blob: 2fcd139fad6a3b8e769094b4b761a54ef5c65732 [file] [log] [blame]
/*
* Pass-through mux-demux for connections
*
* Copyright 2017 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <haproxy/api.h>
#include <haproxy/buf.h>
#include <haproxy/connection.h>
#include <haproxy/conn_stream.h>
#include <haproxy/pipe-t.h>
#include <haproxy/stream.h>
#include <haproxy/task.h>
#include <haproxy/trace.h>
struct mux_pt_ctx {
struct conn_stream *cs;
struct connection *conn;
struct wait_event wait_event;
};
DECLARE_STATIC_POOL(pool_head_pt_ctx, "mux_pt", sizeof(struct mux_pt_ctx));
/* trace source and events */
static void pt_trace(enum trace_level level, uint64_t mask,
const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4);
/* The event representation is split like this :
* pt_ctx - internal PT context
* strm - application layer
*/
static const struct trace_event pt_trace_events[] = {
#define PT_EV_CONN_NEW (1ULL << 0)
{ .mask = PT_EV_CONN_NEW, .name = "pt_conn_new", .desc = "new PT connection" },
#define PT_EV_CONN_WAKE (1ULL << 1)
{ .mask = PT_EV_CONN_WAKE, .name = "pt_conn_wake", .desc = "PT connection woken up" },
#define PT_EV_CONN_END (1ULL << 2)
{ .mask = PT_EV_CONN_END, .name = "pt_conn_end", .desc = "PT connection terminated" },
#define PT_EV_CONN_ERR (1ULL << 3)
{ .mask = PT_EV_CONN_ERR, .name = "pt_conn_err", .desc = "error on PT connection" },
#define PT_EV_STRM_NEW (1ULL << 4)
{ .mask = PT_EV_STRM_NEW, .name = "strm_new", .desc = "app-layer stream creation" },
#define PT_EV_STRM_SHUT (1ULL << 5)
{ .mask = PT_EV_STRM_SHUT, .name = "strm_shut", .desc = "stream shutdown" },
#define PT_EV_STRM_END (1ULL << 6)
{ .mask = PT_EV_STRM_END, .name = "strm_end", .desc = "detaching app-layer stream" },
#define PT_EV_STRM_ERR (1ULL << 7)
{ .mask = PT_EV_STRM_ERR, .name = "strm_err", .desc = "stream error" },
#define PT_EV_RX_DATA (1ULL << 8)
{ .mask = PT_EV_RX_DATA, .name = "pt_rx_data", .desc = "Rx on PT connection" },
#define PT_EV_TX_DATA (1ULL << 9)
{ .mask = PT_EV_TX_DATA, .name = "pt_tx_data", .desc = "Tx on PT connection" },
{}
};
static const struct name_desc pt_trace_decoding[] = {
#define PT_VERB_CLEAN 1
{ .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" },
#define PT_VERB_MINIMAL 2
{ .name="minimal", .desc="report only h1c/h1s state and flags, no real decoding" },
#define PT_VERB_SIMPLE 3
{ .name="simple", .desc="add request/response status line or htx info when available" },
#define PT_VERB_ADVANCED 4
{ .name="advanced", .desc="add header fields or frame decoding when available" },
#define PT_VERB_COMPLETE 5
{ .name="complete", .desc="add full data dump when available" },
{ /* end */ }
};
static struct trace_source trace_pt __read_mostly = {
.name = IST("pt"),
.desc = "Passthrough multiplexer",
.arg_def = TRC_ARG1_CONN, // TRACE()'s first argument is always a connection
.default_cb = pt_trace,
.known_events = pt_trace_events,
.lockon_args = NULL,
.decoding = pt_trace_decoding,
.report_events = ~0, // report everything by default
};
#define TRACE_SOURCE &trace_pt
INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE);
static inline void pt_trace_buf(const struct buffer *buf, size_t ofs, size_t len)
{
size_t block1, block2;
int line, ptr, newptr;
block1 = b_contig_data(buf, ofs);
block2 = 0;
if (block1 > len)
block1 = len;
block2 = len - block1;
ofs = b_peek_ofs(buf, ofs);
line = 0;
ptr = ofs;
while (ptr < ofs + block1) {
newptr = dump_text_line(&trace_buf, b_orig(buf), b_size(buf), ofs + block1, &line, ptr);
if (newptr == ptr)
break;
ptr = newptr;
}
line = ptr = 0;
while (ptr < block2) {
newptr = dump_text_line(&trace_buf, b_orig(buf), b_size(buf), block2, &line, ptr);
if (newptr == ptr)
break;
ptr = newptr;
}
}
/* the PT traces always expect that arg1, if non-null, is of type connection
* (from which we can derive the pt context), that arg2, if non-null, is a
* conn-stream, and that arg3, if non-null, is a buffer.
*/
static void pt_trace(enum trace_level level, uint64_t mask, const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4)
{
const struct connection *conn = a1;
const struct mux_pt_ctx *ctx = conn ? conn->ctx : NULL;
const struct conn_stream *cs = a2;
const struct buffer *buf = a3;
const size_t *val = a4;
if (!ctx|| src->verbosity < PT_VERB_CLEAN)
return;
/* Display frontend/backend info by default */
chunk_appendf(&trace_buf, " : [%c]", (conn_is_back(conn) ? 'B' : 'F'));
if (src->verbosity == PT_VERB_CLEAN)
return;
/* Display the value to the 4th argument (level > STATE) */
if (src->level > TRACE_LEVEL_STATE && val)
chunk_appendf(&trace_buf, " - VAL=%lu", (long)*val);
/* Display conn and cs info, if defined (pointer + flags) */
chunk_appendf(&trace_buf, " - conn=%p(0x%08x)", conn, conn->flags);
if (cs)
chunk_appendf(&trace_buf, " cs=%p(0x%08x)", cs, cs->flags);
if (src->verbosity == PT_VERB_MINIMAL)
return;
/* Display buffer info, if defined (level > USER & verbosity > SIMPLE) */
if (src->level > TRACE_LEVEL_USER && buf) {
int full = 0, max = 3000, chunk = 1024;
/* Full info (level > STATE && verbosity > SIMPLE) */
if (src->level > TRACE_LEVEL_STATE) {
if (src->verbosity == PT_VERB_COMPLETE)
full = 1;
else if (src->verbosity == PT_VERB_ADVANCED) {
full = 1;
max = 256;
chunk = 64;
}
}
chunk_appendf(&trace_buf, " buf=%u@%p+%u/%u",
(unsigned int)b_data(buf), b_orig(buf),
(unsigned int)b_head_ofs(buf), (unsigned int)b_size(buf));
if (b_data(buf) && full) {
chunk_memcat(&trace_buf, "\n", 1);
if (b_data(buf) < max)
pt_trace_buf(buf, 0, b_data(buf));
else {
pt_trace_buf(buf, 0, chunk);
chunk_memcat(&trace_buf, " ...\n", 6);
pt_trace_buf(buf, b_data(buf) - chunk, chunk);
}
}
}
}
static void mux_pt_destroy(struct mux_pt_ctx *ctx)
{
struct connection *conn = NULL;
TRACE_POINT(PT_EV_CONN_END);
if (ctx) {
/* The connection must be attached to this mux to be released */
if (ctx->conn && ctx->conn->ctx == ctx)
conn = ctx->conn;
TRACE_DEVEL("freeing pt context", PT_EV_CONN_END, conn);
tasklet_free(ctx->wait_event.tasklet);
if (conn && ctx->wait_event.events != 0)
conn->xprt->unsubscribe(conn, conn->xprt_ctx, ctx->wait_event.events,
&ctx->wait_event);
pool_free(pool_head_pt_ctx, ctx);
}
if (conn) {
conn->mux = NULL;
conn->ctx = NULL;
TRACE_DEVEL("freeing conn", PT_EV_CONN_END, conn);
conn_stop_tracking(conn);
conn_full_close(conn);
if (conn->destroy_cb)
conn->destroy_cb(conn);
conn_free(conn);
}
}
/* Callback, used when we get I/Os while in idle mode. This one is exported so
* that "show fd" can resolve it.
*/
struct task *mux_pt_io_cb(struct task *t, void *tctx, unsigned int status)
{
struct mux_pt_ctx *ctx = tctx;
TRACE_ENTER(PT_EV_CONN_WAKE, ctx->conn, ctx->cs);
if (ctx->cs) {
/* There's a small race condition.
* mux_pt_io_cb() is only supposed to be called if we have no
* stream attached. However, maybe the tasklet got woken up,
* and this connection was then attached to a new stream.
* If this happened, just wake the tasklet up if anybody
* subscribed to receive events, and otherwise call the wake
* method, to make sure the event is noticed.
*/
if (ctx->conn->subs) {
ctx->conn->subs->events = 0;
tasklet_wakeup(ctx->conn->subs->tasklet);
ctx->conn->subs = NULL;
} else if (ctx->cs->data_cb->wake)
ctx->cs->data_cb->wake(ctx->cs);
TRACE_DEVEL("leaving waking up CS", PT_EV_CONN_WAKE, ctx->conn, ctx->cs);
return t;
}
conn_ctrl_drain(ctx->conn);
if (ctx->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH)) {
TRACE_DEVEL("leaving destroying pt context", PT_EV_CONN_WAKE, ctx->conn);
mux_pt_destroy(ctx);
t = NULL;
}
else {
ctx->conn->xprt->subscribe(ctx->conn, ctx->conn->xprt_ctx, SUB_RETRY_RECV,
&ctx->wait_event);
TRACE_DEVEL("leaving subscribing for reads", PT_EV_CONN_WAKE, ctx->conn);
}
return t;
}
/* Initialize the mux once it's attached. It is expected that conn->ctx
* points to the existing conn_stream (for outgoing connections) or NULL (for
* incoming ones, in which case one will be allocated and a new stream will be
* instantiated). Returns < 0 on error.
*/
static int mux_pt_init(struct connection *conn, struct proxy *prx, struct session *sess,
struct buffer *input)
{
struct conn_stream *cs = conn->ctx;
struct mux_pt_ctx *ctx = pool_alloc(pool_head_pt_ctx);
TRACE_ENTER(PT_EV_CONN_NEW);
if (!ctx) {
TRACE_ERROR("PT context allocation failure", PT_EV_CONN_NEW|PT_EV_CONN_END|PT_EV_CONN_ERR);
goto fail;
}
ctx->wait_event.tasklet = tasklet_new();
if (!ctx->wait_event.tasklet)
goto fail_free_ctx;
ctx->wait_event.tasklet->context = ctx;
ctx->wait_event.tasklet->process = mux_pt_io_cb;
ctx->wait_event.events = 0;
ctx->conn = conn;
if (!cs) {
cs = cs_new();
if (!cs) {
TRACE_ERROR("CS allocation failure", PT_EV_STRM_NEW|PT_EV_STRM_END|PT_EV_STRM_ERR, conn);
goto fail_free_ctx;
}
cs_attach_endp(cs, &conn->obj_type, NULL);
if (!stream_new(conn->owner, cs, &BUF_NULL)) {
TRACE_ERROR("stream creation failure", PT_EV_STRM_NEW|PT_EV_STRM_END|PT_EV_STRM_ERR, conn, cs);
goto fail_free;
}
TRACE_POINT(PT_EV_STRM_NEW, conn, cs);
}
conn->ctx = ctx;
ctx->cs = cs;
cs->flags |= CS_FL_RCV_MORE;
if (global.tune.options & GTUNE_USE_SPLICE)
cs->flags |= CS_FL_MAY_SPLICE;
TRACE_LEAVE(PT_EV_CONN_NEW, conn, cs);
return 0;
fail_free:
cs_free(cs);
fail_free_ctx:
if (ctx->wait_event.tasklet)
tasklet_free(ctx->wait_event.tasklet);
pool_free(pool_head_pt_ctx, ctx);
fail:
TRACE_DEVEL("leaving in error", PT_EV_CONN_NEW|PT_EV_CONN_END|PT_EV_CONN_ERR);
return -1;
}
/* callback to be used by default for the pass-through mux. It calls the data
* layer wake() callback if it is set otherwise returns 0.
*/
static int mux_pt_wake(struct connection *conn)
{
struct mux_pt_ctx *ctx = conn->ctx;
struct conn_stream *cs = ctx->cs;
int ret = 0;
TRACE_ENTER(PT_EV_CONN_WAKE, ctx->conn, cs);
if (cs) {
ret = cs->data_cb->wake ? cs->data_cb->wake(cs) : 0;
if (ret < 0) {
TRACE_DEVEL("leaving waking up CS", PT_EV_CONN_WAKE, ctx->conn, cs);
return ret;
}
} else {
conn_ctrl_drain(conn);
if (conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH)) {
TRACE_DEVEL("leaving destroying PT context", PT_EV_CONN_WAKE, ctx->conn);
mux_pt_destroy(ctx);
return -1;
}
}
/* If we had early data, and we're done with the handshake
* then we know the data are safe, and we can remove the flag.
*/
if ((conn->flags & (CO_FL_EARLY_DATA | CO_FL_EARLY_SSL_HS | CO_FL_WAIT_XPRT)) ==
CO_FL_EARLY_DATA)
conn->flags &= ~CO_FL_EARLY_DATA;
TRACE_LEAVE(PT_EV_CONN_WAKE, ctx->conn);
return ret;
}
/*
* Attach a new stream to a connection
* (Used for outgoing connections)
*/
static int mux_pt_attach(struct connection *conn, struct conn_stream *cs, struct session *sess)
{
struct mux_pt_ctx *ctx = conn->ctx;
TRACE_ENTER(PT_EV_STRM_NEW, conn);
if (ctx->wait_event.events)
conn->xprt->unsubscribe(ctx->conn, conn->xprt_ctx, SUB_RETRY_RECV, &ctx->wait_event);
ctx->cs = cs;
cs->flags |= CS_FL_RCV_MORE;
TRACE_LEAVE(PT_EV_STRM_NEW, conn, cs);
return 0;
}
/* Retrieves a valid conn_stream from this connection, or returns NULL. For
* this mux, it's easy as we can only store a single conn_stream.
*/
static const struct conn_stream *mux_pt_get_first_cs(const struct connection *conn)
{
struct mux_pt_ctx *ctx = conn->ctx;
struct conn_stream *cs = ctx->cs;
return cs;
}
/* Destroy the mux and the associated connection if still attached to this mux
* and no longer used */
static void mux_pt_destroy_meth(void *ctx)
{
struct mux_pt_ctx *pt = ctx;
TRACE_POINT(PT_EV_CONN_END, pt->conn, pt->cs);
if (!(pt->cs) || !(pt->conn) || pt->conn->ctx != pt)
mux_pt_destroy(pt);
}
/*
* Detach the stream from the connection and possibly release the connection.
*/
static void mux_pt_detach(struct conn_stream *cs)
{
struct connection *conn = __cs_conn(cs);
struct mux_pt_ctx *ctx;
ALREADY_CHECKED(conn);
ctx = conn->ctx;
TRACE_ENTER(PT_EV_STRM_END, conn, cs);
/* Subscribe, to know if we got disconnected */
if (!conn_is_back(conn) && conn->owner != NULL &&
!(conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH))) {
ctx->cs = NULL;
conn->xprt->subscribe(conn, conn->xprt_ctx, SUB_RETRY_RECV, &ctx->wait_event);
} else {
/* There's no session attached to that connection, destroy it */
TRACE_DEVEL("killing dead connection", PT_EV_STRM_END, conn, cs);
mux_pt_destroy(ctx);
}
TRACE_LEAVE(PT_EV_STRM_END);
}
/* returns the number of streams in use on a connection */
static int mux_pt_used_streams(struct connection *conn)
{
struct mux_pt_ctx *ctx = conn->ctx;
return ctx->cs ? 1 : 0;
}
/* returns the number of streams still available on a connection */
static int mux_pt_avail_streams(struct connection *conn)
{
return 1 - mux_pt_used_streams(conn);
}
static void mux_pt_shutr(struct conn_stream *cs, enum cs_shr_mode mode)
{
struct connection *conn = __cs_conn(cs);
TRACE_ENTER(PT_EV_STRM_SHUT, conn, cs);
if (cs->flags & CS_FL_SHR)
return;
cs->flags &= ~(CS_FL_RCV_MORE | CS_FL_WANT_ROOM);
if (conn_xprt_ready(conn) && conn->xprt->shutr)
conn->xprt->shutr(conn, conn->xprt_ctx,
(mode == CS_SHR_DRAIN));
else if (mode == CS_SHR_DRAIN)
conn_ctrl_drain(conn);
if (cs->flags & CS_FL_SHW)
conn_full_close(conn);
TRACE_LEAVE(PT_EV_STRM_SHUT, conn, cs);
}
static void mux_pt_shutw(struct conn_stream *cs, enum cs_shw_mode mode)
{
struct connection *conn = __cs_conn(cs);
TRACE_ENTER(PT_EV_STRM_SHUT, conn, cs);
if (cs->flags & CS_FL_SHW)
return;
if (conn_xprt_ready(conn) && conn->xprt->shutw)
conn->xprt->shutw(conn, conn->xprt_ctx,
(mode == CS_SHW_NORMAL));
if (!(cs->flags & CS_FL_SHR))
conn_sock_shutw(conn, (mode == CS_SHW_NORMAL));
else
conn_full_close(conn);
TRACE_LEAVE(PT_EV_STRM_SHUT, conn, cs);
}
/*
* Called from the upper layer, to get more data
*
* The caller is responsible for defragmenting <buf> if necessary. But <flags>
* must be tested to know the calling context. If CO_RFL_BUF_FLUSH is set, it
* means the caller wants to flush input data (from the mux buffer and the
* channel buffer) to be able to use kernel splicing or any kind of mux-to-mux
* xfer. If CO_RFL_KEEP_RECV is set, the mux must always subscribe for read
* events before giving back. CO_RFL_BUF_WET is set if <buf> is congested with
* data scheduled for leaving soon. CO_RFL_BUF_NOT_STUCK is set to instruct the
* mux it may optimize the data copy to <buf> if necessary. Otherwise, it should
* copy as much data as possible.
*/
static size_t mux_pt_rcv_buf(struct conn_stream *cs, struct buffer *buf, size_t count, int flags)
{
struct connection *conn = __cs_conn(cs);
size_t ret = 0;
TRACE_ENTER(PT_EV_RX_DATA, conn, cs, buf, (size_t[]){count});
if (!count) {
cs->flags |= (CS_FL_RCV_MORE | CS_FL_WANT_ROOM);
goto end;
}
b_realign_if_empty(buf);
ret = conn->xprt->rcv_buf(conn, conn->xprt_ctx, buf, count, flags);
if (conn_xprt_read0_pending(conn)) {
cs->flags &= ~(CS_FL_RCV_MORE | CS_FL_WANT_ROOM);
cs->flags |= CS_FL_EOS;
TRACE_DEVEL("read0 on connection", PT_EV_RX_DATA, conn, cs);
}
if (conn->flags & CO_FL_ERROR) {
cs->flags &= ~(CS_FL_RCV_MORE | CS_FL_WANT_ROOM);
cs->flags |= CS_FL_ERROR;
TRACE_DEVEL("error on connection", PT_EV_RX_DATA|PT_EV_CONN_ERR, conn, cs);
}
end:
TRACE_LEAVE(PT_EV_RX_DATA, conn, cs, buf, (size_t[]){ret});
return ret;
}
/* Called from the upper layer, to send data */
static size_t mux_pt_snd_buf(struct conn_stream *cs, struct buffer *buf, size_t count, int flags)
{
struct connection *conn = __cs_conn(cs);
size_t ret;
TRACE_ENTER(PT_EV_TX_DATA, conn, cs, buf, (size_t[]){count});
ret = conn->xprt->snd_buf(conn, conn->xprt_ctx, buf, count, flags);
if (ret > 0)
b_del(buf, ret);
if (conn->flags & CO_FL_ERROR) {
cs->flags |= CS_FL_ERROR;
TRACE_DEVEL("error on connection", PT_EV_TX_DATA|PT_EV_CONN_ERR, conn, cs);
}
TRACE_LEAVE(PT_EV_TX_DATA, conn, cs, buf, (size_t[]){ret});
return ret;
}
/* Called from the upper layer, to subscribe <es> to events <event_type>. The
* event subscriber <es> is not allowed to change from a previous call as long
* as at least one event is still subscribed. The <event_type> must only be a
* combination of SUB_RETRY_RECV and SUB_RETRY_SEND. It always returns 0.
*/
static int mux_pt_subscribe(struct conn_stream *cs, int event_type, struct wait_event *es)
{
struct connection *conn = __cs_conn(cs);
TRACE_POINT(PT_EV_RX_DATA|PT_EV_TX_DATA, conn, cs, 0, (size_t[]){event_type});
return conn->xprt->subscribe(conn, conn->xprt_ctx, event_type, es);
}
/* Called from the upper layer, to unsubscribe <es> from events <event_type>.
* The <es> pointer is not allowed to differ from the one passed to the
* subscribe() call. It always returns zero.
*/
static int mux_pt_unsubscribe(struct conn_stream *cs, int event_type, struct wait_event *es)
{
struct connection *conn = __cs_conn(cs);
TRACE_POINT(PT_EV_RX_DATA|PT_EV_TX_DATA, conn, cs, 0, (size_t[]){event_type});
return conn->xprt->unsubscribe(conn, conn->xprt_ctx, event_type, es);
}
#if defined(USE_LINUX_SPLICE)
/* Send and get, using splicing */
static int mux_pt_rcv_pipe(struct conn_stream *cs, struct pipe *pipe, unsigned int count)
{
struct connection *conn = __cs_conn(cs);
int ret;
TRACE_ENTER(PT_EV_RX_DATA, conn, cs, 0, (size_t[]){count});
ret = conn->xprt->rcv_pipe(conn, conn->xprt_ctx, pipe, count);
if (conn_xprt_read0_pending(conn)) {
cs->flags |= CS_FL_EOS;
TRACE_DEVEL("read0 on connection", PT_EV_RX_DATA, conn, cs);
}
if (conn->flags & CO_FL_ERROR) {
cs->flags |= CS_FL_ERROR;
TRACE_DEVEL("error on connection", PT_EV_RX_DATA|PT_EV_CONN_ERR, conn, cs);
}
TRACE_LEAVE(PT_EV_RX_DATA, conn, cs, 0, (size_t[]){ret});
return (ret);
}
static int mux_pt_snd_pipe(struct conn_stream *cs, struct pipe *pipe)
{
struct connection *conn = __cs_conn(cs);
int ret;
TRACE_ENTER(PT_EV_TX_DATA, conn, cs, 0, (size_t[]){pipe->data});
ret = conn->xprt->snd_pipe(conn, conn->xprt_ctx, pipe);
if (conn->flags & CO_FL_ERROR) {
cs->flags |= CS_FL_ERROR;
TRACE_DEVEL("error on connection", PT_EV_TX_DATA|PT_EV_CONN_ERR, conn, cs);
}
TRACE_LEAVE(PT_EV_TX_DATA, conn, cs, 0, (size_t[]){ret});
return ret;
}
#endif
static int mux_pt_ctl(struct connection *conn, enum mux_ctl_type mux_ctl, void *output)
{
int ret = 0;
switch (mux_ctl) {
case MUX_STATUS:
if (!(conn->flags & CO_FL_WAIT_XPRT))
ret |= MUX_STATUS_READY;
return ret;
case MUX_EXIT_STATUS:
return MUX_ES_UNKNOWN;
default:
return -1;
}
}
/* The mux operations */
const struct mux_ops mux_tcp_ops = {
.init = mux_pt_init,
.wake = mux_pt_wake,
.rcv_buf = mux_pt_rcv_buf,
.snd_buf = mux_pt_snd_buf,
.subscribe = mux_pt_subscribe,
.unsubscribe = mux_pt_unsubscribe,
#if defined(USE_LINUX_SPLICE)
.rcv_pipe = mux_pt_rcv_pipe,
.snd_pipe = mux_pt_snd_pipe,
#endif
.attach = mux_pt_attach,
.get_first_cs = mux_pt_get_first_cs,
.detach = mux_pt_detach,
.avail_streams = mux_pt_avail_streams,
.used_streams = mux_pt_used_streams,
.destroy = mux_pt_destroy_meth,
.ctl = mux_pt_ctl,
.shutr = mux_pt_shutr,
.shutw = mux_pt_shutw,
.flags = MX_FL_NONE,
.name = "PASS",
};
const struct mux_ops mux_pt_ops = {
.init = mux_pt_init,
.wake = mux_pt_wake,
.rcv_buf = mux_pt_rcv_buf,
.snd_buf = mux_pt_snd_buf,
.subscribe = mux_pt_subscribe,
.unsubscribe = mux_pt_unsubscribe,
#if defined(USE_LINUX_SPLICE)
.rcv_pipe = mux_pt_rcv_pipe,
.snd_pipe = mux_pt_snd_pipe,
#endif
.attach = mux_pt_attach,
.get_first_cs = mux_pt_get_first_cs,
.detach = mux_pt_detach,
.avail_streams = mux_pt_avail_streams,
.used_streams = mux_pt_used_streams,
.destroy = mux_pt_destroy_meth,
.ctl = mux_pt_ctl,
.shutr = mux_pt_shutr,
.shutw = mux_pt_shutw,
.flags = MX_FL_NONE|MX_FL_NO_UPG,
.name = "PASS",
};
/* PROT selection : default mux has empty name */
static struct mux_proto_list mux_proto_none =
{ .token = IST("none"), .mode = PROTO_MODE_TCP, .side = PROTO_SIDE_BOTH, .mux = &mux_pt_ops };
static struct mux_proto_list mux_proto_tcp =
{ .token = IST(""), .mode = PROTO_MODE_TCP, .side = PROTO_SIDE_BOTH, .mux = &mux_tcp_ops };
INITCALL1(STG_REGISTER, register_mux_proto, &mux_proto_none);
INITCALL1(STG_REGISTER, register_mux_proto, &mux_proto_tcp);