stream* s, struct buffer *early_hints, |
| const char* name, unsigned int name_len, |
| struct list *fmt) |
| { |
| if (!early_hints) { |
| early_hints = alloc_trash_chunk(); |
| if (!early_hints) |
| goto fail; |
| if (!chunk_memcat(early_hints, HTTP_103.ptr, HTTP_103.len)) |
| goto fail; |
| } |
| |
| if (!chunk_memcat(early_hints, name, name_len) || !chunk_memcat(early_hints, ": ", 2)) |
| goto fail; |
| |
| early_hints->data += build_logline(s, b_tail(early_hints), b_room(early_hints), fmt); |
| if (!chunk_memcat(early_hints, "\r\n", 2)) |
| goto fail; |
| |
| return early_hints; |
| |
| fail: |
| free_trash_chunk(early_hints); |
| return NULL; |
| } |
| |
| /* Sends an HTTP 103 response. Before sending it, the last CRLF finishing the |
| * response is added. If an error occurred or if another response was already |
| * sent, this function does nothing. |
| */ |
| static void http_send_early_hints(struct stream *s, struct buffer *early_hints) |
| { |
| struct channel *chn = s->txn->rsp.chn; |
| char *cur_ptr = ci_head(chn); |
| int ret; |
| |
| /* If a response was already sent, skip early hints */ |
| if (s->txn->status > 0) |
| return; |
| |
| if (!chunk_memcat(early_hints, "\r\n", 2)) |
| return; |
| |
| ret = b_rep_blk(&chn->buf, cur_ptr, cur_ptr, b_head(early_hints), b_data(early_hints)); |
| c_adv(chn, ret); |
| chn->total += ret; |
| } |
| |
| /* Executes the http-request rules <rules> for stream <s>, proxy <px> and |
| * transaction <txn>. Returns the verdict of the first rule that prevents |
| * further processing of the request (auth, deny, ...), and defaults to |
| * HTTP_RULE_RES_STOP if it executed all rules or stopped on an allow, or |
| * HTTP_RULE_RES_CONT if the last rule was reached. It may set the TX_CLTARPIT |
| * on txn->flags if it encounters a tarpit rule. If <deny_status> is not NULL |
| * and a deny/tarpit rule is matched, it will be filled with this rule's deny |
| * status. |
| */ |
| enum rule_result |
| http_req_get_intercept_rule(struct proxy *px, struct list *rules, struct stream *s, int *deny_status) |
| { |
| struct session *sess = strm_sess(s); |
| struct http_txn *txn = s->txn; |
| struct act_rule *rule; |
| struct hdr_ctx ctx; |
| const char *auth_realm; |
| struct buffer *early_hints = NULL; |
| enum rule_result rule_ret = HTTP_RULE_RES_CONT; |
| int act_flags = 0; |
| int len; |
| |
| /* If "the current_rule_list" match the executed rule list, we are in |
| * resume condition. If a resume is needed it is always in the action |
| * and never in the ACL or converters. In this case, we initialise the |
| * current rule, and go to the action execution point. |
| */ |
| if (s->current_rule) { |
| rule = s->current_rule; |
| s->current_rule = NULL; |
| if (s->current_rule_list == rules) |
| goto resume_execution; |
| } |
| s->current_rule_list = rules; |
| |
| list_for_each_entry(rule, rules, list) { |
| |
| /* check optional condition */ |
| if (rule->cond) { |
| int ret; |
| |
| ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| |
| if (!ret) /* condition not matched */ |
| continue; |
| } |
| |
| act_flags |= ACT_FLAG_FIRST; |
| resume_execution: |
| switch (rule->action) { |
| case ACT_ACTION_ALLOW: |
| rule_ret = HTTP_RULE_RES_STOP; |
| goto end; |
| |
| case ACT_ACTION_DENY: |
| if (deny_status) |
| *deny_status = rule->deny_status; |
| rule_ret = HTTP_RULE_RES_DENY; |
| goto end; |
| |
| case ACT_HTTP_REQ_TARPIT: |
| txn->flags |= TX_CLTARPIT; |
| if (deny_status) |
| *deny_status = rule->deny_status; |
| rule_ret = HTTP_RULE_RES_DENY; |
| goto end; |
| |
| case ACT_HTTP_REQ_AUTH: |
| /* Be sure to send any pending HTTP 103 response first */ |
| if (early_hints) { |
| http_send_early_hints(s, early_hints); |
| free_trash_chunk(early_hints); |
| early_hints = NULL; |
| } |
| /* Auth might be performed on regular http-req rules as well as on stats */ |
| auth_realm = rule->arg.auth.realm; |
| if (!auth_realm) { |
| if (px->uri_auth && rules == &px->uri_auth->http_req_rules) |
| auth_realm = STATS_DEFAULT_REALM; |
| else |
| auth_realm = px->id; |
| } |
| /* send 401/407 depending on whether we use a proxy or not. We still |
| * count one error, because normal browsing won't significantly |
| * increase the counter but brute force attempts will. |
| */ |
| chunk_printf(&trash, (txn->flags & TX_USE_PX_CONN) ? HTTP_407_fmt : HTTP_401_fmt, auth_realm); |
| txn->status = (txn->flags & TX_USE_PX_CONN) ? 407 : 401; |
| http_reply_and_close(s, txn->status, &trash); |
| stream_inc_http_err_ctr(s); |
| rule_ret = HTTP_RULE_RES_ABRT; |
| goto end; |
| |
| case ACT_HTTP_REDIR: |
| /* Be sure to send any pending HTTP 103 response first */ |
| if (early_hints) { |
| http_send_early_hints(s, early_hints); |
| free_trash_chunk(early_hints); |
| early_hints = NULL; |
| } |
| rule_ret = HTTP_RULE_RES_DONE; |
| if (!http_apply_redirect_rule(rule->arg.redir, s, txn)) |
| rule_ret = HTTP_RULE_RES_BADREQ; |
| goto end; |
| |
| case ACT_HTTP_SET_NICE: |
| s->task->nice = rule->arg.nice; |
| break; |
| |
| case ACT_HTTP_SET_TOS: |
| conn_set_tos(objt_conn(sess->origin), rule->arg.tos); |
| break; |
| |
| case ACT_HTTP_SET_MARK: |
| conn_set_mark(objt_conn(sess->origin), rule->arg.mark); |
| break; |
| |
| case ACT_HTTP_SET_LOGL: |
| s->logs.level = rule->arg.loglevel; |
| break; |
| |
| case ACT_HTTP_REPLACE_HDR: |
| case ACT_HTTP_REPLACE_VAL: |
| if (http_transform_header(s, &txn->req, rule->arg.hdr_add.name, |
| rule->arg.hdr_add.name_len, |
| &rule->arg.hdr_add.fmt, |
| &rule->arg.hdr_add.re, rule->action)) { |
| rule_ret = HTTP_RULE_RES_BADREQ; |
| goto end; |
| } |
| break; |
| |
| case ACT_HTTP_DEL_HDR: |
| ctx.idx = 0; |
| /* remove all occurrences of the header */ |
| while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len, |
| ci_head(txn->req.chn), &txn->hdr_idx, &ctx)) { |
| http_remove_header2(&txn->req, &txn->hdr_idx, &ctx); |
| } |
| break; |
| |
| case ACT_HTTP_SET_HDR: |
| case ACT_HTTP_ADD_HDR: { |
| /* The scope of the trash buffer must be limited to this function. The |
| * build_logline() function can execute a lot of other function which |
| * can use the trash buffer. So for limiting the scope of this global |
| * buffer, we build first the header value using build_logline, and |
| * after we store the header name. |
| */ |
| struct buffer *replace; |
| |
| replace = alloc_trash_chunk(); |
| if (!replace) { |
| rule_ret = HTTP_RULE_RES_BADREQ; |
| goto end; |
| } |
| |
| len = rule->arg.hdr_add.name_len + 2, |
| len += build_logline(s, replace->area + len, |
| replace->size - len, |
| &rule->arg.hdr_add.fmt); |
| memcpy(replace->area, rule->arg.hdr_add.name, |
| rule->arg.hdr_add.name_len); |
| replace->area[rule->arg.hdr_add.name_len] = ':'; |
| replace->area[rule->arg.hdr_add.name_len + 1] = ' '; |
| replace->data = len; |
| |
| if (rule->action == ACT_HTTP_SET_HDR) { |
| /* remove all occurrences of the header */ |
| ctx.idx = 0; |
| while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len, |
| ci_head(txn->req.chn), &txn->hdr_idx, &ctx)) { |
| http_remove_header2(&txn->req, &txn->hdr_idx, &ctx); |
| } |
| } |
| |
| if (http_header_add_tail2(&txn->req, &txn->hdr_idx, replace->area, replace->data) < 0) { |
| static unsigned char rate_limit = 0; |
| |
| if ((rate_limit++ & 255) == 0) { |
| replace->area[rule->arg.hdr_add.name_len] = 0; |
| send_log(px, LOG_WARNING, "Proxy %s failed to add or set the request header '%s' for request #%u. You might need to increase tune.maxrewrite.", px->id, |
| replace->area, s->uniq_id); |
| } |
| |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_rewrites, 1); |
| if (sess->fe != s->be) |
| HA_ATOMIC_ADD(&s->be->be_counters.failed_rewrites, 1); |
| if (sess->listener->counters) |
| HA_ATOMIC_ADD(&sess->listener->counters->failed_rewrites, 1); |
| } |
| |
| free_trash_chunk(replace); |
| break; |
| } |
| |
| case ACT_HTTP_DEL_ACL: |
| case ACT_HTTP_DEL_MAP: { |
| struct pat_ref *ref; |
| struct buffer *key; |
| |
| /* collect reference */ |
| ref = pat_ref_lookup(rule->arg.map.ref); |
| if (!ref) |
| continue; |
| |
| /* allocate key */ |
| key = alloc_trash_chunk(); |
| if (!key) { |
| rule_ret = HTTP_RULE_RES_BADREQ; |
| goto end; |
| } |
| |
| /* collect key */ |
| key->data = build_logline(s, key->area, key->size, |
| &rule->arg.map.key); |
| key->area[key->data] = '\0'; |
| |
| /* perform update */ |
| /* returned code: 1=ok, 0=ko */ |
| HA_SPIN_LOCK(PATREF_LOCK, &ref->lock); |
| pat_ref_delete(ref, key->area); |
| HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock); |
| |
| free_trash_chunk(key); |
| break; |
| } |
| |
| case ACT_HTTP_ADD_ACL: { |
| struct pat_ref *ref; |
| struct buffer *key; |
| |
| /* collect reference */ |
| ref = pat_ref_lookup(rule->arg.map.ref); |
| if (!ref) |
| continue; |
| |
| /* allocate key */ |
| key = alloc_trash_chunk(); |
| if (!key) { |
| rule_ret = HTTP_RULE_RES_BADREQ; |
| goto end; |
| } |
| |
| /* collect key */ |
| key->data = build_logline(s, key->area, key->size, |
| &rule->arg.map.key); |
| key->area[key->data] = '\0'; |
| |
| /* perform update */ |
| /* add entry only if it does not already exist */ |
| HA_SPIN_LOCK(PATREF_LOCK, &ref->lock); |
| if (pat_ref_find_elt(ref, key->area) == NULL) |
| pat_ref_add(ref, key->area, NULL, NULL); |
| HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock); |
| |
| free_trash_chunk(key); |
| break; |
| } |
| |
| case ACT_HTTP_SET_MAP: { |
| struct pat_ref *ref; |
| struct buffer *key, *value; |
| |
| /* collect reference */ |
| ref = pat_ref_lookup(rule->arg.map.ref); |
| if (!ref) |
| continue; |
| |
| /* allocate key */ |
| key = alloc_trash_chunk(); |
| if (!key) { |
| rule_ret = HTTP_RULE_RES_BADREQ; |
| goto end; |
| } |
| |
| /* allocate value */ |
| value = alloc_trash_chunk(); |
| if (!value) { |
| free_trash_chunk(key); |
| rule_ret = HTTP_RULE_RES_BADREQ; |
| goto end; |
| } |
| |
| /* collect key */ |
| key->data = build_logline(s, key->area, key->size, |
| &rule->arg.map.key); |
| key->area[key->data] = '\0'; |
| |
| /* collect value */ |
| value->data = build_logline(s, value->area, |
| value->size, |
| &rule->arg.map.value); |
| value->area[value->data] = '\0'; |
| |
| /* perform update */ |
| if (pat_ref_find_elt(ref, key->area) != NULL) |
| /* update entry if it exists */ |
| pat_ref_set(ref, key->area, value->area, NULL); |
| else |
| /* insert a new entry */ |
| pat_ref_add(ref, key->area, value->area, NULL); |
| |
| free_trash_chunk(key); |
| free_trash_chunk(value); |
| break; |
| } |
| |
| case ACT_HTTP_EARLY_HINT: |
| if (!(txn->req.flags & HTTP_MSGF_VER_11)) |
| break; |
| early_hints = http_apply_early_hint_rule(s, early_hints, |
| rule->arg.early_hint.name, |
| rule->arg.early_hint.name_len, |
| &rule->arg.early_hint.fmt); |
| if (!early_hints) { |
| rule_ret = HTTP_RULE_RES_DONE; |
| goto end; |
| } |
| break; |
| case ACT_CUSTOM: |
| if ((s->req.flags & CF_READ_ERROR) || |
| ((s->req.flags & (CF_SHUTR|CF_READ_NULL)) && |
| !(s->si[0].flags & SI_FL_CLEAN_ABRT) && |
| (px->options & PR_O_ABRT_CLOSE))) |
| act_flags |= ACT_FLAG_FINAL; |
| |
| switch (rule->action_ptr(rule, px, s->sess, s, act_flags)) { |
| case ACT_RET_ERR: |
| case ACT_RET_CONT: |
| break; |
| case ACT_RET_STOP: |
| rule_ret = HTTP_RULE_RES_DONE; |
| goto end; |
| case ACT_RET_YIELD: |
| s->current_rule = rule; |
| rule_ret = HTTP_RULE_RES_YIELD; |
| goto end; |
| } |
| break; |
| |
| case ACT_ACTION_TRK_SC0 ... ACT_ACTION_TRK_SCMAX: |
| /* Note: only the first valid tracking parameter of each |
| * applies. |
| */ |
| |
| if (stkctr_entry(&s->stkctr[trk_idx(rule->action)]) == NULL) { |
| struct stktable *t; |
| struct stksess *ts; |
| struct stktable_key *key; |
| void *ptr1, *ptr2; |
| |
| t = rule->arg.trk_ctr.table.t; |
| key = stktable_fetch_key(t, s->be, sess, s, SMP_OPT_DIR_REQ | SMP_OPT_FINAL, rule->arg.trk_ctr.expr, NULL); |
| |
| if (key && (ts = stktable_get_entry(t, key))) { |
| stream_track_stkctr(&s->stkctr[trk_idx(rule->action)], t, ts); |
| |
| /* let's count a new HTTP request as it's the first time we do it */ |
| ptr1 = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_CNT); |
| ptr2 = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_RATE); |
| if (ptr1 || ptr2) { |
| HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock); |
| |
| if (ptr1) |
| stktable_data_cast(ptr1, http_req_cnt)++; |
| |
| if (ptr2) |
| update_freq_ctr_period(&stktable_data_cast(ptr2, http_req_rate), |
| t->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u, 1); |
| |
| HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); |
| |
| /* If data was modified, we need to touch to re-schedule sync */ |
| stktable_touch_local(t, ts, 0); |
| } |
| |
| stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_CONTENT); |
| if (sess->fe != s->be) |
| stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_BACKEND); |
| } |
| } |
| break; |
| |
| /* other flags exists, but normally, they never be matched. */ |
| default: |
| break; |
| } |
| } |
| |
| end: |
| if (early_hints) { |
| http_send_early_hints(s, early_hints); |
| free_trash_chunk(early_hints); |
| } |
| |
| /* we reached the end of the rules, nothing to report */ |
| return rule_ret; |
| } |
| |
| |
| /* Executes the http-response rules <rules> for stream <s> and proxy <px>. It |
| * returns one of 5 possible statuses: HTTP_RULE_RES_CONT, HTTP_RULE_RES_STOP, |
| * HTTP_RULE_RES_DONE, HTTP_RULE_RES_YIELD, or HTTP_RULE_RES_BADREQ. If *CONT |
| * is returned, the process can continue the evaluation of next rule list. If |
| * *STOP or *DONE is returned, the process must stop the evaluation. If *BADREQ |
| * is returned, it means the operation could not be processed and a server error |
| * must be returned. It may set the TX_SVDENY on txn->flags if it encounters a |
| * deny rule. If *YIELD is returned, the caller must call again the function |
| * with the same context. |
| */ |
| enum rule_result |
| http_res_get_intercept_rule(struct proxy *px, struct list *rules, struct stream *s) |
| { |
| struct session *sess = strm_sess(s); |
| struct http_txn *txn = s->txn; |
| struct act_rule *rule; |
| struct hdr_ctx ctx; |
| enum rule_result rule_ret = HTTP_RULE_RES_CONT; |
| int act_flags = 0; |
| |
| /* If "the current_rule_list" match the executed rule list, we are in |
| * resume condition. If a resume is needed it is always in the action |
| * and never in the ACL or converters. In this case, we initialise the |
| * current rule, and go to the action execution point. |
| */ |
| if (s->current_rule) { |
| rule = s->current_rule; |
| s->current_rule = NULL; |
| if (s->current_rule_list == rules) |
| goto resume_execution; |
| } |
| s->current_rule_list = rules; |
| |
| list_for_each_entry(rule, rules, list) { |
| |
| /* check optional condition */ |
| if (rule->cond) { |
| int ret; |
| |
| ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| |
| if (!ret) /* condition not matched */ |
| continue; |
| } |
| |
| act_flags |= ACT_FLAG_FIRST; |
| resume_execution: |
| switch (rule->action) { |
| case ACT_ACTION_ALLOW: |
| rule_ret = HTTP_RULE_RES_STOP; /* "allow" rules are OK */ |
| goto end; |
| |
| case ACT_ACTION_DENY: |
| txn->flags |= TX_SVDENY; |
| rule_ret = HTTP_RULE_RES_STOP; |
| goto end; |
| |
| case ACT_HTTP_SET_NICE: |
| s->task->nice = rule->arg.nice; |
| break; |
| |
| case ACT_HTTP_SET_TOS: |
| conn_set_tos(objt_conn(sess->origin), rule->arg.tos); |
| break; |
| |
| case ACT_HTTP_SET_MARK: |
| conn_set_mark(objt_conn(sess->origin), rule->arg.mark); |
| break; |
| |
| case ACT_HTTP_SET_LOGL: |
| s->logs.level = rule->arg.loglevel; |
| break; |
| |
| case ACT_HTTP_REPLACE_HDR: |
| case ACT_HTTP_REPLACE_VAL: |
| if (http_transform_header(s, &txn->rsp, rule->arg.hdr_add.name, |
| rule->arg.hdr_add.name_len, |
| &rule->arg.hdr_add.fmt, |
| &rule->arg.hdr_add.re, rule->action)) { |
| rule_ret = HTTP_RULE_RES_BADREQ; |
| goto end; |
| } |
| break; |
| |
| case ACT_HTTP_DEL_HDR: |
| ctx.idx = 0; |
| /* remove all occurrences of the header */ |
| while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len, |
| ci_head(txn->rsp.chn), &txn->hdr_idx, &ctx)) { |
| http_remove_header2(&txn->rsp, &txn->hdr_idx, &ctx); |
| } |
| break; |
| |
| case ACT_HTTP_SET_HDR: |
| case ACT_HTTP_ADD_HDR: { |
| struct buffer *replace; |
| |
| replace = alloc_trash_chunk(); |
| if (!replace) { |
| rule_ret = HTTP_RULE_RES_BADREQ; |
| goto end; |
| } |
| |
| chunk_printf(replace, "%s: ", rule->arg.hdr_add.name); |
| memcpy(replace->area, rule->arg.hdr_add.name, |
| rule->arg.hdr_add.name_len); |
| replace->data = rule->arg.hdr_add.name_len; |
| replace->area[replace->data++] = ':'; |
| replace->area[replace->data++] = ' '; |
| replace->data += build_logline(s, |
| replace->area + replace->data, |
| replace->size - replace->data, |
| &rule->arg.hdr_add.fmt); |
| |
| if (rule->action == ACT_HTTP_SET_HDR) { |
| /* remove all occurrences of the header */ |
| ctx.idx = 0; |
| while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len, |
| ci_head(txn->rsp.chn), &txn->hdr_idx, &ctx)) { |
| http_remove_header2(&txn->rsp, &txn->hdr_idx, &ctx); |
| } |
| } |
| |
| if (http_header_add_tail2(&txn->rsp, &txn->hdr_idx, replace->area, replace->data) < 0) { |
| static unsigned char rate_limit = 0; |
| |
| if ((rate_limit++ & 255) == 0) { |
| replace->area[rule->arg.hdr_add.name_len] = 0; |
| send_log(px, LOG_WARNING, "Proxy %s failed to add or set the response header '%s' for request #%u. You might need to increase tune.maxrewrite.", px->id, |
| replace->area, s->uniq_id); |
| } |
| |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_rewrites, 1); |
| if (sess->fe != s->be) |
| HA_ATOMIC_ADD(&s->be->be_counters.failed_rewrites, 1); |
| if (sess->listener->counters) |
| HA_ATOMIC_ADD(&sess->listener->counters->failed_rewrites, 1); |
| if (objt_server(s->target)) |
| HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_rewrites, 1); |
| } |
| |
| free_trash_chunk(replace); |
| break; |
| } |
| |
| case ACT_HTTP_DEL_ACL: |
| case ACT_HTTP_DEL_MAP: { |
| struct pat_ref *ref; |
| struct buffer *key; |
| |
| /* collect reference */ |
| ref = pat_ref_lookup(rule->arg.map.ref); |
| if (!ref) |
| continue; |
| |
| /* allocate key */ |
| key = alloc_trash_chunk(); |
| if (!key) { |
| rule_ret = HTTP_RULE_RES_BADREQ; |
| goto end; |
| } |
| |
| /* collect key */ |
| key->data = build_logline(s, key->area, key->size, |
| &rule->arg.map.key); |
| key->area[key->data] = '\0'; |
| |
| /* perform update */ |
| /* returned code: 1=ok, 0=ko */ |
| HA_SPIN_LOCK(PATREF_LOCK, &ref->lock); |
| pat_ref_delete(ref, key->area); |
| HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock); |
| |
| free_trash_chunk(key); |
| break; |
| } |
| |
| case ACT_HTTP_ADD_ACL: { |
| struct pat_ref *ref; |
| struct buffer *key; |
| |
| /* collect reference */ |
| ref = pat_ref_lookup(rule->arg.map.ref); |
| if (!ref) |
| continue; |
| |
| /* allocate key */ |
| key = alloc_trash_chunk(); |
| if (!key) { |
| rule_ret = HTTP_RULE_RES_BADREQ; |
| goto end; |
| } |
| |
| /* collect key */ |
| key->data = build_logline(s, key->area, key->size, |
| &rule->arg.map.key); |
| key->area[key->data] = '\0'; |
| |
| /* perform update */ |
| /* check if the entry already exists */ |
| if (pat_ref_find_elt(ref, key->area) == NULL) |
| pat_ref_add(ref, key->area, NULL, NULL); |
| |
| free_trash_chunk(key); |
| break; |
| } |
| |
| case ACT_HTTP_SET_MAP: { |
| struct pat_ref *ref; |
| struct buffer *key, *value; |
| |
| /* collect reference */ |
| ref = pat_ref_lookup(rule->arg.map.ref); |
| if (!ref) |
| continue; |
| |
| /* allocate key */ |
| key = alloc_trash_chunk(); |
| if (!key) { |
| rule_ret = HTTP_RULE_RES_BADREQ; |
| goto end; |
| } |
| |
| /* allocate value */ |
| value = alloc_trash_chunk(); |
| if (!value) { |
| free_trash_chunk(key); |
| rule_ret = HTTP_RULE_RES_BADREQ; |
| goto end; |
| } |
| |
| /* collect key */ |
| key->data = build_logline(s, key->area, key->size, |
| &rule->arg.map.key); |
| key->area[key->data] = '\0'; |
| |
| /* collect value */ |
| value->data = build_logline(s, value->area, |
| value->size, |
| &rule->arg.map.value); |
| value->area[value->data] = '\0'; |
| |
| /* perform update */ |
| HA_SPIN_LOCK(PATREF_LOCK, &ref->lock); |
| if (pat_ref_find_elt(ref, key->area) != NULL) |
| /* update entry if it exists */ |
| pat_ref_set(ref, key->area, value->area, NULL); |
| else |
| /* insert a new entry */ |
| pat_ref_add(ref, key->area, value->area, NULL); |
| HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock); |
| free_trash_chunk(key); |
| free_trash_chunk(value); |
| break; |
| } |
| |
| case ACT_HTTP_REDIR: |
| rule_ret = HTTP_RULE_RES_DONE; |
| if (!http_apply_redirect_rule(rule->arg.redir, s, txn)) |
| rule_ret = HTTP_RULE_RES_BADREQ; |
| goto end; |
| |
| case ACT_ACTION_TRK_SC0 ... ACT_ACTION_TRK_SCMAX: |
| /* Note: only the first valid tracking parameter of each |
| * applies. |
| */ |
| |
| if (stkctr_entry(&s->stkctr[trk_idx(rule->action)]) == NULL) { |
| struct stktable *t; |
| struct stksess *ts; |
| struct stktable_key *key; |
| void *ptr; |
| |
| t = rule->arg.trk_ctr.table.t; |
| key = stktable_fetch_key(t, s->be, sess, s, SMP_OPT_DIR_RES | SMP_OPT_FINAL, rule->arg.trk_ctr.expr, NULL); |
| |
| if (key && (ts = stktable_get_entry(t, key))) { |
| stream_track_stkctr(&s->stkctr[trk_idx(rule->action)], t, ts); |
| |
| HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock); |
| |
| /* let's count a new HTTP request as it's the first time we do it */ |
| ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_CNT); |
| if (ptr) |
| stktable_data_cast(ptr, http_req_cnt)++; |
| |
| ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_RATE); |
| if (ptr) |
| update_freq_ctr_period(&stktable_data_cast(ptr, http_req_rate), |
| t->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u, 1); |
| |
| /* When the client triggers a 4xx from the server, it's most often due |
| * to a missing object or permission. These events should be tracked |
| * because if they happen often, it may indicate a brute force or a |
| * vulnerability scan. Normally this is done when receiving the response |
| * but here we're tracking after this ought to have been done so we have |
| * to do it on purpose. |
| */ |
| if ((unsigned)(txn->status - 400) < 100) { |
| ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_ERR_CNT); |
| if (ptr) |
| stktable_data_cast(ptr, http_err_cnt)++; |
| |
| ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_ERR_RATE); |
| if (ptr) |
| update_freq_ctr_period(&stktable_data_cast(ptr, http_err_rate), |
| t->data_arg[STKTABLE_DT_HTTP_ERR_RATE].u, 1); |
| } |
| |
| HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); |
| |
| /* If data was modified, we need to touch to re-schedule sync */ |
| stktable_touch_local(t, ts, 0); |
| |
| stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_CONTENT); |
| if (sess->fe != s->be) |
| stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_BACKEND); |
| |
| } |
| } |
| break; |
| |
| case ACT_CUSTOM: |
| if ((s->req.flags & CF_READ_ERROR) || |
| ((s->req.flags & (CF_SHUTR|CF_READ_NULL)) && |
| !(s->si[0].flags & SI_FL_CLEAN_ABRT) && |
| (px->options & PR_O_ABRT_CLOSE))) |
| act_flags |= ACT_FLAG_FINAL; |
| |
| switch (rule->action_ptr(rule, px, s->sess, s, act_flags)) { |
| case ACT_RET_ERR: |
| case ACT_RET_CONT: |
| break; |
| case ACT_RET_STOP: |
| rule_ret = HTTP_RULE_RES_STOP; |
| goto end; |
| case ACT_RET_YIELD: |
| s->current_rule = rule; |
| rule_ret = HTTP_RULE_RES_YIELD; |
| goto end; |
| } |
| break; |
| |
| /* other flags exists, but normally, they never be matched. */ |
| default: |
| break; |
| } |
| } |
| |
| end: |
| /* we reached the end of the rules, nothing to report */ |
| return rule_ret; |
| } |
| |
| |
| /* Perform an HTTP redirect based on the information in <rule>. The function |
| * returns non-zero on success, or zero in case of a, irrecoverable error such |
| * as too large a request to build a valid response. |
| */ |
| int http_apply_redirect_rule(struct redirect_rule *rule, struct stream *s, struct http_txn *txn) |
| { |
| struct http_msg *req = &txn->req; |
| struct http_msg *res = &txn->rsp; |
| const char *msg_fmt; |
| struct buffer *chunk; |
| int ret = 0; |
| |
| if (IS_HTX_STRM(s)) |
| return htx_apply_redirect_rule(rule, s, txn); |
| |
| chunk = alloc_trash_chunk(); |
| if (!chunk) |
| goto leave; |
| |
| /* build redirect message */ |
| switch(rule->code) { |
| case 308: |
| msg_fmt = HTTP_308; |
| break; |
| case 307: |
| msg_fmt = HTTP_307; |
| break; |
| case 303: |
| msg_fmt = HTTP_303; |
| break; |
| case 301: |
| msg_fmt = HTTP_301; |
| break; |
| case 302: |
| default: |
| msg_fmt = HTTP_302; |
| break; |
| } |
| |
| if (unlikely(!chunk_strcpy(chunk, msg_fmt))) |
| goto leave; |
| |
| switch(rule->type) { |
| case REDIRECT_TYPE_SCHEME: { |
| const char *path; |
| const char *host; |
| struct hdr_ctx ctx; |
| int pathlen; |
| int hostlen; |
| |
| host = ""; |
| hostlen = 0; |
| ctx.idx = 0; |
| if (http_find_header2("Host", 4, ci_head(req->chn), &txn->hdr_idx, &ctx)) { |
| host = ctx.line + ctx.val; |
| hostlen = ctx.vlen; |
| } |
| |
| path = http_txn_get_path(txn); |
| /* build message using path */ |
| if (path) { |
| pathlen = req->sl.rq.u_l + (ci_head(req->chn) + req->sl.rq.u) - path; |
| if (rule->flags & REDIRECT_FLAG_DROP_QS) { |
| int qs = 0; |
| while (qs < pathlen) { |
| if (path[qs] == '?') { |
| pathlen = qs; |
| break; |
| } |
| qs++; |
| } |
| } |
| } else { |
| path = "/"; |
| pathlen = 1; |
| } |
| |
| if (rule->rdr_str) { /* this is an old "redirect" rule */ |
| /* check if we can add scheme + "://" + host + path */ |
| if (chunk->data + rule->rdr_len + 3 + hostlen + pathlen > chunk->size - 4) |
| goto leave; |
| |
| /* add scheme */ |
| memcpy(chunk->area + chunk->data, rule->rdr_str, |
| rule->rdr_len); |
| chunk->data += rule->rdr_len; |
| } |
| else { |
| /* add scheme with executing log format */ |
| chunk->data += build_logline(s, |
| chunk->area + chunk->data, |
| chunk->size - chunk->data, |
| &rule->rdr_fmt); |
| |
| /* check if we can add scheme + "://" + host + path */ |
| if (chunk->data + 3 + hostlen + pathlen > chunk->size - 4) |
| goto leave; |
| } |
| /* add "://" */ |
| memcpy(chunk->area + chunk->data, "://", 3); |
| chunk->data += 3; |
| |
| /* add host */ |
| memcpy(chunk->area + chunk->data, host, hostlen); |
| chunk->data += hostlen; |
| |
| /* add path */ |
| memcpy(chunk->area + chunk->data, path, pathlen); |
| chunk->data += pathlen; |
| |
| /* append a slash at the end of the location if needed and missing */ |
| if (chunk->data && chunk->area[chunk->data - 1] != '/' && |
| (rule->flags & REDIRECT_FLAG_APPEND_SLASH)) { |
| if (chunk->data > chunk->size - 5) |
| goto leave; |
| chunk->area[chunk->data] = '/'; |
| chunk->data++; |
| } |
| |
| break; |
| } |
| case REDIRECT_TYPE_PREFIX: { |
| const char *path; |
| int pathlen; |
| |
| path = http_txn_get_path(txn); |
| /* build message using path */ |
| if (path) { |
| pathlen = req->sl.rq.u_l + (ci_head(req->chn) + req->sl.rq.u) - path; |
| if (rule->flags & REDIRECT_FLAG_DROP_QS) { |
| int qs = 0; |
| while (qs < pathlen) { |
| if (path[qs] == '?') { |
| pathlen = qs; |
| break; |
| } |
| qs++; |
| } |
| } |
| } else { |
| path = "/"; |
| pathlen = 1; |
| } |
| |
| if (rule->rdr_str) { /* this is an old "redirect" rule */ |
| if (chunk->data + rule->rdr_len + pathlen > chunk->size - 4) |
| goto leave; |
| |
| /* add prefix. Note that if prefix == "/", we don't want to |
| * add anything, otherwise it makes it hard for the user to |
| * configure a self-redirection. |
| */ |
| if (rule->rdr_len != 1 || *rule->rdr_str != '/') { |
| memcpy(chunk->area + chunk->data, |
| rule->rdr_str, rule->rdr_len); |
| chunk->data += rule->rdr_len; |
| } |
| } |
| else { |
| /* add prefix with executing log format */ |
| chunk->data += build_logline(s, |
| chunk->area + chunk->data, |
| chunk->size - chunk->data, |
| &rule->rdr_fmt); |
| |
| /* Check length */ |
| if (chunk->data + pathlen > chunk->size - 4) |
| goto leave; |
| } |
| |
| /* add path */ |
| memcpy(chunk->area + chunk->data, path, pathlen); |
| chunk->data += pathlen; |
| |
| /* append a slash at the end of the location if needed and missing */ |
| if (chunk->data && chunk->area[chunk->data - 1] != '/' && |
| (rule->flags & REDIRECT_FLAG_APPEND_SLASH)) { |
| if (chunk->data > chunk->size - 5) |
| goto leave; |
| chunk->area[chunk->data] = '/'; |
| chunk->data++; |
| } |
| |
| break; |
| } |
| case REDIRECT_TYPE_LOCATION: |
| default: |
| if (rule->rdr_str) { /* this is an old "redirect" rule */ |
| if (chunk->data + rule->rdr_len > chunk->size - 4) |
| goto leave; |
| |
| /* add location */ |
| memcpy(chunk->area + chunk->data, rule->rdr_str, |
| rule->rdr_len); |
| chunk->data += rule->rdr_len; |
| } |
| else { |
| /* add location with executing log format */ |
| chunk->data += build_logline(s, |
| chunk->area + chunk->data, |
| chunk->size - chunk->data, |
| &rule->rdr_fmt); |
| |
| /* Check left length */ |
| if (chunk->data > chunk->size - 4) |
| goto leave; |
| } |
| break; |
| } |
| |
| if (rule->cookie_len) { |
| memcpy(chunk->area + chunk->data, "\r\nSet-Cookie: ", 14); |
| chunk->data += 14; |
| memcpy(chunk->area + chunk->data, rule->cookie_str, |
| rule->cookie_len); |
| chunk->data += rule->cookie_len; |
| } |
| |
| /* add end of headers and the keep-alive/close status. */ |
| txn->status = rule->code; |
| /* let's log the request time */ |
| s->logs.tv_request = now; |
| |
| if (((!(req->flags & HTTP_MSGF_TE_CHNK) && !req->body_len) || (req->msg_state == HTTP_MSG_DONE)) && |
| ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL || |
| (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL)) { |
| /* keep-alive possible */ |
| if (!(req->flags & HTTP_MSGF_VER_11)) { |
| if (unlikely(txn->flags & TX_USE_PX_CONN)) { |
| memcpy(chunk->area + chunk->data, |
| "\r\nProxy-Connection: keep-alive", 30); |
| chunk->data += 30; |
| } else { |
| memcpy(chunk->area + chunk->data, |
| "\r\nConnection: keep-alive", 24); |
| chunk->data += 24; |
| } |
| } |
| memcpy(chunk->area + chunk->data, "\r\n\r\n", 4); |
| chunk->data += 4; |
| FLT_STRM_CB(s, flt_http_reply(s, txn->status, chunk)); |
| co_inject(res->chn, chunk->area, chunk->data); |
| /* "eat" the request */ |
| b_del(&req->chn->buf, req->sov); |
| req->next -= req->sov; |
| req->sov = 0; |
| s->req.analysers = AN_REQ_HTTP_XFER_BODY | (s->req.analysers & AN_REQ_FLT_END); |
| s->res.analysers = AN_RES_HTTP_XFER_BODY | (s->res.analysers & AN_RES_FLT_END); |
| req->msg_state = HTTP_MSG_CLOSED; |
| res->msg_state = HTTP_MSG_DONE; |
| /* Trim any possible response */ |
| b_set_data(&res->chn->buf, co_data(res->chn)); |
| res->next = res->sov = 0; |
| /* let the server side turn to SI_ST_CLO */ |
| channel_shutw_now(req->chn); |
| } else { |
| /* keep-alive not possible */ |
| if (unlikely(txn->flags & TX_USE_PX_CONN)) { |
| memcpy(chunk->area + chunk->data, |
| "\r\nProxy-Connection: close\r\n\r\n", 29); |
| chunk->data += 29; |
| } else { |
| memcpy(chunk->area + chunk->data, |
| "\r\nConnection: close\r\n\r\n", 23); |
| chunk->data += 23; |
| } |
| http_reply_and_close(s, txn->status, chunk); |
| req->chn->analysers &= AN_REQ_FLT_END; |
| } |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_LOCAL; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_R; |
| |
| ret = 1; |
| leave: |
| free_trash_chunk(chunk); |
| return ret; |
| } |
| |
| /* This stream analyser runs all HTTP request processing which is common to |
| * frontends and backends, which means blocking ACLs, filters, connection-close, |
| * reqadd, stats and redirects. This is performed for the designated proxy. |
| * It returns 1 if the processing can continue on next analysers, or zero if it |
| * either needs more data or wants to immediately abort the request (eg: deny, |
| * error, ...). |
| */ |
| int http_process_req_common(struct stream *s, struct channel *req, int an_bit, struct proxy *px) |
| { |
| struct session *sess = s->sess; |
| struct http_txn *txn = s->txn; |
| struct http_msg *msg = &txn->req; |
| struct redirect_rule *rule; |
| struct cond_wordlist *wl; |
| enum rule_result verdict; |
| int deny_status = HTTP_ERR_403; |
| struct connection *conn = objt_conn(sess->origin); |
| |
| if (IS_HTX_STRM(s)) |
| return htx_process_req_common(s, req, an_bit, px); |
| |
| if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { |
| /* we need more data */ |
| goto return_prx_yield; |
| } |
| |
| DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| req, |
| req->rex, req->wex, |
| req->flags, |
| ci_data(req), |
| req->analysers); |
| |
| /* just in case we have some per-backend tracking */ |
| stream_inc_be_http_req_ctr(s); |
| |
| /* evaluate http-request rules */ |
| if (!LIST_ISEMPTY(&px->http_req_rules)) { |
| verdict = http_req_get_intercept_rule(px, &px->http_req_rules, s, &deny_status); |
| |
| switch (verdict) { |
| case HTTP_RULE_RES_YIELD: /* some data miss, call the function later. */ |
| goto return_prx_yield; |
| |
| case HTTP_RULE_RES_CONT: |
| case HTTP_RULE_RES_STOP: /* nothing to do */ |
| break; |
| |
| case HTTP_RULE_RES_DENY: /* deny or tarpit */ |
| if (txn->flags & TX_CLTARPIT) |
| goto tarpit; |
| goto deny; |
| |
| case HTTP_RULE_RES_ABRT: /* abort request, response already sent. Eg: auth */ |
| goto return_prx_cond; |
| |
| case HTTP_RULE_RES_DONE: /* OK, but terminate request processing (eg: redirect) */ |
| goto done; |
| |
| case HTTP_RULE_RES_BADREQ: /* failed with a bad request */ |
| goto return_bad_req; |
| } |
| } |
| |
| if (conn && (conn->flags & CO_FL_EARLY_DATA) && |
| (conn->flags & (CO_FL_EARLY_SSL_HS | CO_FL_HANDSHAKE))) { |
| struct hdr_ctx ctx; |
| |
| ctx.idx = 0; |
| if (!http_find_header2("Early-Data", strlen("Early-Data"), |
| ci_head(&s->req), &txn->hdr_idx, &ctx)) { |
| if (unlikely(http_header_add_tail2(&txn->req, |
| &txn->hdr_idx, "Early-Data: 1", |
| strlen("Early-Data: 1")) < 0)) { |
| goto return_bad_req; |
| } |
| } |
| |
| } |
| |
| /* OK at this stage, we know that the request was accepted according to |
| * the http-request rules, we can check for the stats. Note that the |
| * URI is detected *before* the req* rules in order not to be affected |
| * by a possible reqrep, while they are processed *after* so that a |
| * reqdeny can still block them. This clearly needs to change in 1.6! |
| */ |
| if (stats_check_uri(&s->si[1], txn, px)) { |
| s->target = &http_stats_applet.obj_type; |
| if (unlikely(!stream_int_register_handler(&s->si[1], objt_applet(s->target)))) { |
| txn->status = 500; |
| s->logs.tv_request = now; |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_RESOURCE; |
| goto return_prx_cond; |
| } |
| |
| /* parse the whole stats request and extract the relevant information */ |
| http_handle_stats(s, req); |
| verdict = http_req_get_intercept_rule(px, &px->uri_auth->http_req_rules, s, &deny_status); |
| /* not all actions implemented: deny, allow, auth */ |
| |
| if (verdict == HTTP_RULE_RES_DENY) /* stats http-request deny */ |
| goto deny; |
| |
| if (verdict == HTTP_RULE_RES_ABRT) /* stats auth / stats http-request auth */ |
| goto return_prx_cond; |
| } |
| |
| /* evaluate the req* rules except reqadd */ |
| if (px->req_exp != NULL) { |
| if (apply_filters_to_request(s, req, px) < 0) |
| goto return_bad_req; |
| |
| if (txn->flags & TX_CLDENY) |
| goto deny; |
| |
| if (txn->flags & TX_CLTARPIT) { |
| deny_status = HTTP_ERR_500; |
| goto tarpit; |
| } |
| } |
| |
| /* add request headers from the rule sets in the same order */ |
| list_for_each_entry(wl, &px->req_add, list) { |
| if (wl->cond) { |
| int ret = acl_exec_cond(wl->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (((struct acl_cond *)wl->cond)->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| if (!ret) |
| continue; |
| } |
| |
| if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, wl->s, strlen(wl->s)) < 0)) |
| goto return_bad_req; |
| } |
| |
| |
| /* Proceed with the stats now. */ |
| if (unlikely(objt_applet(s->target) == &http_stats_applet) || |
| unlikely(objt_applet(s->target) == &http_cache_applet)) { |
| /* process the stats request now */ |
| if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */ |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.intercepted_req, 1); |
| |
| if (!(s->flags & SF_ERR_MASK)) // this is not really an error but it is |
| s->flags |= SF_ERR_LOCAL; // to mark that it comes from the proxy |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_R; |
| |
| /* enable the minimally required analyzers to handle keep-alive and compression on the HTTP response */ |
| req->analysers &= (AN_REQ_HTTP_BODY | AN_REQ_FLT_HTTP_HDRS | AN_REQ_FLT_END); |
| req->analysers &= ~AN_REQ_FLT_XFER_DATA; |
| req->analysers |= AN_REQ_HTTP_XFER_BODY; |
| goto done; |
| } |
| |
| /* check whether we have some ACLs set to redirect this request */ |
| list_for_each_entry(rule, &px->redirect_rules, list) { |
| if (rule->cond) { |
| int ret; |
| |
| ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| if (!ret) |
| continue; |
| } |
| if (!http_apply_redirect_rule(rule, s, txn)) |
| goto return_bad_req; |
| goto done; |
| } |
| |
| /* POST requests may be accompanied with an "Expect: 100-Continue" header. |
| * If this happens, then the data will not come immediately, so we must |
| * send all what we have without waiting. Note that due to the small gain |
| * in waiting for the body of the request, it's easier to simply put the |
| * CF_SEND_DONTWAIT flag any time. It's a one-shot flag so it will remove |
| * itself once used. |
| */ |
| req->flags |= CF_SEND_DONTWAIT; |
| |
| done: /* done with this analyser, continue with next ones that the calling |
| * points will have set, if any. |
| */ |
| req->analyse_exp = TICK_ETERNITY; |
| done_without_exp: /* done with this analyser, but dont reset the analyse_exp. */ |
| req->analysers &= ~an_bit; |
| return 1; |
| |
| tarpit: |
| /* Allow cookie logging |
| */ |
| if (s->be->cookie_name || sess->fe->capture_name) |
| manage_client_side_cookies(s, req); |
| |
| /* When a connection is tarpitted, we use the tarpit timeout, |
| * which may be the same as the connect timeout if unspecified. |
| * If unset, then set it to zero because we really want it to |
| * eventually expire. We build the tarpit as an analyser. |
| */ |
| channel_erase(&s->req); |
| |
| /* wipe the request out so that we can drop the connection early |
| * if the client closes first. |
| */ |
| channel_dont_connect(req); |
| |
| txn->status = http_err_codes[deny_status]; |
| |
| req->analysers &= AN_REQ_FLT_END; /* remove switching rules etc... */ |
| req->analysers |= AN_REQ_HTTP_TARPIT; |
| req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.tarpit); |
| if (!req->analyse_exp) |
| req->analyse_exp = tick_add(now_ms, 0); |
| stream_inc_http_err_ctr(s); |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_req, 1); |
| if (sess->fe != s->be) |
| HA_ATOMIC_ADD(&s->be->be_counters.denied_req, 1); |
| if (sess->listener->counters) |
| HA_ATOMIC_ADD(&sess->listener->counters->denied_req, 1); |
| goto done_without_exp; |
| |
| deny: /* this request was blocked (denied) */ |
| |
| /* Allow cookie logging |
| */ |
| if (s->be->cookie_name || sess->fe->capture_name) |
| manage_client_side_cookies(s, req); |
| |
| txn->flags |= TX_CLDENY; |
| txn->status = http_err_codes[deny_status]; |
| s->logs.tv_request = now; |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| stream_inc_http_err_ctr(s); |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_req, 1); |
| if (sess->fe != s->be) |
| HA_ATOMIC_ADD(&s->be->be_counters.denied_req, 1); |
| if (sess->listener->counters) |
| HA_ATOMIC_ADD(&sess->listener->counters->denied_req, 1); |
| goto return_prx_cond; |
| |
| return_bad_req: |
| /* We centralize bad requests processing here */ |
| if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) { |
| /* we detected a parsing error. We want to archive this request |
| * in the dedicated proxy area for later troubleshooting. |
| */ |
| http_capture_bad_message(sess->fe, s, msg, msg->err_state, sess->fe); |
| } |
| |
| txn->req.err_state = txn->req.msg_state; |
| txn->req.msg_state = HTTP_MSG_ERROR; |
| txn->status = 400; |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); |
| if (sess->listener->counters) |
| HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); |
| |
| return_prx_cond: |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_PRXCOND; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_R; |
| |
| req->analysers &= AN_REQ_FLT_END; |
| req->analyse_exp = TICK_ETERNITY; |
| return 0; |
| |
| return_prx_yield: |
| channel_dont_connect(req); |
| return 0; |
| } |
| |
| /* This function performs all the processing enabled for the current request. |
| * It returns 1 if the processing can continue on next analysers, or zero if it |
| * needs more data, encounters an error, or wants to immediately abort the |
| * request. It relies on buffers flags, and updates s->req.analysers. |
| */ |
| int http_process_request(struct stream *s, struct channel *req, int an_bit) |
| { |
| struct session *sess = s->sess; |
| struct http_txn *txn = s->txn; |
| struct http_msg *msg = &txn->req; |
| struct connection *cli_conn = objt_conn(strm_sess(s)->origin); |
| |
| if (IS_HTX_STRM(s)) |
| return htx_process_request(s, req, an_bit); |
| |
| if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { |
| /* we need more data */ |
| channel_dont_connect(req); |
| return 0; |
| } |
| |
| DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| req, |
| req->rex, req->wex, |
| req->flags, |
| ci_data(req), |
| req->analysers); |
| |
| /* |
| * Right now, we know that we have processed the entire headers |
| * and that unwanted requests have been filtered out. We can do |
| * whatever we want with the remaining request. Also, now we |
| * may have separate values for ->fe, ->be. |
| */ |
| |
| /* |
| * If HTTP PROXY is set we simply get remote server address parsing |
| * incoming request. Note that this requires that a connection is |
| * allocated on the server side. |
| */ |
| if ((s->be->options & PR_O_HTTP_PROXY) && !(s->flags & SF_ADDR_SET)) { |
| struct connection *conn; |
| char *path; |
| |
| /* Note that for now we don't reuse existing proxy connections */ |
| if (unlikely((conn = cs_conn(si_alloc_cs(&s->si[1], NULL))) == NULL)) { |
| txn->req.err_state = txn->req.msg_state; |
| txn->req.msg_state = HTTP_MSG_ERROR; |
| txn->status = 500; |
| req->analysers &= AN_REQ_FLT_END; |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_RESOURCE; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_R; |
| |
| return 0; |
| } |
| |
| path = http_txn_get_path(txn); |
| if (url2sa(ci_head(req) + msg->sl.rq.u, |
| path ? path - (ci_head(req) + msg->sl.rq.u) : msg->sl.rq.u_l, |
| &conn->addr.to, NULL) == -1) |
| goto return_bad_req; |
| |
| /* if the path was found, we have to remove everything between |
| * ci_head(req) + msg->sl.rq.u and path (excluded). If it was not |
| * found, we need to replace from ci_head(req) + msg->sl.rq.u for |
| * u_l characters by a single "/". |
| */ |
| if (path) { |
| char *cur_ptr = ci_head(req); |
| char *cur_end = cur_ptr + txn->req.sl.rq.l; |
| int delta; |
| |
| delta = b_rep_blk(&req->buf, cur_ptr + msg->sl.rq.u, path, NULL, 0); |
| http_msg_move_end(&txn->req, delta); |
| cur_end += delta; |
| if (http_parse_reqline(&txn->req, HTTP_MSG_RQMETH, cur_ptr, cur_end + 1, NULL, NULL) == NULL) |
| goto return_bad_req; |
| } |
| else { |
| char *cur_ptr = ci_head(req); |
| char *cur_end = cur_ptr + txn->req.sl.rq.l; |
| int delta; |
| |
| delta = b_rep_blk(&req->buf, cur_ptr + msg->sl.rq.u, |
| cur_ptr + msg->sl.rq.u + msg->sl.rq.u_l, "/", 1); |
| http_msg_move_end(&txn->req, delta); |
| cur_end += delta; |
| if (http_parse_reqline(&txn->req, HTTP_MSG_RQMETH, cur_ptr, cur_end + 1, NULL, NULL) == NULL) |
| goto return_bad_req; |
| } |
| } |
| |
| /* |
| * 7: Now we can work with the cookies. |
| * Note that doing so might move headers in the request, but |
| * the fields will stay coherent and the URI will not move. |
| * This should only be performed in the backend. |
| */ |
| if (s->be->cookie_name || sess->fe->capture_name) |
| manage_client_side_cookies(s, req); |
| |
| /* add unique-id if "header-unique-id" is specified */ |
| |
| if (!LIST_ISEMPTY(&sess->fe->format_unique_id) && !s->unique_id) { |
| if ((s->unique_id = pool_alloc(pool_head_uniqueid)) == NULL) |
| goto return_bad_req; |
| s->unique_id[0] = '\0'; |
| build_logline(s, s->unique_id, UNIQUEID_LEN, &sess->fe->format_unique_id); |
| } |
| |
| if (sess->fe->header_unique_id && s->unique_id) { |
| if (chunk_printf(&trash, "%s: %s", sess->fe->header_unique_id, s->unique_id) < 0) |
| goto return_bad_req; |
| if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.area, trash.data) < 0)) |
| goto return_bad_req; |
| } |
| |
| /* |
| * 9: add X-Forwarded-For if either the frontend or the backend |
| * asks for it. |
| */ |
| if ((sess->fe->options | s->be->options) & PR_O_FWDFOR) { |
| struct hdr_ctx ctx = { .idx = 0 }; |
| if (!((sess->fe->options | s->be->options) & PR_O_FF_ALWAYS) && |
| http_find_header2(s->be->fwdfor_hdr_len ? s->be->fwdfor_hdr_name : sess->fe->fwdfor_hdr_name, |
| s->be->fwdfor_hdr_len ? s->be->fwdfor_hdr_len : sess->fe->fwdfor_hdr_len, |
| ci_head(req), &txn->hdr_idx, &ctx)) { |
| /* The header is set to be added only if none is present |
| * and we found it, so don't do anything. |
| */ |
| } |
| else if (cli_conn && cli_conn->addr.from.ss_family == AF_INET) { |
| /* Add an X-Forwarded-For header unless the source IP is |
| * in the 'except' network range. |
| */ |
| if ((!sess->fe->except_mask.s_addr || |
| (((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr.s_addr & sess->fe->except_mask.s_addr) |
| != sess->fe->except_net.s_addr) && |
| (!s->be->except_mask.s_addr || |
| (((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr.s_addr & s->be->except_mask.s_addr) |
| != s->be->except_net.s_addr)) { |
| int len; |
| unsigned char *pn; |
| pn = (unsigned char *)&((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr; |
| |
| /* Note: we rely on the backend to get the header name to be used for |
| * x-forwarded-for, because the header is really meant for the backends. |
| * However, if the backend did not specify any option, we have to rely |
| * on the frontend's header name. |
| */ |
| if (s->be->fwdfor_hdr_len) { |
| len = s->be->fwdfor_hdr_len; |
| memcpy(trash.area, |
| s->be->fwdfor_hdr_name, len); |
| } else { |
| len = sess->fe->fwdfor_hdr_len; |
| memcpy(trash.area, |
| sess->fe->fwdfor_hdr_name, len); |
| } |
| len += snprintf(trash.area + len, |
| trash.size - len, |
| ": %d.%d.%d.%d", pn[0], pn[1], |
| pn[2], pn[3]); |
| |
| if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.area, len) < 0)) |
| goto return_bad_req; |
| } |
| } |
| else if (cli_conn && cli_conn->addr.from.ss_family == AF_INET6) { |
| /* FIXME: for the sake of completeness, we should also support |
| * 'except' here, although it is mostly useless in this case. |
| */ |
| int len; |
| char pn[INET6_ADDRSTRLEN]; |
| inet_ntop(AF_INET6, |
| (const void *)&((struct sockaddr_in6 *)(&cli_conn->addr.from))->sin6_addr, |
| pn, sizeof(pn)); |
| |
| /* Note: we rely on the backend to get the header name to be used for |
| * x-forwarded-for, because the header is really meant for the backends. |
| * However, if the backend did not specify any option, we have to rely |
| * on the frontend's header name. |
| */ |
| if (s->be->fwdfor_hdr_len) { |
| len = s->be->fwdfor_hdr_len; |
| memcpy(trash.area, s->be->fwdfor_hdr_name, |
| len); |
| } else { |
| len = sess->fe->fwdfor_hdr_len; |
| memcpy(trash.area, sess->fe->fwdfor_hdr_name, |
| len); |
| } |
| len += snprintf(trash.area + len, trash.size - len, |
| ": %s", pn); |
| |
| if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.area, len) < 0)) |
| goto return_bad_req; |
| } |
| } |
| |
| /* |
| * 10: add X-Original-To if either the frontend or the backend |
| * asks for it. |
| */ |
| if ((sess->fe->options | s->be->options) & PR_O_ORGTO) { |
| |
| /* FIXME: don't know if IPv6 can handle that case too. */ |
| if (cli_conn && cli_conn->addr.from.ss_family == AF_INET) { |
| /* Add an X-Original-To header unless the destination IP is |
| * in the 'except' network range. |
| */ |
| conn_get_to_addr(cli_conn); |
| |
| if (cli_conn->addr.to.ss_family == AF_INET && |
| ((!sess->fe->except_mask_to.s_addr || |
| (((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr.s_addr & sess->fe->except_mask_to.s_addr) |
| != sess->fe->except_to.s_addr) && |
| (!s->be->except_mask_to.s_addr || |
| (((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr.s_addr & s->be->except_mask_to.s_addr) |
| != s->be->except_to.s_addr))) { |
| int len; |
| unsigned char *pn; |
| pn = (unsigned char *)&((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr; |
| |
| /* Note: we rely on the backend to get the header name to be used for |
| * x-original-to, because the header is really meant for the backends. |
| * However, if the backend did not specify any option, we have to rely |
| * on the frontend's header name. |
| */ |
| if (s->be->orgto_hdr_len) { |
| len = s->be->orgto_hdr_len; |
| memcpy(trash.area, |
| s->be->orgto_hdr_name, len); |
| } else { |
| len = sess->fe->orgto_hdr_len; |
| memcpy(trash.area, |
| sess->fe->orgto_hdr_name, len); |
| } |
| len += snprintf(trash.area + len, |
| trash.size - len, |
| ": %d.%d.%d.%d", pn[0], pn[1], |
| pn[2], pn[3]); |
| |
| if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.area, len) < 0)) |
| goto return_bad_req; |
| } |
| } |
| } |
| |
| /* 11: add "Connection: close" or "Connection: keep-alive" if needed and not yet set. |
| * If an "Upgrade" token is found, the header is left untouched in order not to have |
| * to deal with some servers bugs : some of them fail an Upgrade if anything but |
| * "Upgrade" is present in the Connection header. |
| */ |
| if (!(txn->flags & TX_HDR_CONN_UPG) && (txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) { |
| unsigned int want_flags = 0; |
| |
| if (msg->flags & HTTP_MSGF_VER_11) { |
| if ((txn->flags & TX_CON_WANT_MSK) >= TX_CON_WANT_SCL && |
| !((sess->fe->options2|s->be->options2) & PR_O2_FAKE_KA)) |
| want_flags |= TX_CON_CLO_SET; |
| } else { |
| if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL || |
| ((sess->fe->options2|s->be->options2) & PR_O2_FAKE_KA)) |
| want_flags |= TX_CON_KAL_SET; |
| } |
| |
| if (want_flags != (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET))) |
| http_change_connection_header(txn, msg, want_flags); |
| } |
| |
| |
| /* If we have no server assigned yet and we're balancing on url_param |
| * with a POST request, we may be interested in checking the body for |
| * that parameter. This will be done in another analyser. |
| */ |
| if (!(s->flags & (SF_ASSIGNED|SF_DIRECT)) && |
| s->txn->meth == HTTP_METH_POST && s->be->url_param_name != NULL && |
| (msg->flags & (HTTP_MSGF_CNT_LEN|HTTP_MSGF_TE_CHNK))) { |
| channel_dont_connect(req); |
| req->analysers |= AN_REQ_HTTP_BODY; |
| } |
| |
| req->analysers &= ~AN_REQ_FLT_XFER_DATA; |
| req->analysers |= AN_REQ_HTTP_XFER_BODY; |
| |
| /* We expect some data from the client. Unless we know for sure |
| * we already have a full request, we have to re-enable quick-ack |
| * in case we previously disabled it, otherwise we might cause |
| * the client to delay further data. |
| */ |
| if ((sess->listener->options & LI_O_NOQUICKACK) && |
| ((msg->flags & HTTP_MSGF_TE_CHNK) || |
| (msg->body_len > ci_data(req) - txn->req.eoh - 2))) |
| conn_set_quickack(cli_conn, 1); |
| |
| /************************************************************* |
| * OK, that's finished for the headers. We have done what we * |
| * could. Let's switch to the DATA state. * |
| ************************************************************/ |
| req->analyse_exp = TICK_ETERNITY; |
| req->analysers &= ~an_bit; |
| |
| s->logs.tv_request = now; |
| /* OK let's go on with the BODY now */ |
| return 1; |
| |
| return_bad_req: /* let's centralize all bad requests */ |
| if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) { |
| /* we detected a parsing error. We want to archive this request |
| * in the dedicated proxy area for later troubleshooting. |
| */ |
| http_capture_bad_message(sess->fe, s, msg, msg->err_state, sess->fe); |
| } |
| |
| txn->req.err_state = txn->req.msg_state; |
| txn->req.msg_state = HTTP_MSG_ERROR; |
| txn->status = 400; |
| req->analysers &= AN_REQ_FLT_END; |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); |
| if (sess->listener->counters) |
| HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_PRXCOND; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_R; |
| return 0; |
| } |
| |
| /* This function is an analyser which processes the HTTP tarpit. It always |
| * returns zero, at the beginning because it prevents any other processing |
| * from occurring, and at the end because it terminates the request. |
| */ |
| int http_process_tarpit(struct stream *s, struct channel *req, int an_bit) |
| { |
| struct http_txn *txn = s->txn; |
| |
| if (IS_HTX_STRM(s)) |
| return htx_process_tarpit(s, req, an_bit); |
| |
| /* This connection is being tarpitted. The CLIENT side has |
| * already set the connect expiration date to the right |
| * timeout. We just have to check that the client is still |
| * there and that the timeout has not expired. |
| */ |
| channel_dont_connect(req); |
| if ((req->flags & (CF_SHUTR|CF_READ_ERROR)) == 0 && |
| !tick_is_expired(req->analyse_exp, now_ms)) |
| return 0; |
| |
| /* We will set the queue timer to the time spent, just for |
| * logging purposes. We fake a 500 server error, so that the |
| * attacker will not suspect his connection has been tarpitted. |
| * It will not cause trouble to the logs because we can exclude |
| * the tarpitted connections by filtering on the 'PT' status flags. |
| */ |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| |
| if (!(req->flags & CF_READ_ERROR)) |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| |
| req->analysers &= AN_REQ_FLT_END; |
| req->analyse_exp = TICK_ETERNITY; |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_PRXCOND; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_T; |
| return 0; |
| } |
| |
| /* This function is an analyser which waits for the HTTP request body. It waits |
| * for either the buffer to be full, or the full advertised contents to have |
| * reached the buffer. It must only be called after the standard HTTP request |
| * processing has occurred, because it expects the request to be parsed and will |
| * look for the Expect header. It may send a 100-Continue interim response. It |
| * takes in input any state starting from HTTP_MSG_BODY and leaves with one of |
| * HTTP_MSG_CHK_SIZE, HTTP_MSG_DATA or HTTP_MSG_TRAILERS. It returns zero if it |
| * needs to read more data, or 1 once it has completed its analysis. |
| */ |
| int http_wait_for_request_body(struct stream *s, struct channel *req, int an_bit) |
| { |
| struct session *sess = s->sess; |
| struct http_txn *txn = s->txn; |
| struct http_msg *msg = &s->txn->req; |
| |
| if (IS_HTX_STRM(s)) |
| return htx_wait_for_request_body(s, req, an_bit); |
| |
| /* We have to parse the HTTP request body to find any required data. |
| * "balance url_param check_post" should have been the only way to get |
| * into this. We were brought here after HTTP header analysis, so all |
| * related structures are ready. |
| */ |
| |
| if (msg->msg_state < HTTP_MSG_CHUNK_SIZE) { |
| /* This is the first call */ |
| if (msg->msg_state < HTTP_MSG_BODY) |
| goto missing_data; |
| |
| if (msg->msg_state < HTTP_MSG_100_SENT) { |
| /* If we have HTTP/1.1 and Expect: 100-continue, then we must |
| * send an HTTP/1.1 100 Continue intermediate response. |
| */ |
| if (msg->flags & HTTP_MSGF_VER_11) { |
| struct hdr_ctx ctx; |
| ctx.idx = 0; |
| /* Expect is allowed in 1.1, look for it */ |
| if (http_find_header2("Expect", 6, ci_head(req), &txn->hdr_idx, &ctx) && |
| unlikely(ctx.vlen == 12 && strncasecmp(ctx.line+ctx.val, "100-continue", 12) == 0)) { |
| co_inject(&s->res, HTTP_100.ptr, HTTP_100.len); |
| http_remove_header2(&txn->req, &txn->hdr_idx, &ctx); |
| } |
| } |
| msg->msg_state = HTTP_MSG_100_SENT; |
| } |
| |
| /* we have msg->sov which points to the first byte of message body. |
| * ci_head(req) still points to the beginning of the message. We |
| * must save the body in msg->next because it survives buffer |
| * re-alignments. |
| */ |
| msg->next = msg->sov; |
| |
| if (msg->flags & HTTP_MSGF_TE_CHNK) |
| msg->msg_state = HTTP_MSG_CHUNK_SIZE; |
| else |
| msg->msg_state = HTTP_MSG_DATA; |
| } |
| |
| if (!(msg->flags & HTTP_MSGF_TE_CHNK)) { |
| /* We're in content-length mode, we just have to wait for enough data. */ |
| if (http_body_bytes(msg) < msg->body_len) |
| goto missing_data; |
| |
| /* OK we have everything we need now */ |
| goto http_end; |
| } |
| |
| /* OK here we're parsing a chunked-encoded message */ |
| |
| if (msg->msg_state == HTTP_MSG_CHUNK_SIZE) { |
| /* read the chunk size and assign it to ->chunk_len, then |
| * set ->sov and ->next to point to the body and switch to DATA or |
| * TRAILERS state. |
| */ |
| unsigned int chunk; |
| int ret = h1_parse_chunk_size(&req->buf, co_data(req) + msg->next, c_data(req), &chunk); |
| |
| if (!ret) |
| goto missing_data; |
| else if (ret < 0) { |
| msg->err_pos = ci_data(req) + ret; |
| if (msg->err_pos < 0) |
| msg->err_pos += req->buf.size; |
| stream_inc_http_err_ctr(s); |
| goto return_bad_req; |
| } |
| |
| msg->chunk_len = chunk; |
| msg->body_len += chunk; |
| |
| msg->sol = ret; |
| msg->next += ret; |
| msg->msg_state = msg->chunk_len ? HTTP_MSG_DATA : HTTP_MSG_TRAILERS; |
| } |
| |
| /* Now we're in HTTP_MSG_DATA or HTTP_MSG_TRAILERS state. |
| * We have the first data byte is in msg->sov + msg->sol. We're waiting |
| * for at least a whole chunk or the whole content length bytes after |
| * msg->sov + msg->sol. |
| */ |
| if (msg->msg_state == HTTP_MSG_TRAILERS) |
| goto http_end; |
| |
| if (http_body_bytes(msg) >= msg->body_len) /* we have enough bytes now */ |
| goto http_end; |
| |
| missing_data: |
| /* we get here if we need to wait for more data. If the buffer is full, |
| * we have the maximum we can expect. |
| */ |
| if (channel_full(req, global.tune.maxrewrite)) |
| goto http_end; |
| |
| if ((req->flags & CF_READ_TIMEOUT) || tick_is_expired(req->analyse_exp, now_ms)) { |
| txn->status = 408; |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_CLITO; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_D; |
| goto return_err_msg; |
| } |
| |
| /* we get here if we need to wait for more data */ |
| if (!(req->flags & (CF_SHUTR | CF_READ_ERROR))) { |
| /* Not enough data. We'll re-use the http-request |
| * timeout here. Ideally, we should set the timeout |
| * relative to the accept() date. We just set the |
| * request timeout once at the beginning of the |
| * request. |
| */ |
| channel_dont_connect(req); |
| if (!tick_isset(req->analyse_exp)) |
| req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq); |
| return 0; |
| } |
| |
| http_end: |
| /* The situation will not evolve, so let's give up on the analysis. */ |
| s->logs.tv_request = now; /* update the request timer to reflect full request */ |
| req->analysers &= ~an_bit; |
| req->analyse_exp = TICK_ETERNITY; |
| return 1; |
| |
| return_bad_req: /* let's centralize all bad requests */ |
| txn->req.err_state = txn->req.msg_state; |
| txn->req.msg_state = HTTP_MSG_ERROR; |
| txn->status = 400; |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_PRXCOND; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_R; |
| |
| return_err_msg: |
| req->analysers &= AN_REQ_FLT_END; |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); |
| if (sess->listener->counters) |
| HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); |
| return 0; |
| } |
| |
| /* send a server's name with an outgoing request over an established connection. |
| * Note: this function is designed to be called once the request has been scheduled |
| * for being forwarded. This is the reason why it rewinds the buffer before |
| * proceeding. |
| */ |
| int http_send_name_header(struct stream *s, struct proxy* be, const char* srv_name) { |
| |
| struct hdr_ctx ctx; |
| struct http_txn *txn = s->txn; |
| char *hdr_name = be->server_id_hdr_name; |
| int hdr_name_len = be->server_id_hdr_len; |
| struct channel *chn = txn->req.chn; |
| char *hdr_val; |
| unsigned int old_o, old_i; |
| |
| if (IS_HTX_STRM(s)) |
| return htx_send_name_header(s, be, srv_name); |
| ctx.idx = 0; |
| |
| old_o = http_hdr_rewind(&txn->req); |
| if (old_o) { |
| /* The request was already skipped, let's restore it */ |
| c_rew(chn, old_o); |
| txn->req.next += old_o; |
| txn->req.sov += old_o; |
| } |
| |
| old_i = ci_data(chn); |
| while (http_find_header2(hdr_name, hdr_name_len, ci_head(txn->req.chn), &txn->hdr_idx, &ctx)) { |
| /* remove any existing values from the header */ |
| http_remove_header2(&txn->req, &txn->hdr_idx, &ctx); |
| } |
| |
| /* Add the new header requested with the server value */ |
| hdr_val = trash.area; |
| memcpy(hdr_val, hdr_name, hdr_name_len); |
| hdr_val += hdr_name_len; |
| *hdr_val++ = ':'; |
| *hdr_val++ = ' '; |
| hdr_val += strlcpy2(hdr_val, srv_name, |
| trash.area + trash.size - hdr_val); |
| http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.area, |
| hdr_val - trash.area); |
| |
| if (old_o) { |
| /* If this was a forwarded request, we must readjust the amount of |
| * data to be forwarded in order to take into account the size |
| * variations. Note that the current state is >= HTTP_MSG_BODY, |
| * so we don't have to adjust ->sol. |
| */ |
| old_o += ci_data(chn) - old_i; |
| c_adv(chn, old_o); |
| txn->req.next -= old_o; |
| txn->req.sov -= old_o; |
| } |
| |
| return 0; |
| } |
| |
| /* Terminate current transaction and prepare a new one. This is very tricky |
| * right now but it works. |
| */ |
| void http_end_txn_clean_session(struct stream *s) |
| { |
| int prev_status = s->txn->status; |
| struct proxy *fe = strm_fe(s); |
| struct proxy *be = s->be; |
| struct conn_stream *cs; |
| struct connection *srv_conn; |
| struct server *srv; |
| unsigned int prev_flags = s->txn->flags; |
| |
| /* FIXME: We need a more portable way of releasing a backend's and a |
| * server's connections. We need a safer way to reinitialize buffer |
| * flags. We also need a more accurate method for computing per-request |
| * data. |
| */ |
| cs = objt_cs(s->si[1].end); |
| srv_conn = cs_conn(cs); |
| |
| /* unless we're doing keep-alive, we want to quickly close the connection |
| * to the server. |
| */ |
| if (((s->txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) || |
| !si_conn_ready(&s->si[1]) || !srv_conn->owner) { |
| s->si[1].flags |= SI_FL_NOLINGER | SI_FL_NOHALF; |
| si_shutr(&s->si[1]); |
| si_shutw(&s->si[1]); |
| } |
| |
| if (s->flags & SF_BE_ASSIGNED) { |
| HA_ATOMIC_SUB(&be->beconn, 1); |
| if (unlikely(s->srv_conn)) |
| sess_change_server(s, NULL); |
| } |
| |
| s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| stream_process_counters(s); |
| |
| if (s->txn->status) { |
| int n; |
| |
| n = s->txn->status / 100; |
| if (n < 1 || n > 5) |
| n = 0; |
| |
| if (fe->mode == PR_MODE_HTTP) { |
| HA_ATOMIC_ADD(&fe->fe_counters.p.http.rsp[n], 1); |
| } |
| if ((s->flags & SF_BE_ASSIGNED) && |
| (be->mode == PR_MODE_HTTP)) { |
| HA_ATOMIC_ADD(&be->be_counters.p.http.rsp[n], 1); |
| HA_ATOMIC_ADD(&be->be_counters.p.http.cum_req, 1); |
| } |
| } |
| |
| /* don't count other requests' data */ |
| s->logs.bytes_in -= ci_data(&s->req); |
| s->logs.bytes_out -= ci_data(&s->res); |
| |
| /* we may need to know the position in the queue */ |
| pendconn_free(s); |
| |
| /* let's do a final log if we need it */ |
| if (!LIST_ISEMPTY(&fe->logformat) && s->logs.logwait && |
| !(s->flags & SF_MONITOR) && |
| (!(fe->options & PR_O_NULLNOLOG) || s->req.total)) { |
| s->do_log(s); |
| } |
| |
| /* stop tracking content-based counters */ |
| stream_stop_content_counters(s); |
| stream_update_time_stats(s); |
| |
| /* reset the profiling counter */ |
| s->task->calls = 0; |
| s->task->cpu_time = 0; |
| s->task->lat_time = 0; |
| s->task->call_date = (profiling & HA_PROF_TASKS) ? now_mono_time() : 0; |
| |
| s->logs.accept_date = date; /* user-visible date for logging */ |
| s->logs.tv_accept = now; /* corrected date for internal use */ |
| s->logs.t_handshake = 0; /* There are no handshake in keep alive connection. */ |
| s->logs.t_idle = -1; |
| tv_zero(&s->logs.tv_request); |
| s->logs.t_queue = -1; |
| s->logs.t_connect = -1; |
| s->logs.t_data = -1; |
| s->logs.t_close = 0; |
| s->logs.prx_queue_pos = 0; /* we get the number of pending conns before us */ |
| s->logs.srv_queue_pos = 0; /* we will get this number soon */ |
| |
| s->logs.bytes_in = s->req.total = ci_data(&s->req); |
| s->logs.bytes_out = s->res.total = ci_data(&s->res); |
| |
| if (objt_server(s->target)) { |
| if (s->flags & SF_CURR_SESS) { |
| s->flags &= ~SF_CURR_SESS; |
| HA_ATOMIC_SUB(&__objt_server(s->target)->cur_sess, 1); |
| } |
| if (may_dequeue_tasks(objt_server(s->target), be)) |
| process_srv_queue(objt_server(s->target)); |
| } |
| |
| s->target = NULL; |
| |
| |
| /* If we're doing keepalive, first call the mux detach() method |
| * to let it know we want to detach without freing the connection. |
| * We then can call si_release_endpoint() to destroy the conn_stream |
| */ |
| if (((s->txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) || |
| !si_conn_ready(&s->si[1]) || |
| (srv_conn && srv_conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH))) |
| srv_conn = NULL; |
| else if (!srv_conn->owner) { |
| srv_conn->owner = s->sess; |
| session_add_conn(s->sess, srv_conn, s->target); |
| } |
| si_release_endpoint(&s->si[1]); |
| |
| s->si[1].state = s->si[1].prev_state = SI_ST_INI; |
| s->si[1].err_type = SI_ET_NONE; |
| s->si[1].conn_retries = 0; /* used for logging too */ |
| s->si[1].exp = TICK_ETERNITY; |
| s->si[1].flags &= SI_FL_ISBACK | SI_FL_DONT_WAKE; /* we're in the context of process_stream */ |
| s->req.flags &= ~(CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CONNECT|CF_WRITE_ERROR|CF_STREAMER|CF_STREAMER_FAST|CF_NEVER_WAIT|CF_WAKE_CONNECT|CF_WROTE_DATA); |
| s->res.flags &= ~(CF_SHUTR|CF_SHUTR_NOW|CF_READ_ATTACHED|CF_READ_ERROR|CF_READ_NOEXP|CF_STREAMER|CF_STREAMER_FAST|CF_WRITE_PARTIAL|CF_NEVER_WAIT|CF_WROTE_DATA); |
| s->flags &= ~(SF_DIRECT|SF_ASSIGNED|SF_ADDR_SET|SF_BE_ASSIGNED|SF_FORCE_PRST|SF_IGNORE_PRST); |
| s->flags &= ~(SF_CURR_SESS|SF_REDIRECTABLE|SF_SRV_REUSED); |
| s->flags &= ~(SF_ERR_MASK|SF_FINST_MASK|SF_REDISP); |
| |
| hlua_ctx_destroy(s->hlua); |
| s->hlua = NULL; |
| |
| s->txn->meth = 0; |
| http_reset_txn(s); |
| s->txn->flags |= TX_NOT_FIRST | TX_WAIT_NEXT_RQ; |
| |
| if (prev_status == 401 || prev_status == 407) { |
| /* In HTTP keep-alive mode, if we receive a 401, we still have |
| * a chance of being able to send the visitor again to the same |
| * server over the same connection. This is required by some |
| * broken protocols such as NTLM, and anyway whenever there is |
| * an opportunity for sending the challenge to the proper place, |
| * it's better to do it (at least it helps with debugging), at |
| * least for non-deterministic load balancing algorithms. |
| */ |
| s->txn->flags |= TX_PREFER_LAST; |
| } |
| |
| /* Never ever allow to reuse a connection from a non-reuse backend */ |
| if (srv_conn && (be->options & PR_O_REUSE_MASK) == PR_O_REUSE_NEVR) |
| srv_conn->flags |= CO_FL_PRIVATE; |
| |
| if (fe->options2 & PR_O2_INDEPSTR) |
| s->si[1].flags |= SI_FL_INDEP_STR; |
| |
| if (fe->options2 & PR_O2_NODELAY) { |
| s->req.flags |= CF_NEVER_WAIT; |
| s->res.flags |= CF_NEVER_WAIT; |
| } |
| |
| /* we're removing the analysers, we MUST re-enable events detection. |
| * We don't enable close on the response channel since it's either |
| * already closed, or in keep-alive with an idle connection handler. |
| */ |
| channel_auto_read(&s->req); |
| channel_auto_close(&s->req); |
| channel_auto_read(&s->res); |
| |
| /* we're in keep-alive with an idle connection, monitor it if not already done */ |
| if (srv_conn && LIST_ISEMPTY(&srv_conn->list)) { |
| srv = objt_server(srv_conn->target); |
| if (srv) { |
| if (srv_conn->flags & CO_FL_PRIVATE) |
| LIST_ADD(&srv->priv_conns[tid], &srv_conn->list); |
| else if (prev_flags & TX_NOT_FIRST) |
| /* note: we check the request, not the connection, but |
| * this is valid for strategies SAFE and AGGR, and in |
| * case of ALWS, we don't care anyway. |
| */ |
| LIST_ADD(&srv->safe_conns[tid], &srv_conn->list); |
| else |
| LIST_ADD(&srv->idle_conns[tid], &srv_conn->list); |
| } |
| } |
| s->req.analysers = strm_li(s) ? strm_li(s)->analysers : 0; |
| s->res.analysers = 0; |
| } |
| |
| |
| /* This function updates the request state machine according to the response |
| * state machine and buffer flags. It returns 1 if it changes anything (flag |
| * or state), otherwise zero. It ignores any state before HTTP_MSG_DONE, as |
| * it is only used to find when a request/response couple is complete. Both |
| * this function and its equivalent should loop until both return zero. It |
| * can set its own state to DONE, CLOSING, CLOSED, TUNNEL, ERROR. |
| */ |
| int http_sync_req_state(struct stream *s) |
| { |
| struct channel *chn = &s->req; |
| struct http_txn *txn = s->txn; |
| unsigned int old_flags = chn->flags; |
| unsigned int old_state = txn->req.msg_state; |
| |
| if (unlikely(txn->req.msg_state < HTTP_MSG_DONE)) |
| return 0; |
| |
| if (txn->req.msg_state == HTTP_MSG_DONE) { |
| /* No need to read anymore, the request was completely parsed. |
| * We can shut the read side unless we want to abort_on_close, |
| * or we have a POST request. The issue with POST requests is |
| * that some browsers still send a CRLF after the request, and |
| * this CRLF must be read so that it does not remain in the kernel |
| * buffers, otherwise a close could cause an RST on some systems |
| * (eg: Linux). |
| * Note that if we're using keep-alive on the client side, we'd |
| * rather poll now and keep the polling enabled for the whole |
| * stream's life than enabling/disabling it between each |
| * response and next request. |
| */ |
| if (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_SCL) && |
| ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) && |
| (!(s->be->options & PR_O_ABRT_CLOSE) || |
| (s->si[0].flags & SI_FL_CLEAN_ABRT)) && |
| txn->meth != HTTP_METH_POST) |
| channel_dont_read(chn); |
| |
| /* if the server closes the connection, we want to immediately react |
| * and close the socket to save packets and syscalls. |
| */ |
| s->si[1].flags |= SI_FL_NOHALF; |
| |
| /* In any case we've finished parsing the request so we must |
| * disable Nagle when sending data because 1) we're not going |
| * to shut this side, and 2) the server is waiting for us to |
| * send pending data. |
| */ |
| chn->flags |= CF_NEVER_WAIT; |
| |
| if (txn->rsp.msg_state == HTTP_MSG_ERROR) |
| goto wait_other_side; |
| |
| if (txn->rsp.msg_state < HTTP_MSG_DONE) { |
| /* The server has not finished to respond, so we |
| * don't want to move in order not to upset it. |
| */ |
| goto wait_other_side; |
| } |
| |
| /* When we get here, it means that both the request and the |
| * response have finished receiving. Depending on the connection |
| * mode, we'll have to wait for the last bytes to leave in either |
| * direction, and sometimes for a close to be effective. |
| */ |
| |
| if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) { |
| /* Server-close mode : queue a connection close to the server */ |
| if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) |
| channel_shutw_now(chn); |
| } |
| else if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) { |
| /* Option forceclose is set, or either side wants to close, |
| * let's enforce it now that we're not expecting any new |
| * data to come. The caller knows the stream is complete |
| * once both states are CLOSED. |
| * |
| * However, there is an exception if the response |
| * length is undefined. In this case, we need to wait |
| * the close from the server. The response will be |
| * switched in TUNNEL mode until the end. |
| */ |
| if (!(txn->rsp.flags & HTTP_MSGF_XFER_LEN) && |
| txn->rsp.msg_state != HTTP_MSG_CLOSED) |
| goto check_channel_flags; |
| |
| if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) { |
| channel_shutr_now(chn); |
| channel_shutw_now(chn); |
| } |
| } |
| else { |
| /* The last possible modes are keep-alive and tunnel. Tunnel mode |
| * will not have any analyser so it needs to poll for reads. |
| */ |
| if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN) { |
| channel_auto_read(chn); |
| txn->req.msg_state = HTTP_MSG_TUNNEL; |
| } |
| } |
| |
| goto check_channel_flags; |
| } |
| |
| if (txn->req.msg_state == HTTP_MSG_CLOSING) { |
| http_msg_closing: |
| /* nothing else to forward, just waiting for the output buffer |
| * to be empty and for the shutw_now to take effect. |
| */ |
| if (channel_is_empty(chn)) { |
| txn->req.msg_state = HTTP_MSG_CLOSED; |
| goto http_msg_closed; |
| } |
| else if (chn->flags & CF_SHUTW) { |
| txn->req.err_state = txn->req.msg_state; |
| txn->req.msg_state = HTTP_MSG_ERROR; |
| } |
| goto wait_other_side; |
| } |
| |
| if (txn->req.msg_state == HTTP_MSG_CLOSED) { |
| http_msg_closed: |
| /* if we don't know whether the server will close, we need to hard close */ |
| if (txn->rsp.flags & HTTP_MSGF_XFER_LEN) |
| s->si[1].flags |= SI_FL_NOLINGER; /* we want to close ASAP */ |
| |
| /* see above in MSG_DONE why we only do this in these states */ |
| if (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_SCL) && |
| ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) && |
| (!(s->be->options & PR_O_ABRT_CLOSE) || |
| (s->si[0].flags & SI_FL_CLEAN_ABRT))) |
| channel_dont_read(chn); |
| goto wait_other_side; |
| } |
| |
| check_channel_flags: |
| /* Here, we are in HTTP_MSG_DONE or HTTP_MSG_TUNNEL */ |
| if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) { |
| /* if we've just closed an output, let's switch */ |
| txn->req.msg_state = HTTP_MSG_CLOSING; |
| goto http_msg_closing; |
| } |
| |
| |
| wait_other_side: |
| return txn->req.msg_state != old_state || chn->flags != old_flags; |
| } |
| |
| |
| /* This function updates the response state machine according to the request |
| * state machine and buffer flags. It returns 1 if it changes anything (flag |
| * or state), otherwise zero. It ignores any state before HTTP_MSG_DONE, as |
| * it is only used to find when a request/response couple is complete. Both |
| * this function and its equivalent should loop until both return zero. It |
| * can set its own state to DONE, CLOSING, CLOSED, TUNNEL, ERROR. |
| */ |
| int http_sync_res_state(struct stream *s) |
| { |
| struct channel *chn = &s->res; |
| struct http_txn *txn = s->txn; |
| unsigned int old_flags = chn->flags; |
| unsigned int old_state = txn->rsp.msg_state; |
| |
| if (unlikely(txn->rsp.msg_state < HTTP_MSG_DONE)) |
| return 0; |
| |
| if (txn->rsp.msg_state == HTTP_MSG_DONE) { |
| /* In theory, we don't need to read anymore, but we must |
| * still monitor the server connection for a possible close |
| * while the request is being uploaded, so we don't disable |
| * reading. |
| */ |
| /* channel_dont_read(chn); */ |
| |
| if (txn->req.msg_state == HTTP_MSG_ERROR) |
| goto wait_other_side; |
| |
| if (txn->req.msg_state < HTTP_MSG_DONE) { |
| /* The client seems to still be sending data, probably |
| * because we got an error response during an upload. |
| * We have the choice of either breaking the connection |
| * or letting it pass through. Let's do the later. |
| */ |
| goto wait_other_side; |
| } |
| |
| /* When we get here, it means that both the request and the |
| * response have finished receiving. Depending on the connection |
| * mode, we'll have to wait for the last bytes to leave in either |
| * direction, and sometimes for a close to be effective. |
| */ |
| |
| if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) { |
| /* Server-close mode : shut read and wait for the request |
| * side to close its output buffer. The caller will detect |
| * when we're in DONE and the other is in CLOSED and will |
| * catch that for the final cleanup. |
| */ |
| if (!(chn->flags & (CF_SHUTR|CF_SHUTR_NOW))) |
| channel_shutr_now(chn); |
| } |
| else if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) { |
| /* Option forceclose is set, or either side wants to close, |
| * let's enforce it now that we're not expecting any new |
| * data to come. The caller knows the stream is complete |
| * once both states are CLOSED. |
| */ |
| if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) { |
| channel_shutr_now(chn); |
| channel_shutw_now(chn); |
| } |
| } |
| else { |
| /* The last possible modes are keep-alive and tunnel. Tunnel will |
| * need to forward remaining data. Keep-alive will need to monitor |
| * for connection closing. |
| */ |
| channel_auto_read(chn); |
| chn->flags |= CF_NEVER_WAIT; |
| if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN) |
| txn->rsp.msg_state = HTTP_MSG_TUNNEL; |
| } |
| |
| goto check_channel_flags; |
| } |
| |
| if (txn->rsp.msg_state == HTTP_MSG_CLOSING) { |
| http_msg_closing: |
| /* nothing else to forward, just waiting for the output buffer |
| * to be empty and for the shutw_now to take effect. |
| */ |
| if (channel_is_empty(chn)) { |
| txn->rsp.msg_state = HTTP_MSG_CLOSED; |
| goto http_msg_closed; |
| } |
| else if (chn->flags & CF_SHUTW) { |
| txn->rsp.err_state = txn->rsp.msg_state; |
| txn->rsp.msg_state = HTTP_MSG_ERROR; |
| HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); |
| if (objt_server(s->target)) |
| HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1); |
| } |
| goto wait_other_side; |
| } |
| |
| if (txn->rsp.msg_state == HTTP_MSG_CLOSED) { |
| http_msg_closed: |
| /* drop any pending data */ |
| channel_truncate(chn); |
| channel_auto_close(chn); |
| channel_auto_read(chn); |
| goto wait_other_side; |
| } |
| |
| check_channel_flags: |
| /* Here, we are in HTTP_MSG_DONE or HTTP_MSG_TUNNEL */ |
| if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) { |
| /* if we've just closed an output, let's switch */ |
| txn->rsp.msg_state = HTTP_MSG_CLOSING; |
| goto http_msg_closing; |
| } |
| |
| wait_other_side: |
| /* We force the response to leave immediately if we're waiting for the |
| * other side, since there is no pending shutdown to push it out. |
| */ |
| if (!channel_is_empty(chn)) |
| chn->flags |= CF_SEND_DONTWAIT; |
| return txn->rsp.msg_state != old_state || chn->flags != old_flags; |
| } |
| |
| |
| /* Resync the request and response state machines. */ |
| void http_resync_states(struct stream *s) |
| { |
| struct http_txn *txn = s->txn; |
| #ifdef DEBUG_FULL |
| int old_req_state = txn->req.msg_state; |
| int old_res_state = txn->rsp.msg_state; |
| #endif |
| |
| http_sync_req_state(s); |
| while (1) { |
| if (!http_sync_res_state(s)) |
| break; |
| if (!http_sync_req_state(s)) |
| break; |
| } |
| |
| DPRINTF(stderr,"[%u] %s: stream=%p old=%s,%s cur=%s,%s " |
| "req->analysers=0x%08x res->analysers=0x%08x\n", |
| now_ms, __FUNCTION__, s, |
| h1_msg_state_str(old_req_state), h1_msg_state_str(old_res_state), |
| h1_msg_state_str(txn->req.msg_state), h1_msg_state_str(txn->rsp.msg_state), |
| s->req.analysers, s->res.analysers); |
| |
| |
| /* OK, both state machines agree on a compatible state. |
| * There are a few cases we're interested in : |
| * - HTTP_MSG_CLOSED on both sides means we've reached the end in both |
| * directions, so let's simply disable both analysers. |
| * - HTTP_MSG_CLOSED on the response only or HTTP_MSG_ERROR on either |
| * means we must abort the request. |
| * - HTTP_MSG_TUNNEL on either means we have to disable analyser on |
| * corresponding channel. |
| * - HTTP_MSG_DONE or HTTP_MSG_CLOSED on the request and HTTP_MSG_DONE |
| * on the response with server-close mode means we've completed one |
| * request and we must re-initialize the server connection. |
| */ |
| if (txn->req.msg_state == HTTP_MSG_CLOSED && |
| txn->rsp.msg_state == HTTP_MSG_CLOSED) { |
| s->req.analysers &= AN_REQ_FLT_END; |
| channel_auto_close(&s->req); |
| channel_auto_read(&s->req); |
| s->res.analysers &= AN_RES_FLT_END; |
| channel_auto_close(&s->res); |
| channel_auto_read(&s->res); |
| } |
| else if (txn->rsp.msg_state == HTTP_MSG_CLOSED || |
| txn->rsp.msg_state == HTTP_MSG_ERROR || |
| txn->req.msg_state == HTTP_MSG_ERROR) { |
| s->res.analysers &= AN_RES_FLT_END; |
| channel_auto_close(&s->res); |
| channel_auto_read(&s->res); |
| s->req.analysers &= AN_REQ_FLT_END; |
| channel_abort(&s->req); |
| channel_auto_close(&s->req); |
| channel_auto_read(&s->req); |
| channel_truncate(&s->req); |
| } |
| else if (txn->req.msg_state == HTTP_MSG_TUNNEL || |
| txn->rsp.msg_state == HTTP_MSG_TUNNEL) { |
| if (txn->req.msg_state == HTTP_MSG_TUNNEL) { |
| s->req.analysers &= AN_REQ_FLT_END; |
| if (HAS_REQ_DATA_FILTERS(s)) |
| s->req.analysers |= AN_REQ_FLT_XFER_DATA; |
| } |
| if (txn->rsp.msg_state == HTTP_MSG_TUNNEL) { |
| s->res.analysers &= AN_RES_FLT_END; |
| if (HAS_RSP_DATA_FILTERS(s)) |
| s->res.analysers |= AN_RES_FLT_XFER_DATA; |
| } |
| channel_auto_close(&s->req); |
| channel_auto_read(&s->req); |
| channel_auto_close(&s->res); |
| channel_auto_read(&s->res); |
| } |
| else if ((txn->req.msg_state == HTTP_MSG_DONE || |
| txn->req.msg_state == HTTP_MSG_CLOSED) && |
| txn->rsp.msg_state == HTTP_MSG_DONE && |
| ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL || |
| (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL)) { |
| /* server-close/keep-alive: terminate this transaction, |
| * possibly killing the server connection and reinitialize |
| * a fresh-new transaction, but only once we're sure there's |
| * enough room in the request and response buffer to process |
| * another request. They must not hold any pending output data |
| * and the response buffer must realigned |
| * (realign is done is http_end_txn_clean_session). |
| */ |
| if (co_data(&s->req)) |
| s->req.flags |= CF_WAKE_WRITE; |
| else if (co_data(&s->res)) |
| s->res.flags |= CF_WAKE_WRITE; |
| else { |
| s->req.analysers = AN_REQ_FLT_END; |
| s->res.analysers = AN_RES_FLT_END; |
| txn->flags |= TX_WAIT_CLEANUP; |
| } |
| } |
| } |
| |
| /* This function is an analyser which forwards request body (including chunk |
| * sizes if any). It is called as soon as we must forward, even if we forward |
| * zero byte. The only situation where it must not be called is when we're in |
| * tunnel mode and we want to forward till the close. It's used both to forward |
| * remaining data and to resync after end of body. It expects the msg_state to |
| * be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to |
| * read more data, or 1 once we can go on with next request or end the stream. |
| * When in MSG_DATA or MSG_TRAILERS, it will automatically forward chunk_len |
| * bytes of pending data + the headers if not already done. |
| */ |
| int http_request_forward_body(struct stream *s, struct channel *req, int an_bit) |
| { |
| struct session *sess = s->sess; |
| struct http_txn *txn = s->txn; |
| struct http_msg *msg = &s->txn->req; |
| int ret; |
| |
| if (IS_HTX_STRM(s)) |
| return htx_request_forward_body(s, req, an_bit); |
| |
| DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| req, |
| req->rex, req->wex, |
| req->flags, |
| ci_data(req), |
| req->analysers); |
| |
| if (unlikely(msg->msg_state < HTTP_MSG_BODY)) |
| return 0; |
| |
| if ((req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) || |
| ((req->flags & CF_SHUTW) && (req->to_forward || co_data(req)))) { |
| /* Output closed while we were sending data. We must abort and |
| * wake the other side up. |
| */ |
| msg->err_state = msg->msg_state; |
| msg->msg_state = HTTP_MSG_ERROR; |
| http_resync_states(s); |
| return 1; |
| } |
| |
| /* Note that we don't have to send 100-continue back because we don't |
| * need the data to complete our job, and it's up to the server to |
| * decide whether to return 100, 417 or anything else in return of |
| * an "Expect: 100-continue" header. |
| */ |
| if (msg->msg_state == HTTP_MSG_BODY) { |
| msg->msg_state = ((msg->flags & HTTP_MSGF_TE_CHNK) |
| ? HTTP_MSG_CHUNK_SIZE |
| : HTTP_MSG_DATA); |
| |
| /* TODO/filters: when http-buffer-request option is set or if a |
| * rule on url_param exists, the first chunk size could be |
| * already parsed. In that case, msg->next is after the chunk |
| * size (including the CRLF after the size). So this case should |
| * be handled to */ |
| } |
| |
| /* Some post-connect processing might want us to refrain from starting to |
| * forward data. Currently, the only reason for this is "balance url_param" |
| * whichs need to parse/process the request after we've enabled forwarding. |
| */ |
| if (unlikely(msg->flags & HTTP_MSGF_WAIT_CONN)) { |
| if (!(s->res.flags & CF_READ_ATTACHED)) { |
| channel_auto_connect(req); |
| req->flags |= CF_WAKE_CONNECT; |
| channel_dont_close(req); /* don't fail on early shutr */ |
| goto waiting; |
| } |
| msg->flags &= ~HTTP_MSGF_WAIT_CONN; |
| } |
| |
| /* in most states, we should abort in case of early close */ |
| channel_auto_close(req); |
| |
| if (req->to_forward) { |
| /* We can't process the buffer's contents yet */ |
| req->flags |= CF_WAKE_WRITE; |
| goto missing_data_or_waiting; |
| } |
| |
| if (msg->msg_state < HTTP_MSG_DONE) { |
| ret = ((msg->flags & HTTP_MSGF_TE_CHNK) |
| ? http_msg_forward_chunked_body(s, msg) |
| : http_msg_forward_body(s, msg)); |
| if (!ret) |
| goto missing_data_or_waiting; |
| if (ret < 0) |
| goto return_bad_req; |
| } |
| |
| /* other states, DONE...TUNNEL */ |
| /* we don't want to forward closes on DONE except in tunnel mode. */ |
| if ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) |
| channel_dont_close(req); |
| |
| http_resync_states(s); |
| if (!(req->analysers & an_bit)) { |
| if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) { |
| if (req->flags & CF_SHUTW) { |
| /* request errors are most likely due to the |
| * server aborting the transfer. */ |
| goto aborted_xfer; |
| } |
| if (msg->err_pos >= 0) |
| http_capture_bad_message(sess->fe, s, msg, msg->err_state, s->be); |
| goto return_bad_req; |
| } |
| return 1; |
| } |
| |
| /* If "option abortonclose" is set on the backend, we want to monitor |
| * the client's connection and forward any shutdown notification to the |
| * server, which will decide whether to close or to go on processing the |
| * request. We only do that in tunnel mode, and not in other modes since |
| * it can be abused to exhaust source ports. */ |
| if ((s->be->options & PR_O_ABRT_CLOSE) && !(s->si[0].flags & SI_FL_CLEAN_ABRT)) { |
| channel_auto_read(req); |
| if ((req->flags & (CF_SHUTR|CF_READ_NULL)) && |
| ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN)) |
| s->si[1].flags |= SI_FL_NOLINGER; |
| channel_auto_close(req); |
| } |
| else if (s->txn->meth == HTTP_METH_POST) { |
| /* POST requests may require to read extra CRLF sent by broken |
| * browsers and which could cause an RST to be sent upon close |
| * on some systems (eg: Linux). */ |
| channel_auto_read(req); |
| } |
| return 0; |
| |
| missing_data_or_waiting: |
| /* stop waiting for data if the input is closed before the end */ |
| if (msg->msg_state < HTTP_MSG_ENDING && req->flags & CF_SHUTR) { |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_CLICL; |
| if (!(s->flags & SF_FINST_MASK)) { |
| if (txn->rsp.msg_state < HTTP_MSG_ERROR) |
| s->flags |= SF_FINST_H; |
| else |
| s->flags |= SF_FINST_D; |
| } |
| |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1); |
| HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); |
| if (objt_server(s->target)) |
| HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1); |
| |
| goto return_bad_req_stats_ok; |
| } |
| |
| waiting: |
| /* waiting for the last bits to leave the buffer */ |
| if (req->flags & CF_SHUTW) |
| goto aborted_xfer; |
| |
| /* When TE: chunked is used, we need to get there again to parse remaining |
| * chunks even if the client has closed, so we don't want to set CF_DONTCLOSE. |
| * And when content-length is used, we never want to let the possible |
| * shutdown be forwarded to the other side, as the state machine will |
| * take care of it once the client responds. It's also important to |
| * prevent TIME_WAITs from accumulating on the backend side, and for |
| * HTTP/2 where the last frame comes with a shutdown. |
| */ |
| if (msg->flags & (HTTP_MSGF_TE_CHNK|HTTP_MSGF_CNT_LEN)) |
| channel_dont_close(req); |
| |
| /* We know that more data are expected, but we couldn't send more that |
| * what we did. So we always set the CF_EXPECT_MORE flag so that the |
| * system knows it must not set a PUSH on this first part. Interactive |
| * modes are already handled by the stream sock layer. We must not do |
| * this in content-length mode because it could present the MSG_MORE |
| * flag with the last block of forwarded data, which would cause an |
| * additional delay to be observed by the receiver. |
| */ |
| if (msg->flags & HTTP_MSGF_TE_CHNK) |
| req->flags |= CF_EXPECT_MORE; |
| |
| return 0; |
| |
| return_bad_req: /* let's centralize all bad requests */ |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); |
| if (sess->listener->counters) |
| HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); |
| |
| return_bad_req_stats_ok: |
| txn->req.err_state = txn->req.msg_state; |
| txn->req.msg_state = HTTP_MSG_ERROR; |
| if (txn->status) { |
| /* Note: we don't send any error if some data were already sent */ |
| http_reply_and_close(s, txn->status, NULL); |
| } else { |
| txn->status = 400; |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| } |
| req->analysers &= AN_REQ_FLT_END; |
| s->res.analysers &= AN_RES_FLT_END; /* we're in data phase, we want to abort both directions */ |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_PRXCOND; |
| if (!(s->flags & SF_FINST_MASK)) { |
| if (txn->rsp.msg_state < HTTP_MSG_ERROR) |
| s->flags |= SF_FINST_H; |
| else |
| s->flags |= SF_FINST_D; |
| } |
| return 0; |
| |
| aborted_xfer: |
| txn->req.err_state = txn->req.msg_state; |
| txn->req.msg_state = HTTP_MSG_ERROR; |
| if (txn->status) { |
| /* Note: we don't send any error if some data were already sent */ |
| http_reply_and_close(s, txn->status, NULL); |
| } else { |
| txn->status = 502; |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| } |
| req->analysers &= AN_REQ_FLT_END; |
| s->res.analysers &= AN_RES_FLT_END; /* we're in data phase, we want to abort both directions */ |
| |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1); |
| HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1); |
| if (objt_server(s->target)) |
| HA_ATOMIC_ADD(&objt_server(s->target)->counters.srv_aborts, 1); |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_SRVCL; |
| if (!(s->flags & SF_FINST_MASK)) { |
| if (txn->rsp.msg_state < HTTP_MSG_ERROR) |
| s->flags |= SF_FINST_H; |
| else |
| s->flags |= SF_FINST_D; |
| } |
| return 0; |
| } |
| |
| /* This stream analyser waits for a complete HTTP response. It returns 1 if the |
| * processing can continue on next analysers, or zero if it either needs more |
| * data or wants to immediately abort the response (eg: timeout, error, ...). It |
| * is tied to AN_RES_WAIT_HTTP and may may remove itself from s->res.analysers |
| * when it has nothing left to do, and may remove any analyser when it wants to |
| * abort. |
| */ |
| int http_wait_for_response(struct stream *s, struct channel *rep, int an_bit) |
| { |
| struct session *sess = s->sess; |
| struct http_txn *txn = s->txn; |
| struct http_msg *msg = &txn->rsp; |
| struct hdr_ctx ctx; |
| struct connection *srv_conn; |
| int use_close_only; |
| int cur_idx; |
| int n; |
| |
| srv_conn = cs_conn(objt_cs(s->si[1].end)); |
| |
| if (IS_HTX_STRM(s)) |
| return htx_wait_for_response(s, rep, an_bit); |
| |
| DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| rep, |
| rep->rex, rep->wex, |
| rep->flags, |
| ci_data(rep), |
| rep->analysers); |
| |
| /* |
| * Now parse the partial (or complete) lines. |
| * We will check the response syntax, and also join multi-line |
| * headers. An index of all the lines will be elaborated while |
| * parsing. |
| * |
| * For the parsing, we use a 28 states FSM. |
| * |
| * Here is the information we currently have : |
| * ci_head(rep) = beginning of response |
| * ci_head(rep) + msg->eoh = end of processed headers / start of current one |
| * ci_tail(rep) = end of input data |
| * msg->eol = end of current header or line (LF or CRLF) |
| * msg->next = first non-visited byte |
| */ |
| |
| next_one: |
| /* There's a protected area at the end of the buffer for rewriting |
| * purposes. We don't want to start to parse the request if the |
| * protected area is affected, because we may have to move processed |
| * data later, which is much more complicated. |
| */ |
| if (c_data(rep) && msg->msg_state < HTTP_MSG_ERROR) { |
| if (unlikely(!channel_is_rewritable(rep))) { |
| /* some data has still not left the buffer, wake us once that's done */ |
| if (rep->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) |
| goto abort_response; |
| channel_dont_close(rep); |
| rep->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */ |
| rep->flags |= CF_WAKE_WRITE; |
| return 0; |
| } |
| |
| if (unlikely(ci_tail(rep) < c_ptr(rep, msg->next) || |
| ci_tail(rep) > b_wrap(&rep->buf) - global.tune.maxrewrite)) |
| channel_slow_realign(rep, trash.area); |
| |
| if (likely(msg->next < ci_data(rep))) |
| http_msg_analyzer(msg, &txn->hdr_idx); |
| } |
| |
| /* 1: we might have to print this header in debug mode */ |
| if (unlikely((global.mode & MODE_DEBUG) && |
| (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) && |
| msg->msg_state >= HTTP_MSG_BODY)) { |
| char *eol, *sol; |
| |
| sol = ci_head(rep); |
| eol = sol + (msg->sl.st.l ? msg->sl.st.l : ci_data(rep)); |
| debug_hdr("srvrep", s, sol, eol); |
| |
| sol += hdr_idx_first_pos(&txn->hdr_idx); |
| cur_idx = hdr_idx_first_idx(&txn->hdr_idx); |
| |
| while (cur_idx) { |
| eol = sol + txn->hdr_idx.v[cur_idx].len; |
| debug_hdr("srvhdr", s, sol, eol); |
| sol = eol + txn->hdr_idx.v[cur_idx].cr + 1; |
| cur_idx = txn->hdr_idx.v[cur_idx].next; |
| } |
| } |
| |
| /* |
| * Now we quickly check if we have found a full valid response. |
| * If not so, we check the FD and buffer states before leaving. |
| * A full response is indicated by the fact that we have seen |
| * the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid |
| * responses are checked first. |
| * |
| * Depending on whether the client is still there or not, we |
| * may send an error response back or not. Note that normally |
| * we should only check for HTTP status there, and check I/O |
| * errors somewhere else. |
| */ |
| |
| if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { |
| /* Invalid response */ |
| if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) { |
| /* we detected a parsing error. We want to archive this response |
| * in the dedicated proxy area for later troubleshooting. |
| */ |
| hdr_response_bad: |
| if (msg->msg_state == HTTP_MSG_ERROR || msg->err_pos >= 0) |
| http_capture_bad_message(s->be, s, msg, msg->err_state, sess->fe); |
| |
| HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); |
| if (objt_server(s->target)) { |
| HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1); |
| health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_HDRRSP); |
| } |
| abort_response: |
| channel_auto_close(rep); |
| rep->analysers &= AN_RES_FLT_END; |
| txn->status = 502; |
| s->si[1].flags |= SI_FL_NOLINGER; |
| channel_truncate(rep); |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_PRXCOND; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_H; |
| |
| return 0; |
| } |
| |
| /* too large response does not fit in buffer. */ |
| else if (channel_full(rep, global.tune.maxrewrite)) { |
| if (msg->err_pos < 0) |
| msg->err_pos = ci_data(rep); |
| goto hdr_response_bad; |
| } |
| |
| /* read error */ |
| else if (rep->flags & CF_READ_ERROR) { |
| if (msg->err_pos >= 0) |
| http_capture_bad_message(s->be, s, msg, msg->err_state, sess->fe); |
| else if (txn->flags & TX_NOT_FIRST) |
| goto abort_keep_alive; |
| |
| HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); |
| if (objt_server(s->target)) { |
| HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1); |
| health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_READ_ERROR); |
| } |
| |
| channel_auto_close(rep); |
| rep->analysers &= AN_RES_FLT_END; |
| txn->status = 502; |
| |
| /* Check to see if the server refused the early data. |
| * If so, just send a 425 |
| */ |
| if (objt_cs(s->si[1].end)) { |
| struct connection *conn = objt_cs(s->si[1].end)->conn; |
| |
| if (conn->err_code == CO_ER_SSL_EARLY_FAILED) |
| txn->status = 425; |
| } |
| |
| s->si[1].flags |= SI_FL_NOLINGER; |
| channel_truncate(rep); |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_SRVCL; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_H; |
| return 0; |
| } |
| |
| /* read timeout : return a 504 to the client. */ |
| else if (rep->flags & CF_READ_TIMEOUT) { |
| if (msg->err_pos >= 0) |
| http_capture_bad_message(s->be, s, msg, msg->err_state, sess->fe); |
| |
| HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); |
| if (objt_server(s->target)) { |
| HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1); |
| health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_READ_TIMEOUT); |
| } |
| |
| channel_auto_close(rep); |
| rep->analysers &= AN_RES_FLT_END; |
| txn->status = 504; |
| s->si[1].flags |= SI_FL_NOLINGER; |
| channel_truncate(rep); |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_SRVTO; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_H; |
| return 0; |
| } |
| |
| /* client abort with an abortonclose */ |
| else if ((rep->flags & CF_SHUTR) && ((s->req.flags & (CF_SHUTR|CF_SHUTW)) == (CF_SHUTR|CF_SHUTW))) { |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1); |
| HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); |
| if (objt_server(s->target)) |
| HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1); |
| |
| rep->analysers &= AN_RES_FLT_END; |
| channel_auto_close(rep); |
| |
| txn->status = 400; |
| channel_truncate(rep); |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_CLICL; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_H; |
| |
| /* process_stream() will take care of the error */ |
| return 0; |
| } |
| |
| /* close from server, capture the response if the server has started to respond */ |
| else if (rep->flags & CF_SHUTR) { |
| if (msg->msg_state >= HTTP_MSG_RPVER || msg->err_pos >= 0) |
| http_capture_bad_message(s->be, s, msg, msg->err_state, sess->fe); |
| else if (txn->flags & TX_NOT_FIRST) |
| goto abort_keep_alive; |
| |
| HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); |
| if (objt_server(s->target)) { |
| HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1); |
| health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_BROKEN_PIPE); |
| } |
| |
| channel_auto_close(rep); |
| rep->analysers &= AN_RES_FLT_END; |
| txn->status = 502; |
| s->si[1].flags |= SI_FL_NOLINGER; |
| channel_truncate(rep); |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_SRVCL; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_H; |
| return 0; |
| } |
| |
| /* write error to client (we don't send any message then) */ |
| else if (rep->flags & CF_WRITE_ERROR) { |
| if (msg->err_pos >= 0) |
| http_capture_bad_message(s->be, s, msg, msg->err_state, sess->fe); |
| else if (txn->flags & TX_NOT_FIRST) |
| goto abort_keep_alive; |
| |
| HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); |
| rep->analysers &= AN_RES_FLT_END; |
| channel_auto_close(rep); |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_CLICL; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_H; |
| |
| /* process_stream() will take care of the error */ |
| return 0; |
| } |
| |
| channel_dont_close(rep); |
| rep->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */ |
| return 0; |
| } |
| |
| /* More interesting part now : we know that we have a complete |
| * response which at least looks like HTTP. We have an indicator |
| * of each header's length, so we can parse them quickly. |
| */ |
| |
| if (unlikely(msg->err_pos >= 0)) |
| http_capture_bad_message(s->be, s, msg, msg->err_state, sess->fe); |
| |
| /* |
| * 1: get the status code |
| */ |
| n = ci_head(rep)[msg->sl.st.c] - '0'; |
| if (n < 1 || n > 5) |
| n = 0; |
| /* when the client triggers a 4xx from the server, it's most often due |
| * to a missing object or permission. These events should be tracked |
| * because if they happen often, it may indicate a brute force or a |
| * vulnerability scan. |
| */ |
| if (n == 4) |
| stream_inc_http_err_ctr(s); |
| |
| if (objt_server(s->target)) |
| HA_ATOMIC_ADD(&objt_server(s->target)->counters.p.http.rsp[n], 1); |
| |
| /* RFC7230#2.6 has enforced the format of the HTTP version string to be |
| * exactly one digit "." one digit. This check may be disabled using |
| * option accept-invalid-http-response. |
| */ |
| if (!(s->be->options2 & PR_O2_RSPBUG_OK)) { |
| if (msg->sl.st.v_l != 8) { |
| msg->err_pos = 0; |
| goto hdr_response_bad; |
| } |
| |
| if (ci_head(rep)[4] != '/' || |
| !isdigit((unsigned char)ci_head(rep)[5]) || |
| ci_head(rep)[6] != '.' || |
| !isdigit((unsigned char)ci_head(rep)[7])) { |
| msg->err_pos = 4; |
| goto hdr_response_bad; |
| } |
| } |
| |
| /* check if the response is HTTP/1.1 or above */ |
| if ((msg->sl.st.v_l == 8) && |
| ((ci_head(rep)[5] > '1') || |
| ((ci_head(rep)[5] == '1') && (ci_head(rep)[7] >= '1')))) |
| msg->flags |= HTTP_MSGF_VER_11; |
| |
| /* "connection" has not been parsed yet */ |
| txn->flags &= ~(TX_HDR_CONN_PRS|TX_HDR_CONN_CLO|TX_HDR_CONN_KAL|TX_HDR_CONN_UPG|TX_CON_CLO_SET|TX_CON_KAL_SET); |
| |
| /* transfer length unknown*/ |
| msg->flags &= ~HTTP_MSGF_XFER_LEN; |
| |
| txn->status = strl2ui(ci_head(rep) + msg->sl.st.c, msg->sl.st.c_l); |
| |
| /* Adjust server's health based on status code. Note: status codes 501 |
| * and 505 are triggered on demand by client request, so we must not |
| * count them as server failures. |
| */ |
| if (objt_server(s->target)) { |
| if (txn->status >= 100 && (txn->status < 500 || txn->status == 501 || txn->status == 505)) |
| health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_OK); |
| else |
| health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_STS); |
| } |
| |
| /* |
| * We may be facing a 100-continue response, or any other informational |
| * 1xx response which is non-final, in which case this is not the right |
| * response, and we're waiting for the next one. Let's allow this response |
| * to go to the client and wait for the next one. There's an exception for |
| * 101 which is used later in the code to switch protocols. |
| */ |
| if (txn->status < 200 && |
| (txn->status == 100 || txn->status >= 102)) { |
| hdr_idx_init(&txn->hdr_idx); |
| msg->next -= channel_forward(rep, msg->next); |
| msg->msg_state = HTTP_MSG_RPBEFORE; |
| txn->status = 0; |
| s->logs.t_data = -1; /* was not a response yet */ |
| FLT_STRM_CB(s, flt_http_reset(s, msg)); |
| goto next_one; |
| } |
| |
| /* |
| * 2: check for cacheability. |
| */ |
| |
| switch (txn->status) { |
| case 200: |
| case 203: |
| case 204: |
| case 206: |
| case 300: |
| case 301: |
| case 404: |
| case 405: |
| case 410: |
| case 414: |
| case 501: |
| break; |
| default: |
| /* RFC7231#6.1: |
| * Responses with status codes that are defined as |
| * cacheable by default (e.g., 200, 203, 204, 206, |
| * 300, 301, 404, 405, 410, 414, and 501 in this |
| * specification) can be reused by a cache with |
| * heuristic expiration unless otherwise indicated |
| * by the method definition or explicit cache |
| * controls [RFC7234]; all other status codes are |
| * not cacheable by default. |
| */ |
| txn->flags &= ~(TX_CACHEABLE | TX_CACHE_COOK); |
| break; |
| } |
| |
| /* |
| * 3: we may need to capture headers |
| */ |
| s->logs.logwait &= ~LW_RESP; |
| if (unlikely((s->logs.logwait & LW_RSPHDR) && s->res_cap)) |
| http_capture_headers(ci_head(rep), &txn->hdr_idx, |
| s->res_cap, sess->fe->rsp_cap); |
| |
| /* 4: determine the transfer-length according to RFC2616 #4.4, updated |
| * by RFC7230#3.3.3 : |
| * |
| * The length of a message body is determined by one of the following |
| * (in order of precedence): |
| * |
| * 1. Any 2xx (Successful) response to a CONNECT request implies that |
| * the connection will become a tunnel immediately after the empty |
| * line that concludes the header fields. A client MUST ignore |
| * any Content-Length or Transfer-Encoding header fields received |
| * in such a message. Any 101 response (Switching Protocols) is |
| * managed in the same manner. |
| * |
| * 2. Any response to a HEAD request and any response with a 1xx |
| * (Informational), 204 (No Content), or 304 (Not Modified) status |
| * code is always terminated by the first empty line after the |
| * header fields, regardless of the header fields present in the |
| * message, and thus cannot contain a message body. |
| * |
| * 3. If a Transfer-Encoding header field is present and the chunked |
| * transfer coding (Section 4.1) is the final encoding, the message |
| * body length is determined by reading and decoding the chunked |
| * data until the transfer coding indicates the data is complete. |
| * |
| * If a Transfer-Encoding header field is present in a response and |
| * the chunked transfer coding is not the final encoding, the |
| * message body length is determined by reading the connection until |
| * it is closed by the server. If a Transfer-Encoding header field |
| * is present in a request and the chunked transfer coding is not |
| * the final encoding, the message body length cannot be determined |
| * reliably; the server MUST respond with the 400 (Bad Request) |
| * status code and then close the connection. |
| * |
| * If a message is received with both a Transfer-Encoding and a |
| * Content-Length header field, the Transfer-Encoding overrides the |
| * Content-Length. Such a message might indicate an attempt to |
| * perform request smuggling (Section 9.5) or response splitting |
| * (Section 9.4) and ought to be handled as an error. A sender MUST |
| * remove the received Content-Length field prior to forwarding such |
| * a message downstream. |
| * |
| * 4. If a message is received without Transfer-Encoding and with |
| * either multiple Content-Length header fields having differing |
| * field-values or a single Content-Length header field having an |
| * invalid value, then the message framing is invalid and the |
| * recipient MUST treat it as an unrecoverable error. If this is a |
| * request message, the server MUST respond with a 400 (Bad Request) |
| * status code and then close the connection. If this is a response |
| * message received by a proxy, the proxy MUST close the connection |
| * to the server, discard the received response, and send a 502 (Bad |
| * Gateway) response to the client. If this is a response message |
| * received by a user agent, the user agent MUST close the |
| * connection to the server and discard the received response. |
| * |
| * 5. If a valid Content-Length header field is present without |
| * Transfer-Encoding, its decimal value defines the expected message |
| * body length in octets. If the sender closes the connection or |
| * the recipient times out before the indicated number of octets are |
| * received, the recipient MUST consider the message to be |
| * incomplete and close the connection. |
| * |
| * 6. If this is a request message and none of the above are true, then |
| * the message body length is zero (no message body is present). |
| * |
| * 7. Otherwise, this is a response message without a declared message |
| * body length, so the message body length is determined by the |
| * number of octets received prior to the server closing the |
| * connection. |
| */ |
| |
| /* Skip parsing if no content length is possible. The response flags |
| * remain 0 as well as the chunk_len, which may or may not mirror |
| * the real header value, and we note that we know the response's length. |
| * FIXME: should we parse anyway and return an error on chunked encoding ? |
| */ |
| if (unlikely((txn->meth == HTTP_METH_CONNECT && txn->status == 200) || |
| txn->status == 101)) { |
| /* Either we've established an explicit tunnel, or we're |
| * switching the protocol. In both cases, we're very unlikely |
| * to understand the next protocols. We have to switch to tunnel |
| * mode, so that we transfer the request and responses then let |
| * this protocol pass unmodified. When we later implement specific |
| * parsers for such protocols, we'll want to check the Upgrade |
| * header which contains information about that protocol for |
| * responses with status 101 (eg: see RFC2817 about TLS). |
| */ |
| txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_TUN; |
| msg->flags |= HTTP_MSGF_XFER_LEN; |
| goto end; |
| } |
| |
| if (txn->meth == HTTP_METH_HEAD || |
| (txn->status >= 100 && txn->status < 200) || |
| txn->status == 204 || txn->status == 304) { |
| msg->flags |= HTTP_MSGF_XFER_LEN; |
| goto skip_content_length; |
| } |
| |
| use_close_only = 0; |
| ctx.idx = 0; |
| while (http_find_header2("Transfer-Encoding", 17, ci_head(rep), &txn->hdr_idx, &ctx)) { |
| if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0) |
| msg->flags |= (HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN); |
| else if (msg->flags & HTTP_MSGF_TE_CHNK) { |
| /* bad transfer-encoding (chunked followed by something else) */ |
| use_close_only = 1; |
| msg->flags &= ~(HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN); |
| break; |
| } |
| } |
| |
| /* Chunked responses must have their content-length removed */ |
| ctx.idx = 0; |
| if (use_close_only || (msg->flags & HTTP_MSGF_TE_CHNK)) { |
| while (http_find_header2("Content-Length", 14, ci_head(rep), &txn->hdr_idx, &ctx)) |
| http_remove_header2(msg, &txn->hdr_idx, &ctx); |
| } |
| else while (http_find_header2("Content-Length", 14, ci_head(rep), &txn->hdr_idx, &ctx)) { |
| signed long long cl; |
| |
| if (!ctx.vlen) { |
| msg->err_pos = ctx.line + ctx.val - ci_head(rep); |
| goto hdr_response_bad; |
| } |
| |
| if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) { |
| msg->err_pos = ctx.line + ctx.val - ci_head(rep); |
| goto hdr_response_bad; /* parse failure */ |
| } |
| |
| if (cl < 0) { |
| msg->err_pos = ctx.line + ctx.val - ci_head(rep); |
| goto hdr_response_bad; |
| } |
| |
| if ((msg->flags & HTTP_MSGF_CNT_LEN) && (msg->chunk_len != cl)) { |
| msg->err_pos = ctx.line + ctx.val - ci_head(rep); |
| goto hdr_response_bad; /* already specified, was different */ |
| } |
| |
| msg->flags |= HTTP_MSGF_CNT_LEN | HTTP_MSGF_XFER_LEN; |
| msg->body_len = msg->chunk_len = cl; |
| } |
| |
| /* check for NTML authentication headers in 401 (WWW-Authenticate) and |
| * 407 (Proxy-Authenticate) responses and set the connection to private |
| */ |
| if (srv_conn && txn->status == 401) { |
| /* check for Negotiate/NTLM WWW-Authenticate headers */ |
| ctx.idx = 0; |
| while (http_find_header2("WWW-Authenticate", 16, ci_head(rep), &txn->hdr_idx, &ctx)) { |
| if ((ctx.vlen >= 9 && word_match(ctx.line + ctx.val, ctx.vlen, "Negotiate", 9)) || |
| (ctx.vlen >= 4 && word_match(ctx.line + ctx.val, ctx.vlen, "NTLM", 4))) |
| srv_conn->flags |= CO_FL_PRIVATE; |
| } |
| } else if (srv_conn && txn->status == 407) { |
| /* check for Negotiate/NTLM Proxy-Authenticate headers */ |
| ctx.idx = 0; |
| while (http_find_header2("Proxy-Authenticate", 18, ci_head(rep), &txn->hdr_idx, &ctx)) { |
| if ((ctx.vlen >= 9 && word_match(ctx.line + ctx.val, ctx.vlen, "Negotiate", 9)) || |
| (ctx.vlen >= 4 && word_match(ctx.line + ctx.val, ctx.vlen, "NTLM", 4))) |
| srv_conn->flags |= CO_FL_PRIVATE; |
| } |
| } |
| |
| skip_content_length: |
| /* Now we have to check if we need to modify the Connection header. |
| * This is more difficult on the response than it is on the request, |
| * because we can have two different HTTP versions and we don't know |
| * how the client will interprete a response. For instance, let's say |
| * that the client sends a keep-alive request in HTTP/1.0 and gets an |
| * HTTP/1.1 response without any header. Maybe it will bound itself to |
| * HTTP/1.0 because it only knows about it, and will consider the lack |
| * of header as a close, or maybe it knows HTTP/1.1 and can consider |
| * the lack of header as a keep-alive. Thus we will use two flags |
| * indicating how a request MAY be understood by the client. In case |
| * of multiple possibilities, we'll fix the header to be explicit. If |
| * ambiguous cases such as both close and keepalive are seen, then we |
| * will fall back to explicit close. Note that we won't take risks with |
| * HTTP/1.0 clients which may not necessarily understand keep-alive. |
| * See doc/internals/connection-header.txt for the complete matrix. |
| */ |
| if ((txn->status >= 200) && !(txn->flags & TX_HDR_CONN_PRS) && |
| (txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) { |
| int to_del = 0; |
| |
| /* on unknown transfer length, we must close */ |
| if (!(msg->flags & HTTP_MSGF_XFER_LEN)) |
| txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO; |
| |
| /* now adjust header transformations depending on current state */ |
| if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) { |
| to_del |= 2; /* remove "keep-alive" on any response */ |
| if (!(msg->flags & HTTP_MSGF_VER_11)) |
| to_del |= 1; /* remove "close" for HTTP/1.0 responses */ |
| } |
| else { /* SCL / KAL */ |
| to_del |= 1; /* remove "close" on any response */ |
| if (txn->req.flags & msg->flags & HTTP_MSGF_VER_11) |
| to_del |= 2; /* remove "keep-alive" on pure 1.1 responses */ |
| } |
| |
| /* Parse and remove some headers from the connection header */ |
| http_parse_connection_header(txn, msg, to_del); |
| |
| /* Some keep-alive responses are converted to Server-close if |
| * the server wants to close. |
| */ |
| if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL) { |
| if ((txn->flags & TX_HDR_CONN_CLO) || |
| (!(txn->flags & TX_HDR_CONN_KAL) && !(msg->flags & HTTP_MSGF_VER_11))) |
| txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_SCL; |
| } |
| } |
| |
| end: |
| /* we want to have the response time before we start processing it */ |
| s->logs.t_data = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| |
| /* end of job, return OK */ |
| rep->analysers &= ~an_bit; |
| rep->analyse_exp = TICK_ETERNITY; |
| channel_auto_close(rep); |
| return 1; |
| |
| abort_keep_alive: |
| /* A keep-alive request to the server failed on a network error. |
| * The client is required to retry. We need to close without returning |
| * any other information so that the client retries. |
| */ |
| txn->status = 0; |
| rep->analysers &= AN_RES_FLT_END; |
| s->req.analysers &= AN_REQ_FLT_END; |
| channel_auto_close(rep); |
| s->logs.logwait = 0; |
| s->logs.level = 0; |
| s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */ |
| channel_truncate(rep); |
| http_reply_and_close(s, txn->status, NULL); |
| return 0; |
| } |
| |
| /* This function performs all the processing enabled for the current response. |
| * It normally returns 1 unless it wants to break. It relies on buffers flags, |
| * and updates s->res.analysers. It might make sense to explode it into several |
| * other functions. It works like process_request (see indications above). |
| */ |
| int http_process_res_common(struct stream *s, struct channel *rep, int an_bit, struct proxy *px) |
| { |
| struct session *sess = s->sess; |
| struct http_txn *txn = s->txn; |
| struct http_msg *msg = &txn->rsp; |
| struct proxy *cur_proxy; |
| struct cond_wordlist *wl; |
| enum rule_result ret = HTTP_RULE_RES_CONT; |
| |
| if (IS_HTX_STRM(s)) |
| return htx_process_res_common(s, rep, an_bit, px); |
| |
| DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| rep, |
| rep->rex, rep->wex, |
| rep->flags, |
| ci_data(rep), |
| rep->analysers); |
| |
| if (unlikely(msg->msg_state < HTTP_MSG_BODY)) /* we need more data */ |
| return 0; |
| |
| /* The stats applet needs to adjust the Connection header but we don't |
| * apply any filter there. |
| */ |
| if (unlikely(objt_applet(s->target) == &http_stats_applet)) { |
| rep->analysers &= ~an_bit; |
| rep->analyse_exp = TICK_ETERNITY; |
| goto skip_filters; |
| } |
| |
| /* |
| * We will have to evaluate the filters. |
| * As opposed to version 1.2, now they will be evaluated in the |
| * filters order and not in the header order. This means that |
| * each filter has to be validated among all headers. |
| * |
| * Filters are tried with ->be first, then with ->fe if it is |
| * different from ->be. |
| * |
| * Maybe we are in resume condiion. In this case I choose the |
| * "struct proxy" which contains the rule list matching the resume |
| * pointer. If none of theses "struct proxy" match, I initialise |
| * the process with the first one. |
| * |
| * In fact, I check only correspondance betwwen the current list |
| * pointer and the ->fe rule list. If it doesn't match, I initialize |
| * the loop with the ->be. |
| */ |
| if (s->current_rule_list == &sess->fe->http_res_rules) |
| cur_proxy = sess->fe; |
| else |
| cur_proxy = s->be; |
| while (1) { |
| struct proxy *rule_set = cur_proxy; |
| |
| /* evaluate http-response rules */ |
| if (ret == HTTP_RULE_RES_CONT) { |
| ret = http_res_get_intercept_rule(cur_proxy, &cur_proxy->http_res_rules, s); |
| |
| if (ret == HTTP_RULE_RES_BADREQ) |
| goto return_srv_prx_502; |
| |
| if (ret == HTTP_RULE_RES_DONE) { |
| rep->analysers &= ~an_bit; |
| rep->analyse_exp = TICK_ETERNITY; |
| return 1; |
| } |
| } |
| |
| /* we need to be called again. */ |
| if (ret == HTTP_RULE_RES_YIELD) { |
| channel_dont_close(rep); |
| return 0; |
| } |
| |
| /* try headers filters */ |
| if (rule_set->rsp_exp != NULL) { |
| if (apply_filters_to_response(s, rep, rule_set) < 0) { |
| return_bad_resp: |
| if (objt_server(s->target)) { |
| HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1); |
| health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_RSP); |
| } |
| HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); |
| return_srv_prx_502: |
| rep->analysers &= AN_RES_FLT_END; |
| txn->status = 502; |
| s->logs.t_data = -1; /* was not a valid response */ |
| s->si[1].flags |= SI_FL_NOLINGER; |
| channel_truncate(rep); |
| http_reply_and_close(s, txn->status, http_error_message(s)); |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_PRXCOND; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_H; |
| return 0; |
| } |
| } |
| |
| /* has the response been denied ? */ |
| if (txn->flags & TX_SVDENY) { |
| if (objt_server(s->target)) |
| HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_secu, 1); |
| |
| HA_ATOMIC_ADD(&s->be->be_counters.denied_resp, 1); |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_resp, 1); |
| if (sess->listener->counters) |
| HA_ATOMIC_ADD(&sess->listener->counters->denied_resp, 1); |
| |
| goto return_srv_prx_502; |
| } |
| |
| /* add response headers from the rule sets in the same order */ |
| list_for_each_entry(wl, &rule_set->rsp_add, list) { |
| if (txn->status < 200 && txn->status != 101) |
| break; |
| if (wl->cond) { |
| int ret = acl_exec_cond(wl->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (((struct acl_cond *)wl->cond)->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| if (!ret) |
| continue; |
| } |
| if (unlikely(http_header_add_tail2(&txn->rsp, &txn->hdr_idx, wl->s, strlen(wl->s)) < 0)) |
| goto return_bad_resp; |
| } |
| |
| /* check whether we're already working on the frontend */ |
| if (cur_proxy == sess->fe) |
| break; |
| cur_proxy = sess->fe; |
| } |
| |
| /* After this point, this anayzer can't return yield, so we can |
| * remove the bit corresponding to this analyzer from the list. |
| * |
| * Note that the intermediate returns and goto found previously |
| * reset the analyzers. |
| */ |
| rep->analysers &= ~an_bit; |
| rep->analyse_exp = TICK_ETERNITY; |
| |
| /* OK that's all we can do for 1xx responses */ |
| if (unlikely(txn->status < 200 && txn->status != 101)) |
| goto skip_header_mangling; |
| |
| /* |
| * Now check for a server cookie. |
| */ |
| if (s->be->cookie_name || sess->fe->capture_name || (s->be->options & PR_O_CHK_CACHE)) |
| manage_server_side_cookies(s, rep); |
| |
| /* |
| * Check for cache-control or pragma headers if required. |
| */ |
| if ((s->be->options & PR_O_CHK_CACHE) || (s->be->ck_opts & PR_CK_NOC)) |
| check_response_for_cacheability(s, rep); |
| |
| /* |
| * Add server cookie in the response if needed |
| */ |
| if (objt_server(s->target) && (s->be->ck_opts & PR_CK_INS) && |
| !((txn->flags & TX_SCK_FOUND) && (s->be->ck_opts & PR_CK_PSV)) && |
| (!(s->flags & SF_DIRECT) || |
| ((s->be->cookie_maxidle || txn->cookie_last_date) && |
| (!txn->cookie_last_date || (txn->cookie_last_date - date.tv_sec) < 0)) || |
| (s->be->cookie_maxlife && !txn->cookie_first_date) || // set the first_date |
| (!s->be->cookie_maxlife && txn->cookie_first_date)) && // remove the first_date |
| (!(s->be->ck_opts & PR_CK_POST) || (txn->meth == HTTP_METH_POST)) && |
| !(s->flags & SF_IGNORE_PRST)) { |
| /* the server is known, it's not the one the client requested, or the |
| * cookie's last seen date needs to be refreshed. We have to |
| * insert a set-cookie here, except if we want to insert only on POST |
| * requests and this one isn't. Note that servers which don't have cookies |
| * (eg: some backup servers) will return a full cookie removal request. |
| */ |
| if (!objt_server(s->target)->cookie) { |
| chunk_printf(&trash, |
| "Set-Cookie: %s=; Expires=Thu, 01-Jan-1970 00:00:01 GMT; path=/", |
| s->be->cookie_name); |
| } |
| else { |
| chunk_printf(&trash, "Set-Cookie: %s=%s", s->be->cookie_name, objt_server(s->target)->cookie); |
| |
| if (s->be->cookie_maxidle || s->be->cookie_maxlife) { |
| /* emit last_date, which is mandatory */ |
| trash.area[trash.data++] = COOKIE_DELIM_DATE; |
| s30tob64((date.tv_sec+3) >> 2, |
| trash.area + trash.data); |
| trash.data += 5; |
| |
| if (s->be->cookie_maxlife) { |
| /* emit first_date, which is either the original one or |
| * the current date. |
| */ |
| trash.area[trash.data++] = COOKIE_DELIM_DATE; |
| s30tob64(txn->cookie_first_date ? |
| txn->cookie_first_date >> 2 : |
| (date.tv_sec+3) >> 2, |
| trash.area + trash.data); |
| trash.data += 5; |
| } |
| } |
| chunk_appendf(&trash, "; path=/"); |
| } |
| |
| if (s->be->cookie_domain) |
| chunk_appendf(&trash, "; domain=%s", s->be->cookie_domain); |
| |
| if (s->be->ck_opts & PR_CK_HTTPONLY) |
| chunk_appendf(&trash, "; HttpOnly"); |
| |
| if (s->be->ck_opts & PR_CK_SECURE) |
| chunk_appendf(&trash, "; Secure"); |
| |
| if (unlikely(http_header_add_tail2(&txn->rsp, &txn->hdr_idx, trash.area, trash.data) < 0)) |
| goto return_bad_resp; |
| |
| txn->flags &= ~TX_SCK_MASK; |
| if (__objt_server(s->target)->cookie && (s->flags & SF_DIRECT)) |
| /* the server did not change, only the date was updated */ |
| txn->flags |= TX_SCK_UPDATED; |
| else |
| txn->flags |= TX_SCK_INSERTED; |
| |
| /* Here, we will tell an eventual cache on the client side that we don't |
| * want it to cache this reply because HTTP/1.0 caches also cache cookies ! |
| * Some caches understand the correct form: 'no-cache="set-cookie"', but |
| * others don't (eg: apache <= 1.3.26). So we use 'private' instead. |
| */ |
| if ((s->be->ck_opts & PR_CK_NOC) && (txn->flags & TX_CACHEABLE)) { |
| |
| txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; |
| |
| if (unlikely(http_header_add_tail2(&txn->rsp, &txn->hdr_idx, |
| "Cache-control: private", 22) < 0)) |
| goto return_bad_resp; |
| } |
| } |
| |
| /* |
| * Check if result will be cacheable with a cookie. |
| * We'll block the response if security checks have caught |
| * nasty things such as a cacheable cookie. |
| */ |
| if (((txn->flags & (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) == |
| (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) && |
| (s->be->options & PR_O_CHK_CACHE)) { |
| /* we're in presence of a cacheable response containing |
| * a set-cookie header. We'll block it as requested by |
| * the 'checkcache' option, and send an alert. |
| */ |
| if (objt_server(s->target)) |
| HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_secu, 1); |
| |
| HA_ATOMIC_ADD(&s->be->be_counters.denied_resp, 1); |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_resp, 1); |
| if (sess->listener->counters) |
| HA_ATOMIC_ADD(&sess->listener->counters->denied_resp, 1); |
| |
| ha_alert("Blocking cacheable cookie in response from instance %s, server %s.\n", |
| s->be->id, objt_server(s->target) ? objt_server(s->target)->id : "<dispatch>"); |
| send_log(s->be, LOG_ALERT, |
| "Blocking cacheable cookie in response from instance %s, server %s.\n", |
| s->be->id, objt_server(s->target) ? objt_server(s->target)->id : "<dispatch>"); |
| goto return_srv_prx_502; |
| } |
| |
| skip_filters: |
| /* |
| * Adjust "Connection: close" or "Connection: keep-alive" if needed. |
| * If an "Upgrade" token is found, the header is left untouched in order |
| * not to have to deal with some client bugs : some of them fail an upgrade |
| * if anything but "Upgrade" is present in the Connection header. We don't |
| * want to touch any 101 response either since it's switching to another |
| * protocol. |
| */ |
| if ((txn->status != 101) && !(txn->flags & TX_HDR_CONN_UPG) && |
| (txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) { |
| unsigned int want_flags = 0; |
| |
| if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL || |
| (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) { |
| /* we want a keep-alive response here. Keep-alive header |
| * required if either side is not 1.1. |
| */ |
| if (!(txn->req.flags & msg->flags & HTTP_MSGF_VER_11)) |
| want_flags |= TX_CON_KAL_SET; |
| } |
| else { /* CLO */ |
| /* we want a close response here. Close header required if |
| * the server is 1.1, regardless of the client. |
| */ |
| if (msg->flags & HTTP_MSGF_VER_11) |
| want_flags |= TX_CON_CLO_SET; |
| } |
| |
| if (want_flags != (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET))) |
| http_change_connection_header(txn, msg, want_flags); |
| } |
| |
| skip_header_mangling: |
| /* Always enter in the body analyzer */ |
| rep->analysers &= ~AN_RES_FLT_XFER_DATA; |
| rep->analysers |= AN_RES_HTTP_XFER_BODY; |
| |
| /* if the user wants to log as soon as possible, without counting |
| * bytes from the server, then this is the right moment. We have |
| * to temporarily assign bytes_out to log what we currently have. |
| */ |
| if (!LIST_ISEMPTY(&sess->fe->logformat) && !(s->logs.logwait & LW_BYTES)) { |
| s->logs.t_close = s->logs.t_data; /* to get a valid end date */ |
| s->logs.bytes_out = txn->rsp.eoh; |
| s->do_log(s); |
| s->logs.bytes_out = 0; |
| } |
| return 1; |
| } |
| |
| /* This function is an analyser which forwards response body (including chunk |
| * sizes if any). It is called as soon as we must forward, even if we forward |
| * zero byte. The only situation where it must not be called is when we're in |
| * tunnel mode and we want to forward till the close. It's used both to forward |
| * remaining data and to resync after end of body. It expects the msg_state to |
| * be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to |
| * read more data, or 1 once we can go on with next request or end the stream. |
| * |
| * It is capable of compressing response data both in content-length mode and |
| * in chunked mode. The state machines follows different flows depending on |
| * whether content-length and chunked modes are used, since there are no |
| * trailers in content-length : |
| * |
| * chk-mode cl-mode |
| * ,----- BODY -----. |
| * / \ |
| * V size > 0 V chk-mode |
| * .--> SIZE -------------> DATA -------------> CRLF |
| * | | size == 0 | last byte | |
| * | v final crlf v inspected | |
| * | TRAILERS -----------> DONE | |
| * | | |
| * `----------------------------------------------' |
| * |
| * Compression only happens in the DATA state, and must be flushed in final |
| * states (TRAILERS/DONE) or when leaving on missing data. Normal forwarding |
| * is performed at once on final states for all bytes parsed, or when leaving |
| * on missing data. |
| */ |
| int http_response_forward_body(struct stream *s, struct channel *res, int an_bit) |
| { |
| struct session *sess = s->sess; |
| struct http_txn *txn = s->txn; |
| struct http_msg *msg = &s->txn->rsp; |
| int ret; |
| |
| if (IS_HTX_STRM(s)) |
| return htx_response_forward_body(s, res, an_bit); |
| |
| DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| res, |
| res->rex, res->wex, |
| res->flags, |
| ci_data(res), |
| res->analysers); |
| |
| if (unlikely(msg->msg_state < HTTP_MSG_BODY)) |
| return 0; |
| |
| if ((res->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) || |
| ((res->flags & CF_SHUTW) && (res->to_forward || co_data(res))) || |
| !s->req.analysers) { |
| /* Output closed while we were sending data. We must abort and |
| * wake the other side up. |
| */ |
| msg->err_state = msg->msg_state; |
| msg->msg_state = HTTP_MSG_ERROR; |
| http_resync_states(s); |
| return 1; |
| } |
| |
| /* in most states, we should abort in case of early close */ |
| channel_auto_close(res); |
| |
| if (msg->msg_state == HTTP_MSG_BODY) { |
| msg->msg_state = ((msg->flags & HTTP_MSGF_TE_CHNK) |
| ? HTTP_MSG_CHUNK_SIZE |
| : HTTP_MSG_DATA); |
| } |
| |
| if (res->to_forward) { |
| /* We can't process the buffer's contents yet */ |
| res->flags |= CF_WAKE_WRITE; |
| goto missing_data_or_waiting; |
| } |
| |
| if (msg->msg_state < HTTP_MSG_DONE) { |
| ret = ((msg->flags & HTTP_MSGF_TE_CHNK) |
| ? http_msg_forward_chunked_body(s, msg) |
| : http_msg_forward_body(s, msg)); |
| if (!ret) |
| goto missing_data_or_waiting; |
| if (ret < 0) |
| goto return_bad_res; |
| } |
| |
| /* other states, DONE...TUNNEL */ |
| /* for keep-alive we don't want to forward closes on DONE */ |
| if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL || |
| (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) |
| channel_dont_close(res); |
| |
| http_resync_states(s); |
| if (!(res->analysers & an_bit)) { |
| if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) { |
| if (res->flags & CF_SHUTW) { |
| /* response errors are most likely due to the |
| * client aborting the transfer. */ |
| goto aborted_xfer; |
| } |
| if (msg->err_pos >= 0) |
| http_capture_bad_message(s->be, s, msg, msg->err_state, strm_fe(s)); |
| goto return_bad_res; |
| } |
| return 1; |
| } |
| return 0; |
| |
| missing_data_or_waiting: |
| if (res->flags & CF_SHUTW) |
| goto aborted_xfer; |
| |
| /* stop waiting for data if the input is closed before the end. If the |
| * client side was already closed, it means that the client has aborted, |
| * so we don't want to count this as a server abort. Otherwise it's a |
| * server abort. |
| */ |
| if (msg->msg_state < HTTP_MSG_ENDING && res->flags & CF_SHUTR) { |
| if ((s->req.flags & (CF_SHUTR|CF_SHUTW)) == (CF_SHUTR|CF_SHUTW)) |
| goto aborted_xfer; |
| /* If we have some pending data, we continue the processing */ |
| if (!ci_data(res)) { |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_SRVCL; |
| HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1); |
| if (objt_server(s->target)) |
| HA_ATOMIC_ADD(&objt_server(s->target)->counters.srv_aborts, 1); |
| goto return_bad_res_stats_ok; |
| } |
| } |
| |
| /* we need to obey the req analyser, so if it leaves, we must too */ |
| if (!s->req.analysers) |
| goto return_bad_res; |
| |
| /* When TE: chunked is used, we need to get there again to parse |
| * remaining chunks even if the server has closed, so we don't want to |
| * set CF_DONTCLOSE. Similarly, if keep-alive is set on the client side |
| * or if there are filters registered on the stream, we don't want to |
| * forward a close |
| */ |
| if ((msg->flags & HTTP_MSGF_TE_CHNK) || |
| HAS_DATA_FILTERS(s, res) || |
| (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL || |
| (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) |
| channel_dont_close(res); |
| |
| /* We know that more data are expected, but we couldn't send more that |
| * what we did. So we always set the CF_EXPECT_MORE flag so that the |
| * system knows it must not set a PUSH on this first part. Interactive |
| * modes are already handled by the stream sock layer. We must not do |
| * this in content-length mode because it could present the MSG_MORE |
| * flag with the last block of forwarded data, which would cause an |
| * additional delay to be observed by the receiver. |
| */ |
| if ((msg->flags & HTTP_MSGF_TE_CHNK) || (msg->flags & HTTP_MSGF_COMPRESSING)) |
| res->flags |= CF_EXPECT_MORE; |
| |
| /* the stream handler will take care of timeouts and errors */ |
| return 0; |
| |
| return_bad_res: /* let's centralize all bad responses */ |
| HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); |
| if (objt_server(s->target)) |
| HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_resp, 1); |
| |
| return_bad_res_stats_ok: |
| txn->rsp.err_state = txn->rsp.msg_state; |
| txn->rsp.msg_state = HTTP_MSG_ERROR; |
| /* don't send any error message as we're in the body */ |
| http_reply_and_close(s, txn->status, NULL); |
| res->analysers &= AN_RES_FLT_END; |
| s->req.analysers &= AN_REQ_FLT_END; /* we're in data phase, we want to abort both directions */ |
| if (objt_server(s->target)) |
| health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_HDRRSP); |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_PRXCOND; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_D; |
| return 0; |
| |
| aborted_xfer: |
| txn->rsp.err_state = txn->rsp.msg_state; |
| txn->rsp.msg_state = HTTP_MSG_ERROR; |
| /* don't send any error message as we're in the body */ |
| http_reply_and_close(s, txn->status, NULL); |
| res->analysers &= AN_RES_FLT_END; |
| s->req.analysers &= AN_REQ_FLT_END; /* we're in data phase, we want to abort both directions */ |
| |
| HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1); |
| HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); |
| if (objt_server(s->target)) |
| HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1); |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_CLICL; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_D; |
| return 0; |
| } |
| |
| |
| int http_msg_forward_body(struct stream *s, struct http_msg *msg) |
| { |
| struct channel *chn = msg->chn; |
| int ret; |
| |
| /* Here we have the guarantee to be in HTTP_MSG_DATA or HTTP_MSG_ENDING state */ |
| |
| if (msg->msg_state == HTTP_MSG_ENDING) |
| goto ending; |
| |
| /* Neither content-length, nor transfer-encoding was found, so we must |
| * read the body until the server connection is closed. In that case, we |
| * eat data as they come. Of course, this happens for response only. */ |
| if (!(msg->flags & HTTP_MSGF_XFER_LEN)) { |
| unsigned long long len = ci_data(chn) - msg->next; |
| msg->chunk_len += len; |
| msg->body_len += len; |
| } |
| ret = FLT_STRM_DATA_CB(s, chn, flt_http_data(s, msg), |
| /* default_ret */ MIN(msg->chunk_len, ci_data(chn) - msg->next), |
| /* on_error */ goto error); |
| msg->next += ret; |
| msg->chunk_len -= ret; |
| if (msg->chunk_len) { |
| /* input empty or output full */ |
| if (ci_data(chn) > msg->next) |
| chn->flags |= CF_WAKE_WRITE; |
| goto missing_data_or_waiting; |
| } |
| |
| /* This check can only be true for a response. HTTP_MSGF_XFER_LEN is |
| * always set for a request. */ |
| if (!(msg->flags & HTTP_MSGF_XFER_LEN)) { |
| /* The server still sending data that should be filtered */ |
| if (!(chn->flags & CF_SHUTR) && HAS_DATA_FILTERS(s, chn)) |
| goto missing_data_or_waiting; |
| msg->msg_state = HTTP_MSG_TUNNEL; |
| goto ending; |
| } |
| |
| msg->msg_state = HTTP_MSG_ENDING; |
| |
| ending: |
| /* we may have some pending data starting at res->buf.p such as a last |
| * chunk of data or trailers. */ |
| ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next), |
| /* default_ret */ msg->next, |
| /* on_error */ goto error); |
| c_adv(chn, ret); |
| msg->next -= ret; |
| if (unlikely(!(chn->flags & CF_WROTE_DATA) || msg->sov > 0)) |
| msg->sov -= ret; |
| if (msg->next) |
| goto waiting; |
| |
| FLT_STRM_DATA_CB(s, chn, flt_http_end(s, msg), |
| /* default_ret */ 1, |
| /* on_error */ goto error, |
| /* on_wait */ goto waiting); |
| if (msg->msg_state == HTTP_MSG_ENDING) |
| msg->msg_state = HTTP_MSG_DONE; |
| return 1; |
| |
| missing_data_or_waiting: |
| /* we may have some pending data starting at chn->buf.p */ |
| ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next), |
| /* default_ret */ msg->next, |
| /* on_error */ goto error); |
| c_adv(chn, ret); |
| msg->next -= ret; |
| if (!(chn->flags & CF_WROTE_DATA) || msg->sov > 0) |
| msg->sov -= ret; |
| if (!HAS_DATA_FILTERS(s, chn)) |
| msg->chunk_len -= channel_forward(chn, msg->chunk_len); |
| waiting: |
| return 0; |
| error: |
| return -1; |
| } |
| |
| int http_msg_forward_chunked_body(struct stream *s, struct http_msg *msg) |
| { |
| struct channel *chn = msg->chn; |
| unsigned int chunk; |
| int ret; |
| |
| /* Here we have the guarantee to be in one of the following state: |
| * HTTP_MSG_DATA, HTTP_MSG_CHUNK_SIZE, HTTP_MSG_CHUNK_CRLF, |
| * HTTP_MSG_TRAILERS or HTTP_MSG_ENDING. */ |
| |
| if (msg->msg_state == HTTP_MSG_ENDING) |
| goto ending; |
| |
| /* Don't parse chunks if there is no input data */ |
| if (!ci_data(chn)) |
| goto waiting; |
| |
| switch_states: |
| switch (msg->msg_state) { |
| case HTTP_MSG_DATA: |
| ret = FLT_STRM_DATA_CB(s, chn, flt_http_data(s, msg), |
| /* default_ret */ MIN(msg->chunk_len, ci_data(chn) - msg->next), |
| /* on_error */ goto error); |
| msg->next += ret; |
| msg->chunk_len -= ret; |
| if (msg->chunk_len) { |
| /* input empty or output full */ |
| if (ci_data(chn) > msg->next) |
| chn->flags |= CF_WAKE_WRITE; |
| goto missing_data_or_waiting; |
| } |
| |
| /* nothing left to forward for this chunk*/ |
| msg->msg_state = HTTP_MSG_CHUNK_CRLF; |
| /* fall through for HTTP_MSG_CHUNK_CRLF */ |
| |
| case HTTP_MSG_CHUNK_CRLF: |
| /* we want the CRLF after the data */ |
| ret = h1_skip_chunk_crlf(&chn->buf, co_data(chn) + msg->next, c_data(chn)); |
| if (ret == 0) |
| goto missing_data_or_waiting; |
| if (ret < 0) { |
| msg->err_pos = ci_data(chn) + ret; |
| if (msg->err_pos < 0) |
| msg->err_pos += chn->buf.size; |
| goto chunk_parsing_error; |
| } |
| msg->next += ret; |
| msg->msg_state = HTTP_MSG_CHUNK_SIZE; |
| /* fall through for HTTP_MSG_CHUNK_SIZE */ |
| |
| case HTTP_MSG_CHUNK_SIZE: |
| /* read the chunk size and assign it to ->chunk_len, |
| * then set ->next to point to the body and switch to |
| * DATA or TRAILERS state. |
| */ |
| ret = h1_parse_chunk_size(&chn->buf, co_data(chn) + msg->next, c_data(chn), &chunk); |
| if (ret == 0) |
| goto missing_data_or_waiting; |
| if (ret < 0) { |
| msg->err_pos = ci_data(chn) + ret; |
| if (msg->err_pos < 0) |
| msg->err_pos += chn->buf.size; |
| goto chunk_parsing_error; |
| } |
| |
| msg->sol = ret; |
| msg->next += ret; |
| msg->chunk_len = chunk; |
| msg->body_len += chunk; |
| |
| if (msg->chunk_len) { |
| msg->msg_state = HTTP_MSG_DATA; |
| goto switch_states; |
| } |
| msg->msg_state = HTTP_MSG_TRAILERS; |
| /* fall through for HTTP_MSG_TRAILERS */ |
| |
| case HTTP_MSG_TRAILERS: |
| ret = http_forward_trailers(msg); |
| if (ret < 0) |
| goto chunk_parsing_error; |
| FLT_STRM_DATA_CB(s, chn, flt_http_chunk_trailers(s, msg), |
| /* default_ret */ 1, |
| /* on_error */ goto error); |
| msg->next += msg->sol; |
| if (!ret) |
| goto missing_data_or_waiting; |
| break; |
| |
| default: |
| /* This should no happen in this function */ |
| goto error; |
| } |
| |
| msg->msg_state = HTTP_MSG_ENDING; |
| ending: |
| /* we may have some pending data starting at res->buf.p such as a last |
| * chunk of data or trailers. */ |
| ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next), |
| /* default_ret */ msg->next, |
| /* on_error */ goto error); |
| c_adv(chn, ret); |
| msg->next -= ret; |
| if (unlikely(!(chn->flags & CF_WROTE_DATA) || msg->sov > 0)) |
| msg->sov -= ret; |
| if (msg->next) |
| goto waiting; |
| |
| FLT_STRM_DATA_CB(s, chn, flt_http_end(s, msg), |
| /* default_ret */ 1, |
| /* on_error */ goto error, |
| /* on_wait */ goto waiting); |
| msg->msg_state = HTTP_MSG_DONE; |
| return 1; |
| |
| missing_data_or_waiting: |
| /* we may have some pending data starting at chn->buf.p */ |
| ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next), |
| /* default_ret */ msg->next, |
| /* on_error */ goto error); |
| c_adv(chn, ret); |
| msg->next -= ret; |
| if (!(chn->flags & CF_WROTE_DATA) || msg->sov > 0) |
| msg->sov -= ret; |
| if (!HAS_DATA_FILTERS(s, chn)) |
| msg->chunk_len -= channel_forward(chn, msg->chunk_len); |
| waiting: |
| return 0; |
| |
| chunk_parsing_error: |
| if (msg->err_pos >= 0) { |
| if (chn->flags & CF_ISRESP) |
| http_capture_bad_message(s->be, s, msg, |
| msg->msg_state, strm_fe(s)); |
| else |
| http_capture_bad_message(strm_fe(s), s, |
| msg, msg->msg_state, s->be); |
| } |
| error: |
| return -1; |
| } |
| |
| |
| /* Iterate the same filter through all request headers. |
| * Returns 1 if this filter can be stopped upon return, otherwise 0. |
| * Since it can manage the switch to another backend, it updates the per-proxy |
| * DENY stats. |
| */ |
| int apply_filter_to_req_headers(struct stream *s, struct channel *req, struct hdr_exp *exp) |
| { |
| char *cur_ptr, *cur_end, *cur_next; |
| int cur_idx, old_idx, last_hdr; |
| struct http_txn *txn = s->txn; |
| struct hdr_idx_elem *cur_hdr; |
| int delta, len; |
| |
| last_hdr = 0; |
| |
| cur_next = ci_head(req) + hdr_idx_first_pos(&txn->hdr_idx); |
| old_idx = 0; |
| |
| while (!last_hdr) { |
| if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT))) |
| return 1; |
| else if (unlikely(txn->flags & TX_CLALLOW) && |
| (exp->action == ACT_ALLOW || |
| exp->action == ACT_DENY || |
| exp->action == ACT_TARPIT)) |
| return 0; |
| |
| cur_idx = txn->hdr_idx.v[old_idx].next; |
| if (!cur_idx) |
| break; |
| |
| cur_hdr = &txn->hdr_idx.v[cur_idx]; |
| cur_ptr = cur_next; |
| cur_end = cur_ptr + cur_hdr->len; |
| cur_next = cur_end + cur_hdr->cr + 1; |
| |
| /* Now we have one header between cur_ptr and cur_end, |
| * and the next header starts at cur_next. |
| */ |
| |
| if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) { |
| switch (exp->action) { |
| case ACT_ALLOW: |
| txn->flags |= TX_CLALLOW; |
| last_hdr = 1; |
| break; |
| |
| case ACT_DENY: |
| txn->flags |= TX_CLDENY; |
| last_hdr = 1; |
| break; |
| |
| case ACT_TARPIT: |
| txn->flags |= TX_CLTARPIT; |
| last_hdr = 1; |
| break; |
| |
| case ACT_REPLACE: |
| len = exp_replace(trash.area, |
| trash.size, cur_ptr, |
| exp->replace, pmatch); |
| if (len < 0) |
| return -1; |
| |
| delta = b_rep_blk(&req->buf, cur_ptr, cur_end, trash.area, len); |
| |
| /* FIXME: if the user adds a newline in the replacement, the |
| * index will not be recalculated for now, and the new line |
| * will not be counted as a new header. |
| */ |
| |
| cur_end += delta; |
| cur_next += delta; |
| cur_hdr->len += delta; |
| http_msg_move_end(&txn->req, delta); |
| break; |
| |
| case ACT_REMOVE: |
| delta = b_rep_blk(&req->buf, cur_ptr, cur_next, NULL, 0); |
| cur_next += delta; |
| |
| http_msg_move_end(&txn->req, delta); |
| txn->hdr_idx.v[old_idx].next = cur_hdr->next; |
| txn->hdr_idx.used--; |
| cur_hdr->len = 0; |
| cur_end = NULL; /* null-term has been rewritten */ |
| cur_idx = old_idx; |
| break; |
| |
| } |
| } |
| |
| /* keep the link from this header to next one in case of later |
| * removal of next header. |
| */ |
| old_idx = cur_idx; |
| } |
| return 0; |
| } |
| |
| |
| /* Apply the filter to the request line. |
| * Returns 0 if nothing has been done, 1 if the filter has been applied, |
| * or -1 if a replacement resulted in an invalid request line. |
| * Since it can manage the switch to another backend, it updates the per-proxy |
| * DENY stats. |
| */ |
| int apply_filter_to_req_line(struct stream *s, struct channel *req, struct hdr_exp *exp) |
| { |
| char *cur_ptr, *cur_end; |
| int done; |
| struct http_txn *txn = s->txn; |
| int delta, len; |
| |
| if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT))) |
| return 1; |
| else if (unlikely(txn->flags & TX_CLALLOW) && |
| (exp->action == ACT_ALLOW || |
| exp->action == ACT_DENY || |
| exp->action == ACT_TARPIT)) |
| return 0; |
| else if (exp->action == ACT_REMOVE) |
| return 0; |
| |
| done = 0; |
| |
| cur_ptr = ci_head(req); |
| cur_end = cur_ptr + txn->req.sl.rq.l; |
| |
| /* Now we have the request line between cur_ptr and cur_end */ |
| |
| if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) { |
| switch (exp->action) { |
| case ACT_ALLOW: |
| txn->flags |= TX_CLALLOW; |
| done = 1; |
| break; |
| |
| case ACT_DENY: |
| txn->flags |= TX_CLDENY; |
| done = 1; |
| break; |
| |
| case ACT_TARPIT: |
| txn->flags |= TX_CLTARPIT; |
| done = 1; |
| break; |
| |
| case ACT_REPLACE: |
| len = exp_replace(trash.area, trash.size, |
| cur_ptr, exp->replace, pmatch); |
| if (len < 0) |
| return -1; |
| |
| delta = b_rep_blk(&req->buf, cur_ptr, cur_end, trash.area, len); |
| |
| /* FIXME: if the user adds a newline in the replacement, the |
| * index will not be recalculated for now, and the new line |
| * will not be counted as a new header. |
| */ |
| |
| http_msg_move_end(&txn->req, delta); |
| cur_end += delta; |
| cur_end = (char *)http_parse_reqline(&txn->req, |
| HTTP_MSG_RQMETH, |
| cur_ptr, cur_end + 1, |
| NULL, NULL); |
| if (unlikely(!cur_end)) |
| return -1; |
| |
| /* we have a full request and we know that we have either a CR |
| * or an LF at <ptr>. |
| */ |
| txn->meth = find_http_meth(cur_ptr, txn->req.sl.rq.m_l); |
| hdr_idx_set_start(&txn->hdr_idx, txn->req.sl.rq.l, *cur_end == '\r'); |
| /* there is no point trying this regex on headers */ |
| return 1; |
| } |
| } |
| return done; |
| } |
| |
| |
| |
| /* |
| * Apply all the req filters of proxy <px> to all headers in buffer <req> of stream <s>. |
| * Returns 0 if everything is alright, or -1 in case a replacement lead to an |
| * unparsable request. Since it can manage the switch to another backend, it |
| * updates the per-proxy DENY stats. |
| */ |
| int apply_filters_to_request(struct stream *s, struct channel *req, struct proxy *px) |
| { |
| struct session *sess = s->sess; |
| struct http_txn *txn = s->txn; |
| struct hdr_exp *exp; |
| |
| for (exp = px->req_exp; exp; exp = exp->next) { |
| int ret; |
| |
| /* |
| * The interleaving of transformations and verdicts |
| * makes it difficult to decide to continue or stop |
| * the evaluation. |
| */ |
| |
| if (txn->flags & (TX_CLDENY|TX_CLTARPIT)) |
| break; |
| |
| if ((txn->flags & TX_CLALLOW) && |
| (exp->action == ACT_ALLOW || exp->action == ACT_DENY || |
| exp->action == ACT_TARPIT || exp->action == ACT_PASS)) |
| continue; |
| |
| /* if this filter had a condition, evaluate it now and skip to |
| * next filter if the condition does not match. |
| */ |
| if (exp->cond) { |
| ret = acl_exec_cond(exp->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (((struct acl_cond *)exp->cond)->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| |
| if (!ret) |
| continue; |
| } |
| |
| /* Apply the filter to the request line. */ |
| ret = apply_filter_to_req_line(s, req, exp); |
| if (unlikely(ret < 0)) |
| return -1; |
| |
| if (likely(ret == 0)) { |
| /* The filter did not match the request, it can be |
| * iterated through all headers. |
| */ |
| if (unlikely(apply_filter_to_req_headers(s, req, exp) < 0)) |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| |
| /* Delete a value in a header between delimiters <from> and <next> in buffer |
| * <buf>. The number of characters displaced is returned, and the pointer to |
| * the first delimiter is updated if required. The function tries as much as |
| * possible to respect the following principles : |
| * - replace <from> delimiter by the <next> one unless <from> points to a |
| * colon, in which case <next> is simply removed |
| * - set exactly one space character after the new first delimiter, unless |
| * there are not enough characters in the block being moved to do so. |
| * - remove unneeded spaces before the previous delimiter and after the new |
| * one. |
| * |
| * It is the caller's responsibility to ensure that : |
| * - <from> points to a valid delimiter or the colon ; |
| * - <next> points to a valid delimiter or the final CR/LF ; |
| * - there are non-space chars before <from> ; |
| * - there is a CR/LF at or after <next>. |
| */ |
| static int del_hdr_value(struct buffer *buf, char **from, char *next) |
| { |
| char *prev = *from; |
| |
| if (*prev == ':') { |
| /* We're removing the first value, preserve the colon and add a |
| * space if possible. |
| */ |
| if (!HTTP_IS_CRLF(*next)) |
| next++; |
| prev++; |
| if (prev < next) |
| *prev++ = ' '; |
| |
| while (HTTP_IS_SPHT(*next)) |
| next++; |
| } else { |
| /* Remove useless spaces before the old delimiter. */ |
| while (HTTP_IS_SPHT(*(prev-1))) |
| prev--; |
| *from = prev; |
| |
| /* copy the delimiter and if possible a space if we're |
| * not at the end of the line. |
| */ |
| if (!HTTP_IS_CRLF(*next)) { |
| *prev++ = *next++; |
| if (prev + 1 < next) |
| *prev++ = ' '; |
| while (HTTP_IS_SPHT(*next)) |
| next++; |
| } |
| } |
| return b_rep_blk(buf, prev, next, NULL, 0); |
| } |
| |
| /* |
| * Manage client-side cookie. It can impact performance by about 2% so it is |
| * desirable to call it only when needed. This code is quite complex because |
| * of the multiple very crappy and ambiguous syntaxes we have to support. it |
| * highly recommended not to touch this part without a good reason ! |
| */ |
| void manage_client_side_cookies(struct stream *s, struct channel *req) |
| { |
| struct http_txn *txn = s->txn; |
| struct session *sess = s->sess; |
| int preserve_hdr; |
| int cur_idx, old_idx; |
| char *hdr_beg, *hdr_end, *hdr_next, *del_from; |
| char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next; |
| |
| /* Iterate through the headers, we start with the start line. */ |
| old_idx = 0; |
| hdr_next = ci_head(req) + hdr_idx_first_pos(&txn->hdr_idx); |
| |
| while ((cur_idx = txn->hdr_idx.v[old_idx].next)) { |
| struct hdr_idx_elem *cur_hdr; |
| int val; |
| |
| cur_hdr = &txn->hdr_idx.v[cur_idx]; |
| hdr_beg = hdr_next; |
| hdr_end = hdr_beg + cur_hdr->len; |
| hdr_next = hdr_end + cur_hdr->cr + 1; |
| |
| /* We have one full header between hdr_beg and hdr_end, and the |
| * next header starts at hdr_next. We're only interested in |
| * "Cookie:" headers. |
| */ |
| |
| val = http_header_match2(hdr_beg, hdr_end, "Cookie", 6); |
| if (!val) { |
| old_idx = cur_idx; |
| continue; |
| } |
| |
| del_from = NULL; /* nothing to be deleted */ |
| preserve_hdr = 0; /* assume we may kill the whole header */ |
| |
| /* Now look for cookies. Conforming to RFC2109, we have to support |
| * attributes whose name begin with a '$', and associate them with |
| * the right cookie, if we want to delete this cookie. |
| * So there are 3 cases for each cookie read : |
| * 1) it's a special attribute, beginning with a '$' : ignore it. |
| * 2) it's a server id cookie that we *MAY* want to delete : save |
| * some pointers on it (last semi-colon, beginning of cookie...) |
| * 3) it's an application cookie : we *MAY* have to delete a previous |
| * "special" cookie. |
| * At the end of loop, if a "special" cookie remains, we may have to |
| * remove it. If no application cookie persists in the header, we |
| * *MUST* delete it. |
| * |
| * Note: RFC2965 is unclear about the processing of spaces around |
| * the equal sign in the ATTR=VALUE form. A careful inspection of |
| * the RFC explicitly allows spaces before it, and not within the |
| * tokens (attrs or values). An inspection of RFC2109 allows that |
| * too but section 10.1.3 lets one think that spaces may be allowed |
| * after the equal sign too, resulting in some (rare) buggy |
| * implementations trying to do that. So let's do what servers do. |
| * Latest ietf draft forbids spaces all around. Also, earlier RFCs |
| * allowed quoted strings in values, with any possible character |
| * after a backslash, including control chars and delimitors, which |
| * causes parsing to become ambiguous. Browsers also allow spaces |
| * within values even without quotes. |
| * |
| * We have to keep multiple pointers in order to support cookie |
| * removal at the beginning, middle or end of header without |
| * corrupting the header. All of these headers are valid : |
| * |
| * Cookie:NAME1=VALUE1;NAME2=VALUE2;NAME3=VALUE3\r\n |
| * Cookie:NAME1=VALUE1;NAME2_ONLY ;NAME3=VALUE3\r\n |
| * Cookie: NAME1 = VALUE 1 ; NAME2 = VALUE2 ; NAME3 = VALUE3\r\n |
| * | | | | | | | | | |
| * | | | | | | | | hdr_end <--+ |
| * | | | | | | | +--> next |
| * | | | | | | +----> val_end |
| * | | | | | +-----------> val_beg |
| * | | | | +--------------> equal |
| * | | | +----------------> att_end |
| * | | +---------------------> att_beg |
| * | +--------------------------> prev |
| * +--------------------------------> hdr_beg |
| */ |
| |
| for (prev = hdr_beg + 6; prev < hdr_end; prev = next) { |
| /* Iterate through all cookies on this line */ |
| |
| /* find att_beg */ |
| att_beg = prev + 1; |
| while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg)) |
| att_beg++; |
| |
| /* find att_end : this is the first character after the last non |
| * space before the equal. It may be equal to hdr_end. |
| */ |
| equal = att_end = att_beg; |
| |
| while (equal < hdr_end) { |
| if (*equal == '=' || *equal == ',' || *equal == ';') |
| break; |
| if (HTTP_IS_SPHT(*equal++)) |
| continue; |
| att_end = equal; |
| } |
| |
| /* here, <equal> points to '=', a delimitor or the end. <att_end> |
| * is between <att_beg> and <equal>, both may be identical. |
| */ |
| |
| /* look for end of cookie if there is an equal sign */ |
| if (equal < hdr_end && *equal == '=') { |
| /* look for the beginning of the value */ |
| val_beg = equal + 1; |
| while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg)) |
| val_beg++; |
| |
| /* find the end of the value, respecting quotes */ |
| next = http_find_cookie_value_end(val_beg, hdr_end); |
| |
| /* make val_end point to the first white space or delimitor after the value */ |
| val_end = next; |
| while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1))) |
| val_end--; |
| } else { |
| val_beg = val_end = next = equal; |
| } |
| |
| /* We have nothing to do with attributes beginning with '$'. However, |
| * they will automatically be removed if a header before them is removed, |
| * since they're supposed to be linked together. |
| */ |
| if (*att_beg == '$') |
| continue; |
| |
| /* Ignore cookies with no equal sign */ |
| if (equal == next) { |
| /* This is not our cookie, so we must preserve it. But if we already |
| * scheduled another cookie for removal, we cannot remove the |
| * complete header, but we can remove the previous block itself. |
| */ |
| preserve_hdr = 1; |
| if (del_from != NULL) { |
| int delta = del_hdr_value(&req->buf, &del_from, prev); |
| val_end += delta; |
| next += delta; |
| hdr_end += delta; |
| hdr_next += delta; |
| cur_hdr->len += delta; |
| http_msg_move_end(&txn->req, delta); |
| prev = del_from; |
| del_from = NULL; |
| } |
| continue; |
| } |
| |
| /* if there are spaces around the equal sign, we need to |
| * strip them otherwise we'll get trouble for cookie captures, |
| * or even for rewrites. Since this happens extremely rarely, |
| * it does not hurt performance. |
| */ |
| if (unlikely(att_end != equal || val_beg > equal + 1)) { |
| int stripped_before = 0; |
| int stripped_after = 0; |
| |
| if (att_end != equal) { |
| stripped_before = b_rep_blk(&req->buf, att_end, equal, NULL, 0); |
| equal += stripped_before; |
| val_beg += stripped_before; |
| } |
| |
| if (val_beg > equal + 1) { |
| stripped_after = b_rep_blk(&req->buf, equal + 1, val_beg, NULL, 0); |
| val_beg += stripped_after; |
| stripped_before += stripped_after; |
| } |
| |
| val_end += stripped_before; |
| next += stripped_before; |
| hdr_end += stripped_before; |
| hdr_next += stripped_before; |
| cur_hdr->len += stripped_before; |
| http_msg_move_end(&txn->req, stripped_before); |
| } |
| /* now everything is as on the diagram above */ |
| |
| /* First, let's see if we want to capture this cookie. We check |
| * that we don't already have a client side cookie, because we |
| * can only capture one. Also as an optimisation, we ignore |
| * cookies shorter than the declared name. |
| */ |
| if (sess->fe->capture_name != NULL && txn->cli_cookie == NULL && |
| (val_end - att_beg >= sess->fe->capture_namelen) && |
| memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) { |
| int log_len = val_end - att_beg; |
| |
| if ((txn->cli_cookie = pool_alloc(pool_head_capture)) == NULL) { |
| ha_alert("HTTP logging : out of memory.\n"); |
| } else { |
| if (log_len > sess->fe->capture_len) |
| log_len = sess->fe->capture_len; |
| memcpy(txn->cli_cookie, att_beg, log_len); |
| txn->cli_cookie[log_len] = 0; |
| } |
| } |
| |
| /* Persistence cookies in passive, rewrite or insert mode have the |
| * following form : |
| * |
| * Cookie: NAME=SRV[|<lastseen>[|<firstseen>]] |
| * |
| * For cookies in prefix mode, the form is : |
| * |
| * Cookie: NAME=SRV~VALUE |
| */ |
| if ((att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) && |
| (memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) { |
| struct server *srv = s->be->srv; |
| char *delim; |
| |
| /* if we're in cookie prefix mode, we'll search the delimitor so that we |
| * have the server ID between val_beg and delim, and the original cookie between |
| * delim+1 and val_end. Otherwise, delim==val_end : |
| * |
| * Cookie: NAME=SRV; # in all but prefix modes |
| * Cookie: NAME=SRV~OPAQUE ; # in prefix mode |
| * | || || | |+-> next |
| * | || || | +--> val_end |
| * | || || +---------> delim |
| * | || |+------------> val_beg |
| * | || +-------------> att_end = equal |
| * | |+-----------------> att_beg |
| * | +------------------> prev |
| * +-------------------------> hdr_beg |
| */ |
| |
| if (s->be->ck_opts & PR_CK_PFX) { |
| for (delim = val_beg; delim < val_end; delim++) |
| if (*delim == COOKIE_DELIM) |
| break; |
| } else { |
| char *vbar1; |
| delim = val_end; |
| /* Now check if the cookie contains a date field, which would |
| * appear after a vertical bar ('|') just after the server name |
| * and before the delimiter. |
| */ |
| vbar1 = memchr(val_beg, COOKIE_DELIM_DATE, val_end - val_beg); |
| if (vbar1) { |
| /* OK, so left of the bar is the server's cookie and |
| * right is the last seen date. It is a base64 encoded |
| * 30-bit value representing the UNIX date since the |
| * epoch in 4-second quantities. |
| */ |
| int val; |
| delim = vbar1++; |
| if (val_end - vbar1 >= 5) { |
| val = b64tos30(vbar1); |
| if (val > 0) |
| txn->cookie_last_date = val << 2; |
| } |
| /* look for a second vertical bar */ |
| vbar1 = memchr(vbar1, COOKIE_DELIM_DATE, val_end - vbar1); |
| if (vbar1 && (val_end - vbar1 > 5)) { |
| val = b64tos30(vbar1 + 1); |
| if (val > 0) |
| txn->cookie_first_date = val << 2; |
| } |
| } |
| } |
| |
| /* if the cookie has an expiration date and the proxy wants to check |
| * it, then we do that now. We first check if the cookie is too old, |
| * then only if it has expired. We detect strict overflow because the |
| * time resolution here is not great (4 seconds). Cookies with dates |
| * in the future are ignored if their offset is beyond one day. This |
| * allows an admin to fix timezone issues without expiring everyone |
| * and at the same time avoids keeping unwanted side effects for too |
| * long. |
| */ |
| if (txn->cookie_first_date && s->be->cookie_maxlife && |
| (((signed)(date.tv_sec - txn->cookie_first_date) > (signed)s->be->cookie_maxlife) || |
| ((signed)(txn->cookie_first_date - date.tv_sec) > 86400))) { |
| txn->flags &= ~TX_CK_MASK; |
| txn->flags |= TX_CK_OLD; |
| delim = val_beg; // let's pretend we have not found the cookie |
| txn->cookie_first_date = 0; |
| txn->cookie_last_date = 0; |
| } |
| else if (txn->cookie_last_date && s->be->cookie_maxidle && |
| (((signed)(date.tv_sec - txn->cookie_last_date) > (signed)s->be->cookie_maxidle) || |
| ((signed)(txn->cookie_last_date - date.tv_sec) > 86400))) { |
| txn->flags &= ~TX_CK_MASK; |
| txn->flags |= TX_CK_EXPIRED; |
| delim = val_beg; // let's pretend we have not found the cookie |
| txn->cookie_first_date = 0; |
| txn->cookie_last_date = 0; |
| } |
| |
| /* Here, we'll look for the first running server which supports the cookie. |
| * This allows to share a same cookie between several servers, for example |
| * to dedicate backup servers to specific servers only. |
| * However, to prevent clients from sticking to cookie-less backup server |
| * when they have incidentely learned an empty cookie, we simply ignore |
| * empty cookies and mark them as invalid. |
| * The same behaviour is applied when persistence must be ignored. |
| */ |
| if ((delim == val_beg) || (s->flags & (SF_IGNORE_PRST | SF_ASSIGNED))) |
| srv = NULL; |
| |
| while (srv) { |
| if (srv->cookie && (srv->cklen == delim - val_beg) && |
| !memcmp(val_beg, srv->cookie, delim - val_beg)) { |
| if ((srv->cur_state != SRV_ST_STOPPED) || |
| (s->be->options & PR_O_PERSIST) || |
| (s->flags & SF_FORCE_PRST)) { |
| /* we found the server and we can use it */ |
| txn->flags &= ~TX_CK_MASK; |
| txn->flags |= (srv->cur_state != SRV_ST_STOPPED) ? TX_CK_VALID : TX_CK_DOWN; |
| s->flags |= SF_DIRECT | SF_ASSIGNED; |
| s->target = &srv->obj_type; |
| break; |
| } else { |
| /* we found a server, but it's down, |
| * mark it as such and go on in case |
| * another one is available. |
| */ |
| txn->flags &= ~TX_CK_MASK; |
| txn->flags |= TX_CK_DOWN; |
| } |
| } |
| srv = srv->next; |
| } |
| |
| if (!srv && !(txn->flags & (TX_CK_DOWN|TX_CK_EXPIRED|TX_CK_OLD))) { |
| /* no server matched this cookie or we deliberately skipped it */ |
| txn->flags &= ~TX_CK_MASK; |
| if ((s->flags & (SF_IGNORE_PRST | SF_ASSIGNED))) |
| txn->flags |= TX_CK_UNUSED; |
| else |
| txn->flags |= TX_CK_INVALID; |
| } |
| |
| /* depending on the cookie mode, we may have to either : |
| * - delete the complete cookie if we're in insert+indirect mode, so that |
| * the server never sees it ; |
| * - remove the server id from the cookie value, and tag the cookie as an |
| * application cookie so that it does not get accidently removed later, |
| * if we're in cookie prefix mode |
| */ |
| if ((s->be->ck_opts & PR_CK_PFX) && (delim != val_end)) { |
| int delta; /* negative */ |
| |
| delta = b_rep_blk(&req->buf, val_beg, delim + 1, NULL, 0); |
| val_end += delta; |
| next += delta; |
| hdr_end += delta; |
| hdr_next += delta; |
| cur_hdr->len += delta; |
| http_msg_move_end(&txn->req, delta); |
| |
| del_from = NULL; |
| preserve_hdr = 1; /* we want to keep this cookie */ |
| } |
| else if (del_from == NULL && |
| (s->be->ck_opts & (PR_CK_INS | PR_CK_IND)) == (PR_CK_INS | PR_CK_IND)) { |
| del_from = prev; |
| } |
| } else { |
| /* This is not our cookie, so we must preserve it. But if we already |
| * scheduled another cookie for removal, we cannot remove the |
| * complete header, but we can remove the previous block itself. |
| */ |
| preserve_hdr = 1; |
| |
| if (del_from != NULL) { |
| int delta = del_hdr_value(&req->buf, &del_from, prev); |
| if (att_beg >= del_from) |
| att_beg += delta; |
| if (att_end >= del_from) |
| att_end += delta; |
| val_beg += delta; |
| val_end += delta; |
| next += delta; |
| hdr_end += delta; |
| hdr_next += delta; |
| cur_hdr->len += delta; |
| http_msg_move_end(&txn->req, delta); |
| prev = del_from; |
| del_from = NULL; |
| } |
| } |
| |
| /* continue with next cookie on this header line */ |
| att_beg = next; |
| } /* for each cookie */ |
| |
| /* There are no more cookies on this line. |
| * We may still have one (or several) marked for deletion at the |
| * end of the line. We must do this now in two ways : |
| * - if some cookies must be preserved, we only delete from the |
| * mark to the end of line ; |
| * - if nothing needs to be preserved, simply delete the whole header |
| */ |
| if (del_from) { |
| int delta; |
| if (preserve_hdr) { |
| delta = del_hdr_value(&req->buf, &del_from, hdr_end); |
| hdr_end = del_from; |
| cur_hdr->len += delta; |
| } else { |
| delta = b_rep_blk(&req->buf, hdr_beg, hdr_next, NULL, 0); |
| |
| /* FIXME: this should be a separate function */ |
| txn->hdr_idx.v[old_idx].next = cur_hdr->next; |
| txn->hdr_idx.used--; |
| cur_hdr->len = 0; |
| cur_idx = old_idx; |
| } |
| hdr_next += delta; |
| http_msg_move_end(&txn->req, delta); |
| } |
| |
| /* check next header */ |
| old_idx = cur_idx; |
| } |
| } |
| |
| |
| /* Iterate the same filter through all response headers contained in <rtr>. |
| * Returns 1 if this filter can be stopped upon return, otherwise 0. |
| */ |
| int apply_filter_to_resp_headers(struct stream *s, struct channel *rtr, struct hdr_exp *exp) |
| { |
| char *cur_ptr, *cur_end, *cur_next; |
| int cur_idx, old_idx, last_hdr; |
| struct http_txn *txn = s->txn; |
| struct hdr_idx_elem *cur_hdr; |
| int delta, len; |
| |
| last_hdr = 0; |
| |
| cur_next = ci_head(rtr) + hdr_idx_first_pos(&txn->hdr_idx); |
| old_idx = 0; |
| |
| while (!last_hdr) { |
| if (unlikely(txn->flags & TX_SVDENY)) |
| return 1; |
| else if (unlikely(txn->flags & TX_SVALLOW) && |
| (exp->action == ACT_ALLOW || |
| exp->action == ACT_DENY)) |
| return 0; |
| |
| cur_idx = txn->hdr_idx.v[old_idx].next; |
| if (!cur_idx) |
| break; |
| |
| cur_hdr = &txn->hdr_idx.v[cur_idx]; |
| cur_ptr = cur_next; |
| cur_end = cur_ptr + cur_hdr->len; |
| cur_next = cur_end + cur_hdr->cr + 1; |
| |
| /* Now we have one header between cur_ptr and cur_end, |
| * and the next header starts at cur_next. |
| */ |
| |
| if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) { |
| switch (exp->action) { |
| case ACT_ALLOW: |
| txn->flags |= TX_SVALLOW; |
| last_hdr = 1; |
| break; |
| |
| case ACT_DENY: |
| txn->flags |= TX_SVDENY; |
| last_hdr = 1; |
| break; |
| |
| case ACT_REPLACE: |
| len = exp_replace(trash.area, |
| trash.size, cur_ptr, |
| exp->replace, pmatch); |
| if (len < 0) |
| return -1; |
| |
| delta = b_rep_blk(&rtr->buf, cur_ptr, cur_end, trash.area, len); |
| |
| /* FIXME: if the user adds a newline in the replacement, the |
| * index will not be recalculated for now, and the new line |
| * will not be counted as a new header. |
| */ |
| |
| cur_end += delta; |
| cur_next += delta; |
| cur_hdr->len += delta; |
| http_msg_move_end(&txn->rsp, delta); |
| break; |
| |
| case ACT_REMOVE: |
| delta = b_rep_blk(&rtr->buf, cur_ptr, cur_next, NULL, 0); |
| cur_next += delta; |
| |
| http_msg_move_end(&txn->rsp, delta); |
| txn->hdr_idx.v[old_idx].next = cur_hdr->next; |
| txn->hdr_idx.used--; |
| cur_hdr->len = 0; |
| cur_end = NULL; /* null-term has been rewritten */ |
| cur_idx = old_idx; |
| break; |
| |
| } |
| } |
| |
| /* keep the link from this header to next one in case of later |
| * removal of next header. |
| */ |
| old_idx = cur_idx; |
| } |
| return 0; |
| } |
| |
| |
| /* Apply the filter to the status line in the response buffer <rtr>. |
| * Returns 0 if nothing has been done, 1 if the filter has been applied, |
| * or -1 if a replacement resulted in an invalid status line. |
| */ |
| int apply_filter_to_sts_line(struct stream *s, struct channel *rtr, struct hdr_exp *exp) |
| { |
| char *cur_ptr, *cur_end; |
| int done; |
| struct http_txn *txn = s->txn; |
| int delta, len; |
| |
| if (unlikely(txn->flags & TX_SVDENY)) |
| return 1; |
| else if (unlikely(txn->flags & TX_SVALLOW) && |
| (exp->action == ACT_ALLOW || |
| exp->action == ACT_DENY)) |
| return 0; |
| else if (exp->action == ACT_REMOVE) |
| return 0; |
| |
| done = 0; |
| |
| cur_ptr = ci_head(rtr); |
| cur_end = cur_ptr + txn->rsp.sl.st.l; |
| |
| /* Now we have the status line between cur_ptr and cur_end */ |
| |
| if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) { |
| switch (exp->action) { |
| case ACT_ALLOW: |
| txn->flags |= TX_SVALLOW; |
| done = 1; |
| break; |
| |
| case ACT_DENY: |
| txn->flags |= TX_SVDENY; |
| done = 1; |
| break; |
| |
| case ACT_REPLACE: |
| len = exp_replace(trash.area, trash.size, |
| cur_ptr, exp->replace, pmatch); |
| if (len < 0) |
| return -1; |
| |
| delta = b_rep_blk(&rtr->buf, cur_ptr, cur_end, trash.area, len); |
| |
| /* FIXME: if the user adds a newline in the replacement, the |
| * index will not be recalculated for now, and the new line |
| * will not be counted as a new header. |
| */ |
| |
| http_msg_move_end(&txn->rsp, delta); |
| cur_end += delta; |
| cur_end = (char *)http_parse_stsline(&txn->rsp, |
| HTTP_MSG_RPVER, |
| cur_ptr, cur_end + 1, |
| NULL, NULL); |
| if (unlikely(!cur_end)) |
| return -1; |
| |
| /* we have a full respnse and we know that we have either a CR |
| * or an LF at <ptr>. |
| */ |
| txn->status = strl2ui(ci_head(rtr) + txn->rsp.sl.st.c, txn->rsp.sl.st.c_l); |
| hdr_idx_set_start(&txn->hdr_idx, txn->rsp.sl.st.l, *cur_end == '\r'); |
| /* there is no point trying this regex on headers */ |
| return 1; |
| } |
| } |
| return done; |
| } |
| |
| |
| |
| /* |
| * Apply all the resp filters of proxy <px> to all headers in buffer <rtr> of stream <s>. |
| * Returns 0 if everything is alright, or -1 in case a replacement lead to an |
| * unparsable response. |
| */ |
| int apply_filters_to_response(struct stream *s, struct channel *rtr, struct proxy *px) |
| { |
| struct session *sess = s->sess; |
| struct http_txn *txn = s->txn; |
| struct hdr_exp *exp; |
| |
| for (exp = px->rsp_exp; exp; exp = exp->next) { |
| int ret; |
| |
| /* |
| * The interleaving of transformations and verdicts |
| * makes it difficult to decide to continue or stop |
| * the evaluation. |
| */ |
| |
| if (txn->flags & TX_SVDENY) |
| break; |
| |
| if ((txn->flags & TX_SVALLOW) && |
| (exp->action == ACT_ALLOW || exp->action == ACT_DENY || |
| exp->action == ACT_PASS)) { |
| exp = exp->next; |
| continue; |
| } |
| |
| /* if this filter had a condition, evaluate it now and skip to |
| * next filter if the condition does not match. |
| */ |
| if (exp->cond) { |
| ret = acl_exec_cond(exp->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (((struct acl_cond *)exp->cond)->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| if (!ret) |
| continue; |
| } |
| |
| /* Apply the filter to the status line. */ |
| ret = apply_filter_to_sts_line(s, rtr, exp); |
| if (unlikely(ret < 0)) |
| return -1; |
| |
| if (likely(ret == 0)) { |
| /* The filter did not match the response, it can be |
| * iterated through all headers. |
| */ |
| if (unlikely(apply_filter_to_resp_headers(s, rtr, exp) < 0)) |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| |
| /* |
| * Manage server-side cookies. It can impact performance by about 2% so it is |
| * desirable to call it only when needed. This function is also used when we |
| * just need to know if there is a cookie (eg: for check-cache). |
| */ |
| void manage_server_side_cookies(struct stream *s, struct channel *res) |
| { |
| struct http_txn *txn = s->txn; |
| struct session *sess = s->sess; |
| struct server *srv; |
| int is_cookie2; |
| int cur_idx, old_idx, delta; |
| char *hdr_beg, *hdr_end, *hdr_next; |
| char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next; |
| |
| /* Iterate through the headers. |
| * we start with the start line. |
| */ |
| old_idx = 0; |
| hdr_next = ci_head(res) + hdr_idx_first_pos(&txn->hdr_idx); |
| |
| while ((cur_idx = txn->hdr_idx.v[old_idx].next)) { |
| struct hdr_idx_elem *cur_hdr; |
| int val; |
| |
| cur_hdr = &txn->hdr_idx.v[cur_idx]; |
| hdr_beg = hdr_next; |
| hdr_end = hdr_beg + cur_hdr->len; |
| hdr_next = hdr_end + cur_hdr->cr + 1; |
| |
| /* We have one full header between hdr_beg and hdr_end, and the |
| * next header starts at hdr_next. We're only interested in |
| * "Set-Cookie" and "Set-Cookie2" headers. |
| */ |
| |
| is_cookie2 = 0; |
| prev = hdr_beg + 10; |
| val = http_header_match2(hdr_beg, hdr_end, "Set-Cookie", 10); |
| if (!val) { |
| val = http_header_match2(hdr_beg, hdr_end, "Set-Cookie2", 11); |
| if (!val) { |
| old_idx = cur_idx; |
| continue; |
| } |
| is_cookie2 = 1; |
| prev = hdr_beg + 11; |
| } |
| |
| /* OK, right now we know we have a Set-Cookie* at hdr_beg, and |
| * <prev> points to the colon. |
| */ |
| txn->flags |= TX_SCK_PRESENT; |
| |
| /* Maybe we only wanted to see if there was a Set-Cookie (eg: |
| * check-cache is enabled) and we are not interested in checking |
| * them. Warning, the cookie capture is declared in the frontend. |
| */ |
| if (s->be->cookie_name == NULL && sess->fe->capture_name == NULL) |
| return; |
| |
| /* OK so now we know we have to process this response cookie. |
| * The format of the Set-Cookie header is slightly different |
| * from the format of the Cookie header in that it does not |
| * support the comma as a cookie delimiter (thus the header |
| * cannot be folded) because the Expires attribute described in |
| * the original Netscape's spec may contain an unquoted date |
| * with a comma inside. We have to live with this because |
| * many browsers don't support Max-Age and some browsers don't |
| * support quoted strings. However the Set-Cookie2 header is |
| * clean. |
| * |
| * We have to keep multiple pointers in order to support cookie |
| * removal at the beginning, middle or end of header without |
| * corrupting the header (in case of set-cookie2). A special |
| * pointer, <scav> points to the beginning of the set-cookie-av |
| * fields after the first semi-colon. The <next> pointer points |
| * either to the end of line (set-cookie) or next unquoted comma |
| * (set-cookie2). All of these headers are valid : |
| * |
| * Set-Cookie: NAME1 = VALUE 1 ; Secure; Path="/"\r\n |
| * Set-Cookie:NAME=VALUE; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT\r\n |
| * Set-Cookie: NAME = VALUE ; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT\r\n |
| * Set-Cookie2: NAME1 = VALUE 1 ; Max-Age=0, NAME2=VALUE2; Discard\r\n |
| * | | | | | | | | | | |
| * | | | | | | | | +-> next hdr_end <--+ |
| * | | | | | | | +------------> scav |
| * | | | | | | +--------------> val_end |
| * | | | | | +--------------------> val_beg |
| * | | | | +----------------------> equal |
| * | | | +------------------------> att_end |
| * | | +----------------------------> att_beg |
| * | +------------------------------> prev |
| * +-----------------------------------------> hdr_beg |
| */ |
| |
| for (; prev < hdr_end; prev = next) { |
| /* Iterate through all cookies on this line */ |
| |
| /* find att_beg */ |
| att_beg = prev + 1; |
| while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg)) |
| att_beg++; |
| |
| /* find att_end : this is the first character after the last non |
| * space before the equal. It may be equal to hdr_end. |
| */ |
| equal = att_end = att_beg; |
| |
| while (equal < hdr_end) { |
| if (*equal == '=' || *equal == ';' || (is_cookie2 && *equal == ',')) |
| break; |
| if (HTTP_IS_SPHT(*equal++)) |
| continue; |
| att_end = equal; |
| } |
| |
| /* here, <equal> points to '=', a delimitor or the end. <att_end> |
| * is between <att_beg> and <equal>, both may be identical. |
| */ |
| |
| /* look for end of cookie if there is an equal sign */ |
| if (equal < hdr_end && *equal == '=') { |
| /* look for the beginning of the value */ |
| val_beg = equal + 1; |
| while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg)) |
| val_beg++; |
| |
| /* find the end of the value, respecting quotes */ |
| next = http_find_cookie_value_end(val_beg, hdr_end); |
| |
| /* make val_end point to the first white space or delimitor after the value */ |
| val_end = next; |
| while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1))) |
| val_end--; |
| } else { |
| /* <equal> points to next comma, semi-colon or EOL */ |
| val_beg = val_end = next = equal; |
| } |
| |
| if (next < hdr_end) { |
| /* Set-Cookie2 supports multiple cookies, and <next> points to |
| * a colon or semi-colon before the end. So skip all attr-value |
| * pairs and look for the next comma. For Set-Cookie, since |
| * commas are permitted in values, skip to the end. |
| */ |
| if (is_cookie2) |
| next = http_find_hdr_value_end(next, hdr_end); |
| else |
| next = hdr_end; |
| } |
| |
| /* Now everything is as on the diagram above */ |
| |
| /* Ignore cookies with no equal sign */ |
| if (equal == val_end) |
| continue; |
| |
| /* If there are spaces around the equal sign, we need to |
| * strip them otherwise we'll get trouble for cookie captures, |
| * or even for rewrites. Since this happens extremely rarely, |
| * it does not hurt performance. |
| */ |
| if (unlikely(att_end != equal || val_beg > equal + 1)) { |
| int stripped_before = 0; |
| int stripped_after = 0; |
| |
| if (att_end != equal) { |
| stripped_before = b_rep_blk(&res->buf, att_end, equal, NULL, 0); |
| equal += stripped_before; |
| val_beg += stripped_before; |
| } |
| |
| if (val_beg > equal + 1) { |
| stripped_after = b_rep_blk(&res->buf, equal + 1, val_beg, NULL, 0); |
| val_beg += stripped_after; |
| stripped_before += stripped_after; |
| } |
| |
| val_end += stripped_before; |
| next += stripped_before; |
| hdr_end += stripped_before; |
| hdr_next += stripped_before; |
| cur_hdr->len += stripped_before; |
| http_msg_move_end(&txn->rsp, stripped_before); |
| } |
| |
| /* First, let's see if we want to capture this cookie. We check |
| * that we don't already have a server side cookie, because we |
| * can only capture one. Also as an optimisation, we ignore |
| * cookies shorter than the declared name. |
| */ |
| if (sess->fe->capture_name != NULL && |
| txn->srv_cookie == NULL && |
| (val_end - att_beg >= sess->fe->capture_namelen) && |
| memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) { |
| int log_len = val_end - att_beg; |
| if ((txn->srv_cookie = pool_alloc(pool_head_capture)) == NULL) { |
| ha_alert("HTTP logging : out of memory.\n"); |
| } |
| else { |
| if (log_len > sess->fe->capture_len) |
| log_len = sess->fe->capture_len; |
| memcpy(txn->srv_cookie, att_beg, log_len); |
| txn->srv_cookie[log_len] = 0; |
| } |
| } |
| |
| srv = objt_server(s->target); |
| /* now check if we need to process it for persistence */ |
| if (!(s->flags & SF_IGNORE_PRST) && |
| (att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) && |
| (memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) { |
| /* assume passive cookie by default */ |
| txn->flags &= ~TX_SCK_MASK; |
| txn->flags |= TX_SCK_FOUND; |
| |
| /* If the cookie is in insert mode on a known server, we'll delete |
| * this occurrence because we'll insert another one later. |
| * We'll delete it too if the "indirect" option is set and we're in |
| * a direct access. |
| */ |
| if (s->be->ck_opts & PR_CK_PSV) { |
| /* The "preserve" flag was set, we don't want to touch the |
| * server's cookie. |
| */ |
| } |
| else if ((srv && (s->be->ck_opts & PR_CK_INS)) || |
| ((s->flags & SF_DIRECT) && (s->be->ck_opts & PR_CK_IND))) { |
| /* this cookie must be deleted */ |
| if (*prev == ':' && next == hdr_end) { |
| /* whole header */ |
| delta = b_rep_blk(&res->buf, hdr_beg, hdr_next, NULL, 0); |
| txn->hdr_idx.v[old_idx].next = cur_hdr->next; |
| txn->hdr_idx.used--; |
| cur_hdr->len = 0; |
| cur_idx = old_idx; |
| hdr_next += delta; |
| http_msg_move_end(&txn->rsp, delta); |
| /* note: while both invalid now, <next> and <hdr_end> |
| * are still equal, so the for() will stop as expected. |
| */ |
| } else { |
| /* just remove the value */ |
| int delta = del_hdr_value(&res->buf, &prev, next); |
| next = prev; |
| hdr_end += delta; |
| hdr_next += delta; |
| cur_hdr->len += delta; |
| http_msg_move_end(&txn->rsp, delta); |
| } |
| txn->flags &= ~TX_SCK_MASK; |
| txn->flags |= TX_SCK_DELETED; |
| /* and go on with next cookie */ |
| } |
| else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_RW)) { |
| /* replace bytes val_beg->val_end with the cookie name associated |
| * with this server since we know it. |
| */ |
| delta = b_rep_blk(&res->buf, val_beg, val_end, srv->cookie, srv->cklen); |
| next += delta; |
| hdr_end += delta; |
| hdr_next += delta; |
| cur_hdr->len += delta; |
| http_msg_move_end(&txn->rsp, delta); |
| |
| txn->flags &= ~TX_SCK_MASK; |
| txn->flags |= TX_SCK_REPLACED; |
| } |
| else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_PFX)) { |
| /* insert the cookie name associated with this server |
| * before existing cookie, and insert a delimiter between them.. |
| */ |
| delta = b_rep_blk(&res->buf, val_beg, val_beg, srv->cookie, srv->cklen + 1); |
| next += delta; |
| hdr_end += delta; |
| hdr_next += delta; |
| cur_hdr->len += delta; |
| http_msg_move_end(&txn->rsp, delta); |
| |
| val_beg[srv->cklen] = COOKIE_DELIM; |
| txn->flags &= ~TX_SCK_MASK; |
| txn->flags |= TX_SCK_REPLACED; |
| } |
| } |
| /* that's done for this cookie, check the next one on the same |
| * line when next != hdr_end (only if is_cookie2). |
| */ |
| } |
| /* check next header */ |
| old_idx = cur_idx; |
| } |
| } |
| |
| |
| /* |
| * Parses the Cache-Control and Pragma request header fields to determine if |
| * the request may be served from the cache and/or if it is cacheable. Updates |
| * s->txn->flags. |
| */ |
| void check_request_for_cacheability(struct stream *s, struct channel *chn) |
| { |
| struct http_txn *txn = s->txn; |
| char *p1, *p2; |
| char *cur_ptr, *cur_end, *cur_next; |
| int pragma_found; |
| int cc_found; |
| int cur_idx; |
| |
| if (IS_HTX_STRM(s)) |
| return htx_check_request_for_cacheability(s, chn); |
| |
| if ((txn->flags & (TX_CACHEABLE|TX_CACHE_IGNORE)) == TX_CACHE_IGNORE) |
| return; /* nothing more to do here */ |
| |
| cur_idx = 0; |
| pragma_found = cc_found = 0; |
| cur_next = ci_head(chn) + hdr_idx_first_pos(&txn->hdr_idx); |
| |
| while ((cur_idx = txn->hdr_idx.v[cur_idx].next)) { |
| struct hdr_idx_elem *cur_hdr; |
| int val; |
| |
| cur_hdr = &txn->hdr_idx.v[cur_idx]; |
| cur_ptr = cur_next; |
| cur_end = cur_ptr + cur_hdr->len; |
| cur_next = cur_end + cur_hdr->cr + 1; |
| |
| /* We have one full header between cur_ptr and cur_end, and the |
| * next header starts at cur_next. |
| */ |
| |
| val = http_header_match2(cur_ptr, cur_end, "Pragma", 6); |
| if (val) { |
| if ((cur_end - (cur_ptr + val) >= 8) && |
| strncasecmp(cur_ptr + val, "no-cache", 8) == 0) { |
| pragma_found = 1; |
| continue; |
| } |
| } |
| |
| /* Don't use the cache and don't try to store if we found the |
| * Authorization header */ |
| val = http_header_match2(cur_ptr, cur_end, "Authorization", 13); |
| if (val) { |
| txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; |
| txn->flags |= TX_CACHE_IGNORE; |
| continue; |
| } |
| |
| val = http_header_match2(cur_ptr, cur_end, "Cache-control", 13); |
| if (!val) |
| continue; |
| |
| /* OK, right now we know we have a cache-control header at cur_ptr */ |
| cc_found = 1; |
| p1 = cur_ptr + val; /* first non-space char after 'cache-control:' */ |
| |
| if (p1 >= cur_end) /* no more info */ |
| continue; |
| |
| /* p1 is at the beginning of the value */ |
| p2 = p1; |
| while (p2 < cur_end && *p2 != '=' && *p2 != ',' && !isspace((unsigned char)*p2)) |
| p2++; |
| |
| /* we have a complete value between p1 and p2. We don't check the |
| * values after max-age, max-stale nor min-fresh, we simply don't |
| * use the cache when they're specified. |
| */ |
| if (((p2 - p1 == 7) && strncasecmp(p1, "max-age", 7) == 0) || |
| ((p2 - p1 == 8) && strncasecmp(p1, "no-cache", 8) == 0) || |
| ((p2 - p1 == 9) && strncasecmp(p1, "max-stale", 9) == 0) || |
| ((p2 - p1 == 9) && strncasecmp(p1, "min-fresh", 9) == 0)) { |
| txn->flags |= TX_CACHE_IGNORE; |
| continue; |
| } |
| |
| if ((p2 - p1 == 8) && strncasecmp(p1, "no-store", 8) == 0) { |
| txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; |
| continue; |
| } |
| } |
| |
| /* RFC7234#5.4: |
| * When the Cache-Control header field is also present and |
| * understood in a request, Pragma is ignored. |
| * When the Cache-Control header field is not present in a |
| * request, caches MUST consider the no-cache request |
| * pragma-directive as having the same effect as if |
| * "Cache-Control: no-cache" were present. |
| */ |
| if (!cc_found && pragma_found) |
| txn->flags |= TX_CACHE_IGNORE; |
| } |
| |
| /* |
| * Check if response is cacheable or not. Updates s->txn->flags. |
| */ |
| void check_response_for_cacheability(struct stream *s, struct channel *rtr) |
| { |
| struct http_txn *txn = s->txn; |
| char *p1, *p2; |
| |
| char *cur_ptr, *cur_end, *cur_next; |
| int cur_idx; |
| |
| |
| if (IS_HTX_STRM(s)) |
| return htx_check_response_for_cacheability(s, rtr); |
| |
| if (txn->status < 200) { |
| /* do not try to cache interim responses! */ |
| txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; |
| return; |
| } |
| |
| /* Iterate through the headers. |
| * we start with the start line. |
| */ |
| cur_idx = 0; |
| cur_next = ci_head(rtr) + hdr_idx_first_pos(&txn->hdr_idx); |
| |
| while ((cur_idx = txn->hdr_idx.v[cur_idx].next)) { |
| struct hdr_idx_elem *cur_hdr; |
| int val; |
| |
| cur_hdr = &txn->hdr_idx.v[cur_idx]; |
| cur_ptr = cur_next; |
| cur_end = cur_ptr + cur_hdr->len; |
| cur_next = cur_end + cur_hdr->cr + 1; |
| |
| /* We have one full header between cur_ptr and cur_end, and the |
| * next header starts at cur_next. |
| */ |
| |
| val = http_header_match2(cur_ptr, cur_end, "Pragma", 6); |
| if (val) { |
| if ((cur_end - (cur_ptr + val) >= 8) && |
| strncasecmp(cur_ptr + val, "no-cache", 8) == 0) { |
| txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; |
| return; |
| } |
| } |
| |
| val = http_header_match2(cur_ptr, cur_end, "Cache-control", 13); |
| if (!val) |
| continue; |
| |
| /* OK, right now we know we have a cache-control header at cur_ptr */ |
| |
| p1 = cur_ptr + val; /* first non-space char after 'cache-control:' */ |
| |
| if (p1 >= cur_end) /* no more info */ |
| continue; |
| |
| /* p1 is at the beginning of the value */ |
| p2 = p1; |
| |
| while (p2 < cur_end && *p2 != '=' && *p2 != ',' && !isspace((unsigned char)*p2)) |
| p2++; |
| |
| /* we have a complete value between p1 and p2 */ |
| if (p2 < cur_end && *p2 == '=') { |
| if (((cur_end - p2) > 1 && (p2 - p1 == 7) && strncasecmp(p1, "max-age=0", 9) == 0) || |
| ((cur_end - p2) > 1 && (p2 - p1 == 8) && strncasecmp(p1, "s-maxage=0", 10) == 0)) { |
| txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; |
| continue; |
| } |
| |
| /* we have something of the form no-cache="set-cookie" */ |
| if ((cur_end - p1 >= 21) && |
| strncasecmp(p1, "no-cache=\"set-cookie", 20) == 0 |
| && (p1[20] == '"' || p1[20] == ',')) |
| txn->flags &= ~TX_CACHE_COOK; |
| continue; |
| } |
| |
| /* OK, so we know that either p2 points to the end of string or to a comma */ |
| if (((p2 - p1 == 7) && strncasecmp(p1, "private", 7) == 0) || |
| ((p2 - p1 == 8) && strncasecmp(p1, "no-cache", 8) == 0) || |
| ((p2 - p1 == 8) && strncasecmp(p1, "no-store", 8) == 0)) { |
| txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; |
| return; |
| } |
| |
| if ((p2 - p1 == 6) && strncasecmp(p1, "public", 6) == 0) { |
| txn->flags |= TX_CACHEABLE | TX_CACHE_COOK; |
| continue; |
| } |
| } |
| } |
| |
| |
| /* |
| * In a GET, HEAD or POST request, check if the requested URI matches the stats uri |
| * for the current backend. |
| * |
| * It is assumed that the request is either a HEAD, GET, or POST and that the |
| * uri_auth field is valid. |
| * |
| * Returns 1 if stats should be provided, otherwise 0. |
| */ |
| int stats_check_uri(struct stream_interface *si, struct http_txn *txn, struct proxy *backend) |
| { |
| struct uri_auth *uri_auth = backend->uri_auth; |
| struct http_msg *msg = &txn->req; |
| const char *uri = ci_head(msg->chn)+ msg->sl.rq.u; |
| |
| if (!uri_auth) |
| return 0; |
| |
| if (txn->meth != HTTP_METH_GET && txn->meth != HTTP_METH_HEAD && txn->meth != HTTP_METH_POST) |
| return 0; |
| |
| /* check URI size */ |
| if (uri_auth->uri_len > msg->sl.rq.u_l) |
| return 0; |
| |
| if (memcmp(uri, uri_auth->uri_prefix, uri_auth->uri_len) != 0) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Append the description of what is present in error snapshot <es> into <out>. |
| * The description must be small enough to always fit in a trash. The output |
| * buffer may be the trash so the trash must not be used inside this function. |
| */ |
| void http_show_error_snapshot(struct buffer *out, const struct error_snapshot *es) |
| { |
| chunk_appendf(out, |
| " stream #%d, stream flags 0x%08x, tx flags 0x%08x\n" |
| " HTTP msg state %s(%d), msg flags 0x%08x\n" |
| " HTTP chunk len %lld bytes, HTTP body len %lld bytes, channel flags 0x%08x :\n", |
| es->ctx.http.sid, es->ctx.http.s_flags, es->ctx.http.t_flags, |
| h1_msg_state_str(es->ctx.http.state), es->ctx.http.state, |
| es->ctx.http.m_flags, es->ctx.http.m_clen, |
| es->ctx.http.m_blen, es->ctx.http.b_flags); |
| } |
| |
| /* |
| * Capture a bad request or response and archive it in the proxy's structure. |
| * By default it tries to report the error position as msg->err_pos. However if |
| * this one is not set, it will then report msg->next, which is the last known |
| * parsing point. The function is able to deal with wrapping buffers. It always |
| * displays buffers as a contiguous area starting at buf->p. The direction is |
| * determined thanks to the channel's flags. |
| */ |
| void http_capture_bad_message(struct proxy *proxy, struct stream *s, |
| struct http_msg *msg, |
| enum h1_state state, struct proxy *other_end) |
| { |
| union error_snapshot_ctx ctx; |
| long ofs; |
| |
| /* http-specific part now */ |
| ctx.http.sid = s->uniq_id; |
| ctx.http.state = state; |
| ctx.http.b_flags = msg->chn->flags; |
| ctx.http.s_flags = s->flags; |
| ctx.http.t_flags = s->txn->flags; |
| ctx.http.m_flags = msg->flags; |
| ctx.http.m_clen = msg->chunk_len; |
| ctx.http.m_blen = msg->body_len; |
| |
| ofs = msg->chn->total - ci_data(msg->chn); |
| if (ofs < 0) |
| ofs = 0; |
| |
| proxy_capture_error(proxy, !!(msg->chn->flags & CF_ISRESP), |
| other_end, s->target, |
| strm_sess(s), &msg->chn->buf, |
| ofs, co_data(msg->chn), |
| (msg->err_pos >= 0) ? msg->err_pos : msg->next, |
| &ctx, http_show_error_snapshot); |
| } |
| |
| /* |
| * Print a debug line with a header. Always stop at the first CR or LF char, |
| * so it is safe to pass it a full buffer if needed. If <err> is not NULL, an |
| * arrow is printed after the line which contains the pointer. |
| */ |
| void debug_hdr(const char *dir, struct stream *s, const char *start, const char *end) |
| { |
| struct session *sess = strm_sess(s); |
| int max; |
| |
| chunk_printf(&trash, "%08x:%s.%s[%04x:%04x]: ", s->uniq_id, s->be->id, |
| dir, |
| objt_conn(sess->origin) ? (unsigned short)objt_conn(sess->origin)->handle.fd : -1, |
| objt_cs(s->si[1].end) ? (unsigned short)objt_cs(s->si[1].end)->conn->handle.fd : -1); |
| |
| for (max = 0; start + max < end; max++) |
| if (start[max] == '\r' || start[max] == '\n') |
| break; |
| |
| UBOUND(max, trash.size - trash.data - 3); |
| trash.data += strlcpy2(trash.area + trash.data, start, max + 1); |
| trash.area[trash.data++] = '\n'; |
| shut_your_big_mouth_gcc(write(1, trash.area, trash.data)); |
| } |
| |
| |
| /* Allocate a new HTTP transaction for stream <s> unless there is one already. |
| * The hdr_idx is allocated as well. In case of allocation failure, everything |
| * allocated is freed and NULL is returned. Otherwise the new transaction is |
| * assigned to the stream and returned. |
| */ |
| struct http_txn *http_alloc_txn(struct stream *s) |
| { |
| struct http_txn *txn = s->txn; |
| |
| if (txn) |
| return txn; |
| |
| txn = pool_alloc(pool_head_http_txn); |
| if (!txn) |
| return txn; |
| |
| txn->hdr_idx.size = global.tune.max_http_hdr; |
| txn->hdr_idx.v = pool_alloc(pool_head_hdr_idx); |
| if (!txn->hdr_idx.v) { |
| pool_free(pool_head_http_txn, txn); |
| return NULL; |
| } |
| |
| s->txn = txn; |
| return txn; |
| } |
| |
| void http_txn_reset_req(struct http_txn *txn) |
| { |
| txn->req.flags = 0; |
| txn->req.sol = txn->req.eol = txn->req.eoh = 0; /* relative to the buffer */ |
| txn->req.next = 0; |
| txn->req.chunk_len = 0LL; |
| txn->req.body_len = 0LL; |
| txn->req.msg_state = HTTP_MSG_RQBEFORE; /* at the very beginning of the request */ |
| } |
| |
| void http_txn_reset_res(struct http_txn *txn) |
| { |
| txn->rsp.flags = 0; |
| txn->rsp.sol = txn->rsp.eol = txn->rsp.eoh = 0; /* relative to the buffer */ |
| txn->rsp.next = 0; |
| txn->rsp.chunk_len = 0LL; |
| txn->rsp.body_len = 0LL; |
| txn->rsp.msg_state = HTTP_MSG_RPBEFORE; /* at the very beginning of the response */ |
| } |
| |
| /* |
| * Initialize a new HTTP transaction for stream <s>. It is assumed that all |
| * the required fields are properly allocated and that we only need to (re)init |
| * them. This should be used before processing any new request. |
| */ |
| void http_init_txn(struct stream *s) |
| { |
| struct http_txn *txn = s->txn; |
| struct proxy *fe = strm_fe(s); |
| struct conn_stream *cs = objt_cs(s->si[0].end); |
| |
| txn->flags = ((cs && cs->flags & CS_FL_NOT_FIRST) |
| ? (TX_NOT_FIRST|TX_WAIT_NEXT_RQ) |
| : 0); |
| txn->status = -1; |
| |
| txn->cookie_first_date = 0; |
| txn->cookie_last_date = 0; |
| |
| txn->srv_cookie = NULL; |
| txn->cli_cookie = NULL; |
| txn->uri = NULL; |
| |
| http_txn_reset_req(txn); |
| http_txn_reset_res(txn); |
| |
| txn->req.chn = &s->req; |
| txn->rsp.chn = &s->res; |
| |
| txn->auth.method = HTTP_AUTH_UNKNOWN; |
| |
| txn->req.err_pos = txn->rsp.err_pos = -2; /* block buggy requests/responses */ |
| if (fe->options2 & PR_O2_REQBUG_OK) |
| txn->req.err_pos = -1; /* let buggy requests pass */ |
| |
| if (txn->hdr_idx.v) |
| hdr_idx_init(&txn->hdr_idx); |
| |
| vars_init(&s->vars_txn, SCOPE_TXN); |
| vars_init(&s->vars_reqres, SCOPE_REQ); |
| } |
| |
| /* to be used at the end of a transaction */ |
| void http_end_txn(struct stream *s) |
| { |
| struct http_txn *txn = s->txn; |
| struct proxy *fe = strm_fe(s); |
| |
| /* these ones will have been dynamically allocated */ |
| pool_free(pool_head_requri, txn->uri); |
| pool_free(pool_head_capture, txn->cli_cookie); |
| pool_free(pool_head_capture, txn->srv_cookie); |
| pool_free(pool_head_uniqueid, s->unique_id); |
| |
| s->unique_id = NULL; |
| txn->uri = NULL; |
| txn->srv_cookie = NULL; |
| txn->cli_cookie = NULL; |
| |
| if (s->req_cap) { |
| struct cap_hdr *h; |
| for (h = fe->req_cap; h; h = h->next) |
| pool_free(h->pool, s->req_cap[h->index]); |
| memset(s->req_cap, 0, fe->nb_req_cap * sizeof(void *)); |
| } |
| |
| if (s->res_cap) { |
| struct cap_hdr *h; |
| for (h = fe->rsp_cap; h; h = h->next) |
| pool_free(h->pool, s->res_cap[h->index]); |
| memset(s->res_cap, 0, fe->nb_rsp_cap * sizeof(void *)); |
| } |
| |
| if (!LIST_ISEMPTY(&s->vars_txn.head)) |
| vars_prune(&s->vars_txn, s->sess, s); |
| if (!LIST_ISEMPTY(&s->vars_reqres.head)) |
| vars_prune(&s->vars_reqres, s->sess, s); |
| } |
| |
| /* to be used at the end of a transaction to prepare a new one */ |
| void http_reset_txn(struct stream *s) |
| { |
| http_end_txn(s); |
| http_init_txn(s); |
| |
| /* reinitialise the current rule list pointer to NULL. We are sure that |
| * any rulelist match the NULL pointer. |
| */ |
| s->current_rule_list = NULL; |
| |
| s->be = strm_fe(s); |
| s->logs.logwait = strm_fe(s)->to_log; |
| s->logs.level = 0; |
| stream_del_srv_conn(s); |
| s->target = NULL; |
| /* re-init store persistence */ |
| s->store_count = 0; |
| s->uniq_id = HA_ATOMIC_XADD(&global.req_count, 1); |
| |
| s->req.flags |= CF_READ_DONTWAIT; /* one read is usually enough */ |
| |
| /* We must trim any excess data from the response buffer, because we |
| * may have blocked an invalid response from a server that we don't |
| * want to accidently forward once we disable the analysers, nor do |
| * we want those data to come along with next response. A typical |
| * example of such data would be from a buggy server responding to |
| * a HEAD with some data, or sending more than the advertised |
| * content-length. |
| */ |
| if (unlikely(ci_data(&s->res))) |
| b_set_data(&s->res.buf, co_data(&s->res)); |
| |
| /* Now we can realign the response buffer */ |
| c_realign_if_empty(&s->res); |
| |
| s->req.rto = strm_fe(s)->timeout.client; |
| s->req.wto = TICK_ETERNITY; |
| |
| s->res.rto = TICK_ETERNITY; |
| s->res.wto = strm_fe(s)->timeout.client; |
| |
| s->req.rex = TICK_ETERNITY; |
| s->req.wex = TICK_ETERNITY; |
| s->req.analyse_exp = TICK_ETERNITY; |
| s->res.rex = TICK_ETERNITY; |
| s->res.wex = TICK_ETERNITY; |
| s->res.analyse_exp = TICK_ETERNITY; |
| s->si[1].hcto = TICK_ETERNITY; |
| } |
| |
| /* This function executes one of the set-{method,path,query,uri} actions. It |
| * takes the string from the variable 'replace' with length 'len', then modifies |
| * the relevant part of the request line accordingly. Then it updates various |
| * pointers to the next elements which were moved, and the total buffer length. |
| * It finds the action to be performed in p[2], previously filled by function |
| * parse_set_req_line(). It returns 0 in case of success, -1 in case of internal |
| * error, though this can be revisited when this code is finally exploited. |
| * |
| * 'action' can be '0' to replace method, '1' to replace path, '2' to replace |
| * query string and 3 to replace uri. |
| * |
| * In query string case, the mark question '?' must be set at the start of the |
| * string by the caller, event if the replacement query string is empty. |
| */ |
| int http_replace_req_line(int action, const char *replace, int len, |
| struct proxy *px, struct stream *s) |
| { |
| struct http_txn *txn = s->txn; |
| char *cur_ptr, *cur_end; |
| int offset = 0; |
| int delta; |
| |
| if (IS_HTX_STRM(s)) |
| return htx_req_replace_stline(action, replace, len, px, s); |
| |
| switch (action) { |
| case 0: // method |
| cur_ptr = ci_head(&s->req); |
| cur_end = cur_ptr + txn->req.sl.rq.m_l; |
| |
| /* adjust req line offsets and lengths */ |
| delta = len - offset - (cur_end - cur_ptr); |
| txn->req.sl.rq.m_l += delta; |
| txn->req.sl.rq.u += delta; |
| txn->req.sl.rq.v += delta; |
| break; |
| |
| case 1: // path |
| cur_ptr = http_txn_get_path(txn); |
| if (!cur_ptr) |
| cur_ptr = ci_head(&s->req) + txn->req.sl.rq.u; |
| |
| cur_end = cur_ptr; |
| while (cur_end < ci_head(&s->req) + txn->req.sl.rq.u + txn->req.sl.rq.u_l && *cur_end != '?') |
| cur_end++; |
| |
| /* adjust req line offsets and lengths */ |
| delta = len - offset - (cur_end - cur_ptr); |
| txn->req.sl.rq.u_l += delta; |
| txn->req.sl.rq.v += delta; |
| break; |
| |
| case 2: // query |
| offset = 1; |
| cur_ptr = ci_head(&s->req) + txn->req.sl.rq.u; |
| cur_end = cur_ptr + txn->req.sl.rq.u_l; |
| while (cur_ptr < cur_end && *cur_ptr != '?') |
| cur_ptr++; |
| |
| /* skip the question mark or indicate that we must insert it |
| * (but only if the format string is not empty then). |
| */ |
| if (cur_ptr < cur_end) |
| cur_ptr++; |
| else if (len > 1) |
| offset = 0; |
| |
| /* adjust req line offsets and lengths */ |
| delta = len - offset - (cur_end - cur_ptr); |
| txn->req.sl.rq.u_l += delta; |
| txn->req.sl.rq.v += delta; |
| break; |
| |
| case 3: // uri |
| cur_ptr = ci_head(&s->req) + txn->req.sl.rq.u; |
| cur_end = cur_ptr + txn->req.sl.rq.u_l; |
| |
| /* adjust req line offsets and lengths */ |
| delta = len - offset - (cur_end - cur_ptr); |
| txn->req.sl.rq.u_l += delta; |
| txn->req.sl.rq.v += delta; |
| break; |
| |
| default: |
| return -1; |
| } |
| |
| /* commit changes and adjust end of message */ |
| delta = b_rep_blk(&s->req.buf, cur_ptr, cur_end, replace + offset, len - offset); |
| txn->req.sl.rq.l += delta; |
| txn->hdr_idx.v[0].len += delta; |
| http_msg_move_end(&txn->req, delta); |
| return 0; |
| } |
| |
| /* This function replace the HTTP status code and the associated message. The |
| * variable <status> contains the new status code. This function never fails. |
| */ |
| void http_set_status(unsigned int status, const char *reason, struct stream *s) |
| { |
| struct http_txn *txn = s->txn; |
| char *cur_ptr, *cur_end; |
| int delta; |
| char *res; |
| int c_l; |
| const char *msg = reason; |
| int msg_len; |
| |
| if (IS_HTX_STRM(s)) |
| return htx_res_set_status(status, reason, s); |
| |
| chunk_reset(&trash); |
| |
| res = ultoa_o(status, trash.area, trash.size); |
| c_l = res - trash.area; |
| |
| trash.area[c_l] = ' '; |
| trash.data = c_l + 1; |
| |
| /* Do we have a custom reason format string? */ |
| if (msg == NULL) |
| msg = http_get_reason(status); |
| msg_len = strlen(msg); |
| strncpy(&trash.area[trash.data], msg, trash.size - trash.data); |
| trash.data += msg_len; |
| |
| cur_ptr = ci_head(&s->res) + txn->rsp.sl.st.c; |
| cur_end = ci_head(&s->res) + txn->rsp.sl.st.r + txn->rsp.sl.st.r_l; |
| |
| /* commit changes and adjust message */ |
| delta = b_rep_blk(&s->res.buf, cur_ptr, cur_end, trash.area, |
| trash.data); |
| |
| /* adjust res line offsets and lengths */ |
| txn->rsp.sl.st.r += c_l - txn->rsp.sl.st.c_l; |
| txn->rsp.sl.st.c_l = c_l; |
| txn->rsp.sl.st.r_l = msg_len; |
| |
| delta = trash.data - (cur_end - cur_ptr); |
| txn->rsp.sl.st.l += delta; |
| txn->hdr_idx.v[0].len += delta; |
| http_msg_move_end(&txn->rsp, delta); |
| } |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |