| /* |
| * Stream filters related variables and functions. |
| * |
| * Copyright (C) 2015 Qualys Inc., Christopher Faulet <cfaulet@qualys.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <haproxy/api.h> |
| #include <haproxy/buf-t.h> |
| #include <haproxy/cfgparse.h> |
| #include <haproxy/compression.h> |
| #include <haproxy/errors.h> |
| #include <haproxy/filters.h> |
| #include <haproxy/flt_http_comp.h> |
| #include <haproxy/http_ana.h> |
| #include <haproxy/http_htx.h> |
| #include <haproxy/htx.h> |
| #include <haproxy/namespace.h> |
| #include <haproxy/proxy.h> |
| #include <haproxy/stream.h> |
| #include <haproxy/tools.h> |
| #include <haproxy/trace.h> |
| |
| |
| #define TRACE_SOURCE &trace_strm |
| |
| /* Pool used to allocate filters */ |
| DECLARE_STATIC_POOL(pool_head_filter, "filter", sizeof(struct filter)); |
| |
| static int handle_analyzer_result(struct stream *s, struct channel *chn, unsigned int an_bit, int ret); |
| |
| /* - RESUME_FILTER_LOOP and RESUME_FILTER_END must always be used together. |
| * The first one begins a loop and the seconds one ends it. |
| * |
| * - BREAK_EXECUTION must be used to break the loop and set the filter from |
| * which to resume the next time. |
| * |
| * Here is an example: |
| * |
| * RESUME_FILTER_LOOP(stream, channel) { |
| * ... |
| * if (cond) |
| * BREAK_EXECUTION(stream, channel, label); |
| * ... |
| * } RESUME_FILTER_END; |
| * ... |
| * label: |
| * ... |
| * |
| */ |
| #define RESUME_FILTER_LOOP(strm, chn) \ |
| do { \ |
| struct filter *filter; \ |
| \ |
| if (strm_flt(strm)->current[CHN_IDX(chn)]) { \ |
| filter = strm_flt(strm)->current[CHN_IDX(chn)]; \ |
| strm_flt(strm)->current[CHN_IDX(chn)] = NULL; \ |
| goto resume_execution; \ |
| } \ |
| \ |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { \ |
| resume_execution: |
| |
| #define RESUME_FILTER_END \ |
| } \ |
| } while(0) |
| |
| #define BREAK_EXECUTION(strm, chn, label) \ |
| do { \ |
| strm_flt(strm)->current[CHN_IDX(chn)] = filter; \ |
| goto label; \ |
| } while (0) |
| |
| |
| /* List head of all known filter keywords */ |
| static struct flt_kw_list flt_keywords = { |
| .list = LIST_HEAD_INIT(flt_keywords.list) |
| }; |
| |
| /* |
| * Registers the filter keyword list <kwl> as a list of valid keywords for next |
| * parsing sessions. |
| */ |
| void |
| flt_register_keywords(struct flt_kw_list *kwl) |
| { |
| LIST_APPEND(&flt_keywords.list, &kwl->list); |
| } |
| |
| /* |
| * Returns a pointer to the filter keyword <kw>, or NULL if not found. If the |
| * keyword is found with a NULL ->parse() function, then an attempt is made to |
| * find one with a valid ->parse() function. This way it is possible to declare |
| * platform-dependant, known keywords as NULL, then only declare them as valid |
| * if some options are met. Note that if the requested keyword contains an |
| * opening parenthesis, everything from this point is ignored. |
| */ |
| struct flt_kw * |
| flt_find_kw(const char *kw) |
| { |
| int index; |
| const char *kwend; |
| struct flt_kw_list *kwl; |
| struct flt_kw *ret = NULL; |
| |
| kwend = strchr(kw, '('); |
| if (!kwend) |
| kwend = kw + strlen(kw); |
| |
| list_for_each_entry(kwl, &flt_keywords.list, list) { |
| for (index = 0; kwl->kw[index].kw != NULL; index++) { |
| if ((strncmp(kwl->kw[index].kw, kw, kwend - kw) == 0) && |
| kwl->kw[index].kw[kwend-kw] == 0) { |
| if (kwl->kw[index].parse) |
| return &kwl->kw[index]; /* found it !*/ |
| else |
| ret = &kwl->kw[index]; /* may be OK */ |
| } |
| } |
| } |
| return ret; |
| } |
| |
| /* |
| * Dumps all registered "filter" keywords to the <out> string pointer. The |
| * unsupported keywords are only dumped if their supported form was not found. |
| * If <out> is NULL, the output is emitted using a more compact format on stdout. |
| */ |
| void |
| flt_dump_kws(char **out) |
| { |
| struct flt_kw_list *kwl; |
| const struct flt_kw *kwp, *kw; |
| const char *scope = NULL; |
| int index; |
| |
| if (out) |
| *out = NULL; |
| |
| for (kw = kwp = NULL;; kwp = kw) { |
| list_for_each_entry(kwl, &flt_keywords.list, list) { |
| for (index = 0; kwl->kw[index].kw != NULL; index++) { |
| if ((kwl->kw[index].parse || |
| flt_find_kw(kwl->kw[index].kw) == &kwl->kw[index]) |
| && strordered(kwp ? kwp->kw : NULL, |
| kwl->kw[index].kw, |
| kw != kwp ? kw->kw : NULL)) { |
| kw = &kwl->kw[index]; |
| scope = kwl->scope; |
| } |
| } |
| } |
| |
| if (kw == kwp) |
| break; |
| |
| if (out) |
| memprintf(out, "%s[%4s] %s%s\n", *out ? *out : "", |
| scope, |
| kw->kw, |
| kw->parse ? "" : " (not supported)"); |
| else |
| printf("%s [%s]\n", |
| kw->kw, scope); |
| } |
| } |
| |
| /* |
| * Lists the known filters on <out> |
| */ |
| void |
| list_filters(FILE *out) |
| { |
| char *filters, *p, *f; |
| |
| fprintf(out, "Available filters :\n"); |
| flt_dump_kws(&filters); |
| for (p = filters; (f = strtok_r(p,"\n",&p));) |
| fprintf(out, "\t%s\n", f); |
| free(filters); |
| } |
| |
| /* |
| * Parses the "filter" keyword. All keywords must be handled by filters |
| * themselves |
| */ |
| static int |
| parse_filter(char **args, int section_type, struct proxy *curpx, |
| const struct proxy *defpx, const char *file, int line, char **err) |
| { |
| struct flt_conf *fconf = NULL; |
| |
| /* Filter cannot be defined on a default proxy */ |
| if (curpx == defpx) { |
| memprintf(err, "parsing [%s:%d] : %s is not allowed in a 'default' section.", |
| file, line, args[0]); |
| return -1; |
| } |
| if (strcmp(args[0], "filter") == 0) { |
| struct flt_kw *kw; |
| int cur_arg; |
| |
| if (!*args[1]) { |
| memprintf(err, |
| "parsing [%s:%d] : missing argument for '%s' in %s '%s'.", |
| file, line, args[0], proxy_type_str(curpx), curpx->id); |
| goto error; |
| } |
| fconf = calloc(1, sizeof(*fconf)); |
| if (!fconf) { |
| memprintf(err, "'%s' : out of memory", args[0]); |
| goto error; |
| } |
| |
| cur_arg = 1; |
| kw = flt_find_kw(args[cur_arg]); |
| if (kw) { |
| if (!kw->parse) { |
| memprintf(err, "parsing [%s:%d] : '%s' : " |
| "'%s' option is not implemented in this version (check build options).", |
| file, line, args[0], args[cur_arg]); |
| goto error; |
| } |
| if (kw->parse(args, &cur_arg, curpx, fconf, err, kw->private) != 0) { |
| if (err && *err) |
| memprintf(err, "'%s' : '%s'", |
| args[0], *err); |
| else |
| memprintf(err, "'%s' : error encountered while processing '%s'", |
| args[0], args[cur_arg]); |
| goto error; |
| } |
| } |
| else { |
| flt_dump_kws(err); |
| indent_msg(err, 4); |
| memprintf(err, "'%s' : unknown keyword '%s'.%s%s", |
| args[0], args[cur_arg], |
| err && *err ? " Registered keywords :" : "", err && *err ? *err : ""); |
| goto error; |
| } |
| if (*args[cur_arg]) { |
| memprintf(err, "'%s %s' : unknown keyword '%s'.", |
| args[0], args[1], args[cur_arg]); |
| goto error; |
| } |
| if (fconf->ops == NULL) { |
| memprintf(err, "'%s %s' : no callbacks defined.", |
| args[0], args[1]); |
| goto error; |
| } |
| |
| LIST_APPEND(&curpx->filter_configs, &fconf->list); |
| } |
| return 0; |
| |
| error: |
| free(fconf); |
| return -1; |
| |
| |
| } |
| |
| /* |
| * Calls 'init' callback for all filters attached to a proxy. This happens after |
| * the configuration parsing. Filters can finish to fill their config. Returns |
| * (ERR_ALERT|ERR_FATAL) if an error occurs, 0 otherwise. |
| */ |
| static int |
| flt_init(struct proxy *proxy) |
| { |
| struct flt_conf *fconf; |
| |
| list_for_each_entry(fconf, &proxy->filter_configs, list) { |
| if (fconf->ops->init && fconf->ops->init(proxy, fconf) < 0) |
| return ERR_ALERT|ERR_FATAL; |
| } |
| return 0; |
| } |
| |
| /* |
| * Calls 'init_per_thread' callback for all filters attached to a proxy for each |
| * threads. This happens after the thread creation. Filters can finish to fill |
| * their config. Returns (ERR_ALERT|ERR_FATAL) if an error occurs, 0 otherwise. |
| */ |
| static int |
| flt_init_per_thread(struct proxy *proxy) |
| { |
| struct flt_conf *fconf; |
| |
| list_for_each_entry(fconf, &proxy->filter_configs, list) { |
| if (fconf->ops->init_per_thread && fconf->ops->init_per_thread(proxy, fconf) < 0) |
| return ERR_ALERT|ERR_FATAL; |
| } |
| return 0; |
| } |
| |
| /* Calls flt_init() for all proxies, see above */ |
| static int |
| flt_init_all() |
| { |
| struct proxy *px; |
| int err_code = ERR_NONE; |
| |
| for (px = proxies_list; px; px = px->next) { |
| if (px->flags & (PR_FL_DISABLED|PR_FL_STOPPED)) { |
| flt_deinit(px); |
| continue; |
| } |
| err_code |= flt_init(px); |
| if (err_code & (ERR_ABORT|ERR_FATAL)) { |
| ha_alert("Failed to initialize filters for proxy '%s'.\n", |
| px->id); |
| return err_code; |
| } |
| } |
| return 0; |
| } |
| |
| /* Calls flt_init_per_thread() for all proxies, see above. Be careful here, it |
| * returns 0 if an error occurred. This is the opposite of flt_init_all. */ |
| static int |
| flt_init_all_per_thread() |
| { |
| struct proxy *px; |
| int err_code = 0; |
| |
| for (px = proxies_list; px; px = px->next) { |
| if (px->flags & (PR_FL_DISABLED|PR_FL_STOPPED)) |
| continue; |
| |
| err_code = flt_init_per_thread(px); |
| if (err_code & (ERR_ABORT|ERR_FATAL)) { |
| ha_alert("Failed to initialize filters for proxy '%s' for thread %u.\n", |
| px->id, tid); |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| /* |
| * Calls 'check' callback for all filters attached to a proxy. This happens |
| * after the configuration parsing but before filters initialization. Returns |
| * the number of encountered errors. |
| */ |
| int |
| flt_check(struct proxy *proxy) |
| { |
| struct flt_conf *fconf; |
| int err = 0; |
| |
| err += check_implicit_http_comp_flt(proxy); |
| list_for_each_entry(fconf, &proxy->filter_configs, list) { |
| if (fconf->ops->check) |
| err += fconf->ops->check(proxy, fconf); |
| } |
| return err; |
| } |
| |
| /* |
| * Calls 'denit' callback for all filters attached to a proxy. This happens when |
| * HAProxy is stopped. |
| */ |
| void |
| flt_deinit(struct proxy *proxy) |
| { |
| struct flt_conf *fconf, *back; |
| |
| list_for_each_entry_safe(fconf, back, &proxy->filter_configs, list) { |
| if (fconf->ops->deinit) |
| fconf->ops->deinit(proxy, fconf); |
| LIST_DELETE(&fconf->list); |
| free(fconf); |
| } |
| } |
| |
| /* |
| * Calls 'denit_per_thread' callback for all filters attached to a proxy for |
| * each threads. This happens before exiting a thread. |
| */ |
| void |
| flt_deinit_per_thread(struct proxy *proxy) |
| { |
| struct flt_conf *fconf, *back; |
| |
| list_for_each_entry_safe(fconf, back, &proxy->filter_configs, list) { |
| if (fconf->ops->deinit_per_thread) |
| fconf->ops->deinit_per_thread(proxy, fconf); |
| } |
| } |
| |
| |
| /* Calls flt_deinit_per_thread() for all proxies, see above */ |
| static void |
| flt_deinit_all_per_thread() |
| { |
| struct proxy *px; |
| |
| for (px = proxies_list; px; px = px->next) |
| flt_deinit_per_thread(px); |
| } |
| |
| /* Attaches a filter to a stream. Returns -1 if an error occurs, 0 otherwise. */ |
| static int |
| flt_stream_add_filter(struct stream *s, struct flt_conf *fconf, unsigned int flags) |
| { |
| struct filter *f; |
| |
| if (IS_HTX_STRM(s) && !(fconf->flags & FLT_CFG_FL_HTX)) |
| return 0; |
| |
| f = pool_zalloc(pool_head_filter); |
| if (!f) /* not enough memory */ |
| return -1; |
| f->config = fconf; |
| f->flags |= flags; |
| |
| if (FLT_OPS(f)->attach) { |
| int ret = FLT_OPS(f)->attach(s, f); |
| if (ret <= 0) { |
| pool_free(pool_head_filter, f); |
| return ret; |
| } |
| } |
| |
| LIST_APPEND(&strm_flt(s)->filters, &f->list); |
| strm_flt(s)->flags |= STRM_FLT_FL_HAS_FILTERS; |
| return 0; |
| } |
| |
| /* |
| * Called when a stream is created. It attaches all frontend filters to the |
| * stream. Returns -1 if an error occurs, 0 otherwise. |
| */ |
| int |
| flt_stream_init(struct stream *s) |
| { |
| struct flt_conf *fconf; |
| |
| memset(strm_flt(s), 0, sizeof(*strm_flt(s))); |
| LIST_INIT(&strm_flt(s)->filters); |
| list_for_each_entry(fconf, &strm_fe(s)->filter_configs, list) { |
| if (flt_stream_add_filter(s, fconf, 0) < 0) |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Called when a stream is closed or when analyze ends (For an HTTP stream, this |
| * happens after each request/response exchange). When analyze ends, backend |
| * filters are removed. When the stream is closed, all filters attached to the |
| * stream are removed. |
| */ |
| void |
| flt_stream_release(struct stream *s, int only_backend) |
| { |
| struct filter *filter, *back; |
| |
| list_for_each_entry_safe(filter, back, &strm_flt(s)->filters, list) { |
| if (!only_backend || (filter->flags & FLT_FL_IS_BACKEND_FILTER)) { |
| if (FLT_OPS(filter)->detach) |
| FLT_OPS(filter)->detach(s, filter); |
| LIST_DELETE(&filter->list); |
| pool_free(pool_head_filter, filter); |
| } |
| } |
| if (LIST_ISEMPTY(&strm_flt(s)->filters)) |
| strm_flt(s)->flags &= ~STRM_FLT_FL_HAS_FILTERS; |
| } |
| |
| /* |
| * Calls 'stream_start' for all filters attached to a stream. This happens when |
| * the stream is created, just after calling flt_stream_init |
| * function. Returns -1 if an error occurs, 0 otherwise. |
| */ |
| int |
| flt_stream_start(struct stream *s) |
| { |
| struct filter *filter; |
| |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| if (FLT_OPS(filter)->stream_start && FLT_OPS(filter)->stream_start(s, filter) < 0) |
| return -1; |
| } |
| if (strm_li(s) && (strm_li(s)->bind_conf->analysers & AN_REQ_FLT_START_FE)) { |
| s->req.flags |= CF_FLT_ANALYZE; |
| s->req.analysers |= AN_REQ_FLT_END; |
| } |
| return 0; |
| } |
| |
| /* |
| * Calls 'stream_stop' for all filters attached to a stream. This happens when |
| * the stream is stopped, just before calling flt_stream_release function. |
| */ |
| void |
| flt_stream_stop(struct stream *s) |
| { |
| struct filter *filter; |
| |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| if (FLT_OPS(filter)->stream_stop) |
| FLT_OPS(filter)->stream_stop(s, filter); |
| } |
| } |
| |
| /* |
| * Calls 'check_timeouts' for all filters attached to a stream. This happens when |
| * the stream is woken up because of expired timer. |
| */ |
| void |
| flt_stream_check_timeouts(struct stream *s) |
| { |
| struct filter *filter; |
| |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| if (FLT_OPS(filter)->check_timeouts) |
| FLT_OPS(filter)->check_timeouts(s, filter); |
| } |
| } |
| |
| /* |
| * Called when a backend is set for a stream. If the frontend and the backend |
| * are not the same, this function attaches all backend filters to the |
| * stream. Returns -1 if an error occurs, 0 otherwise. |
| */ |
| int |
| flt_set_stream_backend(struct stream *s, struct proxy *be) |
| { |
| struct flt_conf *fconf; |
| struct filter *filter; |
| |
| if (strm_fe(s) == be) |
| goto end; |
| |
| list_for_each_entry(fconf, &be->filter_configs, list) { |
| if (flt_stream_add_filter(s, fconf, FLT_FL_IS_BACKEND_FILTER) < 0) |
| return -1; |
| } |
| |
| end: |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| if (FLT_OPS(filter)->stream_set_backend && |
| FLT_OPS(filter)->stream_set_backend(s, filter, be) < 0) |
| return -1; |
| } |
| if (be->be_req_ana & AN_REQ_FLT_START_BE) { |
| s->req.flags |= CF_FLT_ANALYZE; |
| s->req.analysers |= AN_REQ_FLT_END; |
| } |
| if ((strm_fe(s)->fe_rsp_ana | be->be_rsp_ana) & (AN_RES_FLT_START_FE|AN_RES_FLT_START_BE)) { |
| s->res.flags |= CF_FLT_ANALYZE; |
| s->res.analysers |= AN_RES_FLT_END; |
| } |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Calls 'http_end' callback for all filters attached to a stream. All filters |
| * are called here, but only if there is at least one "data" filter. This |
| * functions is called when all data were parsed and forwarded. 'http_end' |
| * callback is resumable, so this function returns a negative value if an error |
| * occurs, 0 if it needs to wait for some reason, any other value otherwise. |
| */ |
| int |
| flt_http_end(struct stream *s, struct http_msg *msg) |
| { |
| unsigned long long *strm_off = &FLT_STRM_OFF(s, msg->chn); |
| unsigned int offset = 0; |
| int ret = 1; |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s, s->txn, msg); |
| RESUME_FILTER_LOOP(s, msg->chn) { |
| unsigned long long flt_off = FLT_OFF(filter, msg->chn); |
| offset = flt_off - *strm_off; |
| |
| /* Call http_end for data filters only. But the filter offset is |
| * still valid for all filters |
| . */ |
| if (!IS_DATA_FILTER(filter, msg->chn)) |
| continue; |
| |
| if (FLT_OPS(filter)->http_end) { |
| DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); |
| ret = FLT_OPS(filter)->http_end(s, filter, msg); |
| if (ret <= 0) |
| BREAK_EXECUTION(s, msg->chn, end); |
| } |
| } RESUME_FILTER_END; |
| |
| c_adv(msg->chn, offset); |
| *strm_off += offset; |
| |
| end: |
| DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); |
| return ret; |
| } |
| |
| /* |
| * Calls 'http_reset' callback for all filters attached to a stream. This |
| * happens when a 100-continue response is received. |
| */ |
| void |
| flt_http_reset(struct stream *s, struct http_msg *msg) |
| { |
| struct filter *filter; |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s, s->txn, msg); |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| if (FLT_OPS(filter)->http_reset) { |
| DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); |
| FLT_OPS(filter)->http_reset(s, filter, msg); |
| } |
| } |
| DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); |
| } |
| |
| /* |
| * Calls 'http_reply' callback for all filters attached to a stream when HA |
| * decides to stop the HTTP message processing. |
| */ |
| void |
| flt_http_reply(struct stream *s, short status, const struct buffer *msg) |
| { |
| struct filter *filter; |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s, s->txn, msg); |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| if (FLT_OPS(filter)->http_reply) { |
| DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); |
| FLT_OPS(filter)->http_reply(s, filter, status, msg); |
| } |
| } |
| DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); |
| } |
| |
| /* |
| * Calls 'http_payload' callback for all "data" filters attached to a |
| * stream. This function is called when some data can be forwarded in the |
| * AN_REQ_HTTP_XFER_BODY and AN_RES_HTTP_XFER_BODY analyzers. It takes care to |
| * update the filters and the stream offset to be sure that a filter cannot |
| * forward more data than its predecessors. A filter can choose to not forward |
| * all data. Returns a negative value if an error occurs, else the number of |
| * forwarded bytes. |
| */ |
| int |
| flt_http_payload(struct stream *s, struct http_msg *msg, unsigned int len) |
| { |
| struct filter *filter; |
| unsigned long long *strm_off = &FLT_STRM_OFF(s, msg->chn); |
| unsigned int out = co_data(msg->chn); |
| int ret, data; |
| |
| strm_flt(s)->flags &= ~STRM_FLT_FL_HOLD_HTTP_HDRS; |
| |
| ret = data = len - out; |
| DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s, s->txn, msg); |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| unsigned long long *flt_off = &FLT_OFF(filter, msg->chn); |
| unsigned int offset = *flt_off - *strm_off; |
| |
| /* Call http_payload for filters only. Forward all data for |
| * others and update the filter offset |
| */ |
| if (!IS_DATA_FILTER(filter, msg->chn)) { |
| *flt_off += data - offset; |
| continue; |
| } |
| |
| if (FLT_OPS(filter)->http_payload) { |
| DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); |
| ret = FLT_OPS(filter)->http_payload(s, filter, msg, out + offset, data - offset); |
| if (ret < 0) |
| goto end; |
| data = ret + *flt_off - *strm_off; |
| *flt_off += ret; |
| } |
| } |
| |
| /* If nothing was forwarded yet, we take care to hold the headers if |
| * following conditions are met : |
| * |
| * - *strm_off == 0 (nothing forwarded yet) |
| * - ret == 0 (no data forwarded at all on this turn) |
| * - STRM_FLT_FL_HOLD_HTTP_HDRS flag set (at least one filter want to hold the headers) |
| * |
| * Be careful, STRM_FLT_FL_HOLD_HTTP_HDRS is removed before each http_payload loop. |
| * Thus, it must explicitly be set when necessary. We must do that to hold the headers |
| * when there is no payload. |
| */ |
| if (!ret && !*strm_off && (strm_flt(s)->flags & STRM_FLT_FL_HOLD_HTTP_HDRS)) |
| goto end; |
| |
| ret = data; |
| *strm_off += ret; |
| end: |
| DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); |
| return ret; |
| } |
| |
| /* |
| * Calls 'channel_start_analyze' callback for all filters attached to a |
| * stream. This function is called when we start to analyze a request or a |
| * response. For frontend filters, it is called before all other analyzers. For |
| * backend ones, it is called before all backend |
| * analyzers. 'channel_start_analyze' callback is resumable, so this function |
| * returns 0 if an error occurs or if it needs to wait, any other value |
| * otherwise. |
| */ |
| int |
| flt_start_analyze(struct stream *s, struct channel *chn, unsigned int an_bit) |
| { |
| int ret = 1; |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_FLT_ANA, s); |
| |
| /* If this function is called, this means there is at least one filter, |
| * so we do not need to check the filter list's emptiness. */ |
| |
| /* Set flag on channel to tell that the channel is filtered */ |
| chn->flags |= CF_FLT_ANALYZE; |
| chn->analysers |= ((chn->flags & CF_ISRESP) ? AN_RES_FLT_END : AN_REQ_FLT_END); |
| |
| RESUME_FILTER_LOOP(s, chn) { |
| if (!(chn->flags & CF_ISRESP)) { |
| if (an_bit == AN_REQ_FLT_START_BE && |
| !(filter->flags & FLT_FL_IS_BACKEND_FILTER)) |
| continue; |
| } |
| else { |
| if (an_bit == AN_RES_FLT_START_BE && |
| !(filter->flags & FLT_FL_IS_BACKEND_FILTER)) |
| continue; |
| } |
| |
| FLT_OFF(filter, chn) = 0; |
| if (FLT_OPS(filter)->channel_start_analyze) { |
| DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_FLT_ANA, s); |
| ret = FLT_OPS(filter)->channel_start_analyze(s, filter, chn); |
| if (ret <= 0) |
| BREAK_EXECUTION(s, chn, end); |
| } |
| } RESUME_FILTER_END; |
| |
| end: |
| ret = handle_analyzer_result(s, chn, an_bit, ret); |
| DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_FLT_ANA, s); |
| return ret; |
| } |
| |
| /* |
| * Calls 'channel_pre_analyze' callback for all filters attached to a |
| * stream. This function is called BEFORE each analyzer attached to a channel, |
| * expects analyzers responsible for data sending. 'channel_pre_analyze' |
| * callback is resumable, so this function returns 0 if an error occurs or if it |
| * needs to wait, any other value otherwise. |
| * |
| * Note this function can be called many times for the same analyzer. In fact, |
| * it is called until the analyzer finishes its processing. |
| */ |
| int |
| flt_pre_analyze(struct stream *s, struct channel *chn, unsigned int an_bit) |
| { |
| int ret = 1; |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_FLT_ANA, s); |
| |
| RESUME_FILTER_LOOP(s, chn) { |
| if (FLT_OPS(filter)->channel_pre_analyze && (filter->pre_analyzers & an_bit)) { |
| DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_FLT_ANA, s); |
| ret = FLT_OPS(filter)->channel_pre_analyze(s, filter, chn, an_bit); |
| if (ret <= 0) |
| BREAK_EXECUTION(s, chn, check_result); |
| filter->pre_analyzers &= ~an_bit; |
| } |
| } RESUME_FILTER_END; |
| |
| check_result: |
| ret = handle_analyzer_result(s, chn, 0, ret); |
| DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_FLT_ANA, s); |
| return ret; |
| } |
| |
| /* |
| * Calls 'channel_post_analyze' callback for all filters attached to a |
| * stream. This function is called AFTER each analyzer attached to a channel, |
| * expects analyzers responsible for data sending. 'channel_post_analyze' |
| * callback is NOT resumable, so this function returns a 0 if an error occurs, |
| * any other value otherwise. |
| * |
| * Here, AFTER means when the analyzer finishes its processing. |
| */ |
| int |
| flt_post_analyze(struct stream *s, struct channel *chn, unsigned int an_bit) |
| { |
| struct filter *filter; |
| int ret = 1; |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_FLT_ANA, s); |
| |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| if (FLT_OPS(filter)->channel_post_analyze && (filter->post_analyzers & an_bit)) { |
| DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_FLT_ANA, s); |
| ret = FLT_OPS(filter)->channel_post_analyze(s, filter, chn, an_bit); |
| if (ret < 0) |
| break; |
| filter->post_analyzers &= ~an_bit; |
| } |
| } |
| ret = handle_analyzer_result(s, chn, 0, ret); |
| DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_FLT_ANA, s); |
| return ret; |
| } |
| |
| /* |
| * This function is the AN_REQ/RES_FLT_HTTP_HDRS analyzer, used to filter HTTP |
| * headers or a request or a response. Returns 0 if an error occurs or if it |
| * needs to wait, any other value otherwise. |
| */ |
| int |
| flt_analyze_http_headers(struct stream *s, struct channel *chn, unsigned int an_bit) |
| { |
| struct http_msg *msg; |
| int ret = 1; |
| |
| msg = ((chn->flags & CF_ISRESP) ? &s->txn->rsp : &s->txn->req); |
| DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s, s->txn, msg); |
| |
| RESUME_FILTER_LOOP(s, chn) { |
| if (FLT_OPS(filter)->http_headers) { |
| DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); |
| ret = FLT_OPS(filter)->http_headers(s, filter, msg); |
| if (ret <= 0) |
| BREAK_EXECUTION(s, chn, check_result); |
| } |
| } RESUME_FILTER_END; |
| |
| if (HAS_DATA_FILTERS(s, chn)) { |
| size_t data = http_get_hdrs_size(htxbuf(&chn->buf)); |
| struct filter *f; |
| |
| list_for_each_entry(f, &strm_flt(s)->filters, list) |
| FLT_OFF(f, chn) = data; |
| } |
| |
| check_result: |
| ret = handle_analyzer_result(s, chn, an_bit, ret); |
| DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_HTTP_ANA|STRM_EV_FLT_ANA, s); |
| return ret; |
| } |
| |
| /* |
| * Calls 'channel_end_analyze' callback for all filters attached to a |
| * stream. This function is called when we stop to analyze a request or a |
| * response. It is called after all other analyzers. 'channel_end_analyze' |
| * callback is resumable, so this function returns 0 if an error occurs or if it |
| * needs to wait, any other value otherwise. |
| */ |
| int |
| flt_end_analyze(struct stream *s, struct channel *chn, unsigned int an_bit) |
| { |
| int ret = 1; |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_FLT_ANA, s); |
| |
| /* Check if all filters attached on the stream have finished their |
| * processing on this channel. */ |
| if (!(chn->flags & CF_FLT_ANALYZE)) |
| goto sync; |
| |
| RESUME_FILTER_LOOP(s, chn) { |
| FLT_OFF(filter, chn) = 0; |
| unregister_data_filter(s, chn, filter); |
| |
| if (FLT_OPS(filter)->channel_end_analyze) { |
| DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_FLT_ANA, s); |
| ret = FLT_OPS(filter)->channel_end_analyze(s, filter, chn); |
| if (ret <= 0) |
| BREAK_EXECUTION(s, chn, end); |
| } |
| } RESUME_FILTER_END; |
| |
| end: |
| /* We don't remove yet this analyzer because we need to synchronize the |
| * both channels. So here, we just remove the flag CF_FLT_ANALYZE. */ |
| ret = handle_analyzer_result(s, chn, 0, ret); |
| if (ret) { |
| chn->flags &= ~CF_FLT_ANALYZE; |
| |
| /* Pretend there is an activity on both channels. Flag on the |
| * current one will be automatically removed, so only the other |
| * one will remain. This is a way to be sure that |
| * 'channel_end_analyze' callback will have a chance to be |
| * called at least once for the other side to finish the current |
| * processing. Of course, this is the filter responsibility to |
| * wakeup the stream if it choose to loop on this callback. */ |
| s->req.flags |= CF_WAKE_ONCE; |
| s->res.flags |= CF_WAKE_ONCE; |
| } |
| |
| |
| sync: |
| /* Now we can check if filters have finished their work on the both |
| * channels */ |
| if (!(s->req.flags & CF_FLT_ANALYZE) && !(s->res.flags & CF_FLT_ANALYZE)) { |
| /* Sync channels by removing this analyzer for the both channels */ |
| s->req.analysers &= ~AN_REQ_FLT_END; |
| s->res.analysers &= ~AN_RES_FLT_END; |
| |
| /* Remove backend filters from the list */ |
| flt_stream_release(s, 1); |
| DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_FLT_ANA, s); |
| } |
| else { |
| DBG_TRACE_DEVEL("waiting for sync", STRM_EV_STRM_ANA|STRM_EV_FLT_ANA, s); |
| } |
| return ret; |
| } |
| |
| |
| /* |
| * Calls 'tcp_payload' callback for all "data" filters attached to a |
| * stream. This function is called when some data can be forwarded in the |
| * AN_REQ_FLT_XFER_BODY and AN_RES_FLT_XFER_BODY analyzers. It takes care to |
| * update the filters and the stream offset to be sure that a filter cannot |
| * forward more data than its predecessors. A filter can choose to not forward |
| * all data. Returns a negative value if an error occurs, else the number of |
| * forwarded bytes. |
| */ |
| int |
| flt_tcp_payload(struct stream *s, struct channel *chn, unsigned int len) |
| { |
| struct filter *filter; |
| unsigned long long *strm_off = &FLT_STRM_OFF(s, chn); |
| unsigned int out = co_data(chn); |
| int ret, data; |
| |
| ret = data = len - out; |
| DBG_TRACE_ENTER(STRM_EV_TCP_ANA|STRM_EV_FLT_ANA, s); |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| unsigned long long *flt_off = &FLT_OFF(filter, chn); |
| unsigned int offset = *flt_off - *strm_off; |
| |
| /* Call tcp_payload for filters only. Forward all data for |
| * others and update the filter offset |
| */ |
| if (!IS_DATA_FILTER(filter, chn)) { |
| *flt_off += data - offset; |
| continue; |
| } |
| |
| if (FLT_OPS(filter)->tcp_payload) { |
| |
| DBG_TRACE_DEVEL(FLT_ID(filter), STRM_EV_TCP_ANA|STRM_EV_FLT_ANA, s); |
| ret = FLT_OPS(filter)->tcp_payload(s, filter, chn, out + offset, data - offset); |
| if (ret < 0) |
| goto end; |
| data = ret + *flt_off - *strm_off; |
| *flt_off += ret; |
| } |
| } |
| |
| /* Only forward data if the last filter decides to forward something */ |
| if (ret > 0) { |
| ret = data; |
| *strm_off += ret; |
| } |
| end: |
| DBG_TRACE_LEAVE(STRM_EV_TCP_ANA|STRM_EV_FLT_ANA, s); |
| return ret; |
| } |
| |
| /* |
| * Called when TCP data must be filtered on a channel. This function is the |
| * AN_REQ/RES_FLT_XFER_DATA analyzer. When called, it is responsible to forward |
| * data when the proxy is not in http mode. Behind the scene, it calls |
| * consecutively 'tcp_data' and 'tcp_forward_data' callbacks for all "data" |
| * filters attached to a stream. Returns 0 if an error occurs or if it needs to |
| * wait, any other value otherwise. |
| */ |
| int |
| flt_xfer_data(struct stream *s, struct channel *chn, unsigned int an_bit) |
| { |
| unsigned int len; |
| int ret = 1; |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_TCP_ANA|STRM_EV_FLT_ANA, s); |
| |
| /* If there is no "data" filters, we do nothing */ |
| if (!HAS_DATA_FILTERS(s, chn)) |
| goto end; |
| |
| if (s->flags & SF_HTX) { |
| struct htx *htx = htxbuf(&chn->buf); |
| len = htx->data; |
| } |
| else |
| len = c_data(chn); |
| |
| ret = flt_tcp_payload(s, chn, len); |
| if (ret < 0) |
| goto end; |
| c_adv(chn, ret); |
| |
| /* Stop waiting data if: |
| * - it the output is closed |
| * - the input in closed and no data is pending |
| * - There is a READ/WRITE timeout |
| */ |
| if (chn_cons(chn)->flags & SC_FL_SHUT_DONE) { |
| ret = 1; |
| goto end; |
| } |
| if (chn_prod(chn)->flags & SC_FL_ABRT_DONE) { |
| if (((s->flags & SF_HTX) && htx_is_empty(htxbuf(&chn->buf))) || c_empty(chn)) { |
| ret = 1; |
| goto end; |
| } |
| } |
| if (chn->flags & (CF_READ_TIMEOUT|CF_WRITE_TIMEOUT)) { |
| ret = 1; |
| goto end; |
| } |
| |
| /* Wait for data */ |
| DBG_TRACE_DEVEL("waiting for more data", STRM_EV_STRM_ANA|STRM_EV_TCP_ANA|STRM_EV_FLT_ANA, s); |
| return 0; |
| end: |
| /* Terminate the data filtering. If <ret> is negative, an error was |
| * encountered during the filtering. */ |
| ret = handle_analyzer_result(s, chn, an_bit, ret); |
| DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_TCP_ANA|STRM_EV_FLT_ANA, s); |
| return ret; |
| } |
| |
| /* |
| * Handles result of filter's analyzers. It returns 0 if an error occurs or if |
| * it needs to wait, any other value otherwise. |
| */ |
| static int |
| handle_analyzer_result(struct stream *s, struct channel *chn, |
| unsigned int an_bit, int ret) |
| { |
| if (ret < 0) |
| goto return_bad_req; |
| else if (!ret) |
| goto wait; |
| |
| /* End of job, return OK */ |
| if (an_bit) { |
| chn->analysers &= ~an_bit; |
| chn->analyse_exp = TICK_ETERNITY; |
| } |
| return 1; |
| |
| return_bad_req: |
| /* An error occurs */ |
| if (IS_HTX_STRM(s)) { |
| http_set_term_flags(s); |
| |
| if (s->txn->status > 0) |
| http_reply_and_close(s, s->txn->status, NULL); |
| else { |
| s->txn->status = (!(chn->flags & CF_ISRESP)) ? 400 : 502; |
| http_reply_and_close(s, s->txn->status, http_error_message(s)); |
| } |
| } |
| else { |
| sess_set_term_flags(s); |
| stream_retnclose(s, NULL); |
| } |
| |
| if (!(chn->flags & CF_ISRESP)) |
| s->req.analysers &= AN_REQ_FLT_END; |
| else |
| s->res.analysers &= AN_RES_FLT_END; |
| |
| |
| DBG_TRACE_DEVEL("leaving on error", STRM_EV_FLT_ANA|STRM_EV_FLT_ERR, s); |
| return 0; |
| |
| wait: |
| if (!(chn->flags & CF_ISRESP)) |
| channel_dont_connect(chn); |
| DBG_TRACE_DEVEL("wairing for more data", STRM_EV_FLT_ANA, s); |
| return 0; |
| } |
| |
| |
| /* Note: must not be declared <const> as its list will be overwritten. |
| * Please take care of keeping this list alphabetically sorted, doing so helps |
| * all code contributors. |
| * Optional keywords are also declared with a NULL ->parse() function so that |
| * the config parser can report an appropriate error when a known keyword was |
| * not enabled. */ |
| static struct cfg_kw_list cfg_kws = {ILH, { |
| { CFG_LISTEN, "filter", parse_filter }, |
| { 0, NULL, NULL }, |
| } |
| }; |
| |
| INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws); |
| |
| REGISTER_POST_CHECK(flt_init_all); |
| REGISTER_PER_THREAD_INIT(flt_init_all_per_thread); |
| REGISTER_PER_THREAD_DEINIT(flt_deinit_all_per_thread); |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |