blob: 3b0f6409c37f2b58fe4bd7229b6e8b66a8b3a8c4 [file] [log] [blame]
/*
* include/common/time.h
* Time calculation functions and macros.
*
* Copyright (C) 2000-2011 Willy Tarreau - w@1wt.eu
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, version 2.1
* exclusively.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _COMMON_TIME_H
#define _COMMON_TIME_H
#include <inttypes.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/time.h>
#include <common/config.h>
#include <common/hathreads.h>
#include <common/standard.h>
/* eternity when exprimed in timeval */
#ifndef TV_ETERNITY
#define TV_ETERNITY (~0UL)
#endif
/* eternity when exprimed in ms */
#ifndef TV_ETERNITY_MS
#define TV_ETERNITY_MS (-1)
#endif
#define TIME_ETERNITY (TV_ETERNITY_MS)
/* we want to be able to detect time jumps. Fix the maximum wait time to a low
* value so that we know the time has changed if we wait longer.
*/
#define MAX_DELAY_MS 1000
/* returns the lowest delay amongst <old> and <new>, and respects TIME_ETERNITY */
#define MINTIME(old, new) (((new)<0)?(old):(((old)<0||(new)<(old))?(new):(old)))
#define SETNOW(a) (*a=now)
extern THREAD_LOCAL unsigned int curr_sec_ms; /* millisecond of current second (0..999) */
extern THREAD_LOCAL unsigned int ms_left_scaled; /* milliseconds left for current second (0..2^32-1) */
extern THREAD_LOCAL unsigned int curr_sec_ms_scaled; /* millisecond of current second (0..2^32-1) */
extern THREAD_LOCAL unsigned int now_ms; /* internal date in milliseconds (may wrap) */
extern THREAD_LOCAL unsigned int samp_time; /* total elapsed time over current sample */
extern THREAD_LOCAL unsigned int idle_time; /* total idle time over current sample */
extern THREAD_LOCAL struct timeval now; /* internal date is a monotonic function of real clock */
extern THREAD_LOCAL struct timeval date; /* the real current date */
extern struct timeval start_date; /* the process's start date */
extern THREAD_LOCAL struct timeval before_poll; /* system date before calling poll() */
extern THREAD_LOCAL struct timeval after_poll; /* system date after leaving poll() */
extern volatile unsigned long long global_now;
extern volatile unsigned int global_now_ms;
/**** exported functions *************************************************/
/*
* adds <ms> ms to <from>, set the result to <tv> and returns a pointer <tv>
*/
REGPRM3 struct timeval *tv_ms_add(struct timeval *tv, const struct timeval *from, int ms);
/*
* compares <tv1> and <tv2> modulo 1ms: returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2
* Must not be used when either argument is eternity. Use tv_ms_cmp2() for that.
*/
REGPRM2 int tv_ms_cmp(const struct timeval *tv1, const struct timeval *tv2);
/*
* compares <tv1> and <tv2> modulo 1 ms: returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2,
* assuming that TV_ETERNITY is greater than everything.
*/
REGPRM2 int tv_ms_cmp2(const struct timeval *tv1, const struct timeval *tv2);
/**** general purpose functions and macros *******************************/
/* tv_now: sets <tv> to the current time */
REGPRM1 static inline struct timeval *tv_now(struct timeval *tv)
{
gettimeofday(tv, NULL);
return tv;
}
/* tv_udpate_date: sets <date> to system time, and sets <now> to something as
* close as possible to real time, following a monotonic function. The main
* principle consists in detecting backwards and forwards time jumps and adjust
* an offset to correct them. This function should be called only once after
* each poll. The poll's timeout should be passed in <max_wait>, and the return
* value in <interrupted> (a non-zero value means that we have not expired the
* timeout).
*/
REGPRM2 void tv_update_date(int max_wait, int interrupted);
/*
* sets a struct timeval to its highest value so that it can never happen
* note that only tv_usec is necessary to detect it since a tv_usec > 999999
* is normally not possible.
*/
REGPRM1 static inline struct timeval *tv_eternity(struct timeval *tv)
{
tv->tv_sec = (typeof(tv->tv_sec))TV_ETERNITY;
tv->tv_usec = (typeof(tv->tv_usec))TV_ETERNITY;
return tv;
}
/*
* sets a struct timeval to 0
*
*/
REGPRM1 static inline struct timeval *tv_zero(struct timeval *tv) {
tv->tv_sec = tv->tv_usec = 0;
return tv;
}
/*
* returns non null if tv is [eternity], otherwise 0.
*/
#define tv_iseternity(tv) ((tv)->tv_usec == (typeof((tv)->tv_usec))TV_ETERNITY)
/*
* returns 0 if tv is [eternity], otherwise non-zero.
*/
#define tv_isset(tv) ((tv)->tv_usec != (typeof((tv)->tv_usec))TV_ETERNITY)
/*
* returns non null if tv is [0], otherwise 0.
*/
#define tv_iszero(tv) (((tv)->tv_sec | (tv)->tv_usec) == 0)
/*
* Converts a struct timeval to a number of milliseconds.
*/
REGPRM1 static inline unsigned long __tv_to_ms(const struct timeval *tv)
{
unsigned long ret;
ret = tv->tv_sec * 1000;
ret += tv->tv_usec / 1000;
return ret;
}
/*
* Converts a struct timeval to a number of milliseconds.
*/
REGPRM2 static inline struct timeval * __tv_from_ms(struct timeval *tv, unsigned long ms)
{
tv->tv_sec = ms / 1000;
tv->tv_usec = (ms % 1000) * 1000;
return tv;
}
/* Return a number of 1024Hz ticks between 0 and 1023 for input number of
* usecs between 0 and 999999. This function has been optimized to remove
* any divide and multiply, as it is completely optimized away by the compiler
* on CPUs which don't have a fast multiply. Its avg error rate is 305 ppm,
* which is almost twice as low as a direct usec to ms conversion. This version
* also has the benefit of returning 1024 for 1000000.
*/
REGPRM1 static inline unsigned int __usec_to_1024th(unsigned int usec)
{
return (usec * 1073 + 742516) >> 20;
}
/**** comparison functions and macros ***********************************/
/* tv_cmp: compares <tv1> and <tv2> : returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2. */
REGPRM2 static inline int __tv_cmp(const struct timeval *tv1, const struct timeval *tv2)
{
if ((unsigned)tv1->tv_sec < (unsigned)tv2->tv_sec)
return -1;
else if ((unsigned)tv1->tv_sec > (unsigned)tv2->tv_sec)
return 1;
else if ((unsigned)tv1->tv_usec < (unsigned)tv2->tv_usec)
return -1;
else if ((unsigned)tv1->tv_usec > (unsigned)tv2->tv_usec)
return 1;
else
return 0;
}
/* tv_iseq: compares <tv1> and <tv2> : returns 1 if tv1 == tv2, otherwise 0 */
#define tv_iseq __tv_iseq
REGPRM2 static inline int __tv_iseq(const struct timeval *tv1, const struct timeval *tv2)
{
return ((unsigned)tv1->tv_sec == (unsigned)tv2->tv_sec) &&
((unsigned)tv1->tv_usec == (unsigned)tv2->tv_usec);
}
/* tv_isgt: compares <tv1> and <tv2> : returns 1 if tv1 > tv2, otherwise 0 */
#define tv_isgt _tv_isgt
REGPRM2 int _tv_isgt(const struct timeval *tv1, const struct timeval *tv2);
REGPRM2 static inline int __tv_isgt(const struct timeval *tv1, const struct timeval *tv2)
{
return
((unsigned)tv1->tv_sec == (unsigned)tv2->tv_sec) ?
((unsigned)tv1->tv_usec > (unsigned)tv2->tv_usec) :
((unsigned)tv1->tv_sec > (unsigned)tv2->tv_sec);
}
/* tv_isge: compares <tv1> and <tv2> : returns 1 if tv1 >= tv2, otherwise 0 */
#define tv_isge __tv_isge
REGPRM2 static inline int __tv_isge(const struct timeval *tv1, const struct timeval *tv2)
{
return
((unsigned)tv1->tv_sec == (unsigned)tv2->tv_sec) ?
((unsigned)tv1->tv_usec >= (unsigned)tv2->tv_usec) :
((unsigned)tv1->tv_sec > (unsigned)tv2->tv_sec);
}
/* tv_islt: compares <tv1> and <tv2> : returns 1 if tv1 < tv2, otherwise 0 */
#define tv_islt __tv_islt
REGPRM2 static inline int __tv_islt(const struct timeval *tv1, const struct timeval *tv2)
{
return
((unsigned)tv1->tv_sec == (unsigned)tv2->tv_sec) ?
((unsigned)tv1->tv_usec < (unsigned)tv2->tv_usec) :
((unsigned)tv1->tv_sec < (unsigned)tv2->tv_sec);
}
/* tv_isle: compares <tv1> and <tv2> : returns 1 if tv1 <= tv2, otherwise 0 */
#define tv_isle _tv_isle
REGPRM2 int _tv_isle(const struct timeval *tv1, const struct timeval *tv2);
REGPRM2 static inline int __tv_isle(const struct timeval *tv1, const struct timeval *tv2)
{
return
((unsigned)tv1->tv_sec == (unsigned)tv2->tv_sec) ?
((unsigned)tv1->tv_usec <= (unsigned)tv2->tv_usec) :
((unsigned)tv1->tv_sec < (unsigned)tv2->tv_sec);
}
/*
* compares <tv1> and <tv2> modulo 1ms: returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2
* Must not be used when either argument is eternity. Use tv_ms_cmp2() for that.
*/
#define tv_ms_cmp _tv_ms_cmp
REGPRM2 int _tv_ms_cmp(const struct timeval *tv1, const struct timeval *tv2);
REGPRM2 static inline int __tv_ms_cmp(const struct timeval *tv1, const struct timeval *tv2)
{
if ((unsigned)tv1->tv_sec == (unsigned)tv2->tv_sec) {
if ((unsigned)tv2->tv_usec >= (unsigned)tv1->tv_usec + 1000)
return -1;
else if ((unsigned)tv1->tv_usec >= (unsigned)tv2->tv_usec + 1000)
return 1;
else
return 0;
}
else if (((unsigned)tv2->tv_sec > (unsigned)tv1->tv_sec + 1) ||
(((unsigned)tv2->tv_sec == (unsigned)tv1->tv_sec + 1) &&
((unsigned)tv2->tv_usec + 1000000 >= (unsigned)tv1->tv_usec + 1000)))
return -1;
else if (((unsigned)tv1->tv_sec > (unsigned)tv2->tv_sec + 1) ||
(((unsigned)tv1->tv_sec == (unsigned)tv2->tv_sec + 1) &&
((unsigned)tv1->tv_usec + 1000000 >= (unsigned)tv2->tv_usec + 1000)))
return 1;
else
return 0;
}
/*
* compares <tv1> and <tv2> modulo 1 ms: returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2,
* assuming that TV_ETERNITY is greater than everything.
*/
#define tv_ms_cmp2 _tv_ms_cmp2
REGPRM2 int _tv_ms_cmp2(const struct timeval *tv1, const struct timeval *tv2);
REGPRM2 static inline int __tv_ms_cmp2(const struct timeval *tv1, const struct timeval *tv2)
{
if (tv_iseternity(tv1))
if (tv_iseternity(tv2))
return 0; /* same */
else
return 1; /* tv1 later than tv2 */
else if (tv_iseternity(tv2))
return -1; /* tv2 later than tv1 */
return tv_ms_cmp(tv1, tv2);
}
/*
* compares <tv1> and <tv2> modulo 1 ms: returns 1 if tv1 <= tv2, 0 if tv1 > tv2,
* assuming that TV_ETERNITY is greater than everything. Returns 0 if tv1 is
* TV_ETERNITY, and always assumes that tv2 != TV_ETERNITY. Designed to replace
* occurrences of (tv_ms_cmp2(tv,now) <= 0).
*/
#define tv_ms_le2 _tv_ms_le2
REGPRM2 int _tv_ms_le2(const struct timeval *tv1, const struct timeval *tv2);
REGPRM2 static inline int __tv_ms_le2(const struct timeval *tv1, const struct timeval *tv2)
{
if (likely((unsigned)tv1->tv_sec > (unsigned)tv2->tv_sec + 1))
return 0;
if (likely((unsigned)tv1->tv_sec < (unsigned)tv2->tv_sec))
return 1;
if (likely((unsigned)tv1->tv_sec == (unsigned)tv2->tv_sec)) {
if ((unsigned)tv2->tv_usec >= (unsigned)tv1->tv_usec + 1000)
return 1;
else
return 0;
}
if (unlikely(((unsigned)tv1->tv_sec == (unsigned)tv2->tv_sec + 1) &&
((unsigned)tv1->tv_usec + 1000000 >= (unsigned)tv2->tv_usec + 1000)))
return 0;
else
return 1;
}
/**** operators **********************************************************/
/*
* Returns the time in ms elapsed between tv1 and tv2, assuming that tv1<=tv2.
* Must not be used when either argument is eternity.
*/
#define tv_ms_elapsed __tv_ms_elapsed
REGPRM2 unsigned long _tv_ms_elapsed(const struct timeval *tv1, const struct timeval *tv2);
REGPRM2 static inline unsigned long __tv_ms_elapsed(const struct timeval *tv1, const struct timeval *tv2)
{
unsigned long ret;
ret = ((signed long)(tv2->tv_sec - tv1->tv_sec)) * 1000;
ret += ((signed long)(tv2->tv_usec - tv1->tv_usec)) / 1000;
return ret;
}
/*
* returns the remaining time between tv1=now and event=tv2
* if tv2 is passed, 0 is returned.
* Must not be used when either argument is eternity.
*/
#define tv_ms_remain __tv_ms_remain
REGPRM2 unsigned long _tv_ms_remain(const struct timeval *tv1, const struct timeval *tv2);
REGPRM2 static inline unsigned long __tv_ms_remain(const struct timeval *tv1, const struct timeval *tv2)
{
if (tv_ms_cmp(tv1, tv2) >= 0)
return 0; /* event elapsed */
return __tv_ms_elapsed(tv1, tv2);
}
/*
* returns the remaining time between tv1=now and event=tv2
* if tv2 is passed, 0 is returned.
* Returns TIME_ETERNITY if tv2 is eternity.
*/
#define tv_ms_remain2 _tv_ms_remain2
REGPRM2 unsigned long _tv_ms_remain2(const struct timeval *tv1, const struct timeval *tv2);
REGPRM2 static inline unsigned long __tv_ms_remain2(const struct timeval *tv1, const struct timeval *tv2)
{
if (tv_iseternity(tv2))
return TIME_ETERNITY;
return tv_ms_remain(tv1, tv2);
}
/*
* adds <inc> to <from>, set the result to <tv> and returns a pointer <tv>
*/
#define tv_add _tv_add
REGPRM3 struct timeval *_tv_add(struct timeval *tv, const struct timeval *from, const struct timeval *inc);
REGPRM3 static inline struct timeval *__tv_add(struct timeval *tv, const struct timeval *from, const struct timeval *inc)
{
tv->tv_usec = from->tv_usec + inc->tv_usec;
tv->tv_sec = from->tv_sec + inc->tv_sec;
if (tv->tv_usec >= 1000000) {
tv->tv_usec -= 1000000;
tv->tv_sec++;
}
return tv;
}
/*
* If <inc> is set, then add it to <from> and set the result to <tv>, then
* return 1, otherwise return 0. It is meant to be used in if conditions.
*/
#define tv_add_ifset _tv_add_ifset
REGPRM3 int _tv_add_ifset(struct timeval *tv, const struct timeval *from, const struct timeval *inc);
REGPRM3 static inline int __tv_add_ifset(struct timeval *tv, const struct timeval *from, const struct timeval *inc)
{
if (tv_iseternity(inc))
return 0;
tv->tv_usec = from->tv_usec + inc->tv_usec;
tv->tv_sec = from->tv_sec + inc->tv_sec;
if (tv->tv_usec >= 1000000) {
tv->tv_usec -= 1000000;
tv->tv_sec++;
}
return 1;
}
/*
* adds <inc> to <tv> and returns a pointer <tv>
*/
REGPRM2 static inline struct timeval *__tv_add2(struct timeval *tv, const struct timeval *inc)
{
tv->tv_usec += inc->tv_usec;
tv->tv_sec += inc->tv_sec;
if (tv->tv_usec >= 1000000) {
tv->tv_usec -= 1000000;
tv->tv_sec++;
}
return tv;
}
/*
* Computes the remaining time between tv1=now and event=tv2. if tv2 is passed,
* 0 is returned. The result is stored into tv.
*/
#define tv_remain _tv_remain
REGPRM3 struct timeval *_tv_remain(const struct timeval *tv1, const struct timeval *tv2, struct timeval *tv);
REGPRM3 static inline struct timeval *__tv_remain(const struct timeval *tv1, const struct timeval *tv2, struct timeval *tv)
{
tv->tv_usec = tv2->tv_usec - tv1->tv_usec;
tv->tv_sec = tv2->tv_sec - tv1->tv_sec;
if ((signed)tv->tv_sec > 0) {
if ((signed)tv->tv_usec < 0) {
tv->tv_usec += 1000000;
tv->tv_sec--;
}
} else if (tv->tv_sec == 0) {
if ((signed)tv->tv_usec < 0)
tv->tv_usec = 0;
} else {
tv->tv_sec = 0;
tv->tv_usec = 0;
}
return tv;
}
/*
* Computes the remaining time between tv1=now and event=tv2. if tv2 is passed,
* 0 is returned. The result is stored into tv. Returns ETERNITY if tv2 is
* eternity.
*/
#define tv_remain2 _tv_remain2
REGPRM3 struct timeval *_tv_remain2(const struct timeval *tv1, const struct timeval *tv2, struct timeval *tv);
REGPRM3 static inline struct timeval *__tv_remain2(const struct timeval *tv1, const struct timeval *tv2, struct timeval *tv)
{
if (tv_iseternity(tv2))
return tv_eternity(tv);
return __tv_remain(tv1, tv2, tv);
}
/*
* adds <ms> ms to <from>, set the result to <tv> and returns a pointer <tv>
*/
#define tv_ms_add _tv_ms_add
REGPRM3 struct timeval *_tv_ms_add(struct timeval *tv, const struct timeval *from, int ms);
REGPRM3 static inline struct timeval *__tv_ms_add(struct timeval *tv, const struct timeval *from, int ms)
{
tv->tv_usec = from->tv_usec + (ms % 1000) * 1000;
tv->tv_sec = from->tv_sec + (ms / 1000);
while (tv->tv_usec >= 1000000) {
tv->tv_usec -= 1000000;
tv->tv_sec++;
}
return tv;
}
/*
* compares <tv1> and <tv2> : returns 1 if <tv1> is before <tv2>, otherwise 0.
* This should be very fast because it's used in schedulers.
* It has been optimized to return 1 (so call it in a loop which continues
* as long as tv1<=tv2)
*/
#define tv_isbefore(tv1, tv2) \
(unlikely((unsigned)(tv1)->tv_sec < (unsigned)(tv2)->tv_sec) ? 1 : \
(unlikely((unsigned)(tv1)->tv_sec > (unsigned)(tv2)->tv_sec) ? 0 : \
unlikely((unsigned)(tv1)->tv_usec < (unsigned)(tv2)->tv_usec)))
/*
* returns the first event between <tv1> and <tv2> into <tvmin>.
* a zero tv is ignored. <tvmin> is returned. If <tvmin> is known
* to be the same as <tv1> or <tv2>, it is recommended to use
* tv_bound instead.
*/
#define tv_min(tvmin, tv1, tv2) ({ \
if (tv_isbefore(tv1, tv2)) { \
*tvmin = *tv1; \
} \
else { \
*tvmin = *tv2; \
} \
tvmin; \
})
/*
* returns the first event between <tv1> and <tv2> into <tvmin>.
* a zero tv is ignored. <tvmin> is returned. This function has been
* optimized to be called as tv_min(a,a,b) or tv_min(b,a,b).
*/
#define tv_bound(tv1, tv2) ({ \
if (tv_isbefore(tv2, tv1)) \
*tv1 = *tv2; \
tv1; \
})
/* returns the system's monotonic time in nanoseconds if supported, otherwise zero */
static inline uint64_t now_mono_time()
{
#if (_POSIX_TIMERS > 0) && defined(_POSIX_MONOTONIC_CLOCK)
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
#else
return 0;
#endif
}
/* returns the current thread's cumulated CPU time in nanoseconds if supported, otherwise zero */
static inline uint64_t now_cpu_time()
{
#if (_POSIX_TIMERS > 0) && defined(_POSIX_THREAD_CPUTIME)
struct timespec ts;
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts);
return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
#else
return 0;
#endif
}
/* returns another thread's cumulated CPU time in nanoseconds if supported, otherwise zero */
static inline uint64_t now_cpu_time_thread(const struct thread_info *thr)
{
#if (_POSIX_TIMERS > 0) && defined(_POSIX_THREAD_CPUTIME)
struct timespec ts;
clock_gettime(thr->clock_id, &ts);
return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
#else
return 0;
#endif
}
/* Update the idle time value twice a second, to be called after
* tv_update_date() when called after poll(). It relies on <before_poll> to be
* updated to the system time before calling poll().
*/
static inline void measure_idle()
{
/* Let's compute the idle to work ratio. We worked between after_poll
* and before_poll, and slept between before_poll and date. The idle_pct
* is updated at most twice every second. Note that the current second
* rarely changes so we avoid a multiply when not needed.
*/
int delta;
if ((delta = date.tv_sec - before_poll.tv_sec))
delta *= 1000000;
idle_time += delta + (date.tv_usec - before_poll.tv_usec);
if ((delta = date.tv_sec - after_poll.tv_sec))
delta *= 1000000;
samp_time += delta + (date.tv_usec - after_poll.tv_usec);
after_poll.tv_sec = date.tv_sec; after_poll.tv_usec = date.tv_usec;
if (samp_time < 500000)
return;
ti->idle_pct = (100 * idle_time + samp_time / 2) / samp_time;
idle_time = samp_time = 0;
}
/* Collect date and time information before calling poll(). This will be used
* to count the run time of the past loop and the sleep time of the next poll.
*/
static inline void tv_entering_poll()
{
gettimeofday(&before_poll, NULL);
}
/* Collect date and time information after leaving poll(). <timeout> must be
* set to the maximum sleep time passed to poll (in milliseconds), and
* <interrupted> must be zero if the poller reached the timeout or non-zero
* otherwise, which generally is provided by the poller's return value.
*/
static inline void tv_leaving_poll(int timeout, int interrupted)
{
measure_idle();
ti->prev_cpu_time = now_cpu_time();
ti->prev_mono_time = now_mono_time();
}
#endif /* _COMMON_TIME_H */
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/