| /* |
| * include/common/buffer.h |
| * Buffer management definitions, macros and inline functions. |
| * |
| * Copyright (C) 2000-2012 Willy Tarreau - w@1wt.eu |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation, version 2.1 |
| * exclusively. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #ifndef _COMMON_BUFFER_H |
| #define _COMMON_BUFFER_H |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <common/config.h> |
| |
| |
| struct buffer { |
| char *p; /* buffer's start pointer, separates in and out data */ |
| unsigned int size; /* buffer size in bytes */ |
| unsigned int i; /* number of input bytes pending for analysis in the buffer */ |
| unsigned int o; /* number of out bytes the sender can consume from this buffer */ |
| char data[0]; /* <size> bytes */ |
| }; |
| |
| |
| int buffer_replace2(struct buffer *b, char *pos, char *end, const char *str, int len); |
| int buffer_insert_line2(struct buffer *b, char *pos, const char *str, int len); |
| void buffer_dump(FILE *o, struct buffer *b, int from, int to); |
| void buffer_slow_realign(struct buffer *buf); |
| void buffer_bounce_realign(struct buffer *buf); |
| |
| /*****************************************************************/ |
| /* These functions are used to compute various buffer area sizes */ |
| /*****************************************************************/ |
| |
| /* Returns an absolute pointer for a position relative to the current buffer's |
| * pointer. It is written so that it is optimal when <ofs> is a const. It is |
| * written as a macro instead of an inline function so that the compiler knows |
| * when it can optimize out the sign test on <ofs> when passed an unsigned int. |
| */ |
| #define b_ptr(b, ofs) \ |
| ({ \ |
| char *__ret = (b)->p + (ofs); \ |
| if ((ofs) > 0 && __ret >= (b)->data + (b)->size) \ |
| __ret -= (b)->size; \ |
| else if ((ofs) < 0 && __ret < (b)->data) \ |
| __ret += (b)->size; \ |
| __ret; \ |
| }) |
| |
| /* Advances the buffer by <adv> bytes, which means that the buffer |
| * pointer advances, and that as many bytes from in are transferred |
| * to out. The caller is responsible for ensuring that adv is always |
| * smaller than or equal to b->i. |
| */ |
| static inline void b_adv(struct buffer *b, unsigned int adv) |
| { |
| b->i -= adv; |
| b->o += adv; |
| b->p = b_ptr(b, adv); |
| } |
| |
| /* Rewinds the buffer by <adv> bytes, which means that the buffer pointer goes |
| * backwards, and that as many bytes from out are moved to in. The caller is |
| * responsible for ensuring that adv is always smaller than or equal to b->o. |
| */ |
| static inline void b_rew(struct buffer *b, unsigned int adv) |
| { |
| b->i += adv; |
| b->o -= adv; |
| b->p = b_ptr(b, (int)-adv); |
| } |
| |
| /* Returns the start of the input data in a buffer */ |
| static inline char *bi_ptr(const struct buffer *b) |
| { |
| return b->p; |
| } |
| |
| /* Returns the end of the input data in a buffer (pointer to next |
| * insertion point). |
| */ |
| static inline char *bi_end(const struct buffer *b) |
| { |
| char *ret = b->p + b->i; |
| |
| if (ret >= b->data + b->size) |
| ret -= b->size; |
| return ret; |
| } |
| |
| /* Returns the amount of input data that can contiguously be read at once */ |
| static inline int bi_contig_data(const struct buffer *b) |
| { |
| int data = b->data + b->size - b->p; |
| |
| if (data > b->i) |
| data = b->i; |
| return data; |
| } |
| |
| /* Returns the start of the output data in a buffer */ |
| static inline char *bo_ptr(const struct buffer *b) |
| { |
| char *ret = b->p - b->o; |
| |
| if (ret < b->data) |
| ret += b->size; |
| return ret; |
| } |
| |
| /* Returns the end of the output data in a buffer */ |
| static inline char *bo_end(const struct buffer *b) |
| { |
| return b->p; |
| } |
| |
| /* Returns the amount of output data that can contiguously be read at once */ |
| static inline int bo_contig_data(const struct buffer *b) |
| { |
| char *beg = b->p - b->o; |
| |
| if (beg < b->data) |
| return b->data - beg; |
| return b->o; |
| } |
| |
| /* Return the buffer's length in bytes by summing the input and the output */ |
| static inline int buffer_len(const struct buffer *buf) |
| { |
| return buf->i + buf->o; |
| } |
| |
| /* Return non-zero only if the buffer is not empty */ |
| static inline int buffer_not_empty(const struct buffer *buf) |
| { |
| return buf->i | buf->o; |
| } |
| |
| /* Return non-zero only if the buffer is empty */ |
| static inline int buffer_empty(const struct buffer *buf) |
| { |
| return !buffer_not_empty(buf); |
| } |
| |
| /* Returns non-zero if the buffer's INPUT is considered full, which means that |
| * it holds at least as much INPUT data as (size - reserve). This also means |
| * that data that are scheduled for output are considered as potential free |
| * space, and that the reserved space is always considered as not usable. This |
| * information alone cannot be used as a general purpose free space indicator. |
| * However it accurately indicates that too many data were fed in the buffer |
| * for an analyzer for instance. See the channel_full() function for a more |
| * generic function taking everything into account. |
| */ |
| static inline int buffer_full(const struct buffer *b, unsigned int reserve) |
| { |
| return (b->i + reserve >= b->size); |
| } |
| |
| /* Normalizes a pointer after a subtract */ |
| static inline char *buffer_wrap_sub(const struct buffer *buf, char *ptr) |
| { |
| if (ptr < buf->data) |
| ptr += buf->size; |
| return ptr; |
| } |
| |
| /* Normalizes a pointer after an addition */ |
| static inline char *buffer_wrap_add(const struct buffer *buf, char *ptr) |
| { |
| if (ptr - buf->size >= buf->data) |
| ptr -= buf->size; |
| return ptr; |
| } |
| |
| /* Return the maximum amount of bytes that can be written into the buffer, |
| * including reserved space which may be overwritten. |
| */ |
| static inline int buffer_total_space(const struct buffer *buf) |
| { |
| return buf->size - buffer_len(buf); |
| } |
| |
| /* Returns the number of contiguous bytes between <start> and <start>+<count>, |
| * and enforces a limit on buf->data + buf->size. <start> must be within the |
| * buffer. |
| */ |
| static inline int buffer_contig_area(const struct buffer *buf, const char *start, int count) |
| { |
| if (count > buf->data - start + buf->size) |
| count = buf->data - start + buf->size; |
| return count; |
| } |
| |
| /* Return the amount of bytes that can be written into the buffer at once, |
| * including reserved space which may be overwritten. |
| */ |
| static inline int buffer_contig_space(const struct buffer *buf) |
| { |
| const char *left, *right; |
| |
| if (buf->data + buf->o <= buf->p) |
| right = buf->data + buf->size; |
| else |
| right = buf->p + buf->size - buf->o; |
| |
| left = buffer_wrap_add(buf, buf->p + buf->i); |
| return right - left; |
| } |
| |
| /* Return the amount of bytes that can be written into the buffer at once, |
| * excluding the amount of reserved space passed in <res>, which is |
| * preserved. |
| */ |
| static inline int buffer_contig_space_with_res(const struct buffer *buf, int res) |
| { |
| /* Proceed differently if the buffer is full, partially used or empty. |
| * The hard situation is when it's partially used and either data or |
| * reserved space wraps at the end. |
| */ |
| int spare = buf->size - res; |
| |
| if (buffer_len(buf) >= spare) |
| spare = 0; |
| else if (buffer_len(buf)) { |
| spare = buffer_contig_space(buf) - res; |
| if (spare < 0) |
| spare = 0; |
| } |
| return spare; |
| } |
| |
| |
| /* Normalizes a pointer which is supposed to be relative to the beginning of a |
| * buffer, so that wrapping is correctly handled. The intent is to use this |
| * when increasing a pointer. Note that the wrapping test is only performed |
| * once, so the original pointer must be between ->data-size and ->data+2*size-1, |
| * otherwise an invalid pointer might be returned. |
| */ |
| static inline const char *buffer_pointer(const struct buffer *buf, const char *ptr) |
| { |
| if (ptr < buf->data) |
| ptr += buf->size; |
| else if (ptr - buf->size >= buf->data) |
| ptr -= buf->size; |
| return ptr; |
| } |
| |
| /* Returns the distance between two pointers, taking into account the ability |
| * to wrap around the buffer's end. |
| */ |
| static inline int buffer_count(const struct buffer *buf, const char *from, const char *to) |
| { |
| int count = to - from; |
| if (count < 0) |
| count += buf->size; |
| return count; |
| } |
| |
| /* returns the amount of pending bytes in the buffer. It is the amount of bytes |
| * that is not scheduled to be sent. |
| */ |
| static inline int buffer_pending(const struct buffer *buf) |
| { |
| return buf->i; |
| } |
| |
| /* Returns the size of the working area which the caller knows ends at <end>. |
| * If <end> equals buf->r (modulo size), then it means that the free area which |
| * follows is part of the working area. Otherwise, the working area stops at |
| * <end>. It always starts at buf->p. The work area includes the |
| * reserved area. |
| */ |
| static inline int buffer_work_area(const struct buffer *buf, const char *end) |
| { |
| end = buffer_pointer(buf, end); |
| if (end == buffer_wrap_add(buf, buf->p + buf->i)) |
| /* pointer exactly at end, lets push forwards */ |
| end = buffer_wrap_sub(buf, buf->p - buf->o); |
| return buffer_count(buf, buf->p, end); |
| } |
| |
| /* Return 1 if the buffer has less than 1/4 of its capacity free, otherwise 0 */ |
| static inline int buffer_almost_full(const struct buffer *buf) |
| { |
| if (buffer_total_space(buf) < buf->size / 4) |
| return 1; |
| return 0; |
| } |
| |
| /* Cut the first <n> pending bytes in a contiguous buffer. It is illegal to |
| * call this function with remaining data waiting to be sent (o > 0). The |
| * caller must ensure that <n> is smaller than the actual buffer's length. |
| * This is mainly used to remove empty lines at the beginning of a request |
| * or a response. |
| */ |
| static inline void bi_fast_delete(struct buffer *buf, int n) |
| { |
| buf->i -= n; |
| buf->p += n; |
| } |
| |
| /* |
| * Tries to realign the given buffer, and returns how many bytes can be written |
| * there at once without overwriting anything. |
| */ |
| static inline int buffer_realign(struct buffer *buf) |
| { |
| if (!(buf->i | buf->o)) { |
| /* let's realign the buffer to optimize I/O */ |
| buf->p = buf->data; |
| } |
| return buffer_contig_space(buf); |
| } |
| |
| /* Schedule all remaining buffer data to be sent. ->o is not touched if it |
| * already covers those data. That permits doing a flush even after a forward, |
| * although not recommended. |
| */ |
| static inline void buffer_flush(struct buffer *buf) |
| { |
| buf->p = buffer_wrap_add(buf, buf->p + buf->i); |
| buf->o += buf->i; |
| buf->i = 0; |
| } |
| |
| /* This function writes the string <str> at position <pos> which must be in |
| * buffer <b>, and moves <end> just after the end of <str>. <b>'s parameters |
| * (l, r, lr) are updated to be valid after the shift. the shift value |
| * (positive or negative) is returned. If there's no space left, the move is |
| * not done. The function does not adjust ->o because it does not make sense |
| * to use it on data scheduled to be sent. |
| */ |
| static inline int buffer_replace(struct buffer *b, char *pos, char *end, const char *str) |
| { |
| return buffer_replace2(b, pos, end, str, strlen(str)); |
| } |
| |
| #endif /* _COMMON_BUFFER_H */ |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |