| /* |
| * Connection management functions |
| * |
| * Copyright 2000-2012 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <errno.h> |
| |
| #include <common/compat.h> |
| #include <common/config.h> |
| #include <common/initcall.h> |
| #include <common/namespace.h> |
| #include <common/hash.h> |
| #include <common/net_helper.h> |
| |
| #include <proto/connection.h> |
| #include <proto/fd.h> |
| #include <proto/frontend.h> |
| #include <proto/proto_tcp.h> |
| #include <proto/stream_interface.h> |
| #include <proto/sample.h> |
| #include <proto/ssl_sock.h> |
| |
| #include <common/debug.h> |
| |
| DECLARE_POOL(pool_head_connection, "connection", sizeof(struct connection)); |
| DECLARE_POOL(pool_head_connstream, "conn_stream", sizeof(struct conn_stream)); |
| DECLARE_POOL(pool_head_sockaddr, "sockaddr", sizeof(struct sockaddr_storage)); |
| DECLARE_POOL(pool_head_authority, "authority", PP2_AUTHORITY_MAX); |
| |
| struct xprt_ops *registered_xprt[XPRT_ENTRIES] = { NULL, }; |
| |
| /* List head of all known muxes for PROTO */ |
| struct mux_proto_list mux_proto_list = { |
| .list = LIST_HEAD_INIT(mux_proto_list.list) |
| }; |
| |
| int conn_create_mux(struct connection *conn) |
| { |
| if (conn_is_back(conn)) { |
| struct server *srv; |
| struct conn_stream *cs = conn->ctx; |
| |
| if (conn->flags & CO_FL_ERROR) |
| goto fail; |
| |
| if (conn_install_mux_be(conn, conn->ctx, conn->owner) < 0) |
| goto fail; |
| srv = objt_server(conn->target); |
| if (srv && ((srv->proxy->options & PR_O_REUSE_MASK) != PR_O_REUSE_NEVR) && |
| conn->mux->avail_streams(conn) > 0) |
| LIST_ADDQ(&srv->available_conns[tid], mt_list_to_list(&conn->list)); |
| return 0; |
| fail: |
| /* let the upper layer know the connection failed */ |
| cs->data_cb->wake(cs); |
| return -1; |
| } else |
| return conn_complete_session(conn); |
| |
| } |
| |
| /* I/O callback for fd-based connections. It calls the read/write handlers |
| * provided by the connection's sock_ops, which must be valid. |
| */ |
| void conn_fd_handler(int fd) |
| { |
| struct connection *conn = fdtab[fd].owner; |
| unsigned int flags; |
| int need_wake = 0; |
| |
| if (unlikely(!conn)) { |
| activity[tid].conn_dead++; |
| return; |
| } |
| |
| flags = conn->flags & ~CO_FL_ERROR; /* ensure to call the wake handler upon error */ |
| |
| if (unlikely(conn->flags & CO_FL_WAIT_L4_CONN) && |
| ((fd_send_ready(fd) && fd_send_active(fd)) || |
| (fd_recv_ready(fd) && fd_recv_active(fd)))) { |
| /* Still waiting for a connection to establish and nothing was |
| * attempted yet to probe the connection. this will clear the |
| * CO_FL_WAIT_L4_CONN flag on success. |
| */ |
| if (!conn_fd_check(conn)) |
| goto leave; |
| need_wake = 1; |
| } |
| |
| if (fd_send_ready(fd) && fd_send_active(fd)) { |
| /* force reporting of activity by clearing the previous flags : |
| * we'll have at least ERROR or CONNECTED at the end of an I/O, |
| * both of which will be detected below. |
| */ |
| flags = 0; |
| if (conn->subs && conn->subs->events & SUB_RETRY_SEND) { |
| need_wake = 0; // wake will be called after this I/O |
| tasklet_wakeup(conn->subs->tasklet); |
| conn->subs->events &= ~SUB_RETRY_SEND; |
| if (!conn->subs->events) |
| conn->subs = NULL; |
| } |
| fd_stop_send(fd); |
| } |
| |
| /* The data transfer starts here and stops on error and handshakes. Note |
| * that we must absolutely test conn->xprt at each step in case it suddenly |
| * changes due to a quick unexpected close(). |
| */ |
| if (fd_recv_ready(fd) && fd_recv_active(fd)) { |
| /* force reporting of activity by clearing the previous flags : |
| * we'll have at least ERROR or CONNECTED at the end of an I/O, |
| * both of which will be detected below. |
| */ |
| flags = 0; |
| if (conn->subs && conn->subs->events & SUB_RETRY_RECV) { |
| need_wake = 0; // wake will be called after this I/O |
| tasklet_wakeup(conn->subs->tasklet); |
| conn->subs->events &= ~SUB_RETRY_RECV; |
| if (!conn->subs->events) |
| conn->subs = NULL; |
| } |
| else if (tasks_run_queue_cur >= 16*global.tune.runqueue_depth) { |
| /* In order to save syscalls especially with epoll, we |
| * prefer *not* to disable receiving and instead let |
| * the handler do its job. But if the run queue becomes |
| * high, the excess of events may cause extra wakeups |
| * and in this case we'd rather flow-control ourselves. |
| */ |
| fd_stop_recv(fd); |
| } |
| } |
| |
| leave: |
| /* If we don't yet have a mux, that means we were waiting for |
| * information to create one, typically from the ALPN. If we're |
| * done with the handshake, attempt to create one. |
| */ |
| if (unlikely(!conn->mux) && !(conn->flags & CO_FL_WAIT_XPRT)) |
| if (conn_create_mux(conn) < 0) |
| return; |
| |
| /* The wake callback is normally used to notify the data layer about |
| * data layer activity (successful send/recv), connection establishment, |
| * shutdown and fatal errors. We need to consider the following |
| * situations to wake up the data layer : |
| * - change among the CO_FL_NOTIFY_DONE flags : |
| * SOCK_{RD,WR}_SH, ERROR, |
| * - absence of any of {L4,L6}_CONN and CONNECTED, indicating the |
| * end of handshake and transition to CONNECTED |
| * - raise of CONNECTED with HANDSHAKE down |
| * - end of HANDSHAKE with CONNECTED set |
| * - regular data layer activity |
| * |
| * Note that the wake callback is allowed to release the connection and |
| * the fd (and return < 0 in this case). |
| */ |
| if ((need_wake || ((conn->flags ^ flags) & CO_FL_NOTIFY_DONE) || |
| ((flags & CO_FL_WAIT_XPRT) && !(conn->flags & CO_FL_WAIT_XPRT))) && |
| conn->mux && conn->mux->wake && conn->mux->wake(conn) < 0) |
| return; |
| |
| /* commit polling changes */ |
| conn_cond_update_polling(conn); |
| return; |
| } |
| |
| /* This is the callback which is set when a connection establishment is pending |
| * and we have nothing to send. It may update the FD polling status to indicate |
| * !READY. It returns 0 if it fails in a fatal way or needs to poll to go |
| * further, otherwise it returns non-zero and removes the CO_FL_WAIT_L4_CONN |
| * flag from the connection's flags. In case of error, it sets CO_FL_ERROR and |
| * leaves the error code in errno. |
| */ |
| int conn_fd_check(struct connection *conn) |
| { |
| struct sockaddr_storage *addr; |
| int fd = conn->handle.fd; |
| |
| if (conn->flags & CO_FL_ERROR) |
| return 0; |
| |
| if (!conn_ctrl_ready(conn)) |
| return 0; |
| |
| if (!(conn->flags & CO_FL_WAIT_L4_CONN)) |
| return 1; /* strange we were called while ready */ |
| |
| if (!fd_send_ready(fd)) |
| return 0; |
| |
| /* Here we have 2 cases : |
| * - modern pollers, able to report ERR/HUP. If these ones return any |
| * of these flags then it's likely a failure, otherwise it possibly |
| * is a success (i.e. there may have been data received just before |
| * the error was reported). |
| * - select, which doesn't report these and with which it's always |
| * necessary either to try connect() again or to check for SO_ERROR. |
| * In order to simplify everything, we double-check using connect() as |
| * soon as we meet either of these delicate situations. Note that |
| * SO_ERROR would clear the error after reporting it! |
| */ |
| if (cur_poller.flags & HAP_POLL_F_ERRHUP) { |
| /* modern poller, able to report ERR/HUP */ |
| if ((fdtab[fd].ev & (FD_POLL_IN|FD_POLL_ERR|FD_POLL_HUP)) == FD_POLL_IN) |
| goto done; |
| if ((fdtab[fd].ev & (FD_POLL_OUT|FD_POLL_ERR|FD_POLL_HUP)) == FD_POLL_OUT) |
| goto done; |
| if (!(fdtab[fd].ev & (FD_POLL_ERR|FD_POLL_HUP))) |
| goto wait; |
| /* error present, fall through common error check path */ |
| } |
| |
| /* Use connect() to check the state of the socket. This has the double |
| * advantage of *not* clearing the error (so that health checks can |
| * still use getsockopt(SO_ERROR)) and giving us the following info : |
| * - error |
| * - connecting (EALREADY, EINPROGRESS) |
| * - connected (EISCONN, 0) |
| */ |
| addr = conn->dst; |
| if ((conn->flags & CO_FL_SOCKS4) && obj_type(conn->target) == OBJ_TYPE_SERVER) |
| addr = &objt_server(conn->target)->socks4_addr; |
| |
| if (connect(fd, (const struct sockaddr *)addr, get_addr_len(addr)) == -1) { |
| if (errno == EALREADY || errno == EINPROGRESS) |
| goto wait; |
| |
| if (errno && errno != EISCONN) |
| goto out_error; |
| } |
| |
| done: |
| /* The FD is ready now, we'll mark the connection as complete and |
| * forward the event to the transport layer which will notify the |
| * data layer. |
| */ |
| conn->flags &= ~CO_FL_WAIT_L4_CONN; |
| fd_may_send(fd); |
| fd_cond_recv(fd); |
| errno = 0; // make health checks happy |
| return 1; |
| |
| out_error: |
| /* Write error on the file descriptor. Report it to the connection |
| * and disable polling on this FD. |
| */ |
| fdtab[fd].linger_risk = 0; |
| conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH; |
| conn_stop_polling(conn); |
| return 0; |
| |
| wait: |
| fd_cant_send(fd); |
| fd_want_send(fd); |
| return 0; |
| } |
| |
| /* Send a message over an established connection. It makes use of send() and |
| * returns the same return code and errno. If the socket layer is not ready yet |
| * then -1 is returned and ENOTSOCK is set into errno. If the fd is not marked |
| * as ready, or if EAGAIN or ENOTCONN is returned, then we return 0. It returns |
| * EMSGSIZE if called with a zero length message. The purpose is to simplify |
| * some rare attempts to directly write on the socket from above the connection |
| * (typically send_proxy). In case of EAGAIN, the fd is marked as "cant_send". |
| * It automatically retries on EINTR. Other errors cause the connection to be |
| * marked as in error state. It takes similar arguments as send() except the |
| * first one which is the connection instead of the file descriptor. Note, |
| * MSG_DONTWAIT and MSG_NOSIGNAL are forced on the flags. |
| */ |
| int conn_sock_send(struct connection *conn, const void *buf, int len, int flags) |
| { |
| int ret; |
| |
| ret = -1; |
| errno = ENOTSOCK; |
| |
| if (conn->flags & CO_FL_SOCK_WR_SH) |
| goto fail; |
| |
| if (!conn_ctrl_ready(conn)) |
| goto fail; |
| |
| errno = EMSGSIZE; |
| if (!len) |
| goto fail; |
| |
| if (!fd_send_ready(conn->handle.fd)) |
| goto wait; |
| |
| do { |
| ret = send(conn->handle.fd, buf, len, flags | MSG_DONTWAIT | MSG_NOSIGNAL); |
| } while (ret < 0 && errno == EINTR); |
| |
| |
| if (ret > 0) { |
| if (conn->flags & CO_FL_WAIT_L4_CONN) { |
| conn->flags &= ~CO_FL_WAIT_L4_CONN; |
| fd_may_send(conn->handle.fd); |
| fd_cond_recv(conn->handle.fd); |
| } |
| return ret; |
| } |
| |
| if (ret == 0 || errno == EAGAIN || errno == ENOTCONN) { |
| wait: |
| fd_cant_send(conn->handle.fd); |
| return 0; |
| } |
| fail: |
| conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH | CO_FL_ERROR; |
| return ret; |
| } |
| |
| /* Called from the upper layer, to subscribe <es> to events <event_type>. The |
| * event subscriber <es> is not allowed to change from a previous call as long |
| * as at least one event is still subscribed. The <event_type> must only be a |
| * combination of SUB_RETRY_RECV and SUB_RETRY_SEND. It always returns 0. |
| */ |
| int conn_unsubscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es) |
| { |
| BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV)); |
| BUG_ON(conn->subs && conn->subs != es); |
| |
| es->events &= ~event_type; |
| if (!es->events) |
| conn->subs = NULL; |
| |
| if (conn_ctrl_ready(conn)) { |
| if (event_type & SUB_RETRY_RECV) |
| fd_stop_recv(conn->handle.fd); |
| |
| if (event_type & SUB_RETRY_SEND) |
| fd_stop_send(conn->handle.fd); |
| } |
| return 0; |
| } |
| |
| /* Called from the upper layer, to subscribe <es> to events <event_type>. |
| * The <es> struct is not allowed to differ from the one passed during a |
| * previous call to subscribe(). If the FD is ready, the wait_event is |
| * immediately woken up and the subcription is cancelled. It always |
| * returns zero. |
| */ |
| int conn_subscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es) |
| { |
| BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV)); |
| BUG_ON(conn->subs && conn->subs != es); |
| |
| if (conn->subs && (conn->subs->events & event_type) == event_type) |
| return 0; |
| |
| conn->subs = es; |
| es->events |= event_type; |
| |
| if (conn_ctrl_ready(conn)) { |
| if (event_type & SUB_RETRY_RECV) { |
| if (fd_recv_ready(conn->handle.fd)) { |
| tasklet_wakeup(es->tasklet); |
| es->events &= ~SUB_RETRY_RECV; |
| if (!es->events) |
| conn->subs = NULL; |
| } |
| else |
| fd_want_recv(conn->handle.fd); |
| } |
| |
| if (event_type & SUB_RETRY_SEND) { |
| if (fd_send_ready(conn->handle.fd)) { |
| tasklet_wakeup(es->tasklet); |
| es->events &= ~SUB_RETRY_SEND; |
| if (!es->events) |
| conn->subs = NULL; |
| } |
| else |
| fd_want_send(conn->handle.fd); |
| } |
| } |
| return 0; |
| } |
| |
| /* Drains possibly pending incoming data on the file descriptor attached to the |
| * connection and update the connection's flags accordingly. This is used to |
| * know whether we need to disable lingering on close. Returns non-zero if it |
| * is safe to close without disabling lingering, otherwise zero. The SOCK_RD_SH |
| * flag may also be updated if the incoming shutdown was reported by the drain() |
| * function. |
| */ |
| int conn_sock_drain(struct connection *conn) |
| { |
| int turns = 2; |
| int len; |
| |
| if (!conn_ctrl_ready(conn)) |
| return 1; |
| |
| if (conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH)) |
| return 1; |
| |
| if (fdtab[conn->handle.fd].ev & (FD_POLL_ERR|FD_POLL_HUP)) |
| goto shut; |
| |
| if (!fd_recv_ready(conn->handle.fd)) |
| return 0; |
| |
| if (conn->ctrl->drain) { |
| if (conn->ctrl->drain(conn->handle.fd) <= 0) |
| return 0; |
| goto shut; |
| } |
| |
| /* no drain function defined, use the generic one */ |
| |
| while (turns) { |
| #ifdef MSG_TRUNC_CLEARS_INPUT |
| len = recv(conn->handle.fd, NULL, INT_MAX, MSG_DONTWAIT | MSG_NOSIGNAL | MSG_TRUNC); |
| if (len == -1 && errno == EFAULT) |
| #endif |
| len = recv(conn->handle.fd, trash.area, trash.size, |
| MSG_DONTWAIT | MSG_NOSIGNAL); |
| |
| if (len == 0) |
| goto shut; |
| |
| if (len < 0) { |
| if (errno == EAGAIN) { |
| /* connection not closed yet */ |
| fd_cant_recv(conn->handle.fd); |
| break; |
| } |
| if (errno == EINTR) /* oops, try again */ |
| continue; |
| /* other errors indicate a dead connection, fine. */ |
| goto shut; |
| } |
| /* OK we read some data, let's try again once */ |
| turns--; |
| } |
| |
| /* some data are still present, give up */ |
| return 0; |
| |
| shut: |
| /* we're certain the connection was shut down */ |
| fdtab[conn->handle.fd].linger_risk = 0; |
| conn->flags |= CO_FL_SOCK_RD_SH; |
| return 1; |
| } |
| |
| /* |
| * Get data length from tlv |
| */ |
| static inline size_t get_tlv_length(const struct tlv *src) |
| { |
| return (src->length_hi << 8) | src->length_lo; |
| } |
| |
| /* This handshake handler waits a PROXY protocol header at the beginning of the |
| * raw data stream. The header looks like this : |
| * |
| * "PROXY" <SP> PROTO <SP> SRC3 <SP> DST3 <SP> SRC4 <SP> <DST4> "\r\n" |
| * |
| * There must be exactly one space between each field. Fields are : |
| * - PROTO : layer 4 protocol, which must be "TCP4" or "TCP6". |
| * - SRC3 : layer 3 (eg: IP) source address in standard text form |
| * - DST3 : layer 3 (eg: IP) destination address in standard text form |
| * - SRC4 : layer 4 (eg: TCP port) source address in standard text form |
| * - DST4 : layer 4 (eg: TCP port) destination address in standard text form |
| * |
| * This line MUST be at the beginning of the buffer and MUST NOT wrap. |
| * |
| * The header line is small and in all cases smaller than the smallest normal |
| * TCP MSS. So it MUST always be delivered as one segment, which ensures we |
| * can safely use MSG_PEEK and avoid buffering. |
| * |
| * Once the data is fetched, the values are set in the connection's address |
| * fields, and data are removed from the socket's buffer. The function returns |
| * zero if it needs to wait for more data or if it fails, or 1 if it completed |
| * and removed itself. |
| */ |
| int conn_recv_proxy(struct connection *conn, int flag) |
| { |
| char *line, *end; |
| struct proxy_hdr_v2 *hdr_v2; |
| const char v2sig[] = PP2_SIGNATURE; |
| size_t total_v2_len; |
| size_t tlv_offset = 0; |
| int ret; |
| |
| if (!conn_ctrl_ready(conn)) |
| goto fail; |
| |
| if (!sockaddr_alloc(&conn->src) || !sockaddr_alloc(&conn->dst)) |
| goto fail; |
| |
| if (!fd_recv_ready(conn->handle.fd)) |
| goto not_ready; |
| |
| while (1) { |
| ret = recv(conn->handle.fd, trash.area, trash.size, MSG_PEEK); |
| if (ret < 0) { |
| if (errno == EINTR) |
| continue; |
| if (errno == EAGAIN) { |
| fd_cant_recv(conn->handle.fd); |
| goto not_ready; |
| } |
| goto recv_abort; |
| } |
| trash.data = ret; |
| break; |
| } |
| |
| if (!trash.data) { |
| /* client shutdown */ |
| conn->err_code = CO_ER_PRX_EMPTY; |
| goto fail; |
| } |
| |
| conn->flags &= ~CO_FL_WAIT_L4_CONN; |
| |
| if (trash.data < 6) |
| goto missing; |
| |
| line = trash.area; |
| end = trash.area + trash.data; |
| |
| /* Decode a possible proxy request, fail early if it does not match */ |
| if (strncmp(line, "PROXY ", 6) != 0) |
| goto not_v1; |
| |
| line += 6; |
| if (trash.data < 9) /* shortest possible line */ |
| goto missing; |
| |
| if (memcmp(line, "TCP4 ", 5) == 0) { |
| u32 src3, dst3, sport, dport; |
| |
| line += 5; |
| |
| src3 = inetaddr_host_lim_ret(line, end, &line); |
| if (line == end) |
| goto missing; |
| if (*line++ != ' ') |
| goto bad_header; |
| |
| dst3 = inetaddr_host_lim_ret(line, end, &line); |
| if (line == end) |
| goto missing; |
| if (*line++ != ' ') |
| goto bad_header; |
| |
| sport = read_uint((const char **)&line, end); |
| if (line == end) |
| goto missing; |
| if (*line++ != ' ') |
| goto bad_header; |
| |
| dport = read_uint((const char **)&line, end); |
| if (line > end - 2) |
| goto missing; |
| if (*line++ != '\r') |
| goto bad_header; |
| if (*line++ != '\n') |
| goto bad_header; |
| |
| /* update the session's addresses and mark them set */ |
| ((struct sockaddr_in *)conn->src)->sin_family = AF_INET; |
| ((struct sockaddr_in *)conn->src)->sin_addr.s_addr = htonl(src3); |
| ((struct sockaddr_in *)conn->src)->sin_port = htons(sport); |
| |
| ((struct sockaddr_in *)conn->dst)->sin_family = AF_INET; |
| ((struct sockaddr_in *)conn->dst)->sin_addr.s_addr = htonl(dst3); |
| ((struct sockaddr_in *)conn->dst)->sin_port = htons(dport); |
| conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET; |
| } |
| else if (memcmp(line, "TCP6 ", 5) == 0) { |
| u32 sport, dport; |
| char *src_s; |
| char *dst_s, *sport_s, *dport_s; |
| struct in6_addr src3, dst3; |
| |
| line += 5; |
| |
| src_s = line; |
| dst_s = sport_s = dport_s = NULL; |
| while (1) { |
| if (line > end - 2) { |
| goto missing; |
| } |
| else if (*line == '\r') { |
| *line = 0; |
| line++; |
| if (*line++ != '\n') |
| goto bad_header; |
| break; |
| } |
| |
| if (*line == ' ') { |
| *line = 0; |
| if (!dst_s) |
| dst_s = line + 1; |
| else if (!sport_s) |
| sport_s = line + 1; |
| else if (!dport_s) |
| dport_s = line + 1; |
| } |
| line++; |
| } |
| |
| if (!dst_s || !sport_s || !dport_s) |
| goto bad_header; |
| |
| sport = read_uint((const char **)&sport_s,dport_s - 1); |
| if (*sport_s != 0) |
| goto bad_header; |
| |
| dport = read_uint((const char **)&dport_s,line - 2); |
| if (*dport_s != 0) |
| goto bad_header; |
| |
| if (inet_pton(AF_INET6, src_s, (void *)&src3) != 1) |
| goto bad_header; |
| |
| if (inet_pton(AF_INET6, dst_s, (void *)&dst3) != 1) |
| goto bad_header; |
| |
| /* update the session's addresses and mark them set */ |
| ((struct sockaddr_in6 *)conn->src)->sin6_family = AF_INET6; |
| memcpy(&((struct sockaddr_in6 *)conn->src)->sin6_addr, &src3, sizeof(struct in6_addr)); |
| ((struct sockaddr_in6 *)conn->src)->sin6_port = htons(sport); |
| |
| ((struct sockaddr_in6 *)conn->dst)->sin6_family = AF_INET6; |
| memcpy(&((struct sockaddr_in6 *)conn->dst)->sin6_addr, &dst3, sizeof(struct in6_addr)); |
| ((struct sockaddr_in6 *)conn->dst)->sin6_port = htons(dport); |
| conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET; |
| } |
| else if (memcmp(line, "UNKNOWN\r\n", 9) == 0) { |
| /* This can be a UNIX socket forwarded by an haproxy upstream */ |
| line += 9; |
| } |
| else { |
| /* The protocol does not match something known (TCP4/TCP6/UNKNOWN) */ |
| conn->err_code = CO_ER_PRX_BAD_PROTO; |
| goto fail; |
| } |
| |
| trash.data = line - trash.area; |
| goto eat_header; |
| |
| not_v1: |
| /* try PPv2 */ |
| if (trash.data < PP2_HEADER_LEN) |
| goto missing; |
| |
| hdr_v2 = (struct proxy_hdr_v2 *) trash.area; |
| |
| if (memcmp(hdr_v2->sig, v2sig, PP2_SIGNATURE_LEN) != 0 || |
| (hdr_v2->ver_cmd & PP2_VERSION_MASK) != PP2_VERSION) { |
| conn->err_code = CO_ER_PRX_NOT_HDR; |
| goto fail; |
| } |
| |
| total_v2_len = PP2_HEADER_LEN + ntohs(hdr_v2->len); |
| if (trash.data < total_v2_len) |
| goto missing; |
| |
| switch (hdr_v2->ver_cmd & PP2_CMD_MASK) { |
| case 0x01: /* PROXY command */ |
| switch (hdr_v2->fam) { |
| case 0x11: /* TCPv4 */ |
| if (ntohs(hdr_v2->len) < PP2_ADDR_LEN_INET) |
| goto bad_header; |
| |
| ((struct sockaddr_in *)conn->src)->sin_family = AF_INET; |
| ((struct sockaddr_in *)conn->src)->sin_addr.s_addr = hdr_v2->addr.ip4.src_addr; |
| ((struct sockaddr_in *)conn->src)->sin_port = hdr_v2->addr.ip4.src_port; |
| ((struct sockaddr_in *)conn->dst)->sin_family = AF_INET; |
| ((struct sockaddr_in *)conn->dst)->sin_addr.s_addr = hdr_v2->addr.ip4.dst_addr; |
| ((struct sockaddr_in *)conn->dst)->sin_port = hdr_v2->addr.ip4.dst_port; |
| conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET; |
| tlv_offset = PP2_HEADER_LEN + PP2_ADDR_LEN_INET; |
| break; |
| case 0x21: /* TCPv6 */ |
| if (ntohs(hdr_v2->len) < PP2_ADDR_LEN_INET6) |
| goto bad_header; |
| |
| ((struct sockaddr_in6 *)conn->src)->sin6_family = AF_INET6; |
| memcpy(&((struct sockaddr_in6 *)conn->src)->sin6_addr, hdr_v2->addr.ip6.src_addr, 16); |
| ((struct sockaddr_in6 *)conn->src)->sin6_port = hdr_v2->addr.ip6.src_port; |
| ((struct sockaddr_in6 *)conn->dst)->sin6_family = AF_INET6; |
| memcpy(&((struct sockaddr_in6 *)conn->dst)->sin6_addr, hdr_v2->addr.ip6.dst_addr, 16); |
| ((struct sockaddr_in6 *)conn->dst)->sin6_port = hdr_v2->addr.ip6.dst_port; |
| conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET; |
| tlv_offset = PP2_HEADER_LEN + PP2_ADDR_LEN_INET6; |
| break; |
| } |
| |
| /* TLV parsing */ |
| while (tlv_offset < total_v2_len) { |
| struct tlv *tlv_packet; |
| size_t tlv_len; |
| |
| /* Verify that we have at least TLV_HEADER_SIZE bytes left */ |
| if (tlv_offset + TLV_HEADER_SIZE > total_v2_len) |
| goto bad_header; |
| |
| tlv_packet = (struct tlv *) &trash.area[tlv_offset]; |
| tlv_len = get_tlv_length(tlv_packet); |
| tlv_offset += tlv_len + TLV_HEADER_SIZE; |
| |
| /* Verify that the TLV length does not exceed the total PROXYv2 length */ |
| if (tlv_offset > total_v2_len) |
| goto bad_header; |
| |
| switch (tlv_packet->type) { |
| case PP2_TYPE_CRC32C: { |
| uint32_t n_crc32c; |
| |
| /* Verify that this TLV is exactly 4 bytes long */ |
| if (tlv_len != 4) |
| goto bad_header; |
| |
| n_crc32c = read_n32(tlv_packet->value); |
| write_n32(tlv_packet->value, 0); // compute with CRC==0 |
| |
| if (hash_crc32c(trash.area, total_v2_len) != n_crc32c) |
| goto bad_header; |
| break; |
| } |
| #ifdef USE_NS |
| case PP2_TYPE_NETNS: { |
| const struct netns_entry *ns; |
| |
| ns = netns_store_lookup((char*)tlv_packet->value, tlv_len); |
| if (ns) |
| conn->proxy_netns = ns; |
| break; |
| } |
| #endif |
| case PP2_TYPE_AUTHORITY: { |
| if (tlv_len > PP2_AUTHORITY_MAX) |
| goto bad_header; |
| conn->proxy_authority = pool_alloc(pool_head_authority); |
| if (conn->proxy_authority == NULL) |
| goto fail; |
| memcpy(conn->proxy_authority, (const char *)tlv_packet->value, tlv_len); |
| conn->proxy_authority_len = tlv_len; |
| break; |
| } |
| case PP2_TYPE_UNIQUE_ID: { |
| const struct ist tlv = ist2((const char *)tlv_packet->value, tlv_len); |
| |
| if (tlv.len > UNIQUEID_LEN) |
| goto bad_header; |
| conn->proxy_unique_id = ist2(pool_alloc(pool_head_uniqueid), 0); |
| if (!isttest(conn->proxy_unique_id)) |
| goto fail; |
| if (istcpy(&conn->proxy_unique_id, tlv, UNIQUEID_LEN) < 0) { |
| /* This is technically unreachable, because we verified above |
| * that the TLV value fits. |
| */ |
| goto fail; |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| /* Verify that the PROXYv2 header ends at a TLV boundary. |
| * This is technically unreachable, because the TLV parsing already |
| * verifies that a TLV does not exceed the total length and also |
| * that there is space for a TLV header. |
| */ |
| if (tlv_offset != total_v2_len) |
| goto bad_header; |
| |
| /* unsupported protocol, keep local connection address */ |
| break; |
| case 0x00: /* LOCAL command */ |
| /* keep local connection address for LOCAL */ |
| break; |
| default: |
| goto bad_header; /* not a supported command */ |
| } |
| |
| trash.data = total_v2_len; |
| goto eat_header; |
| |
| eat_header: |
| /* remove the PROXY line from the request. For this we re-read the |
| * exact line at once. If we don't get the exact same result, we |
| * fail. |
| */ |
| while (1) { |
| ssize_t len2 = recv(conn->handle.fd, trash.area, trash.data, 0); |
| |
| if (len2 < 0 && errno == EINTR) |
| continue; |
| if (len2 != trash.data) |
| goto recv_abort; |
| break; |
| } |
| |
| conn->flags &= ~flag; |
| conn->flags |= CO_FL_RCVD_PROXY; |
| return 1; |
| |
| not_ready: |
| return 0; |
| |
| missing: |
| /* Missing data. Since we're using MSG_PEEK, we can only poll again if |
| * we have not read anything. Otherwise we need to fail because we won't |
| * be able to poll anymore. |
| */ |
| conn->err_code = CO_ER_PRX_TRUNCATED; |
| goto fail; |
| |
| bad_header: |
| /* This is not a valid proxy protocol header */ |
| conn->err_code = CO_ER_PRX_BAD_HDR; |
| goto fail; |
| |
| recv_abort: |
| conn->err_code = CO_ER_PRX_ABORT; |
| conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH; |
| goto fail; |
| |
| fail: |
| conn->flags |= CO_FL_ERROR; |
| return 0; |
| } |
| |
| /* This handshake handler waits a NetScaler Client IP insertion header |
| * at the beginning of the raw data stream. The header format is |
| * described in doc/netscaler-client-ip-insertion-protocol.txt |
| * |
| * This line MUST be at the beginning of the buffer and MUST NOT be |
| * fragmented. |
| * |
| * The header line is small and in all cases smaller than the smallest normal |
| * TCP MSS. So it MUST always be delivered as one segment, which ensures we |
| * can safely use MSG_PEEK and avoid buffering. |
| * |
| * Once the data is fetched, the values are set in the connection's address |
| * fields, and data are removed from the socket's buffer. The function returns |
| * zero if it needs to wait for more data or if it fails, or 1 if it completed |
| * and removed itself. |
| */ |
| int conn_recv_netscaler_cip(struct connection *conn, int flag) |
| { |
| char *line; |
| uint32_t hdr_len; |
| uint8_t ip_ver; |
| int ret; |
| |
| if (!conn_ctrl_ready(conn)) |
| goto fail; |
| |
| if (!sockaddr_alloc(&conn->src) || !sockaddr_alloc(&conn->dst)) |
| goto fail; |
| |
| if (!fd_recv_ready(conn->handle.fd)) |
| goto not_ready; |
| |
| while (1) { |
| ret = recv(conn->handle.fd, trash.area, trash.size, MSG_PEEK); |
| if (ret < 0) { |
| if (errno == EINTR) |
| continue; |
| if (errno == EAGAIN) { |
| fd_cant_recv(conn->handle.fd); |
| goto not_ready; |
| } |
| goto recv_abort; |
| } |
| trash.data = ret; |
| break; |
| } |
| |
| conn->flags &= ~CO_FL_WAIT_L4_CONN; |
| |
| if (!trash.data) { |
| /* client shutdown */ |
| conn->err_code = CO_ER_CIP_EMPTY; |
| goto fail; |
| } |
| |
| /* Fail if buffer length is not large enough to contain |
| * CIP magic, header length or |
| * CIP magic, CIP length, CIP type, header length */ |
| if (trash.data < 12) |
| goto missing; |
| |
| line = trash.area; |
| |
| /* Decode a possible NetScaler Client IP request, fail early if |
| * it does not match */ |
| if (ntohl(read_u32(line)) != __objt_listener(conn->target)->bind_conf->ns_cip_magic) |
| goto bad_magic; |
| |
| /* Legacy CIP protocol */ |
| if ((trash.area[8] & 0xD0) == 0x40) { |
| hdr_len = ntohl(read_u32((line+4))); |
| line += 8; |
| } |
| /* Standard CIP protocol */ |
| else if (trash.area[8] == 0x00) { |
| hdr_len = ntohs(read_u32((line+10))); |
| line += 12; |
| } |
| /* Unknown CIP protocol */ |
| else { |
| conn->err_code = CO_ER_CIP_BAD_PROTO; |
| goto fail; |
| } |
| |
| /* Fail if buffer length is not large enough to contain |
| * a minimal IP header */ |
| if (trash.data < 20) |
| goto missing; |
| |
| /* Get IP version from the first four bits */ |
| ip_ver = (*line & 0xf0) >> 4; |
| |
| if (ip_ver == 4) { |
| struct ip *hdr_ip4; |
| struct my_tcphdr *hdr_tcp; |
| |
| hdr_ip4 = (struct ip *)line; |
| |
| if (trash.data < 40 || trash.data < hdr_len) { |
| /* Fail if buffer length is not large enough to contain |
| * IPv4 header, TCP header */ |
| goto missing; |
| } |
| else if (hdr_ip4->ip_p != IPPROTO_TCP) { |
| /* The protocol does not include a TCP header */ |
| conn->err_code = CO_ER_CIP_BAD_PROTO; |
| goto fail; |
| } |
| |
| hdr_tcp = (struct my_tcphdr *)(line + (hdr_ip4->ip_hl * 4)); |
| |
| /* update the session's addresses and mark them set */ |
| ((struct sockaddr_in *)conn->src)->sin_family = AF_INET; |
| ((struct sockaddr_in *)conn->src)->sin_addr.s_addr = hdr_ip4->ip_src.s_addr; |
| ((struct sockaddr_in *)conn->src)->sin_port = hdr_tcp->source; |
| |
| ((struct sockaddr_in *)conn->dst)->sin_family = AF_INET; |
| ((struct sockaddr_in *)conn->dst)->sin_addr.s_addr = hdr_ip4->ip_dst.s_addr; |
| ((struct sockaddr_in *)conn->dst)->sin_port = hdr_tcp->dest; |
| |
| conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET; |
| } |
| else if (ip_ver == 6) { |
| struct ip6_hdr *hdr_ip6; |
| struct my_tcphdr *hdr_tcp; |
| |
| hdr_ip6 = (struct ip6_hdr *)line; |
| |
| if (trash.data < 60 || trash.data < hdr_len) { |
| /* Fail if buffer length is not large enough to contain |
| * IPv6 header, TCP header */ |
| goto missing; |
| } |
| else if (hdr_ip6->ip6_nxt != IPPROTO_TCP) { |
| /* The protocol does not include a TCP header */ |
| conn->err_code = CO_ER_CIP_BAD_PROTO; |
| goto fail; |
| } |
| |
| hdr_tcp = (struct my_tcphdr *)(line + sizeof(struct ip6_hdr)); |
| |
| /* update the session's addresses and mark them set */ |
| ((struct sockaddr_in6 *)conn->src)->sin6_family = AF_INET6; |
| ((struct sockaddr_in6 *)conn->src)->sin6_addr = hdr_ip6->ip6_src; |
| ((struct sockaddr_in6 *)conn->src)->sin6_port = hdr_tcp->source; |
| |
| ((struct sockaddr_in6 *)conn->dst)->sin6_family = AF_INET6; |
| ((struct sockaddr_in6 *)conn->dst)->sin6_addr = hdr_ip6->ip6_dst; |
| ((struct sockaddr_in6 *)conn->dst)->sin6_port = hdr_tcp->dest; |
| |
| conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET; |
| } |
| else { |
| /* The protocol does not match something known (IPv4/IPv6) */ |
| conn->err_code = CO_ER_CIP_BAD_PROTO; |
| goto fail; |
| } |
| |
| line += hdr_len; |
| trash.data = line - trash.area; |
| |
| /* remove the NetScaler Client IP header from the request. For this |
| * we re-read the exact line at once. If we don't get the exact same |
| * result, we fail. |
| */ |
| while (1) { |
| int len2 = recv(conn->handle.fd, trash.area, trash.data, 0); |
| if (len2 < 0 && errno == EINTR) |
| continue; |
| if (len2 != trash.data) |
| goto recv_abort; |
| break; |
| } |
| |
| conn->flags &= ~flag; |
| return 1; |
| |
| not_ready: |
| return 0; |
| |
| missing: |
| /* Missing data. Since we're using MSG_PEEK, we can only poll again if |
| * we have not read anything. Otherwise we need to fail because we won't |
| * be able to poll anymore. |
| */ |
| conn->err_code = CO_ER_CIP_TRUNCATED; |
| goto fail; |
| |
| bad_magic: |
| conn->err_code = CO_ER_CIP_BAD_MAGIC; |
| goto fail; |
| |
| recv_abort: |
| conn->err_code = CO_ER_CIP_ABORT; |
| conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH; |
| goto fail; |
| |
| fail: |
| conn->flags |= CO_FL_ERROR; |
| return 0; |
| } |
| |
| |
| int conn_send_socks4_proxy_request(struct connection *conn) |
| { |
| struct socks4_request req_line; |
| |
| if (!conn_ctrl_ready(conn)) |
| goto out_error; |
| |
| if (!conn_get_dst(conn)) |
| goto out_error; |
| |
| req_line.version = 0x04; |
| req_line.command = 0x01; |
| req_line.port = get_net_port(conn->dst); |
| req_line.ip = is_inet_addr(conn->dst); |
| memcpy(req_line.user_id, "HAProxy\0", 8); |
| |
| if (conn->send_proxy_ofs > 0) { |
| /* |
| * This is the first call to send the request |
| */ |
| conn->send_proxy_ofs = -(int)sizeof(req_line); |
| } |
| |
| if (conn->send_proxy_ofs < 0) { |
| int ret = 0; |
| |
| /* we are sending the socks4_req_line here. If the data layer |
| * has a pending write, we'll also set MSG_MORE. |
| */ |
| ret = conn_sock_send( |
| conn, |
| ((char *)(&req_line)) + (sizeof(req_line)+conn->send_proxy_ofs), |
| -conn->send_proxy_ofs, |
| (conn->subs && conn->subs->events & SUB_RETRY_SEND) ? MSG_MORE : 0); |
| |
| DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Before send remain is [%d], sent [%d]\n", |
| conn->handle.fd, -conn->send_proxy_ofs, ret); |
| |
| if (ret < 0) { |
| goto out_error; |
| } |
| |
| conn->send_proxy_ofs += ret; /* becomes zero once complete */ |
| if (conn->send_proxy_ofs != 0) { |
| goto out_wait; |
| } |
| } |
| |
| /* OK we've the whole request sent */ |
| conn->flags &= ~CO_FL_SOCKS4_SEND; |
| |
| /* The connection is ready now, simply return and let the connection |
| * handler notify upper layers if needed. |
| */ |
| conn->flags &= ~CO_FL_WAIT_L4_CONN; |
| |
| if (conn->flags & CO_FL_SEND_PROXY) { |
| /* |
| * Get the send_proxy_ofs ready for the send_proxy due to we are |
| * reusing the "send_proxy_ofs", and SOCKS4 handshake should be done |
| * before sending PROXY Protocol. |
| */ |
| conn->send_proxy_ofs = 1; |
| } |
| return 1; |
| |
| out_error: |
| /* Write error on the file descriptor */ |
| conn->flags |= CO_FL_ERROR; |
| if (conn->err_code == CO_ER_NONE) { |
| conn->err_code = CO_ER_SOCKS4_SEND; |
| } |
| return 0; |
| |
| out_wait: |
| return 0; |
| } |
| |
| int conn_recv_socks4_proxy_response(struct connection *conn) |
| { |
| char line[SOCKS4_HS_RSP_LEN]; |
| int ret; |
| |
| if (!conn_ctrl_ready(conn)) |
| goto fail; |
| |
| if (!fd_recv_ready(conn->handle.fd)) |
| goto not_ready; |
| |
| while (1) { |
| /* SOCKS4 Proxy will response with 8 bytes, 0x00 | 0x5A | 0x00 0x00 | 0x00 0x00 0x00 0x00 |
| * Try to peek into it, before all 8 bytes ready. |
| */ |
| ret = recv(conn->handle.fd, line, SOCKS4_HS_RSP_LEN, MSG_PEEK); |
| |
| if (ret == 0) { |
| /* the socket has been closed or shutdown for send */ |
| DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Received ret[%d], errno[%d], looks like the socket has been closed or shutdown for send\n", |
| conn->handle.fd, ret, errno); |
| if (conn->err_code == CO_ER_NONE) { |
| conn->err_code = CO_ER_SOCKS4_RECV; |
| } |
| goto fail; |
| } |
| |
| if (ret > 0) { |
| if (ret == SOCKS4_HS_RSP_LEN) { |
| DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Received 8 bytes, the response is [%02X|%02X|%02X %02X|%02X %02X %02X %02X]\n", |
| conn->handle.fd, line[0], line[1], line[2], line[3], line[4], line[5], line[6], line[7]); |
| }else{ |
| DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Received ret[%d], first byte is [%02X], last bye is [%02X]\n", conn->handle.fd, ret, line[0], line[ret-1]); |
| } |
| } else { |
| DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Received ret[%d], errno[%d]\n", conn->handle.fd, ret, errno); |
| } |
| |
| if (ret < 0) { |
| if (errno == EINTR) { |
| continue; |
| } |
| if (errno == EAGAIN) { |
| fd_cant_recv(conn->handle.fd); |
| goto not_ready; |
| } |
| goto recv_abort; |
| } |
| break; |
| } |
| |
| conn->flags &= ~CO_FL_WAIT_L4_CONN; |
| |
| if (ret < SOCKS4_HS_RSP_LEN) { |
| /* Missing data. Since we're using MSG_PEEK, we can only poll again if |
| * we are not able to read enough data. |
| */ |
| goto not_ready; |
| } |
| |
| /* |
| * Base on the SOCSK4 protocol: |
| * |
| * +----+----+----+----+----+----+----+----+ |
| * | VN | CD | DSTPORT | DSTIP | |
| * +----+----+----+----+----+----+----+----+ |
| * # of bytes: 1 1 2 4 |
| * VN is the version of the reply code and should be 0. CD is the result |
| * code with one of the following values: |
| * 90: request granted |
| * 91: request rejected or failed |
| * 92: request rejected because SOCKS server cannot connect to identd on the client |
| * 93: request rejected because the client program and identd report different user-ids |
| * The remaining fields are ignored. |
| */ |
| if (line[1] != 90) { |
| conn->flags &= ~CO_FL_SOCKS4_RECV; |
| |
| DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: FAIL, the response is [%02X|%02X|%02X %02X|%02X %02X %02X %02X]\n", |
| conn->handle.fd, line[0], line[1], line[2], line[3], line[4], line[5], line[6], line[7]); |
| if (conn->err_code == CO_ER_NONE) { |
| conn->err_code = CO_ER_SOCKS4_DENY; |
| } |
| goto fail; |
| } |
| |
| /* remove the 8 bytes response from the stream */ |
| while (1) { |
| ret = recv(conn->handle.fd, line, SOCKS4_HS_RSP_LEN, 0); |
| if (ret < 0 && errno == EINTR) { |
| continue; |
| } |
| if (ret != SOCKS4_HS_RSP_LEN) { |
| if (conn->err_code == CO_ER_NONE) { |
| conn->err_code = CO_ER_SOCKS4_RECV; |
| } |
| goto fail; |
| } |
| break; |
| } |
| |
| conn->flags &= ~CO_FL_SOCKS4_RECV; |
| return 1; |
| |
| not_ready: |
| return 0; |
| |
| recv_abort: |
| if (conn->err_code == CO_ER_NONE) { |
| conn->err_code = CO_ER_SOCKS4_ABORT; |
| } |
| conn->flags |= (CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH); |
| goto fail; |
| |
| fail: |
| conn->flags |= CO_FL_ERROR; |
| return 0; |
| } |
| |
| /* Note: <remote> is explicitly allowed to be NULL */ |
| int make_proxy_line(char *buf, int buf_len, struct server *srv, struct connection *remote, struct stream *strm) |
| { |
| int ret = 0; |
| |
| if (srv && (srv->pp_opts & SRV_PP_V2)) { |
| ret = make_proxy_line_v2(buf, buf_len, srv, remote, strm); |
| } |
| else { |
| if (remote && conn_get_src(remote) && conn_get_dst(remote)) |
| ret = make_proxy_line_v1(buf, buf_len, remote->src, remote->dst); |
| else |
| ret = make_proxy_line_v1(buf, buf_len, NULL, NULL); |
| } |
| |
| return ret; |
| } |
| |
| /* Makes a PROXY protocol line from the two addresses. The output is sent to |
| * buffer <buf> for a maximum size of <buf_len> (including the trailing zero). |
| * It returns the number of bytes composing this line (including the trailing |
| * LF), or zero in case of failure (eg: not enough space). It supports TCP4, |
| * TCP6 and "UNKNOWN" formats. If any of <src> or <dst> is null, UNKNOWN is |
| * emitted as well. |
| */ |
| int make_proxy_line_v1(char *buf, int buf_len, struct sockaddr_storage *src, struct sockaddr_storage *dst) |
| { |
| int ret = 0; |
| char * protocol; |
| char src_str[MAX(INET_ADDRSTRLEN, INET6_ADDRSTRLEN)]; |
| char dst_str[MAX(INET_ADDRSTRLEN, INET6_ADDRSTRLEN)]; |
| in_port_t src_port; |
| in_port_t dst_port; |
| |
| if ( !src |
| || !dst |
| || (src->ss_family != AF_INET && src->ss_family != AF_INET6) |
| || (dst->ss_family != AF_INET && dst->ss_family != AF_INET6)) { |
| /* unknown family combination */ |
| ret = snprintf(buf, buf_len, "PROXY UNKNOWN\r\n"); |
| if (ret >= buf_len) |
| return 0; |
| |
| return ret; |
| } |
| |
| /* IPv4 for both src and dst */ |
| if (src->ss_family == AF_INET && dst->ss_family == AF_INET) { |
| protocol = "TCP4"; |
| if (!inet_ntop(AF_INET, &((struct sockaddr_in *)src)->sin_addr, src_str, sizeof(src_str))) |
| return 0; |
| src_port = ((struct sockaddr_in *)src)->sin_port; |
| if (!inet_ntop(AF_INET, &((struct sockaddr_in *)dst)->sin_addr, dst_str, sizeof(dst_str))) |
| return 0; |
| dst_port = ((struct sockaddr_in *)dst)->sin_port; |
| } |
| /* IPv6 for at least one of src and dst */ |
| else { |
| struct in6_addr tmp; |
| |
| protocol = "TCP6"; |
| |
| if (src->ss_family == AF_INET) { |
| /* Convert src to IPv6 */ |
| v4tov6(&tmp, &((struct sockaddr_in *)src)->sin_addr); |
| src_port = ((struct sockaddr_in *)src)->sin_port; |
| } |
| else { |
| tmp = ((struct sockaddr_in6 *)src)->sin6_addr; |
| src_port = ((struct sockaddr_in6 *)src)->sin6_port; |
| } |
| |
| if (!inet_ntop(AF_INET6, &tmp, src_str, sizeof(src_str))) |
| return 0; |
| |
| if (dst->ss_family == AF_INET) { |
| /* Convert dst to IPv6 */ |
| v4tov6(&tmp, &((struct sockaddr_in *)dst)->sin_addr); |
| dst_port = ((struct sockaddr_in *)dst)->sin_port; |
| } |
| else { |
| tmp = ((struct sockaddr_in6 *)dst)->sin6_addr; |
| dst_port = ((struct sockaddr_in6 *)dst)->sin6_port; |
| } |
| |
| if (!inet_ntop(AF_INET6, &tmp, dst_str, sizeof(dst_str))) |
| return 0; |
| } |
| |
| ret = snprintf(buf, buf_len, "PROXY %s %s %s %u %u\r\n", protocol, src_str, dst_str, ntohs(src_port), ntohs(dst_port)); |
| if (ret >= buf_len) |
| return 0; |
| |
| return ret; |
| } |
| |
| static int make_tlv(char *dest, int dest_len, char type, uint16_t length, const char *value) |
| { |
| struct tlv *tlv; |
| |
| if (!dest || (length + sizeof(*tlv) > dest_len)) |
| return 0; |
| |
| tlv = (struct tlv *)dest; |
| |
| tlv->type = type; |
| tlv->length_hi = length >> 8; |
| tlv->length_lo = length & 0x00ff; |
| memcpy(tlv->value, value, length); |
| return length + sizeof(*tlv); |
| } |
| |
| /* Note: <remote> is explicitly allowed to be NULL */ |
| int make_proxy_line_v2(char *buf, int buf_len, struct server *srv, struct connection *remote, struct stream *strm) |
| { |
| const char pp2_signature[] = PP2_SIGNATURE; |
| void *tlv_crc32c_p = NULL; |
| int ret = 0; |
| struct proxy_hdr_v2 *hdr = (struct proxy_hdr_v2 *)buf; |
| struct sockaddr_storage null_addr = { .ss_family = 0 }; |
| struct sockaddr_storage *src = &null_addr; |
| struct sockaddr_storage *dst = &null_addr; |
| const char *value; |
| int value_len; |
| |
| if (buf_len < PP2_HEADER_LEN) |
| return 0; |
| memcpy(hdr->sig, pp2_signature, PP2_SIGNATURE_LEN); |
| |
| if (remote && conn_get_src(remote) && conn_get_dst(remote)) { |
| src = remote->src; |
| dst = remote->dst; |
| } |
| |
| /* At least one of src or dst is not of AF_INET or AF_INET6 */ |
| if ( !src |
| || !dst |
| || (src->ss_family != AF_INET && src->ss_family != AF_INET6) |
| || (dst->ss_family != AF_INET && dst->ss_family != AF_INET6)) { |
| if (buf_len < PP2_HDR_LEN_UNSPEC) |
| return 0; |
| hdr->ver_cmd = PP2_VERSION | PP2_CMD_LOCAL; |
| hdr->fam = PP2_FAM_UNSPEC | PP2_TRANS_UNSPEC; |
| ret = PP2_HDR_LEN_UNSPEC; |
| } |
| else { |
| /* Note: due to historic compatibility with V1 which required |
| * to send "PROXY" with local addresses for local connections, |
| * we can end up here with the remote in fact being our outgoing |
| * connection. We still want to send real addresses and LOCAL on |
| * it. |
| */ |
| hdr->ver_cmd = PP2_VERSION; |
| hdr->ver_cmd |= conn_is_back(remote) ? PP2_CMD_LOCAL : PP2_CMD_PROXY; |
| /* IPv4 for both src and dst */ |
| if (src->ss_family == AF_INET && dst->ss_family == AF_INET) { |
| if (buf_len < PP2_HDR_LEN_INET) |
| return 0; |
| hdr->fam = PP2_FAM_INET | PP2_TRANS_STREAM; |
| hdr->addr.ip4.src_addr = ((struct sockaddr_in *)src)->sin_addr.s_addr; |
| hdr->addr.ip4.src_port = ((struct sockaddr_in *)src)->sin_port; |
| hdr->addr.ip4.dst_addr = ((struct sockaddr_in *)dst)->sin_addr.s_addr; |
| hdr->addr.ip4.dst_port = ((struct sockaddr_in *)dst)->sin_port; |
| ret = PP2_HDR_LEN_INET; |
| } |
| /* IPv6 for at least one of src and dst */ |
| else { |
| struct in6_addr tmp; |
| |
| if (buf_len < PP2_HDR_LEN_INET6) |
| return 0; |
| hdr->fam = PP2_FAM_INET6 | PP2_TRANS_STREAM; |
| if (src->ss_family == AF_INET) { |
| v4tov6(&tmp, &((struct sockaddr_in *)src)->sin_addr); |
| memcpy(hdr->addr.ip6.src_addr, &tmp, 16); |
| hdr->addr.ip6.src_port = ((struct sockaddr_in *)src)->sin_port; |
| } |
| else { |
| memcpy(hdr->addr.ip6.src_addr, &((struct sockaddr_in6 *)src)->sin6_addr, 16); |
| hdr->addr.ip6.src_port = ((struct sockaddr_in6 *)src)->sin6_port; |
| } |
| if (dst->ss_family == AF_INET) { |
| v4tov6(&tmp, &((struct sockaddr_in *)dst)->sin_addr); |
| memcpy(hdr->addr.ip6.dst_addr, &tmp, 16); |
| hdr->addr.ip6.dst_port = ((struct sockaddr_in *)dst)->sin_port; |
| } |
| else { |
| memcpy(hdr->addr.ip6.dst_addr, &((struct sockaddr_in6 *)dst)->sin6_addr, 16); |
| hdr->addr.ip6.dst_port = ((struct sockaddr_in6 *)dst)->sin6_port; |
| } |
| |
| ret = PP2_HDR_LEN_INET6; |
| } |
| } |
| |
| if (srv->pp_opts & SRV_PP_V2_CRC32C) { |
| uint32_t zero_crc32c = 0; |
| |
| if ((buf_len - ret) < sizeof(struct tlv)) |
| return 0; |
| tlv_crc32c_p = (void *)((struct tlv *)&buf[ret])->value; |
| ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_CRC32C, sizeof(zero_crc32c), (const char *)&zero_crc32c); |
| } |
| |
| if (remote && conn_get_alpn(remote, &value, &value_len)) { |
| if ((buf_len - ret) < sizeof(struct tlv)) |
| return 0; |
| ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_ALPN, value_len, value); |
| } |
| |
| if (srv->pp_opts & SRV_PP_V2_AUTHORITY) { |
| value = NULL; |
| if (remote && remote->proxy_authority) { |
| value = remote->proxy_authority; |
| value_len = remote->proxy_authority_len; |
| } |
| #ifdef USE_OPENSSL |
| else { |
| if ((value = ssl_sock_get_sni(remote))) |
| value_len = strlen(value); |
| } |
| #endif |
| if (value) { |
| if ((buf_len - ret) < sizeof(struct tlv)) |
| return 0; |
| ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_AUTHORITY, value_len, value); |
| } |
| } |
| |
| if (srv->pp_opts & SRV_PP_V2_UNIQUE_ID) { |
| struct session* sess = strm_sess(strm); |
| struct ist unique_id = stream_generate_unique_id(strm, &sess->fe->format_unique_id); |
| |
| value = unique_id.ptr; |
| value_len = unique_id.len; |
| |
| if (value_len >= 0) { |
| if ((buf_len - ret) < sizeof(struct tlv)) |
| return 0; |
| ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_UNIQUE_ID, value_len, value); |
| } |
| } |
| |
| #ifdef USE_OPENSSL |
| if (srv->pp_opts & SRV_PP_V2_SSL) { |
| struct tlv_ssl *tlv; |
| int ssl_tlv_len = 0; |
| |
| if ((buf_len - ret) < sizeof(struct tlv_ssl)) |
| return 0; |
| tlv = (struct tlv_ssl *)&buf[ret]; |
| memset(tlv, 0, sizeof(struct tlv_ssl)); |
| ssl_tlv_len += sizeof(struct tlv_ssl); |
| tlv->tlv.type = PP2_TYPE_SSL; |
| if (ssl_sock_is_ssl(remote)) { |
| tlv->client |= PP2_CLIENT_SSL; |
| value = ssl_sock_get_proto_version(remote); |
| if (value) { |
| ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len-ret-ssl_tlv_len), PP2_SUBTYPE_SSL_VERSION, strlen(value), value); |
| } |
| if (ssl_sock_get_cert_used_sess(remote)) { |
| tlv->client |= PP2_CLIENT_CERT_SESS; |
| tlv->verify = htonl(ssl_sock_get_verify_result(remote)); |
| if (ssl_sock_get_cert_used_conn(remote)) |
| tlv->client |= PP2_CLIENT_CERT_CONN; |
| } |
| if (srv->pp_opts & SRV_PP_V2_SSL_CN) { |
| struct buffer *cn_trash = get_trash_chunk(); |
| if (ssl_sock_get_remote_common_name(remote, cn_trash) > 0) { |
| ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len - ret - ssl_tlv_len), PP2_SUBTYPE_SSL_CN, |
| cn_trash->data, |
| cn_trash->area); |
| } |
| } |
| if (srv->pp_opts & SRV_PP_V2_SSL_KEY_ALG) { |
| struct buffer *pkey_trash = get_trash_chunk(); |
| if (ssl_sock_get_pkey_algo(remote, pkey_trash) > 0) { |
| ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len - ret - ssl_tlv_len), PP2_SUBTYPE_SSL_KEY_ALG, |
| pkey_trash->data, |
| pkey_trash->area); |
| } |
| } |
| if (srv->pp_opts & SRV_PP_V2_SSL_SIG_ALG) { |
| value = ssl_sock_get_cert_sig(remote); |
| if (value) { |
| ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len - ret - ssl_tlv_len), PP2_SUBTYPE_SSL_SIG_ALG, strlen(value), value); |
| } |
| } |
| if (srv->pp_opts & SRV_PP_V2_SSL_CIPHER) { |
| value = ssl_sock_get_cipher_name(remote); |
| if (value) { |
| ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len - ret - ssl_tlv_len), PP2_SUBTYPE_SSL_CIPHER, strlen(value), value); |
| } |
| } |
| } |
| tlv->tlv.length_hi = (uint16_t)(ssl_tlv_len - sizeof(struct tlv)) >> 8; |
| tlv->tlv.length_lo = (uint16_t)(ssl_tlv_len - sizeof(struct tlv)) & 0x00ff; |
| ret += ssl_tlv_len; |
| } |
| #endif |
| |
| #ifdef USE_NS |
| if (remote && (remote->proxy_netns)) { |
| if ((buf_len - ret) < sizeof(struct tlv)) |
| return 0; |
| ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_NETNS, remote->proxy_netns->name_len, remote->proxy_netns->node.key); |
| } |
| #endif |
| |
| hdr->len = htons((uint16_t)(ret - PP2_HEADER_LEN)); |
| |
| if (tlv_crc32c_p) { |
| write_u32(tlv_crc32c_p, htonl(hash_crc32c(buf, ret))); |
| } |
| |
| return ret; |
| } |
| |
| /* return the major HTTP version as 1 or 2 depending on how the request arrived |
| * before being processed. |
| */ |
| static int |
| smp_fetch_fc_http_major(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct connection *conn = (kw[0] != 'b') ? objt_conn(smp->sess->origin) : |
| smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; |
| |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = (conn && strcmp(conn_get_mux_name(conn), "H2") == 0) ? 2 : 1; |
| return 1; |
| } |
| |
| /* fetch if the received connection used a PROXY protocol header */ |
| int smp_fetch_fc_rcvd_proxy(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct connection *conn; |
| |
| conn = objt_conn(smp->sess->origin); |
| if (!conn) |
| return 0; |
| |
| if (conn->flags & CO_FL_WAIT_XPRT) { |
| smp->flags |= SMP_F_MAY_CHANGE; |
| return 0; |
| } |
| |
| smp->flags = 0; |
| smp->data.type = SMP_T_BOOL; |
| smp->data.u.sint = (conn->flags & CO_FL_RCVD_PROXY) ? 1 : 0; |
| |
| return 1; |
| } |
| |
| /* fetch the authority TLV from a PROXY protocol header */ |
| int smp_fetch_fc_pp_authority(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct connection *conn; |
| |
| conn = objt_conn(smp->sess->origin); |
| if (!conn) |
| return 0; |
| |
| if (conn->flags & CO_FL_WAIT_XPRT) { |
| smp->flags |= SMP_F_MAY_CHANGE; |
| return 0; |
| } |
| |
| if (conn->proxy_authority == NULL) |
| return 0; |
| |
| smp->flags = 0; |
| smp->data.type = SMP_T_STR; |
| smp->data.u.str.area = conn->proxy_authority; |
| smp->data.u.str.data = conn->proxy_authority_len; |
| |
| return 1; |
| } |
| |
| /* fetch the unique ID TLV from a PROXY protocol header */ |
| int smp_fetch_fc_pp_unique_id(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct connection *conn; |
| |
| conn = objt_conn(smp->sess->origin); |
| if (!conn) |
| return 0; |
| |
| if (conn->flags & CO_FL_WAIT_XPRT) { |
| smp->flags |= SMP_F_MAY_CHANGE; |
| return 0; |
| } |
| |
| if (!isttest(conn->proxy_unique_id)) |
| return 0; |
| |
| smp->flags = 0; |
| smp->data.type = SMP_T_STR; |
| smp->data.u.str.area = conn->proxy_unique_id.ptr; |
| smp->data.u.str.data = conn->proxy_unique_id.len; |
| |
| return 1; |
| } |
| |
| /* Note: must not be declared <const> as its list will be overwritten. |
| * Note: fetches that may return multiple types must be declared as the lowest |
| * common denominator, the type that can be casted into all other ones. For |
| * instance v4/v6 must be declared v4. |
| */ |
| static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, { |
| { "fc_http_major", smp_fetch_fc_http_major, 0, NULL, SMP_T_SINT, SMP_USE_L4CLI }, |
| { "bc_http_major", smp_fetch_fc_http_major, 0, NULL, SMP_T_SINT, SMP_USE_L4SRV }, |
| { "fc_rcvd_proxy", smp_fetch_fc_rcvd_proxy, 0, NULL, SMP_T_BOOL, SMP_USE_L4CLI }, |
| { "fc_pp_authority", smp_fetch_fc_pp_authority, 0, NULL, SMP_T_STR, SMP_USE_L4CLI }, |
| { "fc_pp_unique_id", smp_fetch_fc_pp_unique_id, 0, NULL, SMP_T_STR, SMP_USE_L4CLI }, |
| { /* END */ }, |
| }}; |
| |
| INITCALL1(STG_REGISTER, sample_register_fetches, &sample_fetch_keywords); |