blob: f2832de976449828858f8fba41184bb255c76c9f [file] [log] [blame]
/*
* HA-Proxy : High Availability-enabled HTTP/TCP proxy
* 2000-2002 - Willy Tarreau - willy AT meta-x DOT org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Pending bugs :
* - cookie in insert+indirect mode sometimes segfaults !
* - a proxy with an invalid config will prevent the startup even if disabled.
*
* ChangeLog :
*
* 2002/04/03
* - released 1.1.5
* - connection logging displayed incorrect source address.
* - added proxy start/stop and server up/down log events.
* - replaced log message short buffers with larger trash.
* - enlarged buffer to 8 kB and replace buffer to 4 kB.
* 2002/03/25
* - released 1.1.4
* - made rise/fall/interval time configurable
* 2002/03/22
* - released 1.1.3
* - fixed a bug : cr_expire and cw_expire were inverted in CL_STSHUT[WR]
* which could lead to loops.
* 2002/03/21
* - released 1.1.2
* - fixed a bug in buffer management where we could have a loop
* between event_read() and process_{cli|srv} if R==BUFSIZE-MAXREWRITE.
* => implemented an adjustable buffer limit.
* - fixed a bug : expiration of tasks in wait queue timeout is used again,
* and running tasks are skipped.
* - added some debug lines for accept events.
* - send warnings for servers up/down.
* 2002/03/12
* - released 1.1.1
* - fixed a bug in total failure handling
* - fixed a bug in timestamp comparison within same second (tv_cmp_ms)
* 2002/03/10
* - released 1.1.0
* - fixed a few timeout bugs
* - rearranged the task scheduler subsystem to improve performance,
* add new tasks, and make it easier to later port to librt ;
* - allow multiple accept() for one select() wake up ;
* - implemented internal load balancing with basic health-check ;
* - cookie insertion and header add/replace/delete, with better strings
* support.
* 2002/03/08
* - reworked buffer handling to fix a few rewrite bugs, and
* improve overall performance.
* - implement the "purge" option to delete server cookies in direct mode.
* 2002/03/07
* - fixed some error cases where the maxfd was not decreased.
* 2002/02/26
* - now supports transparent proxying, at least on linux 2.4.
* 2002/02/12
* - soft stop works again (fixed select timeout computation).
* - it seems that TCP proxies sometimes cannot timeout.
* - added a "quiet" mode.
* - enforce file descriptor limitation on socket() and accept().
* 2001/12/30 : release of version 1.0.2 : fixed a bug in header processing
* 2001/12/19 : release of version 1.0.1 : no MSG_NOSIGNAL on solaris
* 2001/12/16 : release of version 1.0.0.
* 2001/12/16 : added syslog capability for each accepted connection.
* 2001/11/19 : corrected premature end of files and occasional SIGPIPE.
* 2001/10/31 : added health-check type servers (mode health) which replies OK then closes.
* 2001/10/30 : added the ability to support standard TCP proxies and HTTP proxies
* with or without cookies (use keyword http for this).
* 2001/09/01 : added client/server header replacing with regexps.
* eg:
* cliexp ^(Host:\ [^:]*).* Host:\ \1:80
* srvexp ^Server:\ .* Server:\ Apache
* 2000/11/29 : first fully working release with complete FSMs and timeouts.
* 2000/11/28 : major rewrite
* 2000/11/26 : first write
*
* TODO:
* - handle properly intermediate incomplete server headers. Done ?
* - log proxies start/stop
* - handle hot-reconfiguration
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <ctype.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/tcp.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <fcntl.h>
#include <errno.h>
#include <signal.h>
#include <stdarg.h>
#include <sys/resource.h>
#include <time.h>
#include <regex.h>
#include <syslog.h>
#if defined(TRANSPARENT) && defined(NETFILTER)
#include <linux/netfilter_ipv4.h>
#endif
#define HAPROXY_VERSION "1.1.5"
#define HAPROXY_DATE "2002/04/03"
/* this is for libc5 for example */
#ifndef TCP_NODELAY
#define TCP_NODELAY 1
#endif
#ifndef SHUT_RD
#define SHUT_RD 0
#endif
#ifndef SHUT_WR
#define SHUT_WR 1
#endif
#define BUFSIZE 8192
// reserved buffer space for header rewriting
#define MAXREWRITE 4096
// max # args on a configuration line
#define MAX_LINE_ARGS 10
// max # of regexps per proxy
#define MAX_REGEXP 10
// max # of matches per regexp
#define MAX_MATCH 10
/* FIXME: serverid_len and cookiename_len are no longer checked in configuration file */
#define COOKIENAME_LEN 16
#define SERVERID_LEN 16
#define CONN_RETRIES 3
/* FIXME: this should be user-configurable */
#define CHK_CONNTIME 2000
#define DEF_CHKINTR 2000
#define DEF_FALLTIME 3
#define DEF_RISETIME 2
/* how many bits are needed to code the size of an int (eg: 32bits -> 5) */
#define INTBITS 5
/* show stats this every millisecond, 0 to disable */
#ifndef STATTIME
#define STATTIME 2000
#endif
/* this reduces the number of calls to select() by choosing appropriate
* sheduler precision in milliseconds. It should be near the minimum
* time that is needed by select() to collect all events. All timeouts
* are rounded up by adding this value prior to pass it to select().
*/
#define SCHEDULER_RESOLUTION 9
#define MINTIME(old, new) (((new)<0)?(old):(((old)<0||(new)<(old))?(new):(old)))
#define SETNOW(a) (*a=now)
/****** string-specific macros and functions ******/
/* if a > max, then bound <a> to <max>. The macro returns the new <a> */
#define UBOUND(a, max) ({ typeof(a) b = (max); if ((a) > b) (a) = b; (a); })
/* if a < min, then bound <a> to <min>. The macro returns the new <a> */
#define LBOUND(a, min) ({ typeof(a) b = (min); if ((a) < b) (a) = b; (a); })
#ifndef HAVE_STRLCPY
/*
* copies at most <size-1> chars from <src> to <dst>. Last char is always
* set to 0, unless <size> is 0. The number of chars copied is returned
* (excluding the terminating zero).
* This code has been optimized for size and speed : on x86, it's 45 bytes
* long, uses only registers, and consumes only 4 cycles per char.
*/
int strlcpy(char *dst, const char *src, int size) {
char *orig = dst;
if (size) {
while (--size && (*dst = *src)) {
src++; dst++;
}
*dst = 0;
}
return dst - orig;
}
#endif
#define MEM_OPTIM
#ifdef MEM_OPTIM
/*
* Returns a pointer to type <type> taken from the
* pool <pool_type> or dynamically allocated. In the
* first case, <pool_type> is updated to point to the
* next element in the list.
*/
#define pool_alloc(type) ({ \
void *p; \
if ((p = pool_##type) == NULL) \
p = malloc(sizeof_##type); \
else { \
pool_##type = *(void **)pool_##type; \
} \
p; \
})
/*
* Puts a memory area back to the corresponding pool.
* Items are chained directly through a pointer that
* is written in the beginning of the memory area, so
* there's no need for any carrier cell. This implies
* that each memory area is at least as big as one
* pointer.
*/
#define pool_free(type, ptr) ({ \
*(void **)ptr = (void *)pool_##type; \
pool_##type = (void *)ptr; \
})
#else
#define pool_alloc(type) (calloc(1,sizeof_##type));
#define pool_free(type, ptr) (free(ptr));
#endif /* MEM_OPTIM */
#define sizeof_task sizeof(struct task)
#define sizeof_session sizeof(struct session)
#define sizeof_buffer sizeof(struct buffer)
#define sizeof_fdtab sizeof(struct fdtab)
#define sizeof_str256 256
/* different possible states for the sockets */
#define FD_STCLOSE 0
#define FD_STLISTEN 1
#define FD_STCONN 2
#define FD_STREADY 3
#define FD_STERROR 4
/* values for task->state */
#define TASK_IDLE 0
#define TASK_RUNNING 1
/* values for proxy->state */
#define PR_STNEW 0
#define PR_STIDLE 1
#define PR_STRUN 2
#define PR_STDISABLED 3
/* values for proxy->mode */
#define PR_MODE_TCP 0
#define PR_MODE_HTTP 1
#define PR_MODE_HEALTH 2
/* bits for proxy->options */
#define PR_O_REDISP 1 /* allow reconnection to dispatch in case of errors */
#define PR_O_TRANSP 2 /* transparent mode : use original DEST as dispatch */
#define PR_O_COOK_RW 4 /* rewrite all direct cookies with the right serverid */
#define PR_O_COOK_IND 8 /* keep only indirect cookies */
#define PR_O_COOK_INS 16 /* insert cookies when not accessing a server directly */
#define PR_O_COOK_ANY (PR_O_COOK_RW | PR_O_COOK_IND | PR_O_COOK_INS)
#define PR_O_BALANCE_RR 32 /* balance in round-robin mode */
#define PR_O_BALANCE (PR_O_BALANCE_RR)
/* various task flags */
#define TF_DIRECT 1 /* connection made on the server matching the client cookie */
/* different possible states for the client side */
#define CL_STHEADERS 0
#define CL_STDATA 1
#define CL_STSHUTR 2
#define CL_STSHUTW 3
#define CL_STCLOSE 4
/* different possible states for the server side */
#define SV_STIDLE 0
#define SV_STCONN 1
#define SV_STHEADERS 2
#define SV_STDATA 3
#define SV_STSHUTR 4
#define SV_STSHUTW 5
#define SV_STCLOSE 6
/* result of an I/O event */
#define RES_SILENT 0 /* didn't happen */
#define RES_DATA 1 /* data were sent or received */
#define RES_NULL 2 /* result is 0 (read == 0), or connect without need for writing */
#define RES_ERROR 3 /* result -1 or error on the socket (eg: connect()) */
/* modes of operation (global variable "mode") */
#define MODE_DEBUG 1
#define MODE_STATS 2
#define MODE_LOG 4
#define MODE_DAEMON 8
#define MODE_QUIET 16
/* server flags */
#define SRV_RUNNING 1
/*********************************************************************/
#define LIST_HEAD(a) ((void *)(&(a)))
/*********************************************************************/
struct hdr_exp {
regex_t *preg; /* expression to look for */
char *replace; /* expression to set instead */
};
struct buffer {
unsigned int l; /* data length */
char *r, *w, *h, *lr; /* read ptr, write ptr, last header ptr, last read */
char *rlim; /* read limit, used for header rewriting */
char data[BUFSIZE];
};
struct server {
struct server *next;
int state; /* server state (SRV_*) */
int cklen; /* the len of the cookie, to speed up checks */
char *cookie; /* the id set in the cookie */
char *id; /* just for identification */
struct sockaddr_in addr; /* the address to connect to */
int health; /* 0->rise-1 = bad; rise->rise+fall-1 = good */
int rise, fall; /* time in iterations */
int inter; /* time in milliseconds */
int result; /* 0 = connect OK, -1 = connect KO */
int curfd; /* file desc used for current test, or -1 if not in test */
struct proxy *proxy; /* the proxy this server belongs to */
};
/* The base for all tasks */
struct task {
struct task *next, *prev; /* chaining ... */
struct task *rqnext; /* chaining in run queue ... */
struct task *wq; /* the wait queue this task is in */
int state; /* task state : IDLE or RUNNING */
struct timeval expire; /* next expiration time for this task, use only for fast sorting */
int (*process)(struct task *t); /* the function which processes the task */
void *context; /* the task's context */
};
/* WARNING: if new fields are added, they must be initialized in event_accept() */
struct session {
struct task *task; /* the task associated with this session */
/* application specific below */
struct timeval crexpire; /* expiration date for a client read */
struct timeval cwexpire; /* expiration date for a client write */
struct timeval srexpire; /* expiration date for a server read */
struct timeval swexpire; /* expiration date for a server write */
struct timeval cnexpire; /* expiration date for a connect */
char res_cr, res_cw, res_sr, res_sw;/* results of some events */
struct proxy *proxy; /* the proxy this socket belongs to */
int cli_fd; /* the client side fd */
int srv_fd; /* the server side fd */
int cli_state; /* state of the client side */
int srv_state; /* state of the server side */
int conn_retries; /* number of connect retries left */
int flags; /* some flags describing the session */
struct buffer *req; /* request buffer */
struct buffer *rep; /* response buffer */
struct sockaddr_in cli_addr; /* the client address */
struct sockaddr_in srv_addr; /* the address to connect to */
struct server *srv; /* the server being used */
};
struct proxy {
int listen_fd; /* the listen socket */
int state; /* proxy state */
struct sockaddr_in listen_addr; /* the address we listen to */
struct sockaddr_in dispatch_addr; /* the default address to connect to */
struct server *srv, *cursrv; /* known servers, current server */
int nbservers; /* # of servers */
char *cookie_name; /* name of the cookie to look for */
int clitimeout; /* client I/O timeout (in milliseconds) */
int srvtimeout; /* server I/O timeout (in milliseconds) */
int contimeout; /* connect timeout (in milliseconds) */
char *id; /* proxy id */
int nbconn; /* # of active sessions */
int maxconn; /* max # of active sessions */
int conn_retries; /* maximum number of connect retries */
int options; /* PR_O_REDISP, PR_O_TRANSP */
int mode; /* mode = PR_MODE_TCP, PR_MODE_HTTP or PR_MODE_HEALTH */
struct proxy *next;
struct sockaddr_in logsrv1, logsrv2; /* 2 syslog servers */
char logfac1, logfac2; /* log facility for both servers. -1 = disabled */
struct timeval stop_time; /* date to stop listening, when stopping != 0 */
int nb_reqexp, nb_rspexp, nb_reqadd, nb_rspadd;
struct hdr_exp req_exp[MAX_REGEXP]; /* regular expressions for request headers */
struct hdr_exp rsp_exp[MAX_REGEXP]; /* regular expressions for response headers */
char *req_add[MAX_REGEXP], *rsp_add[MAX_REGEXP]; /* headers to be added */
int grace; /* grace time after stop request */
};
/* info about one given fd */
struct fdtab {
int (*read)(int fd); /* read function */
int (*write)(int fd); /* write function */
struct task *owner; /* the session (or proxy) associated with this fd */
int state; /* the state of this fd */
};
/*********************************************************************/
int cfg_maxconn = 2000; /* # of simultaneous connections, (-n) */
int cfg_maxpconn = 2000; /* # of simultaneous connections per proxy (-N) */
int cfg_maxsock = 0; /* max # of sockets */
char *cfg_cfgfile = NULL; /* configuration file */
char *progname = NULL; /* program name */
int pid; /* current process id */
/*********************************************************************/
fd_set *ReadEvent,
*WriteEvent,
*StaticReadEvent,
*StaticWriteEvent;
void **pool_session = NULL,
**pool_buffer = NULL,
**pool_fdtab = NULL,
**pool_str256 = NULL,
**pool_task = NULL;
struct proxy *proxy = NULL; /* list of all existing proxies */
struct fdtab *fdtab = NULL; /* array of all the file descriptors */
struct task *rq = NULL; /* global run queue */
struct task wait_queue = { /* global wait queue */
prev:LIST_HEAD(wait_queue),
next:LIST_HEAD(wait_queue)
};
static int mode = 0; /* MODE_DEBUG, ... */
static int totalconn = 0; /* total # of terminated sessions */
static int actconn = 0; /* # of active sessions */
static int maxfd = 0; /* # of the highest fd + 1 */
static int listeners = 0; /* # of listeners */
static int stopping = 0; /* non zero means stopping in progress */
static struct timeval now = {0,0}; /* the current date at any moment */
static regmatch_t pmatch[MAX_MATCH]; /* rm_so, rm_eo for regular expressions */
static char trash[BUFSIZE];
/*
* Syslog facilities and levels
*/
#define MAX_SYSLOG_LEN 1024
#define NB_LOG_FACILITIES 24
const char *log_facilities[NB_LOG_FACILITIES] = {
"kern", "user", "mail", "daemon",
"auth", "syslog", "lpr", "news",
"uucp", "cron", "auth2", "ftp",
"ntp", "audit", "alert", "cron2",
"local0", "local1", "local2", "local3",
"local4", "local5", "local6", "local7"
};
#define NB_LOG_LEVELS 8
const char *log_levels[NB_LOG_LEVELS] = {
"emerg", "alert", "crit", "err",
"warning", "notice", "info", "debug"
};
#define SYSLOG_PORT 514
const char *monthname[12] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
#define MAX_HOSTNAME_LEN 32
static char hostname[MAX_HOSTNAME_LEN] = "";
/*********************************************************************/
/* statistics ******************************************************/
/*********************************************************************/
static int stats_tsk_lsrch, stats_tsk_rsrch,
stats_tsk_good, stats_tsk_right, stats_tsk_left,
stats_tsk_new, stats_tsk_nsrch;
/*********************************************************************/
/* function prototypes *********************************************/
/*********************************************************************/
int event_accept(int fd);
int event_cli_read(int fd);
int event_cli_write(int fd);
int event_srv_read(int fd);
int event_srv_write(int fd);
int process_session(struct task *t);
/*********************************************************************/
/* general purpose functions ***************************************/
/*********************************************************************/
void display_version() {
printf("HA-Proxy version " HAPROXY_VERSION " " HAPROXY_DATE"\n");
printf("Copyright 2000-2002 Willy Tarreau <willy AT meta-x DOT org>\n\n");
}
/*
* This function prints the command line usage and exits
*/
void usage(char *name) {
display_version();
fprintf(stderr,
"Usage : %s -f <cfgfile> [ -vd"
#if STATTIME > 0
"sl"
#endif
"D ] [ -n <maxconn> ] [ -N <maxpconn> ]\n"
" -v displays version\n"
" -d enters debug mode\n"
#if STATTIME > 0
" -s enables statistics output\n"
" -l enables long statistics format\n"
#endif
" -D goes daemon ; implies -q\n"
" -q quiet mode : don't display messages\n"
" -n sets the maximum total # of connections (%d)\n"
" -N sets the default, per-proxy maximum # of connections (%d)\n\n",
name, cfg_maxconn, cfg_maxpconn);
exit(1);
}
/*
* Displays the message on stderr with the date and pid.
*/
void Alert(char *fmt, ...) {
va_list argp;
struct timeval tv;
struct tm *tm;
if (!(mode & MODE_QUIET)) {
va_start(argp, fmt);
gettimeofday(&tv, NULL);
tm=localtime(&tv.tv_sec);
fprintf(stderr, "[ALERT] %03d/%02d%02d%02d (%d) : ",
tm->tm_yday, tm->tm_hour, tm->tm_min, tm->tm_sec, getpid());
vfprintf(stderr, fmt, argp);
fflush(stderr);
va_end(argp);
}
}
/*
* Displays the message on stderr with the date and pid.
*/
void Warning(char *fmt, ...) {
va_list argp;
struct timeval tv;
struct tm *tm;
if (!(mode & MODE_QUIET)) {
va_start(argp, fmt);
gettimeofday(&tv, NULL);
tm=localtime(&tv.tv_sec);
fprintf(stderr, "[WARNING] %03d/%02d%02d%02d (%d) : ",
tm->tm_yday, tm->tm_hour, tm->tm_min, tm->tm_sec, getpid());
vfprintf(stderr, fmt, argp);
fflush(stderr);
va_end(argp);
}
}
/*
* Displays the message on <out> only if quiet mode is not set.
*/
void qfprintf(FILE *out, char *fmt, ...) {
va_list argp;
if (!(mode & MODE_QUIET)) {
va_start(argp, fmt);
vfprintf(out, fmt, argp);
fflush(out);
va_end(argp);
}
}
/*
* converts <str> to a struct sockaddr_in* which is locally allocated.
* The format is "addr:port", where "addr" can be empty or "*" to indicate
* INADDR_ANY.
*/
struct sockaddr_in *str2sa(char *str) {
static struct sockaddr_in sa;
char *c;
int port;
bzero(&sa, sizeof(sa));
str=strdup(str);
if ((c=strrchr(str,':')) != NULL) {
*c++=0;
port=atol(c);
}
else
port=0;
if (*str == '*' || *str == '\0') { /* INADDR_ANY */
sa.sin_addr.s_addr = INADDR_ANY;
}
else if (
#ifndef SOLARIS
!inet_aton(str, &sa.sin_addr)
#else
!inet_pton(AF_INET, str, &sa.sin_addr)
#endif
) {
struct hostent *he;
if ((he = gethostbyname(str)) == NULL) {
Alert("Invalid server name: <%s>\n", str);
}
else
sa.sin_addr = *(struct in_addr *) *(he->h_addr_list);
}
sa.sin_port=htons(port);
sa.sin_family=AF_INET;
free(str);
return &sa;
}
/*
* This function tries to send a syslog message to the syslog server at
* address <sa>. It doesn't care about errors nor does it report them.
* WARNING! no check is made on the prog+hostname+date length, so the
* local hostname + the prog name must be shorter than MAX_SYSLOG_LEN-19.
* the message will be truncated to fit the maximum length.
*/
void send_syslog(struct sockaddr_in *sa,
int facility, int level, char *message)
{
static int logfd = -1; /* syslog UDP socket */
struct timeval tv;
struct tm *tm;
static char logmsg[MAX_SYSLOG_LEN];
char *p;
if (logfd < 0) {
if ((logfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) < 0)
return;
}
if (facility < 0 || level < 0
|| sa == NULL || progname == NULL || message == NULL)
return;
gettimeofday(&tv, NULL);
tm = localtime(&tv.tv_sec);
p = logmsg;
//p += sprintf(p, "<%d>%s %2d %02d:%02d:%02d %s %s[%d]: ",
// facility * 8 + level,
// monthname[tm->tm_mon],
// tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec,
// hostname, progname, pid);
/* 20011216/WT : other progs don't set the hostname, and syslogd
* systematically repeats it which is contrary to RFC3164.
*/
p += sprintf(p, "<%d>%s %2d %02d:%02d:%02d %s[%d]: ",
facility * 8 + level,
monthname[tm->tm_mon],
tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec,
progname, pid);
if (((char *)&logmsg - p + MAX_SYSLOG_LEN) > 0) {
int len = strlen(message);
if (len > ((char *)&logmsg + MAX_SYSLOG_LEN - p))
len = ((char *)&logmsg + MAX_SYSLOG_LEN - p);
memcpy(p, message, len);
p += len;
}
#ifndef MSG_NOSIGNAL
sendto(logfd, logmsg, p - logmsg, MSG_DONTWAIT,
(struct sockaddr *)sa, sizeof(*sa));
#else
sendto(logfd, logmsg, p - logmsg, MSG_DONTWAIT | MSG_NOSIGNAL,
(struct sockaddr *)sa, sizeof(*sa));
#endif
}
/* sets <tv> to the current time */
static inline struct timeval *tv_now(struct timeval *tv) {
if (tv)
gettimeofday(tv, NULL);
return tv;
}
/*
* adds <ms> ms to <from>, set the result to <tv> and returns a pointer <tv>
*/
static inline struct timeval *tv_delayfrom(struct timeval *tv, struct timeval *from, int ms) {
if (!tv || !from)
return NULL;
tv->tv_usec = from->tv_usec + (ms%1000)*1000;
tv->tv_sec = from->tv_sec + (ms/1000);
while (tv->tv_usec >= 1000000) {
tv->tv_usec -= 1000000;
tv->tv_sec++;
}
return tv;
}
/*
* compares <tv1> and <tv2> : returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2
*/
static inline int tv_cmp(struct timeval *tv1, struct timeval *tv2) {
if (tv1->tv_sec > tv2->tv_sec)
return 1;
else if (tv1->tv_sec < tv2->tv_sec)
return -1;
else if (tv1->tv_usec > tv2->tv_usec)
return 1;
else if (tv1->tv_usec < tv2->tv_usec)
return -1;
else
return 0;
}
/*
* returns the absolute difference, in ms, between tv1 and tv2
*/
unsigned long tv_delta(struct timeval *tv1, struct timeval *tv2) {
int cmp;
unsigned long ret;
cmp = tv_cmp(tv1, tv2);
if (!cmp)
return 0; /* same dates, null diff */
else if (cmp<0) {
struct timeval *tmp = tv1;
tv1 = tv2;
tv2 = tmp;
}
ret = (tv1->tv_sec - tv2->tv_sec) * 1000;
if (tv1->tv_usec > tv2->tv_usec)
ret += (tv1->tv_usec - tv2->tv_usec) / 1000;
else
ret -= (tv2->tv_usec - tv1->tv_usec) / 1000;
return (unsigned long) ret;
}
/*
* compares <tv1> and <tv2> modulo 1ms: returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2
*/
static inline int tv_cmp_ms(struct timeval *tv1, struct timeval *tv2) {
if (tv1->tv_sec == tv2->tv_sec) {
if (tv1->tv_usec > tv2->tv_usec + 1000)
return 1;
else if (tv2->tv_usec > tv1->tv_usec + 1000)
return -1;
else
return 0;
}
else if ((tv1->tv_sec > tv2->tv_sec + 1) ||
((tv1->tv_sec == tv2->tv_sec + 1) && (tv1->tv_usec + 1000000 > tv2->tv_usec + 1000)))
return 1;
else if ((tv2->tv_sec > tv1->tv_sec + 1) ||
((tv2->tv_sec == tv1->tv_sec + 1) && (tv2->tv_usec + 1000000 > tv1->tv_usec + 1000)))
return -1;
else
return 0;
}
/*
* returns the remaining time between tv1=now and event=tv2
* if tv2 is passed, 0 is returned.
*/
static inline unsigned long tv_remain(struct timeval *tv1, struct timeval *tv2) {
unsigned long ret;
if (tv_cmp_ms(tv1, tv2) >= 0)
return 0; /* event elapsed */
ret = (tv2->tv_sec - tv1->tv_sec) * 1000;
if (tv2->tv_usec > tv1->tv_usec)
ret += (tv2->tv_usec - tv1->tv_usec) / 1000;
else
ret -= (tv1->tv_usec - tv2->tv_usec) / 1000;
return (unsigned long) ret;
}
/*
* zeroes a struct timeval
*/
static inline struct timeval *tv_eternity(struct timeval *tv) {
tv->tv_sec = tv->tv_usec = 0;
return tv;
}
/*
* returns 1 if tv is null, else 0
*/
static inline int tv_iseternity(struct timeval *tv) {
if (tv->tv_sec == 0 && tv->tv_usec == 0)
return 1;
else
return 0;
}
/*
* compares <tv1> and <tv2> : returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2,
* considering that 0 is the eternity.
*/
static inline int tv_cmp2(struct timeval *tv1, struct timeval *tv2) {
if (tv_iseternity(tv1))
if (tv_iseternity(tv2))
return 0; /* same */
else
return 1; /* tv1 later than tv2 */
else if (tv_iseternity(tv2))
return -1; /* tv2 later than tv1 */
if (tv1->tv_sec > tv2->tv_sec)
return 1;
else if (tv1->tv_sec < tv2->tv_sec)
return -1;
else if (tv1->tv_usec > tv2->tv_usec)
return 1;
else if (tv1->tv_usec < tv2->tv_usec)
return -1;
else
return 0;
}
/*
* compares <tv1> and <tv2> modulo 1 ms: returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2,
* considering that 0 is the eternity.
*/
static inline int tv_cmp2_ms(struct timeval *tv1, struct timeval *tv2) {
if (tv_iseternity(tv1))
if (tv_iseternity(tv2))
return 0; /* same */
else
return 1; /* tv1 later than tv2 */
else if (tv_iseternity(tv2))
return -1; /* tv2 later than tv1 */
if (tv1->tv_sec == tv2->tv_sec) {
if (tv1->tv_usec > tv2->tv_usec + 1000)
return 1;
else if (tv2->tv_usec > tv1->tv_usec + 1000)
return -1;
else
return 0;
}
else if ((tv1->tv_sec > tv2->tv_sec + 1) ||
((tv1->tv_sec == tv2->tv_sec + 1) && (tv1->tv_usec + 1000000 > tv2->tv_usec + 1000)))
return 1;
else if ((tv2->tv_sec > tv1->tv_sec + 1) ||
((tv2->tv_sec == tv1->tv_sec + 1) && (tv2->tv_usec + 1000000 > tv1->tv_usec + 1000)))
return -1;
else
return 0;
}
/*
* returns the first event between tv1 and tv2 into tvmin.
* a zero tv is ignored. tvmin is returned.
*/
static inline struct timeval *tv_min(struct timeval *tvmin,
struct timeval *tv1, struct timeval *tv2) {
if (tv_cmp2(tv1, tv2) <= 0)
*tvmin = *tv1;
else
*tvmin = *tv2;
return tvmin;
}
/***********************************************************/
/* fd management ***************************************/
/***********************************************************/
/* Deletes an FD from the fdsets, and recomputes the maxfd limit.
* The file descriptor is also closed.
*/
static inline void fd_delete(int fd) {
FD_CLR(fd, StaticReadEvent);
FD_CLR(fd, StaticWriteEvent);
close(fd);
fdtab[fd].state = FD_STCLOSE;
while ((maxfd-1 >= 0) && (fdtab[maxfd-1].state == FD_STCLOSE))
maxfd--;
}
/* recomputes the maxfd limit from the fd */
static inline void fd_insert(int fd) {
if (fd+1 > maxfd)
maxfd = fd+1;
}
/*************************************************************/
/* task management ***************************************/
/*************************************************************/
/* puts the task <t> in run queue <q>, and returns <t> */
static inline struct task *task_wakeup(struct task **q, struct task *t) {
if (t->state == TASK_RUNNING)
return t;
else {
t->rqnext = *q;
t->state = TASK_RUNNING;
return *q = t;
}
}
/* removes the task <t> from the queue <q>
* <s> MUST be <q>'s first task.
* set the run queue to point to the next one, and return it
*/
static inline struct task *task_sleep(struct task **q, struct task *t) {
if (t->state == TASK_RUNNING) {
*q = t->rqnext;
t->state = TASK_IDLE; /* tell that s has left the run queue */
}
return *q; /* return next running task */
}
/*
* removes the task <t> from its wait queue. It must have already been removed
* from the run queue. A pointer to the task itself is returned.
*/
static inline struct task *task_delete(struct task *t) {
t->prev->next = t->next;
t->next->prev = t->prev;
return t;
}
/*
* frees a task. Its context must have been freed since it will be lost.
*/
static inline void task_free(struct task *t) {
pool_free(task, t);
}
/* inserts <task> into its assigned wait queue, where it may already be. In this case, it
* may be only moved or left where it was, depending on its timing requirements.
* <task> is returned.
*/
struct task *task_queue(struct task *task) {
struct task *list = task->wq;
struct task *start_from;
/* first, test if the task was already in a list */
if (task->prev == NULL) {
// start_from = list;
start_from = list->prev;
stats_tsk_new++;
/* insert the unlinked <task> into the list, searching back from the last entry */
while (start_from != list && tv_cmp2(&task->expire, &start_from->expire) < 0) {
start_from = start_from->prev;
stats_tsk_nsrch++;
}
// while (start_from->next != list && tv_cmp2(&task->expire, &start_from->next->expire) > 0) {
// start_from = start_from->next;
// stats_tsk_nsrch++;
// }
}
else if (task->prev == list ||
tv_cmp2(&task->expire, &task->prev->expire) >= 0) { /* walk right */
start_from = task->next;
if (start_from == list || tv_cmp2(&task->expire, &start_from->expire) <= 0) {
stats_tsk_good++;
return task; /* it's already in the right place */
}
stats_tsk_right++;
/* insert the unlinked <task> into the list, searching after position <start_from> */
while (start_from->next != list && tv_cmp2(&task->expire, &start_from->next->expire) > 0) {
start_from = start_from->next;
stats_tsk_rsrch++;
}
/* we need to unlink it now */
task_delete(task);
}
else { /* walk left. */
stats_tsk_left++;
#ifdef LEFT_TO_TOP /* not very good */
start_from = list;
while (start_from->next != list && tv_cmp2(&task->expire, &start_from->next->expire) > 0) {
start_from = start_from->next;
stats_tsk_lsrch++;
}
#else
start_from = task->prev->prev; /* valid because of the previous test above */
while (start_from != list && tv_cmp2(&task->expire, &start_from->expire) < 0) {
start_from = start_from->prev;
stats_tsk_lsrch++;
}
#endif
/* we need to unlink it now */
task_delete(task);
}
task->prev = start_from;
task->next = start_from->next;
task->next->prev = task;
start_from->next = task;
return task;
}
/*********************************************************************/
/* more specific functions ***************************************/
/*********************************************************************/
/* some prototypes */
static int maintain_proxies(void);
/* this either returns the sockname or the original destination address. Code
* inspired from Patrick Schaaf's example of nf_getsockname() implementation.
*/
static int get_original_dst(int fd, struct sockaddr_in *sa, int *salen) {
#if defined(TRANSPARENT) && defined(SO_ORIGINAL_DST)
return getsockopt(fd, SOL_IP, SO_ORIGINAL_DST, (void *)sa, salen);
#else
#if defined(TRANSPARENT) && defined(USE_GETSOCKNAME)
return getsockname(fd, (struct sockaddr *)sa, salen);
#else
return -1;
#endif
#endif
}
/*
* frees the context associated to a session. It must have been removed first.
*/
static inline void session_free(struct session *s) {
if (s->req)
pool_free(buffer, s->req);
if (s->rep)
pool_free(buffer, s->rep);
pool_free(session, s);
}
/*
* This function initiates a connection to the current server (s->srv) if (s->direct)
* is set, or to the dispatch server if (s->direct) is 0. It returns 0 if
* it's OK, -1 if it's impossible.
*/
int connect_server(struct session *s) {
int one = 1;
int fd;
// fprintf(stderr,"connect_server : s=%p\n",s);
if (s->flags & TF_DIRECT) { /* srv cannot be null */
s->srv_addr = s->srv->addr;
}
else if (s->proxy->options & PR_O_BALANCE) {
if (s->proxy->options & PR_O_BALANCE_RR) {
int retry = s->proxy->nbservers;
while (retry) {
if (s->proxy->cursrv == NULL)
s->proxy->cursrv = s->proxy->srv;
if (s->proxy->cursrv->state & SRV_RUNNING)
break;
s->proxy->cursrv = s->proxy->cursrv->next;
retry--;
}
if (retry == 0) /* no server left */
return -1;
s->srv = s->proxy->cursrv;
s->srv_addr = s->srv->addr;
s->proxy->cursrv = s->proxy->cursrv->next;
}
else /* unknown balancing algorithm */
return -1;
}
else if (*(int *)&s->proxy->dispatch_addr) {
/* connect to the defined dispatch addr */
s->srv_addr = s->proxy->dispatch_addr;
}
else if (s->proxy->options & PR_O_TRANSP) {
/* in transparent mode, use the original dest addr if no dispatch specified */
int salen = sizeof(struct sockaddr_in);
if (get_original_dst(s->cli_fd, &s->srv_addr, &salen) == -1) {
qfprintf(stderr, "Cannot get original server address.\n");
return -1;
}
}
if ((fd = s->srv_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) == -1) {
qfprintf(stderr, "Cannot get a server socket.\n");
return -1;
}
if (fd >= cfg_maxsock) {
Alert("socket(): not enough free sockets. Raise -n argument. Giving up.\n");
close(fd);
return -1;
}
if ((fcntl(fd, F_SETFL, O_NONBLOCK)==-1) ||
(setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *) &one, sizeof(one)) == -1)) {
qfprintf(stderr,"Cannot set client socket to non blocking mode.\n");
close(fd);
return -1;
}
if ((connect(fd, (struct sockaddr *)&s->srv_addr, sizeof(s->srv_addr)) == -1) && (errno != EINPROGRESS)) {
if (errno == EAGAIN) { /* no free ports left, try again later */
qfprintf(stderr,"Cannot connect, no free ports.\n");
close(fd);
return -1;
}
else if (errno != EALREADY && errno != EISCONN) {
close(fd);
return -1;
}
}
fdtab[fd].owner = s->task;
fdtab[fd].read = &event_srv_read;
fdtab[fd].write = &event_srv_write;
fdtab[fd].state = FD_STCONN; /* connection in progress */
FD_SET(fd, StaticWriteEvent); /* for connect status */
fd_insert(fd);
if (s->proxy->contimeout)
tv_delayfrom(&s->cnexpire, &now, s->proxy->contimeout);
else
tv_eternity(&s->cnexpire);
return 0;
}
/*
* this function is called on a read event from a client socket.
* It returns 0.
*/
int event_cli_read(int fd) {
struct task *t = fdtab[fd].owner;
struct session *s = t->context;
struct buffer *b = s->req;
int ret, max;
// fprintf(stderr,"event_cli_read : fd=%d, s=%p\n", fd, s);
if (fdtab[fd].state != FD_STERROR) {
while (1) {
if (b->l == 0) { /* let's realign the buffer to optimize I/O */
b->r = b->w = b->h = b->lr = b->data;
max = b->rlim - b->data;
}
else if (b->r > b->w) {
max = b->rlim - b->r;
}
else {
max = b->w - b->r;
/* FIXME: theorically, if w>0, we shouldn't have rlim < data+size anymore
* since it means that the rewrite protection has been removed. This
* implies that the if statement can be removed.
*/
if (max > b->rlim - b->data)
max = b->rlim - b->data;
}
if (max == 0) { /* not anymore room to store data */
FD_CLR(fd, StaticReadEvent);
break;
}
#ifndef MSG_NOSIGNAL
{
int skerr, lskerr;
lskerr = sizeof(skerr);
getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr);
if (skerr)
ret = -1;
else
ret = recv(fd, b->r, max, 0);
}
#else
ret = recv(fd, b->r, max, MSG_NOSIGNAL);
#endif
if (ret > 0) {
b->r += ret;
b->l += ret;
s->res_cr = RES_DATA;
if (b->r == b->data + BUFSIZE) {
b->r = b->data; /* wrap around the buffer */
}
/* we hope to read more data or to get a close on next round */
continue;
}
else if (ret == 0) {
s->res_cr = RES_NULL;
break;
}
else if (errno == EAGAIN) {/* ignore EAGAIN */
break;
}
else {
s->res_cr = RES_ERROR;
fdtab[fd].state = FD_STERROR;
break;
}
} /* while(1) */
}
else {
s->res_cr = RES_ERROR;
fdtab[fd].state = FD_STERROR;
}
if (s->res_cr != RES_SILENT) {
if (s->proxy->clitimeout)
tv_delayfrom(&s->crexpire, &now, s->proxy->clitimeout);
else
tv_eternity(&s->crexpire);
task_wakeup(&rq, t);
}
return 0;
}
/*
* this function is called on a read event from a server socket.
* It returns 0.
*/
int event_srv_read(int fd) {
struct task *t = fdtab[fd].owner;
struct session *s = t->context;
struct buffer *b = s->rep;
int ret, max;
// fprintf(stderr,"event_srv_read : fd=%d, s=%p\n", fd, s);
if (fdtab[fd].state != FD_STERROR) {
while (1) {
if (b->l == 0) { /* let's realign the buffer to optimize I/O */
b->r = b->w = b->h = b->lr = b->data;
max = b->rlim - b->data;
}
else if (b->r > b->w) {
max = b->rlim - b->r;
}
else {
max = b->w - b->r;
/* FIXME: theorically, if w>0, we shouldn't have rlim < data+size anymore
* since it means that the rewrite protection has been removed. This
* implies that the if statement can be removed.
*/
if (max > b->rlim - b->data)
max = b->rlim - b->data;
}
if (max == 0) { /* not anymore room to store data */
FD_CLR(fd, StaticReadEvent);
break;
}
#ifndef MSG_NOSIGNAL
{
int skerr, lskerr;
lskerr = sizeof(skerr);
getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr);
if (skerr)
ret = -1;
else
ret = recv(fd, b->r, max, 0);
}
#else
ret = recv(fd, b->r, max, MSG_NOSIGNAL);
#endif
if (ret > 0) {
b->r += ret;
b->l += ret;
s->res_sr = RES_DATA;
if (b->r == b->data + BUFSIZE) {
b->r = b->data; /* wrap around the buffer */
}
/* we hope to read more data or to get a close on next round */
continue;
}
else if (ret == 0) {
s->res_sr = RES_NULL;
break;
}
else if (errno == EAGAIN) {/* ignore EAGAIN */
break;
}
else {
s->res_sr = RES_ERROR;
fdtab[fd].state = FD_STERROR;
break;
}
} /* while(1) */
}
else {
s->res_sr = RES_ERROR;
fdtab[fd].state = FD_STERROR;
}
if (s->res_sr != RES_SILENT) {
if (s->proxy->srvtimeout)
tv_delayfrom(&s->srexpire, &now, s->proxy->srvtimeout);
else
tv_eternity(&s->srexpire);
task_wakeup(&rq, t);
}
return 0;
}
/*
* this function is called on a write event from a client socket.
* It returns 0.
*/
int event_cli_write(int fd) {
struct task *t = fdtab[fd].owner;
struct session *s = t->context;
struct buffer *b = s->rep;
int ret, max;
// fprintf(stderr,"event_cli_write : fd=%d, s=%p\n", fd, s);
if (b->l == 0) { /* let's realign the buffer to optimize I/O */
b->r = b->w = b->h = b->lr = b->data;
// max = BUFSIZE; BUG !!!!
max = 0;
}
else if (b->r > b->w) {
max = b->r - b->w;
}
else
max = b->data + BUFSIZE - b->w;
if (fdtab[fd].state != FD_STERROR) {
#ifndef MSG_NOSIGNAL
int skerr, lskerr;
#endif
if (max == 0) {
s->res_cw = RES_NULL;
task_wakeup(&rq, t);
return 0;
}
#ifndef MSG_NOSIGNAL
lskerr=sizeof(skerr);
getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr);
if (skerr)
ret = -1;
else
ret = send(fd, b->w, max, MSG_DONTWAIT);
#else
ret = send(fd, b->w, max, MSG_DONTWAIT | MSG_NOSIGNAL);
#endif
if (ret > 0) {
b->l -= ret;
b->w += ret;
s->res_cw = RES_DATA;
if (b->w == b->data + BUFSIZE) {
b->w = b->data; /* wrap around the buffer */
}
}
else if (ret == 0) {
/* nothing written, just make as if we were never called */
// s->res_cw = RES_NULL;
return 0;
}
else if (errno == EAGAIN) /* ignore EAGAIN */
return 0;
else {
s->res_cw = RES_ERROR;
fdtab[fd].state = FD_STERROR;
}
}
else {
s->res_cw = RES_ERROR;
fdtab[fd].state = FD_STERROR;
}
if (s->proxy->clitimeout)
tv_delayfrom(&s->cwexpire, &now, s->proxy->clitimeout);
else
tv_eternity(&s->cwexpire);
task_wakeup(&rq, t);
return 0;
}
/*
* this function is called on a write event from a server socket.
* It returns 0.
*/
int event_srv_write(int fd) {
struct task *t = fdtab[fd].owner;
struct session *s = t->context;
struct buffer *b = s->req;
int ret, max;
//fprintf(stderr,"event_srv_write : fd=%d, s=%p\n", fd, s);
if (b->l == 0) { /* let's realign the buffer to optimize I/O */
b->r = b->w = b->h = b->lr = b->data;
// max = BUFSIZE; BUG !!!!
max = 0;
}
else if (b->r > b->w) {
max = b->r - b->w;
}
else
max = b->data + BUFSIZE - b->w;
if (fdtab[fd].state != FD_STERROR) {
#ifndef MSG_NOSIGNAL
int skerr, lskerr;
#endif
if (max == 0) {
/* may be we have received a connection acknowledgement in TCP mode without data */
s->res_sw = RES_NULL;
task_wakeup(&rq, t);
fdtab[fd].state = FD_STREADY;
return 0;
}
#ifndef MSG_NOSIGNAL
lskerr=sizeof(skerr);
getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr);
if (skerr)
ret = -1;
else
ret = send(fd, b->w, max, MSG_DONTWAIT);
#else
ret = send(fd, b->w, max, MSG_DONTWAIT | MSG_NOSIGNAL);
#endif
fdtab[fd].state = FD_STREADY;
if (ret > 0) {
b->l -= ret;
b->w += ret;
s->res_sw = RES_DATA;
if (b->w == b->data + BUFSIZE) {
b->w = b->data; /* wrap around the buffer */
}
}
else if (ret == 0) {
/* nothing written, just make as if we were never called */
// s->res_sw = RES_NULL;
return 0;
}
else if (errno == EAGAIN) /* ignore EAGAIN */
return 0;
else {
s->res_sw = RES_ERROR;
fdtab[fd].state = FD_STERROR;
}
}
else {
s->res_sw = RES_ERROR;
fdtab[fd].state = FD_STERROR;
}
if (s->proxy->srvtimeout)
tv_delayfrom(&s->swexpire, &now, s->proxy->srvtimeout);
else
tv_eternity(&s->swexpire);
task_wakeup(&rq, t);
return 0;
}
/*
* this function is called on a read event from a listen socket, corresponding
* to an accept. It tries to accept as many connections as possible.
* It returns 0.
*/
int event_accept(int fd) {
struct proxy *p = (struct proxy *)fdtab[fd].owner;
struct session *s;
struct task *t;
int cfd;
int one = 1;
while (p->nbconn < p->maxconn) {
struct sockaddr_in addr;
int laddr = sizeof(addr);
if ((cfd = accept(fd, (struct sockaddr *)&addr, &laddr)) == -1)
return 0; /* nothing more to accept */
if ((s = pool_alloc(session)) == NULL) { /* disable this proxy for a while */
Alert("out of memory in event_accept().\n");
FD_CLR(fd, StaticReadEvent);
p->state = PR_STIDLE;
close(cfd);
return 0;
}
if ((t = pool_alloc(task)) == NULL) { /* disable this proxy for a while */
Alert("out of memory in event_accept().\n");
FD_CLR(fd, StaticReadEvent);
p->state = PR_STIDLE;
close(cfd);
pool_free(session, s);
return 0;
}
s->cli_addr = addr;
if (cfd >= cfg_maxsock) {
Alert("accept(): not enough free sockets. Raise -n argument. Giving up.\n");
close(cfd);
pool_free(task, t);
pool_free(session, s);
return 0;
}
if ((fcntl(cfd, F_SETFL, O_NONBLOCK) == -1) ||
(setsockopt(cfd, IPPROTO_TCP, TCP_NODELAY,
(char *) &one, sizeof(one)) == -1)) {
Alert("accept(): cannot set the socket in non blocking mode. Giving up\n");
close(cfd);
pool_free(task, t);
pool_free(session, s);
return 0;
}
if ((p->mode == PR_MODE_TCP || p->mode == PR_MODE_HTTP)
&& (p->logfac1 >= 0 || p->logfac2 >= 0)) {
struct sockaddr_in sockname;
unsigned char *pn, *sn;
int namelen;
namelen = sizeof(sockname);
if (get_original_dst(cfd, (struct sockaddr_in *)&sockname, &namelen) == -1)
getsockname(cfd, (struct sockaddr *)&sockname, &namelen);
sn = (unsigned char *)&sockname.sin_addr;
pn = (unsigned char *)&s->cli_addr.sin_addr;
sprintf(trash, "Connect from %d.%d.%d.%d:%d to %d.%d.%d.%d:%d (%s/%s)\n",
pn[0], pn[1], pn[2], pn[3], ntohs(s->cli_addr.sin_port),
sn[0], sn[1], sn[2], sn[3], ntohs(sockname.sin_port),
p->id, (p->mode == PR_MODE_HTTP) ? "HTTP" : "TCP");
if (p->logfac1 >= 0)
send_syslog(&p->logsrv1, p->logfac1, LOG_INFO, trash);
if (p->logfac2 >= 0)
send_syslog(&p->logsrv2, p->logfac2, LOG_INFO, trash);
}
if ((mode & MODE_DEBUG) && !(mode & MODE_QUIET)) {
int len;
len = sprintf(trash, "accept(%04x)=%04x\n", (unsigned short)fd, (unsigned short)cfd);
write(1, trash, len);
}
t->next = t->prev = t->rqnext = NULL; /* task not in run queue yet */
t->wq = LIST_HEAD(wait_queue); /* but already has a wait queue assigned */
t->state = TASK_IDLE;
t->process = process_session;
t->context = s;
s->task = t;
s->proxy = p;
s->cli_state = (p->mode == PR_MODE_HTTP) ? CL_STHEADERS : CL_STDATA; /* no HTTP headers for non-HTTP proxies */
s->srv_state = SV_STIDLE;
s->req = s->rep = NULL; /* will be allocated later */
s->flags = 0;
s->res_cr = s->res_cw = s->res_sr = s->res_sw = RES_SILENT;
s->cli_fd = cfd;
s->srv_fd = -1;
s->conn_retries = p->conn_retries;
if ((s->req = pool_alloc(buffer)) == NULL) { /* no memory */
close(cfd); /* nothing can be done for this fd without memory */
pool_free(task, t);
pool_free(session, s);
return 0;
}
s->req->l = 0;
s->req->h = s->req->r = s->req->lr = s->req->w = s->req->data; /* r and w will be reset further */
s->req->rlim = s->req->data + BUFSIZE;
if (s->cli_state == CL_STHEADERS) /* reserver some space for header rewriting */
s->req->rlim -= MAXREWRITE;
if ((s->rep = pool_alloc(buffer)) == NULL) { /* no memory */
pool_free(buffer, s->req);
close(cfd); /* nothing can be done for this fd without memory */
pool_free(task, t);
pool_free(session, s);
return 0;
}
s->rep->l = 0;
s->rep->h = s->rep->r = s->rep->lr = s->rep->w = s->rep->rlim = s->rep->data;
fdtab[cfd].read = &event_cli_read;
fdtab[cfd].write = &event_cli_write;
fdtab[cfd].owner = t;
fdtab[cfd].state = FD_STREADY;
if (p->mode == PR_MODE_HEALTH) { /* health check mode, no client reading */
FD_CLR(cfd, StaticReadEvent);
FD_SET(cfd, StaticWriteEvent);
tv_eternity(&s->crexpire);
shutdown(s->cli_fd, SHUT_RD);
s->cli_state = CL_STSHUTR;
strcpy(s->rep->data, "OK\n"); /* forge an "OK" response */
s->rep->l = 3;
s->rep->r += 3;
}
else {
FD_SET(cfd, StaticReadEvent);
}
fd_insert(cfd);
tv_eternity(&s->cnexpire);
tv_eternity(&s->srexpire);
tv_eternity(&s->swexpire);
tv_eternity(&s->cwexpire);
if (s->proxy->clitimeout)
tv_delayfrom(&s->crexpire, &now, s->proxy->clitimeout);
else
tv_eternity(&s->crexpire);
t->expire = s->crexpire;
task_queue(t);
if (p->mode != PR_MODE_HEALTH)
task_wakeup(&rq, t);
p->nbconn++;
actconn++;
totalconn++;
// fprintf(stderr, "accepting from %p => %d conn, %d total\n", p, actconn, totalconn);
} /* end of while (p->nbconn < p->maxconn) */
return 0;
}
/*
* This function is used only for server health-checks. It handles
* the connection acknowledgement and returns 1 if the socket is OK,
* or -1 if an error occured.
*/
int event_srv_hck(int fd) {
struct task *t = fdtab[fd].owner;
struct server *s = t->context;
int skerr, lskerr;
lskerr = sizeof(skerr);
getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr);
if (skerr)
s->result = -1;
else
s->result = 1;
task_wakeup(&rq, t);
return 0;
}
/*
* this function writes the string <str> at position <pos> which must be in buffer <b>,
* and moves <end> just after the end of <str>.
* <b>'s parameters (l, r, w, h, lr) are recomputed to be valid after the shift.
* the shift value (positive or negative) is returned.
* If there's no space left, the move is not done.
*
*/
int buffer_replace(struct buffer *b, char *pos, char *end, char *str) {
int delta;
int len;
len = strlen(str);
delta = len - (end - pos);
if (delta + b->r >= b->data + BUFSIZE)
return 0; /* no space left */
/* first, protect the end of the buffer */
memmove(end + delta, end, b->data + b->l - end);
/* now, copy str over pos */
memcpy(pos, str,len);
/* we only move data after the displaced zone */
if (b->r > pos) b->r += delta;
if (b->w > pos) b->w += delta;
if (b->h > pos) b->h += delta;
if (b->lr > pos) b->lr += delta;
b->l += delta;
return delta;
}
/* same except that the string len is given */
int buffer_replace2(struct buffer *b, char *pos, char *end, char *str, int len) {
int delta;
delta = len - (end - pos);
if (delta + b->r >= b->data + BUFSIZE)
return 0; /* no space left */
/* first, protect the end of the buffer */
memmove(end + delta, end, b->data + b->l - end);
/* now, copy str over pos */
memcpy(pos, str,len);
/* we only move data after the displaced zone */
if (b->r > pos) b->r += delta;
if (b->w > pos) b->w += delta;
if (b->h > pos) b->h += delta;
if (b->lr > pos) b->lr += delta;
b->l += delta;
return delta;
}
int exp_replace(char *dst, char *src, char *str, regmatch_t *matches) {
char *old_dst = dst;
while (*str) {
if (*str == '\\') {
str++;
if (isdigit(*str)) {
int len, num;
num = *str - '0';
str++;
if (matches[num].rm_so > -1) {
len = matches[num].rm_eo - matches[num].rm_so;
memcpy(dst, src + matches[num].rm_so, len);
dst += len;
}
}
else if (*str == 'x') {
unsigned char hex1, hex2;
str++;
hex1=toupper(*str++) - '0'; hex2=toupper(*str++) - '0';
if (hex1 > 9) hex1 -= 'A' - '9' - 1;
if (hex2 > 9) hex2 -= 'A' - '9' - 1;
*dst++ = (hex1<<4) + hex2;
}
else
*dst++ = *str++;
}
else
*dst++ = *str++;
}
*dst = 0;
return dst - old_dst;
}
/*
* manages the client FSM and its socket. BTW, it also tries to handle the
* cookie. It returns 1 if a state has changed (and a resync may be needed),
* 0 else.
*/
int process_cli(struct session *t) {
int s = t->srv_state;
int c = t->cli_state;
struct buffer *req = t->req;
struct buffer *rep = t->rep;
//fprintf(stderr,"process_cli: c=%d, s=%d, cr=%d, cw=%d, sr=%d, sw=%d\n", c, s,
//FD_ISSET(t->cli_fd, StaticReadEvent), FD_ISSET(t->cli_fd, StaticWriteEvent),
//FD_ISSET(t->srv_fd, StaticReadEvent), FD_ISSET(t->srv_fd, StaticWriteEvent)
//);
if (c == CL_STHEADERS) {
/* now parse the partial (or complete) headers */
while (req->lr < req->r) { /* this loop only sees one header at each iteration */
char *ptr;
int delete_header;
ptr = req->lr;
/* look for the end of the current header */
while (ptr < req->r && *ptr != '\n' && *ptr != '\r')
ptr++;
if (ptr == req->h) { /* empty line, end of headers */
char newhdr[MAXREWRITE + 1];
int line, len;
/* we can only get here after an end of headers */
/* we'll have something else to do here : add new headers ... */
for (line = 0; line < t->proxy->nb_reqadd; line++) {
len = sprintf(newhdr, "%s\r\n", t->proxy->req_add[line]);
buffer_replace2(req, req->h, req->h, newhdr, len);
}
t->cli_state = CL_STDATA;
req->rlim = req->data + BUFSIZE; /* no more rewrite needed */
/* FIXME: we'll set the client in a wait state while we try to
* connect to the server. Is this really needed ? wouldn't it be
* better to release the maximum of system buffers instead ? */
//FD_CLR(t->cli_fd, StaticReadEvent);
//tv_eternity(&t->crexpire);
break;
}
/* to get a complete header line, we need the ending \r\n, \n\r, \r or \n too */
if (ptr > req->r - 2) {
/* this is a partial header, let's wait for more to come */
req->lr = ptr;
break;
}
/* now we know that *ptr is either \r or \n,
* and that there are at least 1 char after it.
*/
if ((ptr[0] == ptr[1]) || (ptr[1] != '\r' && ptr[1] != '\n'))
req->lr = ptr + 1; /* \r\r, \n\n, \r[^\n], \n[^\r] */
else
req->lr = ptr + 2; /* \r\n or \n\r */
/*
* now we know that we have a full header ; we can do whatever
* we want with these pointers :
* req->h = beginning of header
* ptr = end of header (first \r or \n)
* req->lr = beginning of next line (next rep->h)
* req->r = end of data (not used at this stage)
*/
delete_header = 0;
if ((mode & MODE_DEBUG) && !(mode & MODE_QUIET)) {
int len, max;
len = sprintf(trash, "clihdr[%04x:%04x]: ", (unsigned short)t->cli_fd, (unsigned short)t->srv_fd);
max = ptr - req->h;
UBOUND(max, sizeof(trash) - len - 1);
len += strlcpy(trash + len, req->h, max + 1);
trash[len++] = '\n';
write(1, trash, len);
}
/* try headers regexps */
if (t->proxy->nb_reqexp) {
struct proxy *p = t->proxy;
int exp;
char term;
term = *ptr;
*ptr = '\0';
for (exp=0; exp < p->nb_reqexp; exp++) {
if (regexec(p->req_exp[exp].preg, req->h, MAX_MATCH, pmatch, 0) == 0) {
if (p->req_exp[exp].replace != NULL) {
int len = exp_replace(trash, req->h, p->req_exp[exp].replace, pmatch);
ptr += buffer_replace2(req, req->h, ptr, trash, len);
}
else {
delete_header = 1;
}
break;
}
}
*ptr = term; /* restore the string terminator */
}
/* now look for cookies */
if (!delete_header && (req->r >= req->h + 8) && (t->proxy->cookie_name != NULL)
&& (strncmp(req->h, "Cookie: ", 8) == 0)) {
char *p1, *p2, *p3, *p4;
p1 = req->h + 8; /* first char after 'Cookie: ' */
while (p1 < ptr) {
while (p1 < ptr && (isspace(*p1) || *p1 == ';'))
p1++;
if (p1 == ptr)
break;
else if (*p1 == ';') { /* next cookie */
++p1;
continue;
}
/* p1 is at the beginning of the cookie name */
p2 = p1;
while (p2 < ptr && *p2 != '=' && *p2 != ';')
p2++;
if (p2 == ptr)
break;
else if (*p2 == ';') { /* next cookie */
p1=++p2;
continue;
}
p3 = p2 + 1; /* skips the '=' sign */
if (p3 == ptr)
break;
p4=p3;
while (p4 < ptr && !isspace(*p4) && *p4 != ';')
p4++;
/* here, we have the cookie name between p1 and p2,
* and its value between p3 and p4.
* we can process it.
*/
if ((p2 - p1 == strlen(t->proxy->cookie_name)) &&
(strncmp(p1, t->proxy->cookie_name, p2 - p1) == 0)) {
/* Cool... it's the right one */
struct server *srv = t->proxy->srv;
while (srv &&
((srv->cklen != p4 - p3) || memcmp(p3, srv->cookie, p4 - p3))) {
srv = srv->next;
}
if (srv) { /* we found the server */
t->flags |= TF_DIRECT;
t->srv = srv;
}
break;
}
else {
// fprintf(stderr,"Ignoring unknown cookie : ");
// write(2, p1, p2-p1);
// fprintf(stderr," = ");
// write(2, p3, p4-p3);
// fprintf(stderr,"\n");
}
/* we'll have to look for another cookie ... */
p1 = p4;
} /* while (p1 < ptr) */
} /* end of cookie processing */
/* let's look if we have to delete this header */
if (delete_header) {
buffer_replace2(req, req->h, req->lr, "", 0);
}
req->h = req->lr;
} /* while (req->lr < req->r) */
/* end of header processing (even if incomplete) */
if ((req->l < req->rlim - req->data) && ! FD_ISSET(t->cli_fd, StaticReadEvent)) {
/* fd in StaticReadEvent was disabled, perhaps because of a previous buffer
* full. We cannot loop here since event_cli_read will disable it only if
* req->l == rlim-data
*/
FD_SET(t->cli_fd, StaticReadEvent);
if (t->proxy->clitimeout)
tv_delayfrom(&t->crexpire, &now, t->proxy->clitimeout);
else
tv_eternity(&t->crexpire);
}
/* read timeout, read error, or last read : give up.
* since we are in header mode, if there's no space left for headers, we
* won't be able to free more later, so the session will never terminate.
*/
if (t->res_cr == RES_ERROR || t->res_cr == RES_NULL
|| req->l >= req->rlim - req->data || tv_cmp2_ms(&t->crexpire, &now) <= 0) {
tv_eternity(&t->crexpire);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
return 1;
}
return t->cli_state != CL_STHEADERS;
}
else if (c == CL_STDATA) {
/* read or write error */
if (t->res_cw == RES_ERROR || t->res_cr == RES_ERROR) {
tv_eternity(&t->crexpire);
tv_eternity(&t->cwexpire);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
return 1;
}
/* read timeout, last read, or end of server write */
else if (t->res_cr == RES_NULL || s == SV_STSHUTW || s == SV_STCLOSE
|| tv_cmp2_ms(&t->crexpire, &now) <= 0) {
FD_CLR(t->cli_fd, StaticReadEvent);
// if (req->l == 0) /* nothing to write on the server side */
// FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&t->crexpire);
shutdown(t->cli_fd, SHUT_RD);
t->cli_state = CL_STSHUTR;
return 1;
}
/* write timeout, or last server read and buffer empty */
else if (((s == SV_STSHUTR || s == SV_STCLOSE) && (rep->l == 0))
||(tv_cmp2_ms(&t->cwexpire, &now) <= 0)) {
FD_CLR(t->cli_fd, StaticWriteEvent);
tv_eternity(&t->cwexpire);
shutdown(t->cli_fd, SHUT_WR);
t->cli_state = CL_STSHUTW;
return 1;
}
if (req->l >= req->rlim - req->data) {
/* no room to read more data */
if (FD_ISSET(t->cli_fd, StaticReadEvent)) {
/* stop reading until we get some space */
FD_CLR(t->cli_fd, StaticReadEvent);
tv_eternity(&t->crexpire);
}
}
else {
/* there's still some space in the buffer */
if (! FD_ISSET(t->cli_fd, StaticReadEvent)) {
FD_SET(t->cli_fd, StaticReadEvent);
if (t->proxy->clitimeout)
tv_delayfrom(&t->crexpire, &now, t->proxy->clitimeout);
else
tv_eternity(&t->crexpire);
}
}
if ((rep->l == 0) ||
((s == SV_STHEADERS) /* FIXME: this may be optimized && (rep->w == rep->h)*/)) {
if (FD_ISSET(t->cli_fd, StaticWriteEvent)) {
FD_CLR(t->cli_fd, StaticWriteEvent); /* stop writing */
tv_eternity(&t->cwexpire);
}
}
else { /* buffer not empty */
if (! FD_ISSET(t->cli_fd, StaticWriteEvent)) {
FD_SET(t->cli_fd, StaticWriteEvent); /* restart writing */
if (t->proxy->clitimeout)
tv_delayfrom(&t->cwexpire, &now, t->proxy->clitimeout);
else
tv_eternity(&t->cwexpire);
}
}
return 0; /* other cases change nothing */
}
else if (c == CL_STSHUTR) {
if ((t->res_cw == RES_ERROR) ||
((s == SV_STSHUTR || s == SV_STCLOSE) && (rep->l == 0))
|| (tv_cmp2_ms(&t->cwexpire, &now) <= 0)) {
tv_eternity(&t->cwexpire);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
return 1;
}
else if ((rep->l == 0) ||
((s == SV_STHEADERS) /* FIXME: this may be optimized && (rep->w == rep->h)*/)) {
if (FD_ISSET(t->cli_fd, StaticWriteEvent)) {
FD_CLR(t->cli_fd, StaticWriteEvent); /* stop writing */
tv_eternity(&t->cwexpire);
}
}
else { /* buffer not empty */
if (! FD_ISSET(t->cli_fd, StaticWriteEvent)) {
FD_SET(t->cli_fd, StaticWriteEvent); /* restart writing */
if (t->proxy->clitimeout)
tv_delayfrom(&t->cwexpire, &now, t->proxy->clitimeout);
else
tv_eternity(&t->cwexpire);
}
}
return 0;
}
else if (c == CL_STSHUTW) {
if (t->res_cr == RES_ERROR || t->res_cr == RES_NULL || s == SV_STSHUTW ||
s == SV_STCLOSE || tv_cmp2_ms(&t->crexpire, &now) <= 0) {
tv_eternity(&t->crexpire);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
return 1;
}
else if (req->l >= req->rlim - req->data) {
/* no room to read more data */
if (FD_ISSET(t->cli_fd, StaticReadEvent)) {
/* stop reading until we get some space */
FD_CLR(t->cli_fd, StaticReadEvent);
tv_eternity(&t->crexpire);
}
}
else {
/* there's still some space in the buffer */
if (! FD_ISSET(t->cli_fd, StaticReadEvent)) {
FD_SET(t->cli_fd, StaticReadEvent);
if (t->proxy->clitimeout)
tv_delayfrom(&t->crexpire, &now, t->proxy->clitimeout);
else
tv_eternity(&t->crexpire);
}
}
return 0;
}
else { /* CL_STCLOSE: nothing to do */
if ((mode & MODE_DEBUG) && !(mode & MODE_QUIET)) {
int len;
len = sprintf(trash, "clicls[%04x:%04x]\n", (unsigned short)t->cli_fd, (unsigned short)t->srv_fd);
write(1, trash, len);
}
return 0;
}
return 0;
}
/*
* manages the server FSM and its socket. It returns 1 if a state has changed
* (and a resync may be needed), 0 else.
*/
int process_srv(struct session *t) {
int s = t->srv_state;
int c = t->cli_state;
struct buffer *req = t->req;
struct buffer *rep = t->rep;
//fprintf(stderr,"process_srv: c=%d, s=%d\n", c, s);
//fprintf(stderr,"process_srv: c=%d, s=%d, cr=%d, cw=%d, sr=%d, sw=%d\n", c, s,
//FD_ISSET(t->cli_fd, StaticReadEvent), FD_ISSET(t->cli_fd, StaticWriteEvent),
//FD_ISSET(t->srv_fd, StaticReadEvent), FD_ISSET(t->srv_fd, StaticWriteEvent)
//);
if (s == SV_STIDLE) {
if (c == CL_STHEADERS)
return 0; /* stay in idle, waiting for data to reach the client side */
else if (c == CL_STCLOSE ||
c == CL_STSHUTW ||
(c == CL_STSHUTR && t->req->l == 0)) { /* give up */
tv_eternity(&t->cnexpire);
t->srv_state = SV_STCLOSE;
return 1;
}
else { /* go to SV_STCONN */
if (connect_server(t) == 0) { /* initiate a connection to the server */
//fprintf(stderr,"0: c=%d, s=%d\n", c, s);
t->srv_state = SV_STCONN;
}
else { /* try again */
while (t->conn_retries-- > 0) {
if ((t->proxy->options & PR_O_REDISP) && (t->conn_retries == 0)) {
t->flags &= ~TF_DIRECT; /* ignore cookie and force to use the dispatcher */
t->srv = NULL; /* it's left to the dispatcher to choose a server */
}
if (connect_server(t) == 0) {
t->srv_state = SV_STCONN;
break;
}
}
if (t->conn_retries < 0) {
/* if conn_retries < 0 or other error, let's abort */
tv_eternity(&t->cnexpire);
t->srv_state = SV_STCLOSE;
}
}
return 1;
}
}
else if (s == SV_STCONN) { /* connection in progress */
if (t->res_sw == RES_SILENT && tv_cmp2_ms(&t->cnexpire, &now) > 0) {
//fprintf(stderr,"1: c=%d, s=%d\n", c, s);
return 0; /* nothing changed */
}
else if (t->res_sw == RES_SILENT || t->res_sw == RES_ERROR) {
//fprintf(stderr,"2: c=%d, s=%d\n", c, s);
/* timeout, connect error or first write error */
//FD_CLR(t->srv_fd, StaticWriteEvent);
fd_delete(t->srv_fd);
//close(t->srv_fd);
t->conn_retries--;
if (t->conn_retries >= 0) {
if ((t->proxy->options & PR_O_REDISP) && (t->conn_retries == 0)) {
t->flags &= ~TF_DIRECT; /* ignore cookie and force to use the dispatcher */
t->srv = NULL; /* it's left to the dispatcher to choose a server */
}
if (connect_server(t) == 0)
return 0; /* no state changed */
}
/* if conn_retries < 0 or other error, let's abort */
tv_eternity(&t->cnexpire);
t->srv_state = SV_STCLOSE;
return 1;
}
else { /* no error or write 0 */
//fprintf(stderr,"3: c=%d, s=%d\n", c, s);
if (req->l == 0) /* nothing to write */
FD_CLR(t->srv_fd, StaticWriteEvent);
else /* need the right to write */
FD_SET(t->srv_fd, StaticWriteEvent);
if (t->proxy->mode == PR_MODE_TCP) { /* let's allow immediate data connection in this case */
FD_SET(t->srv_fd, StaticReadEvent);
if (t->proxy->srvtimeout)
tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout);
else
tv_eternity(&t->srexpire);
t->srv_state = SV_STDATA;
rep->rlim = rep->data + BUFSIZE; /* no rewrite needed */
}
else {
t->srv_state = SV_STHEADERS;
rep->rlim = rep->data + BUFSIZE - MAXREWRITE; /* rewrite needed */
}
tv_eternity(&t->cnexpire);
return 1;
}
}
else if (s == SV_STHEADERS) { /* receiving server headers */
/* now parse the partial (or complete) headers */
while (rep->lr < rep->r) { /* this loop only sees one header at each iteration */
char *ptr;
int delete_header;
ptr = rep->lr;
/* look for the end of the current header */
while (ptr < rep->r && *ptr != '\n' && *ptr != '\r')
ptr++;
if (ptr == rep->h) {
char newhdr[MAXREWRITE + 1];
int line, len;
/* we can only get here after an end of headers */
/* we'll have something else to do here : add new headers ... */
if ((t->srv) && !(t->flags & TF_DIRECT) && (t->proxy->options & PR_O_COOK_INS)) {
/* the server is known, it's not the one the client requested, we have to
* insert a set-cookie here.
*/
len = sprintf(newhdr, "Set-Cookie: %s=%s; path=/\r\n",
t->proxy->cookie_name, t->srv->cookie);
buffer_replace2(rep, rep->h, rep->h, newhdr, len);
}
/* headers to be added */
for (line = 0; line < t->proxy->nb_rspadd; line++) {
len = sprintf(newhdr, "%s\r\n", t->proxy->rsp_add[line]);
buffer_replace2(rep, rep->h, rep->h, newhdr, len);
}
t->srv_state = SV_STDATA;
rep->rlim = rep->data + BUFSIZE; /* no more rewrite needed */
break;
}
/* to get a complete header line, we need the ending \r\n, \n\r, \r or \n too */
if (ptr > rep->r - 2) {
/* this is a partial header, let's wait for more to come */
rep->lr = ptr;
break;
}
// fprintf(stderr,"h=%p, ptr=%p, lr=%p, r=%p, *h=", rep->h, ptr, rep->lr, rep->r);
// write(2, rep->h, ptr - rep->h); fprintf(stderr,"\n");
/* now we know that *ptr is either \r or \n,
* and that there are at least 1 char after it.
*/
if ((ptr[0] == ptr[1]) || (ptr[1] != '\r' && ptr[1] != '\n'))
rep->lr = ptr + 1; /* \r\r, \n\n, \r[^\n], \n[^\r] */
else
rep->lr = ptr + 2; /* \r\n or \n\r */
/*
* now we know that we have a full header ; we can do whatever
* we want with these pointers :
* rep->h = beginning of header
* ptr = end of header (first \r or \n)
* rep->lr = beginning of next line (next rep->h)
* rep->r = end of data (not used at this stage)
*/
delete_header = 0;
if ((mode & MODE_DEBUG) && !(mode & MODE_QUIET)) {
int len, max;
len = sprintf(trash, "srvhdr[%04x:%04x]: ", (unsigned short)t->cli_fd, (unsigned short)t->srv_fd);
max = ptr - rep->h;
UBOUND(max, sizeof(trash) - len - 1);
len += strlcpy(trash + len, rep->h, max + 1);
trash[len++] = '\n';
write(1, trash, len);
}
/* try headers regexps */
if (t->proxy->nb_rspexp) {
struct proxy *p = t->proxy;
int exp;
char term;
term = *ptr;
*ptr = '\0';
for (exp=0; exp < p->nb_rspexp; exp++) {
if (regexec(p->rsp_exp[exp].preg, rep->h, MAX_MATCH, pmatch, 0) == 0) {
if (p->rsp_exp[exp].replace != NULL) {
int len = exp_replace(trash, rep->h, p->rsp_exp[exp].replace, pmatch);
ptr += buffer_replace2(rep, rep->h, ptr, trash, len);
}
else {
delete_header = 1;
}
break;
}
}
*ptr = term; /* restore the string terminator */
}
/* check for server cookies */
if (!delete_header && (t->proxy->options & PR_O_COOK_ANY) && (rep->r >= rep->h + 12) &&
(t->proxy->cookie_name != NULL) && (strncmp(rep->h, "Set-Cookie: ", 12) == 0)) {
char *p1, *p2, *p3, *p4;
p1 = rep->h + 12; /* first char after 'Set-Cookie: ' */
while (p1 < ptr) { /* in fact, we'll break after the first cookie */
while (p1 < ptr && (isspace(*p1)))
p1++;
if (p1 == ptr || *p1 == ';') /* end of cookie */
break;
/* p1 is at the beginning of the cookie name */
p2 = p1;
while (p2 < ptr && *p2 != '=' && *p2 != ';')
p2++;
if (p2 == ptr || *p2 == ';') /* next cookie */
break;
p3 = p2 + 1; /* skips the '=' sign */
if (p3 == ptr)
break;
p4 = p3;
while (p4 < ptr && !isspace(*p4) && *p4 != ';')
p4++;
/* here, we have the cookie name between p1 and p2,
* and its value between p3 and p4.
* we can process it.
*/
if ((p2 - p1 == strlen(t->proxy->cookie_name)) &&
(strncmp(p1, t->proxy->cookie_name, p2 - p1) == 0)) {
/* Cool... it's the right one */
/* If the cookie is in insert mode on a known server, we'll delete
* this occurrence because we'll insert another one later.
* We'll delete it too if the "indirect" option is set and we're in
* a direct access. */
if (((t->srv) && (t->proxy->options & PR_O_COOK_INS)) ||
((t->flags & TF_DIRECT) && (t->proxy->options & PR_O_COOK_IND))) {
/* this header must be deleted */
delete_header = 1;
}
else if ((t->srv) && (t->proxy->options & PR_O_COOK_RW)) {
/* replace bytes p3->p4 with the cookie name associated
* with this server since we know it.
*/
buffer_replace2(rep, p3, p4, t->srv->cookie, t->srv->cklen);
}
break;
}
else {
// fprintf(stderr,"Ignoring unknown cookie : ");
// write(2, p1, p2-p1);
// fprintf(stderr," = ");
// write(2, p3, p4-p3);
// fprintf(stderr,"\n");
}
break; /* we don't want to loop again since there cannot be another cookie on the same line */
} /* we're now at the end of the cookie value */
} /* end of cookie processing */
/* let's look if we have to delete this header */
if (delete_header) {
buffer_replace2(rep, rep->h, rep->lr, "", 0);
}
rep->h = rep->lr;
} /* while (rep->lr < rep->r) */
/* end of header processing (even if incomplete) */
if ((rep->l < rep->rlim - rep->data) && ! FD_ISSET(t->srv_fd, StaticReadEvent)) {
/* fd in StaticReadEvent was disabled, perhaps because of a previous buffer
* full. We cannot loop here since event_srv_read will disable it only if
* rep->l == rlim-data
*/
FD_SET(t->srv_fd, StaticReadEvent);
if (t->proxy->srvtimeout)
tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout);
else
tv_eternity(&t->srexpire);
}
/* read or write error */
if (t->res_sw == RES_ERROR || t->res_sr == RES_ERROR) {
tv_eternity(&t->srexpire);
tv_eternity(&t->swexpire);
fd_delete(t->srv_fd);
t->srv_state = SV_STCLOSE;
return 1;
}
/* read timeout, last read, or end of client write
* since we are in header mode, if there's no space left for headers, we
* won't be able to free more later, so the session will never terminate.
*/
else if (t->res_sr == RES_NULL || c == CL_STSHUTW || c == CL_STCLOSE
|| rep->l >= rep->rlim - rep->data || tv_cmp2_ms(&t->srexpire, &now) <= 0) {
FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&t->srexpire);
shutdown(t->srv_fd, SHUT_RD);
t->srv_state = SV_STSHUTR;
return 1;
}
/* write timeout, or last client read and buffer empty */
else if (((c == CL_STSHUTR || c == CL_STCLOSE) && (req->l == 0)) ||
(tv_cmp2_ms(&t->swexpire, &now) <= 0)) {
FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&t->swexpire);
shutdown(t->srv_fd, SHUT_WR);
t->srv_state = SV_STSHUTW;
return 1;
}
if (req->l == 0) {
if (FD_ISSET(t->srv_fd, StaticWriteEvent)) {
FD_CLR(t->srv_fd, StaticWriteEvent); /* stop writing */
tv_eternity(&t->swexpire);
}
}
else { /* client buffer not empty */
if (! FD_ISSET(t->srv_fd, StaticWriteEvent)) {
FD_SET(t->srv_fd, StaticWriteEvent); /* restart writing */
if (t->proxy->srvtimeout)
tv_delayfrom(&t->swexpire, &now, t->proxy->srvtimeout);
else
tv_eternity(&t->swexpire);
}
}
/* be nice with the client side which would like to send a complete header
* FIXME: COMPLETELY BUGGY !!! not all headers may be processed because the client
* would read all remaining data at once ! The client should not write past rep->lr
* when the server is in header state.
*/
//return header_processed;
return t->srv_state != SV_STHEADERS;
}
else if (s == SV_STDATA) {
/* read or write error */
if (t->res_sw == RES_ERROR || t->res_sr == RES_ERROR) {
tv_eternity(&t->srexpire);
tv_eternity(&t->swexpire);
fd_delete(t->srv_fd);
t->srv_state = SV_STCLOSE;
return 1;
}
/* read timeout, last read, or end of client write */
else if (t->res_sr == RES_NULL || c == CL_STSHUTW || c == CL_STCLOSE
|| tv_cmp2_ms(&t->srexpire, &now) <= 0) {
FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&t->srexpire);
shutdown(t->srv_fd, SHUT_RD);
t->srv_state = SV_STSHUTR;
return 1;
}
/* write timeout, or last client read and buffer empty */
else if (((c == CL_STSHUTR || c == CL_STCLOSE) && (req->l == 0))
|| (tv_cmp2_ms(&t->swexpire, &now) <= 0)) {
FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&t->swexpire);
shutdown(t->srv_fd, SHUT_WR);
t->srv_state = SV_STSHUTW;
return 1;
}
else if (req->l == 0) {
if (FD_ISSET(t->srv_fd, StaticWriteEvent)) {
FD_CLR(t->srv_fd, StaticWriteEvent); /* stop writing */
tv_eternity(&t->swexpire);
}
}
else { /* buffer not empty */
if (! FD_ISSET(t->srv_fd, StaticWriteEvent)) {
FD_SET(t->srv_fd, StaticWriteEvent); /* restart writing */
if (t->proxy->srvtimeout)
tv_delayfrom(&t->swexpire, &now, t->proxy->srvtimeout);
else
tv_eternity(&t->swexpire);
}
}
if (rep->l == BUFSIZE) { /* no room to read more data */
if (FD_ISSET(t->srv_fd, StaticReadEvent)) {
FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&t->srexpire);
}
}
else {
if (! FD_ISSET(t->srv_fd, StaticReadEvent)) {
FD_SET(t->srv_fd, StaticReadEvent);
if (t->proxy->srvtimeout)
tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout);
else
tv_eternity(&t->srexpire);
}
}
return 0; /* other cases change nothing */
}
else if (s == SV_STSHUTR) {
if ((t->res_sw == RES_ERROR) ||
((c == CL_STSHUTR || c == CL_STCLOSE) && (req->l == 0)) ||
(tv_cmp2_ms(&t->swexpire, &now) <= 0)) {
//FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&t->swexpire);
fd_delete(t->srv_fd);
//close(t->srv_fd);
t->srv_state = SV_STCLOSE;
return 1;
}
else if (req->l == 0) {
if (FD_ISSET(t->srv_fd, StaticWriteEvent)) {
FD_CLR(t->srv_fd, StaticWriteEvent); /* stop writing */
tv_eternity(&t->swexpire);
}
}
else { /* buffer not empty */
if (! FD_ISSET(t->srv_fd, StaticWriteEvent)) {
FD_SET(t->srv_fd, StaticWriteEvent); /* restart writing */
if (t->proxy->srvtimeout)
tv_delayfrom(&t->swexpire, &now, t->proxy->srvtimeout);
else
tv_eternity(&t->swexpire);
}
}
return 0;
}
else if (s == SV_STSHUTW) {
if (t->res_sr == RES_ERROR || t->res_sr == RES_NULL ||
c == CL_STSHUTW || c == CL_STCLOSE ||
tv_cmp2_ms(&t->srexpire, &now) <= 0) {
//FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&t->srexpire);
fd_delete(t->srv_fd);
//close(t->srv_fd);
t->srv_state = SV_STCLOSE;
return 1;
}
else if (rep->l == BUFSIZE) { /* no room to read more data */
if (FD_ISSET(t->srv_fd, StaticReadEvent)) {
FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&t->srexpire);
}
}
else {
if (! FD_ISSET(t->srv_fd, StaticReadEvent)) {
FD_SET(t->srv_fd, StaticReadEvent);
if (t->proxy->srvtimeout)
tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout);
else
tv_eternity(&t->srexpire);
}
}
return 0;
}
else { /* SV_STCLOSE : nothing to do */
if ((mode & MODE_DEBUG) && !(mode & MODE_QUIET)) {
int len;
len = sprintf(trash, "srvcls[%04x:%04x]\n", (unsigned short)t->cli_fd, (unsigned short)t->srv_fd);
write(1, trash, len);
}
return 0;
}
return 0;
}
/* Processes the client and server jobs of a session task, then
* puts it back to the wait queue in a clean state, or
* cleans up its resources if it must be deleted. Returns
* the time the task accepts to wait, or -1 for infinity
*/
int process_session(struct task *t) {
struct session *s = t->context;
int fsm_resync = 0;
do {
fsm_resync = 0;
//fprintf(stderr,"before_cli:cli=%d, srv=%d\n", t->cli_state, t->srv_state);
fsm_resync |= process_cli(s);
//fprintf(stderr,"cli/srv:cli=%d, srv=%d\n", t->cli_state, t->srv_state);
fsm_resync |= process_srv(s);
//fprintf(stderr,"after_srv:cli=%d, srv=%d\n", t->cli_state, t->srv_state);
} while (fsm_resync);
if (s->cli_state != CL_STCLOSE || s->srv_state != SV_STCLOSE) {
struct timeval min1, min2;
s->res_cw = s->res_cr = s->res_sw = s->res_sr = RES_SILENT;
tv_min(&min1, &s->crexpire, &s->cwexpire);
tv_min(&min2, &s->srexpire, &s->swexpire);
tv_min(&min1, &min1, &s->cnexpire);
tv_min(&t->expire, &min1, &min2);
/* restore t to its place in the task list */
task_queue(t);
return tv_remain(&now, &t->expire); /* nothing more to do */
}
s->proxy->nbconn--;
actconn--;
if ((mode & MODE_DEBUG) && !(mode & MODE_QUIET)) {
int len;
len = sprintf(trash, "closed[%04x:%04x]\n", (unsigned short)s->cli_fd, (unsigned short)s->srv_fd);
write(1, trash, len);
}
/* the task MUST not be in the run queue anymore */
task_delete(t);
session_free(s);
task_free(t);
return -1; /* rest in peace for eternity */
}
/*
* manages a server health-check. Returns
* the time the task accepts to wait, or -1 for infinity.
*/
int process_chk(struct task *t) {
struct server *s = t->context;
int fd = s->curfd;
int one = 1;
//fprintf(stderr, "process_chk: task=%p\n", t);
if (fd < 0) { /* no check currently running */
//fprintf(stderr, "process_chk: 2\n");
if (tv_cmp2_ms(&t->expire, &now) > 0) { /* not good time yet */
task_queue(t); /* restore t to its place in the task list */
return tv_remain(&now, &t->expire);
}
/* we'll initiate a new check */
s->result = 0; /* no result yet */
if ((fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) != -1) {
if ((fd < cfg_maxsock) &&
(fcntl(fd, F_SETFL, O_NONBLOCK) != -1) &&
(setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *) &one, sizeof(one)) != -1)) {
//fprintf(stderr, "process_chk: 3\n");
if ((connect(fd, (struct sockaddr *)&s->addr, sizeof(s->addr)) != -1) || (errno == EINPROGRESS)) {
/* OK, connection in progress or established */
//fprintf(stderr, "process_chk: 4\n");
s->curfd = fd; /* that's how we know a test is in progress ;-) */
fdtab[fd].owner = t;
fdtab[fd].read = NULL;
fdtab[fd].write = &event_srv_hck;
fdtab[fd].state = FD_STCONN; /* connection in progress */
FD_SET(fd, StaticWriteEvent); /* for connect status */
fd_insert(fd);
/* FIXME: we allow up to <inter> for a connection to establish, but we should use another parameter */
tv_delayfrom(&t->expire, &now, s->inter);
task_queue(t); /* restore t to its place in the task list */
return tv_remain(&now, &t->expire);
}
else if (errno != EALREADY && errno != EISCONN && errno != EAGAIN) {
s->result = -1; /* a real error */
}
}
//fprintf(stderr, "process_chk: 5\n");
close(fd);
}
if (!s->result) { /* nothing done */
//fprintf(stderr, "process_chk: 6\n");
tv_delayfrom(&t->expire, &now, s->inter);
task_queue(t); /* restore t to its place in the task list */
return tv_remain(&now, &t->expire);
}
/* here, we have seen a failure */
if (s->health > s->rise)
s->health--; /* still good */
else {
if (s->health == s->rise) {
if (!(mode & MODE_QUIET))
Warning("server %s DOWN.\n", s->id);
sprintf(trash, "Server %s/%s is DOWN.\n",
s->proxy->id, s->id);
if (s->proxy->logfac1 >= 0)
send_syslog(&s->proxy->logsrv1, s->proxy->logfac1, LOG_ALERT, trash);
if (s->proxy->logfac2 >= 0)
send_syslog(&s->proxy->logsrv2, s->proxy->logfac2, LOG_ALERT, trash);
}
s->health = 0; /* failure */
s->state &= ~SRV_RUNNING;
}
//fprintf(stderr, "process_chk: 7\n");
/* FIXME: we allow up to <inter> for a connection to establish, but we should use another parameter */
tv_delayfrom(&t->expire, &now, s->inter);
}
else {
//fprintf(stderr, "process_chk: 8\n");
/* there was a test running */
if (s->result > 0) { /* good server detected */
//fprintf(stderr, "process_chk: 9\n");
s->health++; /* was bad, stays for a while */
if (s->health >= s->rise) {
if (s->health == s->rise) {
if (!(mode & MODE_QUIET))
Warning("server %s UP.\n", s->id);
sprintf(trash, "Server %s/%s is UP.\n", s->proxy->id, s->id);
if (s->proxy->logfac1 >= 0)
send_syslog(&s->proxy->logsrv1, s->proxy->logfac1, LOG_NOTICE, trash);
if (s->proxy->logfac2 >= 0)
send_syslog(&s->proxy->logsrv2, s->proxy->logfac2, LOG_NOTICE, trash);
}
s->health = s->rise + s->fall - 1; /* OK now */
s->state |= SRV_RUNNING;
}
s->curfd = -1; /* no check running anymore */
//FD_CLR(fd, StaticWriteEvent);
fd_delete(fd);
tv_delayfrom(&t->expire, &now, s->inter);
}
else if (s->result < 0 || tv_cmp2_ms(&t->expire, &now) <= 0) {
//fprintf(stderr, "process_chk: 10\n");
/* failure or timeout detected */
if (s->health > s->rise)
s->health--; /* still good */
else {
if (s->health == s->rise) {
if (!(mode & MODE_QUIET))
Warning("server %s DOWN.\n", s->id);
sprintf(trash, "Server %s/%s is DOWN.\n",
s->proxy->id, s->id);
if (s->proxy->logfac1 >= 0)
send_syslog(&s->proxy->logsrv1, s->proxy->logfac1, LOG_ALERT, trash);
if (s->proxy->logfac2 >= 0)
send_syslog(&s->proxy->logsrv2, s->proxy->logfac2, LOG_ALERT, trash);
}
s->health = 0; /* failure */
s->state &= ~SRV_RUNNING;
}
s->curfd = -1;
//FD_CLR(fd, StaticWriteEvent);
fd_delete(fd);
tv_delayfrom(&t->expire, &now, s->inter);
}
/* if result is 0 and there's no timeout, we have to wait again */
}
//fprintf(stderr, "process_chk: 11\n");
s->result = 0;
task_queue(t); /* restore t to its place in the task list */
return tv_remain(&now, &t->expire);
}
#if STATTIME > 0
int stats(void);
#endif
/*
* Main select() loop.
*/
void select_loop() {
int next_time;
int time2;
int status;
int fd,i;
struct timeval delta;
int readnotnull, writenotnull;
struct task *t, *tnext;
tv_now(&now);
while (1) {
next_time = -1; /* set the timer to wait eternally first */
/* look for expired tasks and add them to the run queue.
*/
tnext = ((struct task *)LIST_HEAD(wait_queue))->next;
while ((t = tnext) != LIST_HEAD(wait_queue)) { /* we haven't looped ? */
tnext = t->next;
if (t->state & TASK_RUNNING)
continue;
/* wakeup expired entries. It doesn't matter if they are
* already running because of a previous event
*/
if (tv_cmp2_ms(&t->expire, &now) <= 0) {
//fprintf(stderr,"task_wakeup(%p, %p)\n", &rq, t);
task_wakeup(&rq, t);
}
else {
/* first non-runnable task. Use its expiration date as an upper bound */
int temp_time = tv_remain(&now, &t->expire);
if (temp_time)
next_time = temp_time;
//fprintf(stderr,"no_task_wakeup(%p, %p) : expire in %d ms\n", &rq, t, temp_time);
break;
}
}
/* process each task in the run queue now. Each task may be deleted
* since we only use tnext.
*/
tnext = rq;
while ((t = tnext) != NULL) {
int temp_time;
tnext = t->rqnext;
task_sleep(&rq, t);
//fprintf(stderr,"task %p\n",t);
temp_time = t->process(t);
next_time = MINTIME(temp_time, next_time);
//fprintf(stderr,"process(%p)=%d -> next_time=%d)\n", t, temp_time, next_time);
}
//fprintf(stderr,"---end of run---\n");
/* maintain all proxies in a consistent state. This should quickly become a task */
time2 = maintain_proxies();
next_time = MINTIME(time2, next_time);
/* stop when there's no connection left and we don't allow them anymore */
if (!actconn && listeners == 0)
break;
#if STATTIME > 0
time2 = stats();
// fprintf(stderr," stats = %d\n", time2);
next_time = MINTIME(time2, next_time);
#endif
if (next_time > 0) { /* FIXME */
/* Convert to timeval */
/* to avoid eventual select loops due to timer precision */
next_time += SCHEDULER_RESOLUTION;
delta.tv_sec = next_time / 1000;
delta.tv_usec = (next_time % 1000) * 1000;
}
else if (next_time == 0) { /* allow select to return immediately when needed */
delta.tv_sec = delta.tv_usec = 0;
}
/* let's restore fdset state */
readnotnull = 0; writenotnull = 0;
for (i = 0; i < (cfg_maxsock + FD_SETSIZE - 1)/(8*sizeof(int)); i++) {
readnotnull |= (*(((int*)ReadEvent)+i) = *(((int*)StaticReadEvent)+i)) != 0;
writenotnull |= (*(((int*)WriteEvent)+i) = *(((int*)StaticWriteEvent)+i)) != 0;
}
// /* just a verification code, needs to be removed for performance */
// for (i=0; i<maxfd; i++) {
// if (FD_ISSET(i, ReadEvent) != FD_ISSET(i, StaticReadEvent))
// abort();
// if (FD_ISSET(i, WriteEvent) != FD_ISSET(i, StaticWriteEvent))
// abort();
//
// }
status=select(maxfd,
readnotnull ? ReadEvent : NULL,
writenotnull ? WriteEvent : NULL,
NULL,
(next_time >= 0) ? &delta : NULL);
/* this is an experiment on the separation of the select work */
// status = (readnotnull ? select(maxfd, ReadEvent, NULL, NULL, (next_time >= 0) ? &delta : NULL) : 0);
// status |= (writenotnull ? select(maxfd, NULL, WriteEvent, NULL, (next_time >= 0) ? &delta : NULL) : 0);
tv_now(&now);
if (status > 0) { /* must proceed with events */
int fds;
char count;
for (fds = 0; (fds << INTBITS) < maxfd; fds++)
if ((((int *)(ReadEvent))[fds] | ((int *)(WriteEvent))[fds]) != 0)
for (count = 1<<INTBITS, fd = fds << INTBITS; count && fd < maxfd; count--, fd++) {
/* if we specify read first, the accepts and zero reads will be
* seen first. Moreover, system buffers will be flushed faster.
*/
if (fdtab[fd].state == FD_STCLOSE)
continue;
if (FD_ISSET(fd, ReadEvent))
fdtab[fd].read(fd);
if (FD_ISSET(fd, WriteEvent))
fdtab[fd].write(fd);
}
}
else {
// fprintf(stderr,"select returned %d, maxfd=%d\n", status, maxfd);
}
}
}
#if STATTIME > 0
/*
* Display proxy statistics regularly. It is designed to be called from the
* select_loop().
*/
int stats(void) {
static int lines;
static struct timeval nextevt;
static struct timeval lastevt;
static struct timeval starttime = {0,0};
unsigned long totaltime, deltatime;
int ret;
if (tv_remain(&now, &nextevt) == 0) {
deltatime = (tv_delta(&now, &lastevt)?:1);
totaltime = (tv_delta(&now, &starttime)?:1);
if (mode & MODE_STATS) {
if ((lines++ % 16 == 0) && !(mode & MODE_LOG))
qfprintf(stderr,
"\n active total tsknew tskgood tskleft tskrght tsknsch tsklsch tskrsch\n");
if (lines>1) {
qfprintf(stderr,"%07d %07d %07d %07d %07d %07d %07d %07d %07d\n",
actconn, totalconn,
stats_tsk_new, stats_tsk_good,
stats_tsk_left, stats_tsk_right,
stats_tsk_nsrch, stats_tsk_lsrch, stats_tsk_rsrch);
}
}
tv_delayfrom(&nextevt, &now, STATTIME);
lastevt=now;
}
ret = tv_remain(&now, &nextevt);
return ret;
}
#endif
/*
* this function enables proxies when there are enough free sessions,
* or stops them when the table is full. It is designed to be called from the
* select_loop(). It returns the time left before next expiration event
* during stop time, -1 otherwise.
*/
static int maintain_proxies(void) {
struct proxy *p;
int tleft; /* time left */
p = proxy;
tleft = -1; /* infinite time */
/* if there are enough free sessions, we'll activate proxies */
if (actconn < cfg_maxconn) {
while (p) {
if (p->nbconn < p->maxconn) {
if (p->state == PR_STIDLE) {
FD_SET(p->listen_fd, StaticReadEvent);
p->state = PR_STRUN;
}
}
else {
if (p->state == PR_STRUN) {
FD_CLR(p->listen_fd, StaticReadEvent);
p->state = PR_STIDLE;
}
}
p = p->next;
}
}
else { /* block all proxies */
while (p) {
if (p->state == PR_STRUN) {
FD_CLR(p->listen_fd, StaticReadEvent);
p->state = PR_STIDLE;
}
p = p->next;
}
}
if (stopping) {
p = proxy;
while (p) {
if (p->state != PR_STDISABLED) {
int t;
t = tv_remain(&now, &p->stop_time);
if (t == 0) {
Warning("Proxy %s stopped.\n", p->id);
sprintf(trash, "Proxy %s stopped.\n", p->id);
if (p->logfac1 >= 0)
send_syslog(&p->logsrv1, p->logfac1, LOG_WARNING, trash);
if (p->logfac2 >= 0)
send_syslog(&p->logsrv2, p->logfac2, LOG_WARNING, trash);
fd_delete(p->listen_fd);
p->state = PR_STDISABLED;
listeners--;
}
else {
tleft = MINTIME(t, tleft);
}
}
p = p->next;
}
}
return tleft;
}
/*
* this function disables health-check servers so that the process will quickly be ignored
* by load balancers.
*/
static void soft_stop(void) {
struct proxy *p;
stopping = 1;
p = proxy;
tv_now(&now); /* else, the old time before select will be used */
while (p) {
if (p->state != PR_STDISABLED) {
Warning("Stopping proxy %s in %d ms.\n", p->id, p->grace);
sprintf(trash, "Stopping proxy %s in %d ms.\n", p->id, p->grace);
if (p->logfac1 >= 0)
send_syslog(&p->logsrv1, p->logfac1, LOG_WARNING, trash);
if (p->logfac2 >= 0)
send_syslog(&p->logsrv2, p->logfac2, LOG_WARNING, trash);
tv_delayfrom(&p->stop_time, &now, p->grace);
}
p = p->next;
}
}
/*
* upon SIGUSR1, let's have a soft stop.
*/
void sig_soft_stop(int sig) {
soft_stop();
signal(sig, SIG_IGN);
}
void dump(int sig) {
struct task *t, *tnext;
struct session *s;
tnext = ((struct task *)LIST_HEAD(wait_queue))->next;
while ((t = tnext) != LIST_HEAD(wait_queue)) { /* we haven't looped ? */
tnext = t->next;
s = t->context;
qfprintf(stderr,"[dump] wq: task %p, still %ld ms, "
"cli=%d, srv=%d, cr=%d, cw=%d, sr=%d, sw=%d, "
"req=%d, rep=%d, clifd=%d\n",
s, tv_remain(&now, &t->expire),
s->cli_state,
s->srv_state,
FD_ISSET(s->cli_fd, StaticReadEvent),
FD_ISSET(s->cli_fd, StaticWriteEvent),
FD_ISSET(s->srv_fd, StaticReadEvent),
FD_ISSET(s->srv_fd, StaticWriteEvent),
s->req->l, s->rep?s->rep->l:0, s->cli_fd
);
}
}
/*
* This function reads and parses the configuration file given in the argument.
* returns 0 if OK, -1 if error.
*/
int readcfgfile(char *file) {
char thisline[256];
char *line;
FILE *f;
int linenum = 0;
char *end;
char *args[MAX_LINE_ARGS];
int arg;
int cfgerr = 0;
struct proxy *curproxy = NULL;
struct server *newsrv = NULL;
if ((f=fopen(file,"r")) == NULL)
return -1;
while (fgets(line = thisline, sizeof(thisline), f) != NULL) {
linenum++;
end = line + strlen(line);
/* skip leading spaces */
while (isspace(*line))
line++;
arg = 0;
args[arg] = line;
while (*line && arg < MAX_LINE_ARGS) {
/* first, we'll replace \\, \<space>, \#, \r, \n, \t, \xXX with their
* C equivalent value. Other combinations left unchanged (eg: \1).
*/
if (*line == '\\') {
int skip = 0;
if (line[1] == ' ' || line[1] == '\\' || line[1] == '#') {
*line = line[1];
skip = 1;
}
else if (line[1] == 'r') {
*line = '\r';
skip = 1;
}
else if (line[1] == 'n') {
*line = '\n';
skip = 1;
}
else if (line[1] == 't') {
*line = '\t';
skip = 1;
}
else if (line[1] == 'x' && (line + 3 < end )) {
unsigned char hex1, hex2;
hex1 = toupper(line[2]) - '0'; hex2 = toupper(line[3]) - '0';
if (hex1 > 9) hex1 -= 'A' - '9' - 1;
if (hex2 > 9) hex2 -= 'A' - '9' - 1;
*line = (hex1<<4) + hex2;
skip = 3;
}
if (skip) {
memmove(line + 1, line + 1 + skip, end - (line + skip + 1));
end -= skip;
}
line++;
}
else {
if (*line == '#' || *line == '\n' || *line == '\r')
*line = 0; /* end of string, end of loop */
else
line++;
/* a non-escaped space is an argument separator */
if (isspace(*line)) {
*line++ = 0;
while (isspace(*line))
line++;
args[++arg] = line;
}
}
}
/* empty line */
if (!**args)
continue;
/* zero out remaining args */
while (++arg < MAX_LINE_ARGS) {
args[arg] = line;
}
if (!strcmp(args[0], "listen")) { /* new proxy */
if (strchr(args[2], ':') == NULL) {
Alert("parsing [%s:%d] : <listen> expects <id> and <addr:port> as arguments.\n",
file, linenum);
return -1;
}
if ((curproxy = (struct proxy *)calloc(1, sizeof(struct proxy)))
== NULL) {
Alert("parsing [%s:%d] : out of memory\n", file, linenum);
exit(1);
}
curproxy->next = proxy;
proxy = curproxy;
curproxy->id = strdup(args[1]);
curproxy->listen_addr = *str2sa(args[2]);
curproxy->state = PR_STNEW;
/* set default values */
curproxy->maxconn = cfg_maxpconn;
curproxy->conn_retries = CONN_RETRIES;
curproxy->options = 0;
curproxy->clitimeout = curproxy->contimeout = curproxy->srvtimeout = 0;
curproxy->mode = PR_MODE_TCP;
curproxy->logfac1 = curproxy->logfac2 = -1; /* log disabled */
continue;
}
else if (curproxy == NULL) {
Alert("parsing [%s:%d] : <listen> expected.\n",
file, linenum);
return -1;
}
if (!strcmp(args[0], "mode")) { /* sets the proxy mode */
if (!strcmp(args[1], "http")) curproxy->mode = PR_MODE_HTTP;
else if (!strcmp(args[1], "tcp")) curproxy->mode = PR_MODE_TCP;
else if (!strcmp(args[1], "health")) curproxy->mode = PR_MODE_HEALTH;
else {
Alert("parsing [%s:%d] : unknown proxy mode <%s>.\n", file, linenum, args[1]);
return -1;
}
}
else if (!strcmp(args[0], "disabled")) { /* disables this proxy */
curproxy->state = PR_STDISABLED;
}
else if (!strcmp(args[0], "cookie")) { /* cookie name */
int cur_arg;
if (curproxy->cookie_name != NULL) {
Alert("parsing [%s:%d] : cookie name already specified. Continuing.\n",
file, linenum);
continue;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : <cookie> expects <cookie_name> as argument.\n",
file, linenum);
return -1;
}
curproxy->cookie_name = strdup(args[1]);
cur_arg = 2;
while (*(args[cur_arg])) {
if (!strcmp(args[cur_arg], "rewrite")) {
curproxy->options |= PR_O_COOK_RW;
}
else if (!strcmp(args[cur_arg], "indirect")) {
curproxy->options |= PR_O_COOK_IND;
}
else if (!strcmp(args[cur_arg], "insert")) {
curproxy->options |= PR_O_COOK_INS;
}
else {
Alert("parsing [%s:%d] : <cookie> supports 'rewrite', 'insert' and 'indirect' options.\n",
file, linenum);
return -1;
}
cur_arg++;
}
if ((curproxy->options & (PR_O_COOK_RW|PR_O_COOK_IND)) == (PR_O_COOK_RW|PR_O_COOK_IND)) {
Alert("parsing [%s:%d] : <cookie> 'rewrite' and 'indirect' mode are incompatibles.\n",
file, linenum);
return -1;
}
}
else if (!strcmp(args[0], "contimeout")) { /* connect timeout */
if (curproxy->contimeout != 0) {
Alert("parsing [%s:%d] : contimeout already specified. Continuing.\n",
file, linenum);
continue;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : <contimeout> expects an integer <time_in_ms> as argument.\n",
file, linenum);
return -1;
}
curproxy->contimeout = atol(args[1]);
}
else if (!strcmp(args[0], "clitimeout")) { /* client timeout */
if (curproxy->clitimeout != 0) {
Alert("parsing [%s:%d] : clitimeout already specified. Continuing.\n",
file, linenum);
continue;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : <clitimeout> expects an integer <time_in_ms> as argument.\n",
file, linenum);
return -1;
}
curproxy->clitimeout = atol(args[1]);
}
else if (!strcmp(args[0], "srvtimeout")) { /* server timeout */
if (curproxy->srvtimeout != 0) {
Alert("parsing [%s:%d] : srvtimeout already specified. Continuing.\n",
file, linenum);
continue;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : <srvtimeout> expects an integer <time_in_ms> as argument.\n",
file, linenum);
return -1;
}
curproxy->srvtimeout = atol(args[1]);
}
else if (!strcmp(args[0], "retries")) { /* connection retries */
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : <retries> expects an integer argument (dispatch counts for one).\n",
file, linenum);
return -1;
}
curproxy->conn_retries = atol(args[1]);
}
else if (!strcmp(args[0], "redispatch") || !strcmp(args[0], "redisp")) {
/* enable reconnections to dispatch */
curproxy->options |= PR_O_REDISP;
}
#ifdef TRANSPARENT
else if (!strcmp(args[0], "transparent")) {
/* enable transparent proxy connections */
curproxy->options |= PR_O_TRANSP;
}
#endif
else if (!strcmp(args[0], "maxconn")) { /* maxconn */
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : <maxconn> expects an integer argument.\n",
file, linenum);
return -1;
}
curproxy->maxconn = atol(args[1]);
}
else if (!strcmp(args[0], "grace")) { /* grace time (ms) */
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : <grace> expects a time in milliseconds.\n",
file, linenum);
return -1;
}
curproxy->grace = atol(args[1]);
}
else if (!strcmp(args[0], "dispatch")) { /* dispatch address */
if (strchr(args[1], ':') == NULL) {
Alert("parsing [%s:%d] : <dispatch> expects <addr:port> as argument.\n",
file, linenum);
return -1;
}
curproxy->dispatch_addr = *str2sa(args[1]);
}
else if (!strcmp(args[0], "balance")) { /* set balancing with optionnal algorithm */
if (*(args[1])) {
if (!strcmp(args[1], "roundrobin")) {
curproxy->options |= PR_O_BALANCE_RR;
}
else {
Alert("parsing [%s:%d] : <balance> supports 'roundrobin' options.\n",
file, linenum);
return -1;
}
}
else /* if no option is set, use round-robin by default */
curproxy->options |= PR_O_BALANCE_RR;
}
else if (!strcmp(args[0], "server")) { /* server address */
int cur_arg;
if (strchr(args[2], ':') == NULL) {
Alert("parsing [%s:%d] : <server> expects <name> and <addr:port> as arguments.\n",
file, linenum);
return -1;
}
if ((newsrv = (struct server *)calloc(1, sizeof(struct server))) == NULL) {
Alert("parsing [%s:%d] : out of memory.\n", file, linenum);
exit(1);
}
newsrv->next = curproxy->srv;
curproxy->srv = newsrv;
newsrv->proxy = curproxy;
newsrv->id = strdup(args[1]);
newsrv->addr = *str2sa(args[2]);
newsrv->state = SRV_RUNNING; /* early server setup */
newsrv->curfd = -1; /* no health-check in progress */
newsrv->inter = DEF_CHKINTR;
newsrv->rise = DEF_RISETIME;
newsrv->fall = DEF_FALLTIME;
newsrv->health = newsrv->rise; /* up, but will fall down at first failure */
cur_arg = 3;
while (*args[cur_arg]) {
if (!strcmp(args[cur_arg], "cookie")) {
newsrv->cookie = strdup(args[cur_arg + 1]);
newsrv->cklen = strlen(args[cur_arg + 1]);
cur_arg += 2;
}
else if (!strcmp(args[cur_arg], "rise")) {
newsrv->rise = atol(args[cur_arg + 1]);
newsrv->health = newsrv->rise;
cur_arg += 2;
}
else if (!strcmp(args[cur_arg], "fall")) {
newsrv->fall = atol(args[cur_arg + 1]);
cur_arg += 2;
}
else if (!strcmp(args[cur_arg], "inter")) {
newsrv->inter = atol(args[cur_arg + 1]);
cur_arg += 2;
}
else if (!strcmp(args[cur_arg], "check")) {
struct task *t;
if ((t = pool_alloc(task)) == NULL) { /* disable this proxy for a while */
Alert("parsing [%s:%d] : out of memory.\n", file, linenum);
return -1;
}
t->next = t->prev = t->rqnext = NULL; /* task not in run queue yet */
t->wq = LIST_HEAD(wait_queue); /* but already has a wait queue assigned */
t->state = TASK_IDLE;
t->process = process_chk;
t->context = newsrv;
if (curproxy->state != PR_STDISABLED) {
tv_delayfrom(&t->expire, &now, newsrv->inter); /* check this every ms */
task_queue(t);
task_wakeup(&rq, t);
}
cur_arg += 1;
}
else {
Alert("parsing [%s:%d] : server %s only supports options 'cookie' and 'check'.\n",
file, linenum, newsrv->id);
return -1;
}
}
curproxy->nbservers++;
}
else if (!strcmp(args[0], "log")) { /* syslog server address */
struct sockaddr_in *sa;
int facility;
if (*(args[1]) == 0 || *(args[2]) == 0) {
Alert("parsing [%s:%d] : <log> expects <address> and <facility> as arguments.\n",
file, linenum);
return -1;
}
for (facility = 0; facility < NB_LOG_FACILITIES; facility++)
if (!strcmp(log_facilities[facility], args[2]))
break;
if (facility >= NB_LOG_FACILITIES) {
Alert("parsing [%s:%d] : unknown log facility <%s>\n", file, linenum, args[2]);
exit(1);
}
sa = str2sa(args[1]);
if (!sa->sin_port)
sa->sin_port = htons(SYSLOG_PORT);
if (curproxy->logfac1 == -1) {
curproxy->logsrv1 = *sa;
curproxy->logfac1 = facility;
}
else if (curproxy->logfac2 == -1) {
curproxy->logsrv2 = *sa;
curproxy->logfac2 = facility;
}
else {
Alert("parsing [%s:%d] : too many syslog servers\n", file, linenum);
exit(1);
}
}
else if (!strcmp(args[0], "cliexp") || !strcmp(args[0], "reqrep")) { /* replace request header from a regex */
regex_t *preg;
if (curproxy->nb_reqexp >= MAX_REGEXP) {
Alert("parsing [%s:%d] : too many request expressions. Continuing.\n",
file, linenum);
continue;
}
if (*(args[1]) == 0 || *(args[2]) == 0) {
Alert("parsing [%s:%d] : <reqrep> expects <search> and <replace> as arguments.\n",
file, linenum);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED) != 0) {
Alert("parsing [%s:%d] : bad regular expression <%s>.\n", file, linenum, args[1]);
return -1;
}
curproxy->req_exp[curproxy->nb_reqexp].preg = preg;
curproxy->req_exp[curproxy->nb_reqexp].replace = strdup(args[2]);
curproxy->nb_reqexp++;
}
else if (!strcmp(args[0], "reqdel")) { /* delete request header from a regex */
regex_t *preg;
if (curproxy->nb_reqexp >= MAX_REGEXP) {
Alert("parsing [%s:%d] : too many request expressions. Continuing.\n",
file, linenum);
continue;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : <reqdel> expects <search> as an argument.\n",
file, linenum);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED) != 0) {
Alert("parsing [%s:%d] : bad regular expression <%s>.\n", file, linenum, args[1]);
return -1;
}
curproxy->req_exp[curproxy->nb_reqexp].preg = preg;
curproxy->req_exp[curproxy->nb_reqexp].replace = NULL; /* means it must be deleted */
curproxy->nb_reqexp++;
}
else if (!strcmp(args[0], "reqadd")) { /* add request header */
if (curproxy->nb_reqadd >= MAX_REGEXP) {
Alert("parsing [%s:%d] : too many client expressions. Continuing.\n",
file, linenum);
continue;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : <reqadd> expects <header> as an argument.\n",
file, linenum);
return -1;
}
curproxy->req_add[curproxy->nb_reqadd++] = strdup(args[1]);
}
else if (!strcmp(args[0], "srvexp") || !strcmp(args[0], "rsprep")) { /* replace response header from a regex */
regex_t *preg;
if (curproxy->nb_rspexp >= MAX_REGEXP) {
Alert("parsing [%s:%d] : too many server expressions. Continuing.\n",
file, linenum);
continue;
}
if (*(args[1]) == 0 || *(args[2]) == 0) {
Alert("parsing [%s:%d] : <rsprep> expects <search> and <replace> as arguments.\n",
file, linenum);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED) != 0) {
Alert("parsing [%s:%d] : bad regular expression <%s>.\n", file, linenum, args[1]);
return -1;
}
// fprintf(stderr,"before=<%s> after=<%s>\n", args[1], args[2]);
curproxy->rsp_exp[curproxy->nb_rspexp].preg = preg;
curproxy->rsp_exp[curproxy->nb_rspexp].replace = strdup(args[2]);
curproxy->nb_rspexp++;
}
else if (!strcmp(args[0], "rspdel")) { /* delete response header from a regex */
regex_t *preg;
if (curproxy->nb_rspexp >= MAX_REGEXP) {
Alert("parsing [%s:%d] : too many server expressions. Continuing.\n",
file, linenum);
continue;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : <rspdel> expects <search> as an argument.\n",
file, linenum);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED) != 0) {
Alert("parsing [%s:%d] : bad regular expression <%s>.\n", file, linenum, args[1]);
return -1;
}
// fprintf(stderr,"before=<%s> after=<%s>\n", args[1], args[2]);
curproxy->rsp_exp[curproxy->nb_rspexp].preg = preg;
curproxy->rsp_exp[curproxy->nb_rspexp].replace = NULL; /* means it must be deleted */
curproxy->nb_rspexp++;
}
else if (!strcmp(args[0], "rspadd")) { /* add response header */
if (curproxy->nb_rspadd >= MAX_REGEXP) {
Alert("parsing [%s:%d] : too many server expressions. Continuing.\n",
file, linenum);
continue;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : <rspadd> expects <header> as an argument.\n",
file, linenum);
return -1;
}
curproxy->rsp_add[curproxy->nb_rspadd++] = strdup(args[1]);
}
else {
Alert("parsing [%s:%d] : unknown keyword <%s>\n", file, linenum, args[0]);
exit(1);
}
}
fclose(f);
/*
* Now, check for the integrity of all that we have collected.
*/
if ((curproxy = proxy) == NULL) {
Alert("parsing %s : no <listen> line. Nothing to do !\n",
file);
return -1;
}
while (curproxy != NULL) {
if (curproxy->state == PR_STDISABLED) {
curproxy = curproxy->next;
continue;
}
if ((curproxy->mode != PR_MODE_HEALTH) &&
!(curproxy->options & (PR_O_TRANSP | PR_O_BALANCE)) &&
(*(int *)&curproxy->dispatch_addr == 0)) {
Alert("parsing %s : listener %s has no dispatch address and is not in transparent or balance mode.\n",
file, curproxy->id);
cfgerr++;
}
else if ((curproxy->mode != PR_MODE_HEALTH) && (curproxy->options & PR_O_BALANCE)) {
if (curproxy->options & PR_O_TRANSP) {
Alert("parsing %s : listener %s cannot use both transparent and balance mode.\n",
file, curproxy->id);
cfgerr++;
}
else if (curproxy->srv == NULL) {
Alert("parsing %s : listener %s needs at least 1 server in balance mode.\n",
file, curproxy->id);
cfgerr++;
}
else if (*(int *)&curproxy->dispatch_addr != 0) {
Warning("parsing %s : dispatch address of listener %s will be ignored in balance mode.\n",
file, curproxy->id);
}
}
else if (curproxy->mode == PR_MODE_TCP || curproxy->mode == PR_MODE_HEALTH) { /* TCP PROXY or HEALTH CHECK */
if (curproxy->cookie_name != NULL) {
Warning("parsing %s : cookie will be ignored for listener %s.\n",
file, curproxy->id);
}
if ((newsrv = curproxy->srv) != NULL) {
Warning("parsing %s : servers will be ignored for listener %s.\n",
file, curproxy->id);
}
if (curproxy->nb_rspexp) {
Warning("parsing %s : server regular expressions will be ignored for listener %s.\n",
file, curproxy->id);
}
if (curproxy->nb_reqexp) {
Warning("parsing %s : client regular expressions will be ignored for listener %s.\n",
file, curproxy->id);
}
}
else if (curproxy->mode == PR_MODE_HTTP) { /* HTTP PROXY */
if ((curproxy->cookie_name != NULL) && ((newsrv = curproxy->srv) == NULL)) {
Alert("parsing %s : HTTP proxy %s has a cookie but no server list !\n",
file, curproxy->id);
cfgerr++;
}
else {
while (newsrv != NULL) {
/* nothing to check for now */
newsrv = newsrv->next;
}
}
}
curproxy = curproxy->next;
}
if (cfgerr > 0) {
Alert("Errors found in configuration file, aborting.\n");
return -1;
}
else
return 0;
}
/*
* This function initializes all the necessary variables. It only returns
* if everything is OK. If something fails, it exits.
*/
void init(int argc, char **argv) {
int i;
char *old_argv = *argv;
char *tmp;
if (1<<INTBITS != sizeof(int)*8) {
qfprintf(stderr,
"Error: wrong architecture. Recompile so that sizeof(int)=%d\n",
sizeof(int)*8);
exit(1);
}
pid = getpid();
progname = *argv;
while ((tmp = strchr(progname, '/')) != NULL)
progname = tmp + 1;
argc--; argv++;
while (argc > 0) {
char *flag;
if (**argv == '-') {
flag = *argv+1;
/* 1 arg */
if (*flag == 'v') {
display_version();
exit(0);
}
else if (*flag == 'd')
mode |= MODE_DEBUG;
else if (*flag == 'D')
mode |= MODE_DAEMON | MODE_QUIET;
else if (*flag == 'q')
mode |= MODE_QUIET;
#if STATTIME > 0
else if (*flag == 's')
mode |= MODE_STATS;
else if (*flag == 'l')
mode |= MODE_LOG;
#endif
else { /* >=2 args */
argv++; argc--;
if (argc == 0)
usage(old_argv);
switch (*flag) {
case 'n' : cfg_maxconn = atol(*argv); break;
case 'N' : cfg_maxpconn = atol(*argv); break;
case 'f' : cfg_cfgfile = *argv; break;
default: usage(old_argv);
}
}
}
else
usage(old_argv);
argv++; argc--;
}
cfg_maxsock = cfg_maxconn * 2; /* each connection needs two sockets */
if (!cfg_cfgfile)
usage(old_argv);
gethostname(hostname, MAX_HOSTNAME_LEN);
if (readcfgfile(cfg_cfgfile) < 0) {
Alert("Error reading configuration file : %s\n", cfg_cfgfile);
exit(1);
}
ReadEvent = (fd_set *)calloc(1,
sizeof(fd_set) *
(cfg_maxsock + FD_SETSIZE - 1) / FD_SETSIZE);
WriteEvent = (fd_set *)calloc(1,
sizeof(fd_set) *
(cfg_maxsock + FD_SETSIZE - 1) / FD_SETSIZE);
StaticReadEvent = (fd_set *)calloc(1,
sizeof(fd_set) *
(cfg_maxsock + FD_SETSIZE - 1) / FD_SETSIZE);
StaticWriteEvent = (fd_set *)calloc(1,
sizeof(fd_set) *
(cfg_maxsock + FD_SETSIZE - 1) / FD_SETSIZE);
fdtab = (struct fdtab *)calloc(1,
sizeof(struct fdtab) * (cfg_maxsock));
for (i = 0; i < cfg_maxsock; i++) {
fdtab[i].state = FD_STCLOSE;
}
}
/*
* this function starts all the proxies. It returns 0 if OK, -1 if not.
*/
int start_proxies() {
struct proxy *curproxy;
int one = 1;
int fd;
for (curproxy = proxy; curproxy != NULL; curproxy = curproxy->next) {
if (curproxy->state == PR_STDISABLED)
continue;
if ((fd = curproxy->listen_fd =
socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) == -1) {
Alert("cannot create listening socket for proxy %s. Aborting.\n",
curproxy->id);
return -1;
}
if (fd >= cfg_maxsock) {
Alert("socket(): not enough free sockets for proxy %s. Raise -n argument. Aborting.\n",
curproxy->id);
close(fd);
return -1;
}
if ((fcntl(fd, F_SETFL, O_NONBLOCK) == -1) ||
(setsockopt(fd, IPPROTO_TCP, TCP_NODELAY,
(char *) &one, sizeof(one)) == -1)) {
Alert("cannot make socket non-blocking for proxy %s. Aborting.\n",
curproxy->id);
close(fd);
return -1;
}
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *) &one, sizeof(one)) == -1) {
Alert("cannot do so_reuseaddr for proxy %s. Continuing.\n",
curproxy->id);
}
if (bind(fd,
(struct sockaddr *)&curproxy->listen_addr,
sizeof(curproxy->listen_addr)) == -1) {
Alert("cannot bind socket for proxy %s. Aborting.\n",
curproxy->id);
close(fd);
return -1;
}
if (listen(fd, curproxy->maxconn) == -1) {
Alert("cannot listen to socket for proxy %s. Aborting.\n",
curproxy->id);
close(fd);
return -1;
}
/* the function for the accept() event */
fdtab[fd].read = &event_accept;
fdtab[fd].write = NULL; /* never called */
fdtab[fd].owner = (struct task *)curproxy; /* reference the proxy instead of a task */
curproxy->state = PR_STRUN;
fdtab[fd].state = FD_STLISTEN;
FD_SET(fd, StaticReadEvent);
fd_insert(fd);
listeners++;
// fprintf(stderr,"Proxy %s : socket bound.\n", curproxy->id);
sprintf(trash, "Proxy %s started.\n", curproxy->id);
if (curproxy->logfac1 >= 0)
send_syslog(&curproxy->logsrv1, curproxy->logfac1, LOG_INFO, trash);
if (curproxy->logfac2 >= 0)
send_syslog(&curproxy->logsrv2, curproxy->logfac2, LOG_INFO, trash);
}
return 0;
}
int main(int argc, char **argv) {
init(argc, argv);
if (mode & MODE_DAEMON) {
int ret;
ret = fork();
if (ret > 0)
exit(0); /* parent must leave */
else if (ret < 0) {
Alert("[%s.main()] Cannot fork\n", argv[0]);
exit(1); /* there has been an error */
}
setpgid(1, 0);
}
if (mode & MODE_QUIET) {
/* detach from the tty */
fclose(stdin); fclose(stdout); fclose(stderr);
close(0); close(1); close(2);
}
signal(SIGQUIT, dump);
signal(SIGUSR1, sig_soft_stop);
/* on very high loads, a sigpipe sometimes happen just between the
* getsockopt() which tells "it's OK to write", and the following write :-(
*/
#ifndef MSG_NOSIGNAL
signal(SIGPIPE, SIG_IGN);
#endif
if (start_proxies() < 0)
exit(1);
select_loop();
exit(0);
}