| /* |
| * HTTP compression. |
| * |
| * Copyright 2012 Exceliance, David Du Colombier <dducolombier@exceliance.fr> |
| * William Lallemand <wlallemand@exceliance.fr> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <stdio.h> |
| |
| #ifdef USE_ZLIB |
| /* Note: the crappy zlib and openssl libs both define the "free_func" type. |
| * That's a very clever idea to use such a generic name in general purpose |
| * libraries, really... The zlib one is easier to redefine than openssl's, |
| * so let's only fix this one. |
| */ |
| #define free_func zlib_free_func |
| #include <zlib.h> |
| #undef free_func |
| #endif /* USE_ZLIB */ |
| |
| #include <common/compat.h> |
| #include <common/memory.h> |
| |
| #include <types/global.h> |
| #include <types/compression.h> |
| |
| #include <proto/acl.h> |
| #include <proto/compression.h> |
| #include <proto/freq_ctr.h> |
| #include <proto/proto_http.h> |
| |
| |
| #ifdef USE_ZLIB |
| |
| static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size); |
| static void free_zlib(void *opaque, void *ptr); |
| |
| /* zlib allocation */ |
| static struct pool_head *zlib_pool_deflate_state = NULL; |
| static struct pool_head *zlib_pool_window = NULL; |
| static struct pool_head *zlib_pool_prev = NULL; |
| static struct pool_head *zlib_pool_head = NULL; |
| static struct pool_head *zlib_pool_pending_buf = NULL; |
| |
| long zlib_used_memory = 0; |
| |
| #endif |
| |
| unsigned int compress_min_idle = 0; |
| static struct pool_head *pool_comp_ctx = NULL; |
| |
| |
| const struct comp_algo comp_algos[] = |
| { |
| { "identity", 8, identity_init, identity_add_data, identity_flush, identity_reset, identity_end }, |
| #ifdef USE_ZLIB |
| { "deflate", 7, deflate_init, deflate_add_data, deflate_flush, deflate_reset, deflate_end }, |
| { "gzip", 4, gzip_init, deflate_add_data, deflate_flush, deflate_reset, deflate_end }, |
| #endif /* USE_ZLIB */ |
| { NULL, 0, NULL , NULL, NULL, NULL, NULL } |
| }; |
| |
| /* |
| * Add a content-type in the configuration |
| */ |
| int comp_append_type(struct comp *comp, const char *type) |
| { |
| struct comp_type *comp_type; |
| |
| comp_type = calloc(1, sizeof(struct comp_type)); |
| comp_type->name_len = strlen(type); |
| comp_type->name = strdup(type); |
| comp_type->next = comp->types; |
| comp->types = comp_type; |
| return 0; |
| } |
| |
| /* |
| * Add an algorithm in the configuration |
| */ |
| int comp_append_algo(struct comp *comp, const char *algo) |
| { |
| struct comp_algo *comp_algo; |
| int i; |
| |
| for (i = 0; comp_algos[i].name; i++) { |
| if (!strcmp(algo, comp_algos[i].name)) { |
| comp_algo = calloc(1, sizeof(struct comp_algo)); |
| memmove(comp_algo, &comp_algos[i], sizeof(struct comp_algo)); |
| comp_algo->next = comp->algos; |
| comp->algos = comp_algo; |
| return 0; |
| } |
| } |
| return -1; |
| } |
| |
| /* emit the chunksize followed by a CRLF on the output and return the number of |
| * bytes written. Appends <add_crlf> additional CRLF after the first one. Chunk |
| * sizes are truncated to 6 hex digits (16 MB) and padded left. The caller is |
| * responsible for ensuring there is enough room left in the output buffer for |
| * the string (8 bytes * add_crlf*2). |
| */ |
| int http_emit_chunk_size(char *out, unsigned int chksz, int add_crlf) |
| { |
| int shift; |
| int pos = 0; |
| |
| for (shift = 20; shift >= 0; shift -= 4) |
| out[pos++] = hextab[(chksz >> shift) & 0xF]; |
| |
| do { |
| out[pos++] = '\r'; |
| out[pos++] = '\n'; |
| } while (--add_crlf >= 0); |
| |
| return pos; |
| } |
| |
| /* |
| * Init HTTP compression |
| */ |
| int http_compression_buffer_init(struct session *s, struct buffer *in, struct buffer *out) |
| { |
| int left; |
| |
| /* not enough space */ |
| if (in->size - buffer_len(in) < 40) |
| return -1; |
| |
| /* We start by copying the current buffer's pending outgoing data into |
| * a new temporary buffer that we initialize with a new empty chunk. |
| */ |
| b_reset(out); |
| |
| if (in->o > 0) { |
| left = in->o - bo_contig_data(in); |
| memcpy(out->data, bo_ptr(in), bo_contig_data(in)); |
| out->p += bo_contig_data(in); |
| if (left > 0) { /* second part of the buffer */ |
| memcpy(out->p, in->data, left); |
| out->p += left; |
| } |
| out->o = in->o; |
| } |
| out->i += http_emit_chunk_size(out->p, 0, 0); |
| |
| return 0; |
| } |
| |
| /* |
| * Add data to compress |
| */ |
| int http_compression_buffer_add_data(struct session *s, struct buffer *in, struct buffer *out) |
| { |
| struct http_msg *msg = &s->txn.rsp; |
| int consumed_data = 0; |
| int data_process_len; |
| int block1, block2; |
| |
| /* |
| * Temporarily skip already parsed data and chunks to jump to the |
| * actual data block. It is fixed before leaving. |
| */ |
| b_adv(in, msg->next); |
| |
| /* |
| * select the smallest size between the announced chunk size, the input |
| * data, and the available output buffer size. The compressors are |
| * assumed to be able to process all the bytes we pass to them at once. |
| */ |
| data_process_len = MIN(in->i, msg->chunk_len); |
| data_process_len = MIN(out->size - buffer_len(out), data_process_len); |
| |
| block1 = data_process_len; |
| if (block1 > bi_contig_data(in)) |
| block1 = bi_contig_data(in); |
| block2 = data_process_len - block1; |
| |
| /* compressors return < 0 upon error or the amount of bytes read */ |
| consumed_data = s->comp_algo->add_data(s->comp_ctx, bi_ptr(in), block1, out); |
| if (consumed_data >= 0 && block2 > 0) { |
| consumed_data = s->comp_algo->add_data(s->comp_ctx, in->data, block2, out); |
| if (consumed_data >= 0) |
| consumed_data += block1; |
| } |
| |
| /* restore original buffer pointer */ |
| b_rew(in, msg->next); |
| |
| if (consumed_data > 0) { |
| msg->next += consumed_data; |
| msg->chunk_len -= consumed_data; |
| } |
| return consumed_data; |
| } |
| |
| /* |
| * Flush data in process, and write the header and footer of the chunk. Upon |
| * success, in and out buffers are swapped to avoid a copy. |
| */ |
| int http_compression_buffer_end(struct session *s, struct buffer **in, struct buffer **out, int end) |
| { |
| int to_forward; |
| int left; |
| struct http_msg *msg = &s->txn.rsp; |
| struct buffer *ib = *in, *ob = *out; |
| |
| #ifdef USE_ZLIB |
| int ret; |
| |
| /* flush data here */ |
| |
| if (end) |
| ret = s->comp_algo->flush(s->comp_ctx, ob, Z_FINISH); /* end of data */ |
| else |
| ret = s->comp_algo->flush(s->comp_ctx, ob, Z_SYNC_FLUSH); /* end of buffer */ |
| |
| if (ret < 0) |
| return -1; /* flush failed */ |
| |
| #endif /* USE_ZLIB */ |
| |
| if (ob->i > 8) { |
| /* more than a chunk size => some data were emitted */ |
| char *tail = ob->p + ob->i; |
| |
| /* write real size at the begining of the chunk, no need of wrapping */ |
| http_emit_chunk_size(ob->p, ob->i - 8, 0); |
| |
| /* chunked encoding requires CRLF after data */ |
| *tail++ = '\r'; |
| *tail++ = '\n'; |
| |
| /* At the end of data, we must write the empty chunk 0<CRLF>, |
| * and terminate the trailers section with a last <CRLF>. If |
| * we're forwarding a chunked-encoded response, we'll have a |
| * trailers section after the empty chunk which needs to be |
| * forwarded and which will provide the last CRLF. Otherwise |
| * we write it ourselves. |
| */ |
| if (msg->msg_state >= HTTP_MSG_TRAILERS) { |
| memcpy(tail, "0\r\n", 3); |
| tail += 3; |
| if (msg->msg_state >= HTTP_MSG_DONE) { |
| memcpy(tail, "\r\n", 2); |
| tail += 2; |
| } |
| } |
| ob->i = tail - ob->p; |
| } else { |
| /* no data were sent, cancel the chunk size */ |
| ob->i = 0; |
| } |
| |
| to_forward = ob->i; |
| |
| /* update input rate */ |
| if (s->comp_ctx && s->comp_ctx->cur_lvl > 0) { |
| update_freq_ctr(&global.comp_bps_in, msg->next); |
| s->fe->fe_counters.comp_in += msg->next; |
| s->be->be_counters.comp_in += msg->next; |
| } else { |
| s->fe->fe_counters.comp_byp += msg->next; |
| s->be->be_counters.comp_byp += msg->next; |
| } |
| |
| /* copy the remaining data in the tmp buffer. */ |
| b_adv(ib, msg->next); |
| msg->next = 0; |
| |
| if (ib->i > 0) { |
| left = ib->i - bi_contig_data(ib); |
| memcpy(bi_end(ob), bi_ptr(ib), bi_contig_data(ib)); |
| ob->i += bi_contig_data(ib); |
| if (left > 0) { |
| memcpy(bi_end(ob), ib->data, left); |
| ob->i += left; |
| } |
| } |
| |
| /* swap the buffers */ |
| *in = ob; |
| *out = ib; |
| |
| if (s->comp_ctx && s->comp_ctx->cur_lvl > 0) { |
| update_freq_ctr(&global.comp_bps_out, to_forward); |
| s->fe->fe_counters.comp_out += to_forward; |
| s->be->be_counters.comp_out += to_forward; |
| } |
| |
| /* forward the new chunk without remaining data */ |
| b_adv(ob, to_forward); |
| |
| return to_forward; |
| } |
| |
| /* |
| * Alloc the comp_ctx |
| */ |
| static inline int init_comp_ctx(struct comp_ctx **comp_ctx) |
| { |
| #ifdef USE_ZLIB |
| z_stream *strm; |
| |
| if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < sizeof(struct comp_ctx)) |
| return -1; |
| #endif |
| |
| if (unlikely(pool_comp_ctx == NULL)) |
| pool_comp_ctx = create_pool("comp_ctx", sizeof(struct comp_ctx), MEM_F_SHARED); |
| |
| *comp_ctx = pool_alloc2(pool_comp_ctx); |
| if (*comp_ctx == NULL) |
| return -1; |
| #ifdef USE_ZLIB |
| zlib_used_memory += sizeof(struct comp_ctx); |
| |
| strm = &(*comp_ctx)->strm; |
| strm->zalloc = alloc_zlib; |
| strm->zfree = free_zlib; |
| strm->opaque = *comp_ctx; |
| #endif |
| return 0; |
| } |
| |
| /* |
| * Dealloc the comp_ctx |
| */ |
| static inline int deinit_comp_ctx(struct comp_ctx **comp_ctx) |
| { |
| if (!*comp_ctx) |
| return 0; |
| |
| pool_free2(pool_comp_ctx, *comp_ctx); |
| *comp_ctx = NULL; |
| |
| #ifdef USE_ZLIB |
| zlib_used_memory -= sizeof(struct comp_ctx); |
| #endif |
| return 0; |
| } |
| |
| |
| /**************************** |
| **** Identity algorithm **** |
| ****************************/ |
| |
| /* |
| * Init the identity algorithm |
| */ |
| int identity_init(struct comp_ctx **comp_ctx, int level) |
| { |
| return 0; |
| } |
| |
| /* |
| * Process data |
| * Return size of consumed data or -1 on error |
| */ |
| int identity_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out) |
| { |
| char *out_data = bi_end(out); |
| int out_len = out->size - buffer_len(out); |
| |
| if (out_len < in_len) |
| return -1; |
| |
| memcpy(out_data, in_data, in_len); |
| |
| out->i += in_len; |
| |
| return in_len; |
| } |
| |
| int identity_flush(struct comp_ctx *comp_ctx, struct buffer *out, int flag) |
| { |
| return 0; |
| } |
| |
| int identity_reset(struct comp_ctx *comp_ctx) |
| { |
| return 0; |
| } |
| |
| /* |
| * Deinit the algorithm |
| */ |
| int identity_end(struct comp_ctx **comp_ctx) |
| { |
| return 0; |
| } |
| |
| |
| #ifdef USE_ZLIB |
| /* |
| * This is a tricky allocation function using the zlib. |
| * This is based on the allocation order in deflateInit2. |
| */ |
| static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size) |
| { |
| struct comp_ctx *ctx = opaque; |
| static char round = 0; /* order in deflateInit2 */ |
| void *buf = NULL; |
| struct pool_head *pool = NULL; |
| |
| if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < (long)(items * size)) |
| goto end; |
| |
| switch (round) { |
| case 0: |
| if (zlib_pool_deflate_state == NULL) |
| zlib_pool_deflate_state = create_pool("zlib_state", size * items, MEM_F_SHARED); |
| pool = zlib_pool_deflate_state; |
| ctx->zlib_deflate_state = buf = pool_alloc2(pool); |
| break; |
| |
| case 1: |
| if (zlib_pool_window == NULL) |
| zlib_pool_window = create_pool("zlib_window", size * items, MEM_F_SHARED); |
| pool = zlib_pool_window; |
| ctx->zlib_window = buf = pool_alloc2(pool); |
| break; |
| |
| case 2: |
| if (zlib_pool_prev == NULL) |
| zlib_pool_prev = create_pool("zlib_prev", size * items, MEM_F_SHARED); |
| pool = zlib_pool_prev; |
| ctx->zlib_prev = buf = pool_alloc2(pool); |
| break; |
| |
| case 3: |
| if (zlib_pool_head == NULL) |
| zlib_pool_head = create_pool("zlib_head", size * items, MEM_F_SHARED); |
| pool = zlib_pool_head; |
| ctx->zlib_head = buf = pool_alloc2(pool); |
| break; |
| |
| case 4: |
| if (zlib_pool_pending_buf == NULL) |
| zlib_pool_pending_buf = create_pool("zlib_pending_buf", size * items, MEM_F_SHARED); |
| pool = zlib_pool_pending_buf; |
| ctx->zlib_pending_buf = buf = pool_alloc2(pool); |
| break; |
| } |
| if (buf != NULL) |
| zlib_used_memory += pool->size; |
| |
| end: |
| |
| /* deflateInit2() first allocates and checks the deflate_state, then if |
| * it succeeds, it allocates all other 4 areas at ones and checks them |
| * at the end. So we want to correctly count the rounds depending on when |
| * zlib is supposed to abort. |
| */ |
| if (buf || round) |
| round = (round + 1) % 5; |
| return buf; |
| } |
| |
| static void free_zlib(void *opaque, void *ptr) |
| { |
| struct comp_ctx *ctx = opaque; |
| struct pool_head *pool = NULL; |
| |
| if (ptr == ctx->zlib_window) |
| pool = zlib_pool_window; |
| else if (ptr == ctx->zlib_deflate_state) |
| pool = zlib_pool_deflate_state; |
| else if (ptr == ctx->zlib_prev) |
| pool = zlib_pool_prev; |
| else if (ptr == ctx->zlib_head) |
| pool = zlib_pool_head; |
| else if (ptr == ctx->zlib_pending_buf) |
| pool = zlib_pool_pending_buf; |
| |
| pool_free2(pool, ptr); |
| zlib_used_memory -= pool->size; |
| } |
| |
| /************************** |
| **** gzip algorithm **** |
| ***************************/ |
| int gzip_init(struct comp_ctx **comp_ctx, int level) |
| { |
| z_stream *strm; |
| |
| if (init_comp_ctx(comp_ctx) < 0) |
| return -1; |
| |
| strm = &(*comp_ctx)->strm; |
| |
| if (deflateInit2(strm, level, Z_DEFLATED, global.tune.zlibwindowsize + 16, global.tune.zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) { |
| deinit_comp_ctx(comp_ctx); |
| return -1; |
| } |
| |
| (*comp_ctx)->cur_lvl = level; |
| |
| return 0; |
| } |
| /************************** |
| **** Deflate algorithm **** |
| ***************************/ |
| |
| int deflate_init(struct comp_ctx **comp_ctx, int level) |
| { |
| z_stream *strm; |
| |
| if (init_comp_ctx(comp_ctx) < 0) |
| return -1; |
| |
| strm = &(*comp_ctx)->strm; |
| |
| if (deflateInit2(strm, level, Z_DEFLATED, global.tune.zlibwindowsize, global.tune.zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) { |
| deinit_comp_ctx(comp_ctx); |
| return -1; |
| } |
| |
| (*comp_ctx)->cur_lvl = level; |
| |
| return 0; |
| } |
| |
| /* Return the size of consumed data or -1 */ |
| int deflate_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out) |
| { |
| int ret; |
| z_stream *strm = &comp_ctx->strm; |
| char *out_data = bi_end(out); |
| int out_len = out->size - buffer_len(out); |
| |
| if (in_len <= 0) |
| return 0; |
| |
| |
| if (out_len <= 0) |
| return -1; |
| |
| strm->next_in = (unsigned char *)in_data; |
| strm->avail_in = in_len; |
| strm->next_out = (unsigned char *)out_data; |
| strm->avail_out = out_len; |
| |
| ret = deflate(strm, Z_NO_FLUSH); |
| if (ret != Z_OK) |
| return -1; |
| |
| /* deflate update the available data out */ |
| out->i += out_len - strm->avail_out; |
| |
| return in_len - strm->avail_in; |
| } |
| |
| int deflate_flush(struct comp_ctx *comp_ctx, struct buffer *out, int flag) |
| { |
| int ret; |
| int out_len = 0; |
| z_stream *strm = &comp_ctx->strm; |
| |
| strm->next_out = (unsigned char *)bi_end(out); |
| strm->avail_out = out->size - buffer_len(out); |
| |
| ret = deflate(strm, flag); |
| if (ret != Z_OK && ret != Z_STREAM_END) |
| return -1; |
| |
| out_len = (out->size - buffer_len(out)) - strm->avail_out; |
| out->i += out_len; |
| |
| /* compression limit */ |
| if ((global.comp_rate_lim > 0 && (read_freq_ctr(&global.comp_bps_out) > global.comp_rate_lim)) || /* rate */ |
| (idle_pct < compress_min_idle)) { /* idle */ |
| /* decrease level */ |
| if (comp_ctx->cur_lvl > 0) { |
| comp_ctx->cur_lvl--; |
| deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY); |
| } |
| |
| } else if (comp_ctx->cur_lvl < global.tune.comp_maxlevel) { |
| /* increase level */ |
| comp_ctx->cur_lvl++ ; |
| deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY); |
| } |
| |
| return out_len; |
| } |
| |
| int deflate_reset(struct comp_ctx *comp_ctx) |
| { |
| z_stream *strm = &comp_ctx->strm; |
| |
| if (deflateReset(strm) == Z_OK) |
| return 0; |
| return -1; |
| } |
| |
| int deflate_end(struct comp_ctx **comp_ctx) |
| { |
| z_stream *strm = &(*comp_ctx)->strm; |
| int ret; |
| |
| ret = deflateEnd(strm); |
| |
| deinit_comp_ctx(comp_ctx); |
| |
| return ret; |
| } |
| |
| #endif /* USE_ZLIB */ |
| |
| /* boolean, returns true if compression is used (either gzip or deflate) in the response */ |
| static int |
| smp_fetch_res_comp(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp, const char *kw) |
| { |
| smp->type = SMP_T_BOOL; |
| smp->data.uint = (l4->comp_algo != NULL); |
| return 1; |
| } |
| |
| /* string, returns algo */ |
| static int |
| smp_fetch_res_comp_algo(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp, const char *kw) |
| { |
| if (!l4->comp_algo) |
| return 0; |
| |
| smp->type = SMP_T_STR; |
| smp->flags = SMP_F_CONST; |
| smp->data.str.str = l4->comp_algo->name; |
| smp->data.str.len = l4->comp_algo->name_len; |
| return 1; |
| } |
| |
| /* Note: must not be declared <const> as its list will be overwritten */ |
| static struct acl_kw_list acl_kws = {ILH, { |
| { /* END */ }, |
| }}; |
| |
| /* Note: must not be declared <const> as its list will be overwritten */ |
| static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, { |
| { "res.comp", smp_fetch_res_comp, 0, NULL, SMP_T_BOOL, SMP_USE_HRSHP }, |
| { "res.comp_algo", smp_fetch_res_comp_algo, 0, NULL, SMP_T_STR, SMP_USE_HRSHP }, |
| { /* END */ }, |
| }}; |
| |
| __attribute__((constructor)) |
| static void __comp_fetch_init(void) |
| { |
| acl_register_keywords(&acl_kws); |
| sample_register_fetches(&sample_fetch_keywords); |
| } |