| /* |
| * Functions managing stream_interface structures |
| * |
| * Copyright 2000-2012 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #include <sys/socket.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| |
| #include <common/compat.h> |
| #include <common/config.h> |
| #include <common/debug.h> |
| #include <common/standard.h> |
| #include <common/ticks.h> |
| #include <common/time.h> |
| |
| #include <proto/channel.h> |
| #include <proto/connection.h> |
| #include <proto/fd.h> |
| #include <proto/pipe.h> |
| #include <proto/stream_interface.h> |
| #include <proto/task.h> |
| |
| #include <types/pipe.h> |
| |
| /* socket functions used when running a stream interface as a task */ |
| static void stream_int_update(struct stream_interface *si); |
| static void stream_int_update_embedded(struct stream_interface *si); |
| static void stream_int_chk_rcv(struct stream_interface *si); |
| static void stream_int_chk_snd(struct stream_interface *si); |
| static void stream_int_update_conn(struct stream_interface *si); |
| static void stream_int_chk_rcv_conn(struct stream_interface *si); |
| static void stream_int_chk_snd_conn(struct stream_interface *si); |
| static void si_conn_recv_cb(struct connection *conn); |
| static void si_conn_send_cb(struct connection *conn); |
| static int si_conn_wake_cb(struct connection *conn); |
| |
| /* stream-interface operations for embedded tasks */ |
| struct si_ops si_embedded_ops = { |
| .update = stream_int_update_embedded, |
| .chk_rcv = stream_int_chk_rcv, |
| .chk_snd = stream_int_chk_snd, |
| }; |
| |
| /* stream-interface operations for external tasks */ |
| struct si_ops si_task_ops = { |
| .update = stream_int_update, |
| .chk_rcv = stream_int_chk_rcv, |
| .chk_snd = stream_int_chk_snd, |
| }; |
| |
| /* stream-interface operations for connections */ |
| struct si_ops si_conn_ops = { |
| .update = stream_int_update_conn, |
| .chk_rcv = stream_int_chk_rcv_conn, |
| .chk_snd = stream_int_chk_snd_conn, |
| }; |
| |
| struct data_cb si_conn_cb = { |
| .recv = si_conn_recv_cb, |
| .send = si_conn_send_cb, |
| .wake = si_conn_wake_cb, |
| }; |
| |
| /* |
| * This function only has to be called once after a wakeup event in case of |
| * suspected timeout. It controls the stream interface timeouts and sets |
| * si->flags accordingly. It does NOT close anything, as this timeout may |
| * be used for any purpose. It returns 1 if the timeout fired, otherwise |
| * zero. |
| */ |
| int stream_int_check_timeouts(struct stream_interface *si) |
| { |
| if (tick_is_expired(si->exp, now_ms)) { |
| si->flags |= SI_FL_EXP; |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* to be called only when in SI_ST_DIS with SI_FL_ERR */ |
| void stream_int_report_error(struct stream_interface *si) |
| { |
| if (!si->err_type) |
| si->err_type = SI_ET_DATA_ERR; |
| |
| si->ob->flags |= CF_WRITE_ERROR; |
| si->ib->flags |= CF_READ_ERROR; |
| } |
| |
| /* |
| * Returns a message to the client ; the connection is shut down for read, |
| * and the request is cleared so that no server connection can be initiated. |
| * The buffer is marked for read shutdown on the other side to protect the |
| * message, and the buffer write is enabled. The message is contained in a |
| * "chunk". If it is null, then an empty message is used. The reply buffer does |
| * not need to be empty before this, and its contents will not be overwritten. |
| * The primary goal of this function is to return error messages to a client. |
| */ |
| void stream_int_retnclose(struct stream_interface *si, const struct chunk *msg) |
| { |
| channel_auto_read(si->ib); |
| channel_abort(si->ib); |
| channel_auto_close(si->ib); |
| channel_erase(si->ib); |
| |
| bi_erase(si->ob); |
| if (likely(msg && msg->len)) |
| bo_inject(si->ob, msg->str, msg->len); |
| |
| si->ob->wex = tick_add_ifset(now_ms, si->ob->wto); |
| channel_auto_read(si->ob); |
| channel_auto_close(si->ob); |
| channel_shutr_now(si->ob); |
| } |
| |
| /* default update function for scheduled tasks, not used for embedded tasks */ |
| static void stream_int_update(struct stream_interface *si) |
| { |
| DPRINTF(stderr, "%s: si=%p, si->state=%d ib->flags=%08x ob->flags=%08x\n", |
| __FUNCTION__, |
| si, si->state, si->ib->flags, si->ob->flags); |
| |
| if (!(si->flags & SI_FL_DONT_WAKE) && si->owner) |
| task_wakeup(si->owner, TASK_WOKEN_IO); |
| } |
| |
| /* default update function for embedded tasks, to be used at the end of the i/o handler */ |
| static void stream_int_update_embedded(struct stream_interface *si) |
| { |
| int old_flags = si->flags; |
| |
| DPRINTF(stderr, "%s: si=%p, si->state=%d ib->flags=%08x ob->flags=%08x\n", |
| __FUNCTION__, |
| si, si->state, si->ib->flags, si->ob->flags); |
| |
| if (si->state != SI_ST_EST) |
| return; |
| |
| if ((si->ob->flags & (CF_SHUTW|CF_HIJACK|CF_SHUTW_NOW)) == CF_SHUTW_NOW && |
| channel_is_empty(si->ob)) |
| si_shutw(si); |
| |
| if ((si->ob->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_HIJACK)) == 0 && !channel_full(si->ob)) |
| si->flags |= SI_FL_WAIT_DATA; |
| |
| /* we're almost sure that we need some space if the buffer is not |
| * empty, even if it's not full, because the applets can't fill it. |
| */ |
| if ((si->ib->flags & (CF_SHUTR|CF_DONT_READ)) == 0 && !channel_is_empty(si->ib)) |
| si->flags |= SI_FL_WAIT_ROOM; |
| |
| if (si->ob->flags & CF_WRITE_ACTIVITY) { |
| if (tick_isset(si->ob->wex)) |
| si->ob->wex = tick_add_ifset(now_ms, si->ob->wto); |
| } |
| |
| if (si->ib->flags & CF_READ_ACTIVITY || |
| (si->ob->flags & CF_WRITE_ACTIVITY && !(si->flags & SI_FL_INDEP_STR))) { |
| if (tick_isset(si->ib->rex)) |
| si->ib->rex = tick_add_ifset(now_ms, si->ib->rto); |
| } |
| |
| /* save flags to detect changes */ |
| old_flags = si->flags; |
| if (likely((si->ob->flags & (CF_SHUTW|CF_WRITE_PARTIAL|CF_DONT_READ)) == CF_WRITE_PARTIAL && |
| !channel_full(si->ob) && |
| (si->ob->prod->flags & SI_FL_WAIT_ROOM))) |
| si_chk_rcv(si->ob->prod); |
| |
| if (((si->ib->flags & CF_READ_PARTIAL) && !channel_is_empty(si->ib)) && |
| (si->ib->cons->flags & SI_FL_WAIT_DATA)) { |
| si_chk_snd(si->ib->cons); |
| /* check if the consumer has freed some space */ |
| if (!channel_full(si->ib)) |
| si->flags &= ~SI_FL_WAIT_ROOM; |
| } |
| |
| /* Note that we're trying to wake up in two conditions here : |
| * - special event, which needs the holder task attention |
| * - status indicating that the applet can go on working. This |
| * is rather hard because we might be blocking on output and |
| * don't want to wake up on input and vice-versa. The idea is |
| * to only rely on the changes the chk_* might have performed. |
| */ |
| if (/* check stream interface changes */ |
| ((old_flags & ~si->flags) & (SI_FL_WAIT_ROOM|SI_FL_WAIT_DATA)) || |
| |
| /* changes on the production side */ |
| (si->ib->flags & (CF_READ_NULL|CF_READ_ERROR)) || |
| si->state != SI_ST_EST || |
| (si->flags & SI_FL_ERR) || |
| ((si->ib->flags & CF_READ_PARTIAL) && |
| (!si->ib->to_forward || si->ib->cons->state != SI_ST_EST)) || |
| |
| /* changes on the consumption side */ |
| (si->ob->flags & (CF_WRITE_NULL|CF_WRITE_ERROR)) || |
| ((si->ob->flags & CF_WRITE_ACTIVITY) && |
| ((si->ob->flags & CF_SHUTW) || |
| si->ob->prod->state != SI_ST_EST || |
| (channel_is_empty(si->ob) && !si->ob->to_forward)))) { |
| if (!(si->flags & SI_FL_DONT_WAKE) && si->owner) |
| task_wakeup(si->owner, TASK_WOKEN_IO); |
| } |
| if (si->ib->flags & CF_READ_ACTIVITY) |
| si->ib->flags &= ~CF_READ_DONTWAIT; |
| } |
| |
| /* |
| * This function performs a shutdown-read on a stream interface in a connected |
| * or init state (it does nothing for other states). It either shuts the read |
| * side or marks itself as closed. The buffer flags are updated to reflect the |
| * new state. If the stream interface has SI_FL_NOHALF, we also forward the |
| * close to the write side. If a control layer is defined, then it is supposed |
| * to be a socket layer and file descriptors are then shutdown or closed |
| * accordingly. If no control layer is defined, then the SI is supposed to be |
| * an embedded one and the owner task is woken up if it exists. The function |
| * does not disable polling on the FD by itself, it returns non-zero instead |
| * if the caller needs to do so (except when the FD is deleted where this is |
| * implicit). |
| */ |
| int stream_int_shutr(struct stream_interface *si) |
| { |
| struct connection *conn = si->conn; |
| |
| si->ib->flags &= ~CF_SHUTR_NOW; |
| if (si->ib->flags & CF_SHUTR) |
| return 0; |
| si->ib->flags |= CF_SHUTR; |
| si->ib->rex = TICK_ETERNITY; |
| si->flags &= ~SI_FL_WAIT_ROOM; |
| |
| if (si->state != SI_ST_EST && si->state != SI_ST_CON) |
| return 0; |
| |
| if (si->ob->flags & CF_SHUTW) { |
| conn_xprt_close(si->conn); |
| if (conn->ctrl) |
| fd_delete(si_fd(si)); |
| si->state = SI_ST_DIS; |
| si->exp = TICK_ETERNITY; |
| |
| if (si->release) |
| si->release(si); |
| } |
| else if (si->flags & SI_FL_NOHALF) { |
| /* we want to immediately forward this close to the write side */ |
| return stream_int_shutw(si); |
| } |
| else if (conn->ctrl) { |
| /* we want the caller to disable polling on this FD */ |
| return 1; |
| } |
| |
| /* note that if the task exists, it must unregister itself once it runs */ |
| if (!conn->ctrl && !(si->flags & SI_FL_DONT_WAKE) && si->owner) |
| task_wakeup(si->owner, TASK_WOKEN_IO); |
| return 0; |
| } |
| |
| /* |
| * This function performs a shutdown-write on a stream interface in a connected or |
| * init state (it does nothing for other states). It either shuts the write side |
| * or marks itself as closed. The buffer flags are updated to reflect the new state. |
| * It does also close everything if the SI was marked as being in error state. If |
| * there is a data-layer shutdown, it is called. If a control layer is defined, then |
| * it is supposed to be a socket layer and file descriptors are then shutdown or |
| * closed accordingly. If no control layer is defined, then the SI is supposed to |
| * be an embedded one and the owner task is woken up if it exists. The function |
| * does not disable polling on the FD by itself, it returns non-zero instead if |
| * the caller needs to do so (except when the FD is deleted where this is implicit). |
| */ |
| int stream_int_shutw(struct stream_interface *si) |
| { |
| struct connection *conn = si->conn; |
| |
| si->ob->flags &= ~CF_SHUTW_NOW; |
| if (si->ob->flags & CF_SHUTW) |
| return 0; |
| si->ob->flags |= CF_SHUTW; |
| si->ob->wex = TICK_ETERNITY; |
| si->flags &= ~SI_FL_WAIT_DATA; |
| |
| switch (si->state) { |
| case SI_ST_EST: |
| /* we have to shut before closing, otherwise some short messages |
| * may never leave the system, especially when there are remaining |
| * unread data in the socket input buffer, or when nolinger is set. |
| * However, if SI_FL_NOLINGER is explicitly set, we know there is |
| * no risk so we close both sides immediately. |
| */ |
| if (si->flags & SI_FL_ERR) { |
| /* quick close, the socket is already shut. Remove pending flags. */ |
| si->flags &= ~SI_FL_NOLINGER; |
| } else if (si->flags & SI_FL_NOLINGER) { |
| si->flags &= ~SI_FL_NOLINGER; |
| if (conn->ctrl) { |
| setsockopt(si_fd(si), SOL_SOCKET, SO_LINGER, |
| (struct linger *) &nolinger, sizeof(struct linger)); |
| } |
| /* unclean data-layer shutdown */ |
| if (conn->xprt && conn->xprt->shutw) |
| conn->xprt->shutw(conn, 0); |
| } else { |
| /* clean data-layer shutdown */ |
| if (conn->xprt && conn->xprt->shutw) |
| conn->xprt->shutw(conn, 1); |
| |
| if (!(si->flags & SI_FL_NOHALF)) { |
| /* We shutdown transport layer */ |
| if (conn->ctrl) |
| shutdown(si_fd(si), SHUT_WR); |
| |
| if (!(si->ib->flags & (CF_SHUTR|CF_DONT_READ))) { |
| /* OK just a shutw, but we want the caller |
| * to disable polling on this FD if exists. |
| */ |
| return !!conn->ctrl; |
| } |
| } |
| } |
| |
| /* fall through */ |
| case SI_ST_CON: |
| /* we may have to close a pending connection, and mark the |
| * response buffer as shutr |
| */ |
| conn_xprt_close(si->conn); |
| if (conn->ctrl) |
| fd_delete(si_fd(si)); |
| /* fall through */ |
| case SI_ST_CER: |
| case SI_ST_QUE: |
| case SI_ST_TAR: |
| si->state = SI_ST_DIS; |
| |
| if (si->release) |
| si->release(si); |
| default: |
| si->flags &= ~SI_FL_WAIT_ROOM; |
| si->ib->flags |= CF_SHUTR; |
| si->ib->rex = TICK_ETERNITY; |
| si->exp = TICK_ETERNITY; |
| } |
| |
| /* note that if the task exists, it must unregister itself once it runs */ |
| if (!conn->ctrl && !(si->flags & SI_FL_DONT_WAKE) && si->owner) |
| task_wakeup(si->owner, TASK_WOKEN_IO); |
| return 0; |
| } |
| |
| /* default chk_rcv function for scheduled tasks */ |
| static void stream_int_chk_rcv(struct stream_interface *si) |
| { |
| struct channel *ib = si->ib; |
| |
| DPRINTF(stderr, "%s: si=%p, si->state=%d ib->flags=%08x ob->flags=%08x\n", |
| __FUNCTION__, |
| si, si->state, si->ib->flags, si->ob->flags); |
| |
| if (unlikely(si->state != SI_ST_EST || (ib->flags & (CF_SHUTR|CF_HIJACK|CF_DONT_READ)))) |
| return; |
| |
| if (channel_full(ib)) { |
| /* stop reading */ |
| si->flags |= SI_FL_WAIT_ROOM; |
| } |
| else { |
| /* (re)start reading */ |
| si->flags &= ~SI_FL_WAIT_ROOM; |
| if (!(si->flags & SI_FL_DONT_WAKE) && si->owner) |
| task_wakeup(si->owner, TASK_WOKEN_IO); |
| } |
| } |
| |
| /* default chk_snd function for scheduled tasks */ |
| static void stream_int_chk_snd(struct stream_interface *si) |
| { |
| struct channel *ob = si->ob; |
| |
| DPRINTF(stderr, "%s: si=%p, si->state=%d ib->flags=%08x ob->flags=%08x\n", |
| __FUNCTION__, |
| si, si->state, si->ib->flags, si->ob->flags); |
| |
| if (unlikely(si->state != SI_ST_EST || (si->ob->flags & CF_SHUTW))) |
| return; |
| |
| if (!(si->flags & SI_FL_WAIT_DATA) || /* not waiting for data */ |
| channel_is_empty(ob)) /* called with nothing to send ! */ |
| return; |
| |
| /* Otherwise there are remaining data to be sent in the buffer, |
| * so we tell the handler. |
| */ |
| si->flags &= ~SI_FL_WAIT_DATA; |
| if (!tick_isset(ob->wex)) |
| ob->wex = tick_add_ifset(now_ms, ob->wto); |
| |
| if (!(si->flags & SI_FL_DONT_WAKE) && si->owner) |
| task_wakeup(si->owner, TASK_WOKEN_IO); |
| } |
| |
| /* Register an applet to handle a stream_interface as part of the stream |
| * interface's owner task, which is returned. The SI will wake it up everytime |
| * it is solicited. The task's processing function must call the applet's |
| * function before returning. It must be deleted by the task handler using |
| * stream_int_unregister_handler(), possibly from within the function itself. |
| * It also pre-initializes applet.state to zero and the connection context |
| * to NULL. |
| */ |
| struct task *stream_int_register_handler(struct stream_interface *si, struct si_applet *app) |
| { |
| DPRINTF(stderr, "registering handler %p for si %p (was %p)\n", app, si, si->owner); |
| |
| si_prepare_embedded(si); |
| set_target_applet(&si->conn->target, app); |
| si->release = app->release; |
| si->flags |= SI_FL_WAIT_DATA; |
| return si->owner; |
| } |
| |
| /* Register a function to handle a stream_interface as a standalone task. The |
| * new task itself is returned and is assigned as si->owner. The stream_interface |
| * pointer will be pointed to by the task's context. The handler can be detached |
| * by using stream_int_unregister_handler(). |
| * FIXME: the code should be updated to ensure that we don't change si->owner |
| * anymore as this is not needed. However, process_session still relies on it. |
| */ |
| struct task *stream_int_register_handler_task(struct stream_interface *si, |
| struct task *(*fct)(struct task *)) |
| { |
| struct task *t; |
| |
| DPRINTF(stderr, "registering handler %p for si %p (was %p)\n", fct, si, si->owner); |
| |
| si_prepare_task(si); |
| clear_target(&si->conn->target); |
| si->release = NULL; |
| si->flags |= SI_FL_WAIT_DATA; |
| |
| t = task_new(); |
| si->owner = t; |
| if (!t) |
| return t; |
| |
| set_target_task(&si->conn->target, t); |
| |
| t->process = fct; |
| t->context = si; |
| task_wakeup(si->owner, TASK_WOKEN_INIT); |
| |
| return t; |
| } |
| |
| /* Unregister a stream interface handler. This must be called by the handler task |
| * itself when it detects that it is in the SI_ST_DIS state. This function can |
| * both detach standalone handlers and embedded handlers. |
| */ |
| void stream_int_unregister_handler(struct stream_interface *si) |
| { |
| if (si->conn->target.type == TARG_TYPE_TASK) { |
| /* external handler : kill the task */ |
| task_delete(si->conn->target.ptr.t); |
| task_free(si->conn->target.ptr.t); |
| } |
| si->release = NULL; |
| si->owner = NULL; |
| clear_target(&si->conn->target); |
| } |
| |
| /* This callback is used to send a valid PROXY protocol line to a socket being |
| * established. It returns 0 if it fails in a fatal way or needs to poll to go |
| * further, otherwise it returns non-zero and removes itself from the connection's |
| * flags (the bit is provided in <flag> by the caller). It is designed to be |
| * called by the connection handler and relies on it to commit polling changes. |
| */ |
| int conn_si_send_proxy(struct connection *conn, unsigned int flag) |
| { |
| struct stream_interface *si = conn->owner; |
| |
| /* we might have been called just after an asynchronous shutw */ |
| if (conn->flags & CO_FL_SOCK_WR_SH) |
| goto out_error; |
| |
| /* If we have a PROXY line to send, we'll use this to validate the |
| * connection, in which case the connection is validated only once |
| * we've sent the whole proxy line. Otherwise we use connect(). |
| */ |
| if (si->send_proxy_ofs) { |
| int ret; |
| |
| /* The target server expects a PROXY line to be sent first. |
| * If the send_proxy_ofs is negative, it corresponds to the |
| * offset to start sending from then end of the proxy string |
| * (which is recomputed every time since it's constant). If |
| * it is positive, it means we have to send from the start. |
| */ |
| ret = make_proxy_line(trash.str, trash.size, &si->ob->prod->conn->addr.from, &si->ob->prod->conn->addr.to); |
| if (!ret) |
| goto out_error; |
| |
| if (si->send_proxy_ofs > 0) |
| si->send_proxy_ofs = -ret; /* first call */ |
| |
| /* we have to send trash from (ret+sp for -sp bytes). If the |
| * data layer has a pending write, we'll also set MSG_MORE. |
| */ |
| ret = send(conn->t.sock.fd, trash.str + ret + si->send_proxy_ofs, -si->send_proxy_ofs, |
| (conn->flags & CO_FL_DATA_WR_ENA) ? MSG_MORE : 0); |
| |
| if (ret == 0) |
| goto out_wait; |
| |
| if (ret < 0) { |
| if (errno == EAGAIN) |
| goto out_wait; |
| goto out_error; |
| } |
| |
| si->send_proxy_ofs += ret; /* becomes zero once complete */ |
| if (si->send_proxy_ofs != 0) |
| goto out_wait; |
| |
| /* OK we've sent the whole line, we're connected */ |
| } |
| |
| /* The connection is ready now, simply return and let the connection |
| * handler notify upper layers if needed. |
| */ |
| if (conn->flags & CO_FL_WAIT_L4_CONN) |
| conn->flags &= ~CO_FL_WAIT_L4_CONN; |
| conn->flags &= ~flag; |
| return 1; |
| |
| out_error: |
| /* Write error on the file descriptor */ |
| conn->flags |= CO_FL_ERROR; |
| conn->flags &= ~flag; |
| return 0; |
| |
| out_wait: |
| __conn_sock_stop_recv(conn); |
| __conn_sock_poll_send(conn); |
| return 0; |
| } |
| |
| /* Callback to be used by connection I/O handlers upon completion. It differs from |
| * the update function in that it is designed to be called by lower layers after I/O |
| * events have been completed. It will also try to wake the associated task up if |
| * an important event requires special handling. It relies on the connection handler |
| * to commit any polling updates. The function always returns 0. |
| */ |
| static int si_conn_wake_cb(struct connection *conn) |
| { |
| struct stream_interface *si = conn->owner; |
| |
| DPRINTF(stderr, "%s: si=%p, si->state=%d ib->flags=%08x ob->flags=%08x\n", |
| __FUNCTION__, |
| si, si->state, si->ib->flags, si->ob->flags); |
| |
| if (conn->flags & CO_FL_ERROR) |
| si->flags |= SI_FL_ERR; |
| |
| /* check for recent connection establishment */ |
| if (unlikely(!(conn->flags & (CO_FL_WAIT_L4_CONN | CO_FL_WAIT_L6_CONN | CO_FL_CONNECTED)))) { |
| si->exp = TICK_ETERNITY; |
| si->ob->flags |= CF_WRITE_NULL; |
| } |
| |
| /* process consumer side */ |
| if (channel_is_empty(si->ob)) { |
| if (((si->ob->flags & (CF_SHUTW|CF_HIJACK|CF_SHUTW_NOW)) == CF_SHUTW_NOW) && |
| (si->state == SI_ST_EST)) |
| stream_int_shutw(si); |
| __conn_data_stop_send(conn); |
| si->ob->wex = TICK_ETERNITY; |
| } |
| |
| if ((si->ob->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_HIJACK)) == 0 && !channel_full(si->ob)) |
| si->flags |= SI_FL_WAIT_DATA; |
| |
| if (si->ob->flags & CF_WRITE_ACTIVITY) { |
| /* update timeouts if we have written something */ |
| if ((si->ob->flags & (CF_SHUTW|CF_WRITE_PARTIAL)) == CF_WRITE_PARTIAL && |
| !channel_is_empty(si->ob)) |
| if (tick_isset(si->ob->wex)) |
| si->ob->wex = tick_add_ifset(now_ms, si->ob->wto); |
| |
| if (!(si->flags & SI_FL_INDEP_STR)) |
| if (tick_isset(si->ib->rex)) |
| si->ib->rex = tick_add_ifset(now_ms, si->ib->rto); |
| |
| if (likely((si->ob->flags & (CF_SHUTW|CF_WRITE_PARTIAL|CF_DONT_READ)) == CF_WRITE_PARTIAL && |
| !channel_full(si->ob) && |
| (si->ob->prod->flags & SI_FL_WAIT_ROOM))) |
| si_chk_rcv(si->ob->prod); |
| } |
| |
| /* process producer side. |
| * We might have some data the consumer is waiting for. |
| * We can do fast-forwarding, but we avoid doing this for partial |
| * buffers, because it is very likely that it will be done again |
| * immediately afterwards once the following data is parsed (eg: |
| * HTTP chunking). |
| */ |
| if (((si->ib->flags & CF_READ_PARTIAL) && !channel_is_empty(si->ib)) && |
| (si->ib->pipe /* always try to send spliced data */ || |
| (si->ib->buf->i == 0 && (si->ib->cons->flags & SI_FL_WAIT_DATA)))) { |
| int last_len = si->ib->pipe ? si->ib->pipe->data : 0; |
| |
| si_chk_snd(si->ib->cons); |
| |
| /* check if the consumer has freed some space either in the |
| * buffer or in the pipe. |
| */ |
| if (!channel_full(si->ib) && |
| (!last_len || !si->ib->pipe || si->ib->pipe->data < last_len)) |
| si->flags &= ~SI_FL_WAIT_ROOM; |
| } |
| |
| if (si->flags & SI_FL_WAIT_ROOM) { |
| __conn_data_stop_recv(conn); |
| si->ib->rex = TICK_ETERNITY; |
| } |
| else if ((si->ib->flags & (CF_SHUTR|CF_READ_PARTIAL|CF_DONT_READ|CF_READ_NOEXP)) == CF_READ_PARTIAL && |
| !channel_full(si->ib)) { |
| if (tick_isset(si->ib->rex)) |
| si->ib->rex = tick_add_ifset(now_ms, si->ib->rto); |
| } |
| |
| /* wake the task up only when needed */ |
| if (/* changes on the production side */ |
| (si->ib->flags & (CF_READ_NULL|CF_READ_ERROR)) || |
| si->state != SI_ST_EST || |
| (si->flags & SI_FL_ERR) || |
| ((si->ib->flags & CF_READ_PARTIAL) && |
| (!si->ib->to_forward || si->ib->cons->state != SI_ST_EST)) || |
| |
| /* changes on the consumption side */ |
| (si->ob->flags & (CF_WRITE_NULL|CF_WRITE_ERROR)) || |
| ((si->ob->flags & CF_WRITE_ACTIVITY) && |
| ((si->ob->flags & CF_SHUTW) || |
| si->ob->prod->state != SI_ST_EST || |
| (channel_is_empty(si->ob) && !si->ob->to_forward)))) { |
| task_wakeup(si->owner, TASK_WOKEN_IO); |
| } |
| if (si->ib->flags & CF_READ_ACTIVITY) |
| si->ib->flags &= ~CF_READ_DONTWAIT; |
| return 0; |
| } |
| |
| /* |
| * This function is called to send buffer data to a stream socket. |
| * It returns -1 in case of unrecoverable error, otherwise zero. |
| * It iterates the transport layer's snd_buf function. It relies on the |
| * caller to commit polling changes. |
| */ |
| static int si_conn_send_loop(struct connection *conn) |
| { |
| struct stream_interface *si = conn->owner; |
| struct channel *chn = si->ob; |
| int ret; |
| |
| if (chn->pipe && conn->xprt->snd_pipe) { |
| ret = conn->xprt->snd_pipe(conn, chn->pipe); |
| if (ret > 0) |
| chn->flags |= CF_WRITE_PARTIAL; |
| |
| if (!chn->pipe->data) { |
| put_pipe(chn->pipe); |
| chn->pipe = NULL; |
| } |
| |
| if (conn->flags & CO_FL_ERROR) |
| return -1; |
| } |
| |
| /* At this point, the pipe is empty, but we may still have data pending |
| * in the normal buffer. |
| */ |
| if (!chn->buf->o) |
| return 0; |
| |
| /* when we're in this loop, we already know that there is no spliced |
| * data left, and that there are sendable buffered data. |
| */ |
| while (!(conn->flags & (CO_FL_ERROR | CO_FL_SOCK_WR_SH | CO_FL_DATA_WR_SH | CO_FL_WAIT_DATA | CO_FL_WAIT_WR | CO_FL_HANDSHAKE))) { |
| /* check if we want to inform the kernel that we're interested in |
| * sending more data after this call. We want this if : |
| * - we're about to close after this last send and want to merge |
| * the ongoing FIN with the last segment. |
| * - we know we can't send everything at once and must get back |
| * here because of unaligned data |
| * - there is still a finite amount of data to forward |
| * The test is arranged so that the most common case does only 2 |
| * tests. |
| */ |
| unsigned int send_flag = MSG_DONTWAIT | MSG_NOSIGNAL; |
| |
| if ((!(chn->flags & (CF_NEVER_WAIT|CF_SEND_DONTWAIT)) && |
| ((chn->to_forward && chn->to_forward != CHN_INFINITE_FORWARD) || |
| (chn->flags & CF_EXPECT_MORE))) || |
| ((chn->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_HIJACK)) == CF_SHUTW_NOW)) |
| send_flag |= MSG_MORE; |
| |
| ret = conn->xprt->snd_buf(conn, chn->buf, send_flag); |
| if (ret <= 0) |
| break; |
| |
| chn->flags |= CF_WRITE_PARTIAL; |
| |
| if (!chn->buf->o) { |
| /* Always clear both flags once everything has been sent, they're one-shot */ |
| chn->flags &= ~(CF_EXPECT_MORE | CF_SEND_DONTWAIT); |
| break; |
| } |
| |
| /* if some data remain in the buffer, it's only because the |
| * system bufers are full, so we don't want to loop again. |
| */ |
| break; |
| } /* while */ |
| |
| if (conn->flags & CO_FL_ERROR) |
| return -1; |
| |
| return 0; |
| } |
| |
| |
| /* Updates the timers and flags of a stream interface attached to a connection, |
| * depending on the buffers' flags. It should only be called once after the |
| * buffer flags have settled down, and before they are cleared. It doesn't |
| * harm to call it as often as desired (it just slightly hurts performance). |
| * It is only meant to be called by upper layers after buffer flags have been |
| * manipulated by analysers. |
| */ |
| void stream_int_update_conn(struct stream_interface *si) |
| { |
| struct channel *ib = si->ib; |
| struct channel *ob = si->ob; |
| |
| /* Check if we need to close the read side */ |
| if (!(ib->flags & CF_SHUTR)) { |
| /* Read not closed, update FD status and timeout for reads */ |
| if ((ib->flags & (CF_HIJACK|CF_DONT_READ)) || channel_full(ib)) { |
| /* stop reading */ |
| if (!(si->flags & SI_FL_WAIT_ROOM)) { |
| if (!(ib->flags & (CF_HIJACK|CF_DONT_READ))) /* full */ |
| si->flags |= SI_FL_WAIT_ROOM; |
| conn_data_stop_recv(si->conn); |
| ib->rex = TICK_ETERNITY; |
| } |
| } |
| else { |
| /* (re)start reading and update timeout. Note: we don't recompute the timeout |
| * everytime we get here, otherwise it would risk never to expire. We only |
| * update it if is was not yet set. The stream socket handler will already |
| * have updated it if there has been a completed I/O. |
| */ |
| si->flags &= ~SI_FL_WAIT_ROOM; |
| conn_data_want_recv(si->conn); |
| if (!(ib->flags & (CF_READ_NOEXP|CF_DONT_READ)) && !tick_isset(ib->rex)) |
| ib->rex = tick_add_ifset(now_ms, ib->rto); |
| } |
| } |
| |
| /* Check if we need to close the write side */ |
| if (!(ob->flags & CF_SHUTW)) { |
| /* Write not closed, update FD status and timeout for writes */ |
| if (channel_is_empty(ob)) { |
| /* stop writing */ |
| if (!(si->flags & SI_FL_WAIT_DATA)) { |
| if ((ob->flags & (CF_HIJACK|CF_SHUTW_NOW)) == 0) |
| si->flags |= SI_FL_WAIT_DATA; |
| conn_data_stop_send(si->conn); |
| ob->wex = TICK_ETERNITY; |
| } |
| } |
| else { |
| /* (re)start writing and update timeout. Note: we don't recompute the timeout |
| * everytime we get here, otherwise it would risk never to expire. We only |
| * update it if is was not yet set. The stream socket handler will already |
| * have updated it if there has been a completed I/O. |
| */ |
| si->flags &= ~SI_FL_WAIT_DATA; |
| conn_data_want_send(si->conn); |
| if (!tick_isset(ob->wex)) { |
| ob->wex = tick_add_ifset(now_ms, ob->wto); |
| if (tick_isset(ib->rex) && !(si->flags & SI_FL_INDEP_STR)) { |
| /* Note: depending on the protocol, we don't know if we're waiting |
| * for incoming data or not. So in order to prevent the socket from |
| * expiring read timeouts during writes, we refresh the read timeout, |
| * except if it was already infinite or if we have explicitly setup |
| * independent streams. |
| */ |
| ib->rex = tick_add_ifset(now_ms, ib->rto); |
| } |
| } |
| } |
| } |
| } |
| |
| /* This function is used for inter-stream-interface calls. It is called by the |
| * consumer to inform the producer side that it may be interested in checking |
| * for free space in the buffer. Note that it intentionally does not update |
| * timeouts, so that we can still check them later at wake-up. This function is |
| * dedicated to connection-based stream interfaces. |
| */ |
| static void stream_int_chk_rcv_conn(struct stream_interface *si) |
| { |
| struct channel *ib = si->ib; |
| |
| if (unlikely(si->state > SI_ST_EST || (ib->flags & CF_SHUTR))) |
| return; |
| |
| if ((ib->flags & (CF_HIJACK|CF_DONT_READ)) || channel_full(ib)) { |
| /* stop reading */ |
| if (!(ib->flags & (CF_HIJACK|CF_DONT_READ))) /* full */ |
| si->flags |= SI_FL_WAIT_ROOM; |
| conn_data_stop_recv(si->conn); |
| } |
| else { |
| /* (re)start reading */ |
| si->flags &= ~SI_FL_WAIT_ROOM; |
| conn_data_want_recv(si->conn); |
| } |
| } |
| |
| |
| /* This function is used for inter-stream-interface calls. It is called by the |
| * producer to inform the consumer side that it may be interested in checking |
| * for data in the buffer. Note that it intentionally does not update timeouts, |
| * so that we can still check them later at wake-up. |
| */ |
| static void stream_int_chk_snd_conn(struct stream_interface *si) |
| { |
| struct channel *ob = si->ob; |
| |
| if (unlikely(si->state > SI_ST_EST || (ob->flags & CF_SHUTW))) |
| return; |
| |
| if (unlikely(channel_is_empty(ob))) /* called with nothing to send ! */ |
| return; |
| |
| if (!ob->pipe && /* spliced data wants to be forwarded ASAP */ |
| (!(si->flags & SI_FL_WAIT_DATA) || /* not waiting for data */ |
| (fdtab[si_fd(si)].ev & FD_POLL_OUT))) /* we'll be called anyway */ |
| return; |
| |
| if (!(si->conn->flags & CO_FL_HANDSHAKE) && si_conn_send_loop(si->conn) < 0) { |
| /* Write error on the file descriptor. We mark the FD as STERROR so |
| * that we don't use it anymore and we notify the task. |
| */ |
| fdtab[si_fd(si)].ev &= ~FD_POLL_STICKY; |
| __conn_data_stop_both(si->conn); |
| si->flags |= SI_FL_ERR; |
| si->conn->flags |= CO_FL_ERROR; |
| goto out_wakeup; |
| } |
| |
| /* OK, so now we know that some data might have been sent, and that we may |
| * have to poll first. We have to do that too if the buffer is not empty. |
| */ |
| if (channel_is_empty(ob)) { |
| /* the connection is established but we can't write. Either the |
| * buffer is empty, or we just refrain from sending because the |
| * ->o limit was reached. Maybe we just wrote the last |
| * chunk and need to close. |
| */ |
| if (((ob->flags & (CF_SHUTW|CF_HIJACK|CF_AUTO_CLOSE|CF_SHUTW_NOW)) == |
| (CF_AUTO_CLOSE|CF_SHUTW_NOW)) && |
| (si->state == SI_ST_EST)) { |
| si_shutw(si); |
| goto out_wakeup; |
| } |
| |
| if ((ob->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_HIJACK)) == 0) |
| si->flags |= SI_FL_WAIT_DATA; |
| ob->wex = TICK_ETERNITY; |
| } |
| else { |
| /* Otherwise there are remaining data to be sent in the buffer, |
| * which means we have to poll before doing so. |
| */ |
| __conn_data_want_send(si->conn); |
| si->flags &= ~SI_FL_WAIT_DATA; |
| if (!tick_isset(ob->wex)) |
| ob->wex = tick_add_ifset(now_ms, ob->wto); |
| } |
| |
| if (likely(ob->flags & CF_WRITE_ACTIVITY)) { |
| /* update timeout if we have written something */ |
| if ((ob->flags & (CF_SHUTW|CF_WRITE_PARTIAL)) == CF_WRITE_PARTIAL && |
| !channel_is_empty(ob)) |
| ob->wex = tick_add_ifset(now_ms, ob->wto); |
| |
| if (tick_isset(si->ib->rex) && !(si->flags & SI_FL_INDEP_STR)) { |
| /* Note: to prevent the client from expiring read timeouts |
| * during writes, we refresh it. We only do this if the |
| * interface is not configured for "independent streams", |
| * because for some applications it's better not to do this, |
| * for instance when continuously exchanging small amounts |
| * of data which can full the socket buffers long before a |
| * write timeout is detected. |
| */ |
| si->ib->rex = tick_add_ifset(now_ms, si->ib->rto); |
| } |
| } |
| |
| /* in case of special condition (error, shutdown, end of write...), we |
| * have to notify the task. |
| */ |
| if (likely((ob->flags & (CF_WRITE_NULL|CF_WRITE_ERROR|CF_SHUTW)) || |
| (channel_is_empty(ob) && !ob->to_forward) || |
| si->state != SI_ST_EST)) { |
| out_wakeup: |
| if (!(si->flags & SI_FL_DONT_WAKE) && si->owner) |
| task_wakeup(si->owner, TASK_WOKEN_IO); |
| } |
| |
| /* commit possible polling changes */ |
| conn_cond_update_polling(si->conn); |
| } |
| |
| /* |
| * This is the callback which is called by the connection layer to receive data |
| * into the buffer from the connection. It iterates over the transport layer's |
| * rcv_buf function. |
| */ |
| static void si_conn_recv_cb(struct connection *conn) |
| { |
| struct stream_interface *si = conn->owner; |
| struct channel *chn = si->ib; |
| int ret, max, cur_read; |
| int read_poll = MAX_READ_POLL_LOOPS; |
| |
| /* stop immediately on errors. Note that we DON'T want to stop on |
| * POLL_ERR, as the poller might report a write error while there |
| * are still data available in the recv buffer. This typically |
| * happens when we send too large a request to a backend server |
| * which rejects it before reading it all. |
| */ |
| if (conn->flags & CO_FL_ERROR) |
| goto out_error; |
| |
| /* stop here if we reached the end of data */ |
| if (conn_data_read0_pending(conn)) |
| goto out_shutdown_r; |
| |
| /* maybe we were called immediately after an asynchronous shutr */ |
| if (chn->flags & CF_SHUTR) |
| return; |
| |
| cur_read = 0; |
| |
| /* First, let's see if we may splice data across the channel without |
| * using a buffer. |
| */ |
| if (conn->xprt->rcv_pipe && |
| chn->to_forward >= MIN_SPLICE_FORWARD && chn->flags & CF_KERN_SPLICING) { |
| if (buffer_not_empty(chn->buf)) { |
| /* We're embarrassed, there are already data pending in |
| * the buffer and we don't want to have them at two |
| * locations at a time. Let's indicate we need some |
| * place and ask the consumer to hurry. |
| */ |
| goto abort_splice; |
| } |
| |
| if (unlikely(chn->pipe == NULL)) { |
| if (pipes_used >= global.maxpipes || !(chn->pipe = get_pipe())) { |
| chn->flags &= ~CF_KERN_SPLICING; |
| goto abort_splice; |
| } |
| } |
| |
| ret = conn->xprt->rcv_pipe(conn, chn->pipe, chn->to_forward); |
| if (ret < 0) { |
| /* splice not supported on this end, let's disable it */ |
| chn->flags &= ~CF_KERN_SPLICING; |
| goto abort_splice; |
| } |
| |
| if (ret > 0) { |
| if (chn->to_forward != CHN_INFINITE_FORWARD) |
| chn->to_forward -= ret; |
| chn->total += ret; |
| cur_read += ret; |
| chn->flags |= CF_READ_PARTIAL; |
| } |
| |
| if (conn_data_read0_pending(conn)) |
| goto out_shutdown_r; |
| |
| if (conn->flags & CO_FL_ERROR) |
| goto out_error; |
| |
| if (conn->flags & CO_FL_WAIT_ROOM) /* most likely the pipe is full */ |
| si->flags |= SI_FL_WAIT_ROOM; |
| |
| /* splice not possible (anymore), let's go on on standard copy */ |
| } |
| |
| abort_splice: |
| /* release the pipe if we can, which is almost always the case */ |
| if (chn->pipe && !chn->pipe->data) { |
| put_pipe(chn->pipe); |
| chn->pipe = NULL; |
| } |
| |
| while (!chn->pipe && !(conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_DATA_RD_SH | CO_FL_WAIT_RD | CO_FL_WAIT_ROOM | CO_FL_HANDSHAKE))) { |
| max = bi_avail(chn); |
| |
| if (!max) { |
| si->flags |= SI_FL_WAIT_ROOM; |
| break; |
| } |
| |
| ret = conn->xprt->rcv_buf(conn, chn->buf, max); |
| if (ret <= 0) |
| break; |
| |
| cur_read += ret; |
| |
| /* if we're allowed to directly forward data, we must update ->o */ |
| if (chn->to_forward && !(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) { |
| unsigned long fwd = ret; |
| if (chn->to_forward != CHN_INFINITE_FORWARD) { |
| if (fwd > chn->to_forward) |
| fwd = chn->to_forward; |
| chn->to_forward -= fwd; |
| } |
| b_adv(chn->buf, fwd); |
| } |
| |
| chn->flags |= CF_READ_PARTIAL; |
| chn->total += ret; |
| |
| if (channel_full(chn)) { |
| /* The buffer is now full, there's no point in going through |
| * the loop again. |
| */ |
| if (!(chn->flags & CF_STREAMER_FAST) && (cur_read == buffer_len(chn->buf))) { |
| chn->xfer_small = 0; |
| chn->xfer_large++; |
| if (chn->xfer_large >= 3) { |
| /* we call this buffer a fast streamer if it manages |
| * to be filled in one call 3 consecutive times. |
| */ |
| chn->flags |= (CF_STREAMER | CF_STREAMER_FAST); |
| //fputc('+', stderr); |
| } |
| } |
| else if ((chn->flags & (CF_STREAMER | CF_STREAMER_FAST)) && |
| (cur_read <= chn->buf->size / 2)) { |
| chn->xfer_large = 0; |
| chn->xfer_small++; |
| if (chn->xfer_small >= 2) { |
| /* if the buffer has been at least half full twice, |
| * we receive faster than we send, so at least it |
| * is not a "fast streamer". |
| */ |
| chn->flags &= ~CF_STREAMER_FAST; |
| //fputc('-', stderr); |
| } |
| } |
| else { |
| chn->xfer_small = 0; |
| chn->xfer_large = 0; |
| } |
| |
| si->flags |= SI_FL_WAIT_ROOM; |
| break; |
| } |
| |
| if ((chn->flags & CF_READ_DONTWAIT) || --read_poll <= 0) |
| break; |
| |
| /* if too many bytes were missing from last read, it means that |
| * it's pointless trying to read again because the system does |
| * not have them in buffers. |
| */ |
| if (ret < max) { |
| if ((chn->flags & (CF_STREAMER | CF_STREAMER_FAST)) && |
| (cur_read <= chn->buf->size / 2)) { |
| chn->xfer_large = 0; |
| chn->xfer_small++; |
| if (chn->xfer_small >= 3) { |
| /* we have read less than half of the buffer in |
| * one pass, and this happened at least 3 times. |
| * This is definitely not a streamer. |
| */ |
| chn->flags &= ~(CF_STREAMER | CF_STREAMER_FAST); |
| //fputc('!', stderr); |
| } |
| } |
| |
| /* if a streamer has read few data, it may be because we |
| * have exhausted system buffers. It's not worth trying |
| * again. |
| */ |
| if (chn->flags & CF_STREAMER) |
| break; |
| |
| /* if we read a large block smaller than what we requested, |
| * it's almost certain we'll never get anything more. |
| */ |
| if (ret >= global.tune.recv_enough) |
| break; |
| } |
| } /* while !flags */ |
| |
| if (conn->flags & CO_FL_ERROR) |
| goto out_error; |
| |
| if (conn_data_read0_pending(conn)) |
| /* connection closed */ |
| goto out_shutdown_r; |
| |
| return; |
| |
| out_shutdown_r: |
| /* we received a shutdown */ |
| chn->flags |= CF_READ_NULL; |
| if (chn->flags & CF_AUTO_CLOSE) |
| channel_shutw_now(chn); |
| stream_sock_read0(si); |
| conn_data_read0(conn); |
| return; |
| |
| out_error: |
| /* Read error on the connection, report the error and stop I/O */ |
| conn->flags |= CO_FL_ERROR; |
| } |
| |
| /* |
| * This is the callback which is called by the connection layer to send data |
| * from the buffer to the connection. It iterates over the transport layer's |
| * snd_buf function. |
| */ |
| static void si_conn_send_cb(struct connection *conn) |
| { |
| struct stream_interface *si = conn->owner; |
| struct channel *chn = si->ob; |
| |
| if (conn->flags & CO_FL_ERROR) |
| goto out_error; |
| |
| if (si->conn->flags & CO_FL_HANDSHAKE) |
| /* a handshake was requested */ |
| return; |
| |
| /* we might have been called just after an asynchronous shutw */ |
| if (chn->flags & CF_SHUTW) |
| return; |
| |
| /* OK there are data waiting to be sent */ |
| if (si_conn_send_loop(conn) < 0) |
| goto out_error; |
| |
| /* OK all done */ |
| return; |
| |
| out_error: |
| /* Write error on the connection, report the error and stop I/O */ |
| conn->flags |= CO_FL_ERROR; |
| } |
| |
| /* |
| * This function propagates a null read received on a socket-based connection. |
| * It updates the stream interface. If the stream interface has SI_FL_NOHALF, |
| * the close is also forwarded to the write side as an abort. This function is |
| * still socket-specific as it handles a setsockopt() call to set the SO_LINGER |
| * state on the socket. |
| */ |
| void stream_sock_read0(struct stream_interface *si) |
| { |
| si->ib->flags &= ~CF_SHUTR_NOW; |
| if (si->ib->flags & CF_SHUTR) |
| return; |
| si->ib->flags |= CF_SHUTR; |
| si->ib->rex = TICK_ETERNITY; |
| si->flags &= ~SI_FL_WAIT_ROOM; |
| |
| if (si->state != SI_ST_EST && si->state != SI_ST_CON) |
| return; |
| |
| if (si->ob->flags & CF_SHUTW) |
| goto do_close; |
| |
| if (si->flags & SI_FL_NOHALF) { |
| /* we want to immediately forward this close to the write side */ |
| if (si->flags & SI_FL_NOLINGER) { |
| si->flags &= ~SI_FL_NOLINGER; |
| setsockopt(si_fd(si), SOL_SOCKET, SO_LINGER, |
| (struct linger *) &nolinger, sizeof(struct linger)); |
| } |
| /* force flag on ssl to keep session in cache */ |
| if (si->conn->xprt->shutw) |
| si->conn->xprt->shutw(si->conn, 0); |
| goto do_close; |
| } |
| |
| /* otherwise that's just a normal read shutdown */ |
| __conn_data_stop_recv(si->conn); |
| return; |
| |
| do_close: |
| conn_xprt_close(si->conn); |
| fd_delete(si_fd(si)); |
| si->state = SI_ST_DIS; |
| si->exp = TICK_ETERNITY; |
| if (si->release) |
| si->release(si); |
| return; |
| } |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |