blob: 5fae59b3bee9bfbe07436771797d3fd49749f33b [file] [log] [blame]
/*
* QUIC transport layer over SOCK_DGRAM sockets.
*
* Copyright 2020 HAProxy Technologies, Frederic Lecaille <flecaille@haproxy.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#define _GNU_SOURCE
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <netinet/tcp.h>
#include <import/ebmbtree.h>
#include <haproxy/buf-t.h>
#include <haproxy/compat.h>
#include <haproxy/api.h>
#include <haproxy/debug.h>
#include <haproxy/tools.h>
#include <haproxy/ticks.h>
#include <haproxy/connection.h>
#include <haproxy/fd.h>
#include <haproxy/freq_ctr.h>
#include <haproxy/global.h>
#include <haproxy/h3.h>
#include <haproxy/hq_interop.h>
#include <haproxy/log.h>
#include <haproxy/mux_quic.h>
#include <haproxy/ncbuf.h>
#include <haproxy/pipe.h>
#include <haproxy/proxy.h>
#include <haproxy/quic_cc.h>
#include <haproxy/quic_frame.h>
#include <haproxy/quic_loss.h>
#include <haproxy/quic_sock.h>
#include <haproxy/quic_stats.h>
#include <haproxy/quic_stream.h>
#include <haproxy/quic_tp.h>
#include <haproxy/cbuf.h>
#include <haproxy/proto_quic.h>
#include <haproxy/quic_tls.h>
#include <haproxy/ssl_sock.h>
#include <haproxy/task.h>
#include <haproxy/trace.h>
#include <haproxy/xprt_quic.h>
/* list of supported QUIC versions by this implementation */
const struct quic_version quic_versions[] = {
{
.num = QUIC_PROTOCOL_VERSION_DRAFT_29,
.initial_salt = initial_salt_draft_29,
.initial_salt_len = sizeof initial_salt_draft_29,
.key_label = (const unsigned char *)QUIC_HKDF_KEY_LABEL_V1,
.key_label_len = sizeof(QUIC_HKDF_KEY_LABEL_V1) - 1,
.iv_label = (const unsigned char *)QUIC_HKDF_IV_LABEL_V1,
.iv_label_len = sizeof(QUIC_HKDF_IV_LABEL_V1) - 1,
.hp_label = (const unsigned char *)QUIC_HKDF_HP_LABEL_V1,
.hp_label_len = sizeof(QUIC_HKDF_HP_LABEL_V1) - 1,
.ku_label = (const unsigned char *)QUIC_HKDF_KU_LABEL_V1,
.ku_label_len = sizeof(QUIC_HKDF_KU_LABEL_V1) - 1,
.retry_tag_key = (const unsigned char *)QUIC_TLS_RETRY_KEY_DRAFT,
.retry_tag_nonce = (const unsigned char *)QUIC_TLS_RETRY_NONCE_DRAFT,
},
{
.num = QUIC_PROTOCOL_VERSION_1,
.initial_salt = initial_salt_v1,
.initial_salt_len = sizeof initial_salt_v1,
.key_label = (const unsigned char *)QUIC_HKDF_KEY_LABEL_V1,
.key_label_len = sizeof(QUIC_HKDF_KEY_LABEL_V1) - 1,
.iv_label = (const unsigned char *)QUIC_HKDF_IV_LABEL_V1,
.iv_label_len = sizeof(QUIC_HKDF_IV_LABEL_V1) - 1,
.hp_label = (const unsigned char *)QUIC_HKDF_HP_LABEL_V1,
.hp_label_len = sizeof(QUIC_HKDF_HP_LABEL_V1) - 1,
.ku_label = (const unsigned char *)QUIC_HKDF_KU_LABEL_V1,
.ku_label_len = sizeof(QUIC_HKDF_KU_LABEL_V1) - 1,
.retry_tag_key = (const unsigned char *)QUIC_TLS_RETRY_KEY_V1,
.retry_tag_nonce = (const unsigned char *)QUIC_TLS_RETRY_NONCE_V1,
},
{
.num = QUIC_PROTOCOL_VERSION_2_DRAFT,
.initial_salt = initial_salt_v2_draft,
.initial_salt_len = sizeof initial_salt_v2_draft,
.key_label = (const unsigned char *)QUIC_HKDF_KEY_LABEL_V2,
.key_label_len = sizeof(QUIC_HKDF_KEY_LABEL_V2) - 1,
.iv_label = (const unsigned char *)QUIC_HKDF_IV_LABEL_V2,
.iv_label_len = sizeof(QUIC_HKDF_IV_LABEL_V2) - 1,
.hp_label = (const unsigned char *)QUIC_HKDF_HP_LABEL_V2,
.hp_label_len = sizeof(QUIC_HKDF_HP_LABEL_V2) - 1,
.ku_label = (const unsigned char *)QUIC_HKDF_KU_LABEL_V2,
.ku_label_len = sizeof(QUIC_HKDF_KU_LABEL_V2) - 1,
.retry_tag_key = (const unsigned char *)QUIC_TLS_RETRY_KEY_V2_DRAFT,
.retry_tag_nonce = (const unsigned char *)QUIC_TLS_RETRY_NONCE_V2_DRAFT,
},
};
/* The total number of supported versions */
const size_t quic_versions_nb = sizeof quic_versions / sizeof *quic_versions;
/* Listener only preferred version */
const struct quic_version *preferred_version;
/* trace source and events */
static void quic_trace(enum trace_level level, uint64_t mask, \
const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4);
static const struct trace_event quic_trace_events[] = {
{ .mask = QUIC_EV_CONN_NEW, .name = "new_conn", .desc = "new QUIC connection" },
{ .mask = QUIC_EV_CONN_INIT, .name = "new_conn_init", .desc = "new QUIC connection initialization" },
{ .mask = QUIC_EV_CONN_ISEC, .name = "init_secs", .desc = "initial secrets derivation" },
{ .mask = QUIC_EV_CONN_RSEC, .name = "read_secs", .desc = "read secrets derivation" },
{ .mask = QUIC_EV_CONN_WSEC, .name = "write_secs", .desc = "write secrets derivation" },
{ .mask = QUIC_EV_CONN_LPKT, .name = "lstnr_packet", .desc = "new listener received packet" },
{ .mask = QUIC_EV_CONN_SPKT, .name = "srv_packet", .desc = "new server received packet" },
{ .mask = QUIC_EV_CONN_ENCPKT, .name = "enc_hdshk_pkt", .desc = "handhshake packet encryption" },
{ .mask = QUIC_EV_CONN_HPKT, .name = "hdshk_pkt", .desc = "handhshake packet building" },
{ .mask = QUIC_EV_CONN_PAPKT, .name = "phdshk_apkt", .desc = "post handhshake application packet preparation" },
{ .mask = QUIC_EV_CONN_PAPKTS, .name = "phdshk_apkts", .desc = "post handhshake application packets preparation" },
{ .mask = QUIC_EV_CONN_IO_CB, .name = "qc_io_cb", .desc = "QUIC conn. I/O processin" },
{ .mask = QUIC_EV_CONN_RMHP, .name = "rm_hp", .desc = "Remove header protection" },
{ .mask = QUIC_EV_CONN_PRSHPKT, .name = "parse_hpkt", .desc = "parse handshake packet" },
{ .mask = QUIC_EV_CONN_PRSAPKT, .name = "parse_apkt", .desc = "parse application packet" },
{ .mask = QUIC_EV_CONN_PRSFRM, .name = "parse_frm", .desc = "parse frame" },
{ .mask = QUIC_EV_CONN_PRSAFRM, .name = "parse_ack_frm", .desc = "parse ACK frame" },
{ .mask = QUIC_EV_CONN_BFRM, .name = "build_frm", .desc = "build frame" },
{ .mask = QUIC_EV_CONN_PHPKTS, .name = "phdshk_pkts", .desc = "handhshake packets preparation" },
{ .mask = QUIC_EV_CONN_TRMHP, .name = "rm_hp_try", .desc = "header protection removing try" },
{ .mask = QUIC_EV_CONN_ELRMHP, .name = "el_rm_hp", .desc = "handshake enc. level header protection removing" },
{ .mask = QUIC_EV_CONN_ELRXPKTS, .name = "el_treat_rx_pkts", .desc = "handshake enc. level rx packets treatment" },
{ .mask = QUIC_EV_CONN_SSLDATA, .name = "ssl_provide_data", .desc = "CRYPTO data provision to TLS stack" },
{ .mask = QUIC_EV_CONN_RXCDATA, .name = "el_treat_rx_cfrms",.desc = "enc. level RX CRYPTO frames processing"},
{ .mask = QUIC_EV_CONN_ADDDATA, .name = "add_hdshk_data", .desc = "TLS stack ->add_handshake_data() call"},
{ .mask = QUIC_EV_CONN_FFLIGHT, .name = "flush_flight", .desc = "TLS stack ->flush_flight() call"},
{ .mask = QUIC_EV_CONN_SSLALERT, .name = "send_alert", .desc = "TLS stack ->send_alert() call"},
{ .mask = QUIC_EV_CONN_RTTUPDT, .name = "rtt_updt", .desc = "RTT sampling" },
{ .mask = QUIC_EV_CONN_SPPKTS, .name = "sppkts", .desc = "send prepared packets" },
{ .mask = QUIC_EV_CONN_PKTLOSS, .name = "pktloss", .desc = "detect packet loss" },
{ .mask = QUIC_EV_CONN_STIMER, .name = "stimer", .desc = "set timer" },
{ .mask = QUIC_EV_CONN_PTIMER, .name = "ptimer", .desc = "process timer" },
{ .mask = QUIC_EV_CONN_SPTO, .name = "spto", .desc = "set PTO" },
{ .mask = QUIC_EV_CONN_BCFRMS, .name = "bcfrms", .desc = "build CRYPTO data frames" },
{ .mask = QUIC_EV_CONN_XPRTSEND, .name = "xprt_send", .desc = "sending XRPT subscription" },
{ .mask = QUIC_EV_CONN_XPRTRECV, .name = "xprt_recv", .desc = "receiving XRPT subscription" },
{ .mask = QUIC_EV_CONN_FREED, .name = "conn_freed", .desc = "releasing conn. memory" },
{ .mask = QUIC_EV_CONN_CLOSE, .name = "conn_close", .desc = "closing conn." },
{ .mask = QUIC_EV_CONN_ACKSTRM, .name = "ack_strm", .desc = "STREAM ack."},
{ .mask = QUIC_EV_CONN_FRMLIST, .name = "frm_list", .desc = "frame list"},
{ .mask = QUIC_EV_STATELESS_RST, .name = "stateless_reset", .desc = "stateless reset sent"},
{ .mask = QUIC_EV_TRANSP_PARAMS, .name = "transport_params", .desc = "transport parameters"},
{ /* end */ }
};
static const struct name_desc quic_trace_lockon_args[4] = {
/* arg1 */ { /* already used by the connection */ },
/* arg2 */ { .name="quic", .desc="QUIC transport" },
/* arg3 */ { },
/* arg4 */ { }
};
static const struct name_desc quic_trace_decoding[] = {
#define QUIC_VERB_CLEAN 1
{ .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" },
{ /* end */ }
};
struct trace_source trace_quic = {
.name = IST("quic"),
.desc = "QUIC xprt",
.arg_def = TRC_ARG1_QCON, /* TRACE()'s first argument is always a quic_conn */
.default_cb = quic_trace,
.known_events = quic_trace_events,
.lockon_args = quic_trace_lockon_args,
.decoding = quic_trace_decoding,
.report_events = ~0, /* report everything by default */
};
#define TRACE_SOURCE &trace_quic
INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE);
static BIO_METHOD *ha_quic_meth;
DECLARE_POOL(pool_head_quic_tx_ring, "quic_tx_ring_pool", QUIC_TX_RING_BUFSZ);
DECLARE_POOL(pool_head_quic_conn_rxbuf, "quic_conn_rxbuf", QUIC_CONN_RX_BUFSZ);
DECLARE_STATIC_POOL(pool_head_quic_conn_ctx,
"quic_conn_ctx_pool", sizeof(struct ssl_sock_ctx));
DECLARE_STATIC_POOL(pool_head_quic_conn, "quic_conn", sizeof(struct quic_conn));
DECLARE_POOL(pool_head_quic_connection_id,
"quic_connnection_id_pool", sizeof(struct quic_connection_id));
DECLARE_POOL(pool_head_quic_dgram, "quic_dgram", sizeof(struct quic_dgram));
DECLARE_POOL(pool_head_quic_rx_packet, "quic_rx_packet_pool", sizeof(struct quic_rx_packet));
DECLARE_POOL(pool_head_quic_tx_packet, "quic_tx_packet_pool", sizeof(struct quic_tx_packet));
DECLARE_STATIC_POOL(pool_head_quic_rx_crypto_frm, "quic_rx_crypto_frm_pool", sizeof(struct quic_rx_crypto_frm));
DECLARE_STATIC_POOL(pool_head_quic_crypto_buf, "quic_crypto_buf_pool", sizeof(struct quic_crypto_buf));
DECLARE_POOL(pool_head_quic_frame, "quic_frame_pool", sizeof(struct quic_frame));
DECLARE_STATIC_POOL(pool_head_quic_arng, "quic_arng_pool", sizeof(struct quic_arng_node));
static struct quic_tx_packet *qc_build_pkt(unsigned char **pos, const unsigned char *buf_end,
struct quic_enc_level *qel, struct quic_tls_ctx *ctx,
struct list *frms, struct quic_conn *qc,
const struct quic_version *ver, size_t dglen, int pkt_type,
int padding, int probe, int cc, int *err);
static struct task *quic_conn_app_io_cb(struct task *t, void *context, unsigned int state);
static void qc_idle_timer_do_rearm(struct quic_conn *qc);
static void qc_idle_timer_rearm(struct quic_conn *qc, int read);
static int qc_conn_alloc_ssl_ctx(struct quic_conn *qc);
static int quic_conn_init_timer(struct quic_conn *qc);
static int quic_conn_init_idle_timer_task(struct quic_conn *qc);
/* Only for debug purpose */
struct enc_debug_info {
unsigned char *payload;
size_t payload_len;
unsigned char *aad;
size_t aad_len;
uint64_t pn;
};
/* Initializes a enc_debug_info struct (only for debug purpose) */
static inline void enc_debug_info_init(struct enc_debug_info *edi,
unsigned char *payload, size_t payload_len,
unsigned char *aad, size_t aad_len, uint64_t pn)
{
edi->payload = payload;
edi->payload_len = payload_len;
edi->aad = aad;
edi->aad_len = aad_len;
edi->pn = pn;
}
/* Trace callback for QUIC.
* These traces always expect that arg1, if non-null, is of type connection.
*/
static void quic_trace(enum trace_level level, uint64_t mask, const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4)
{
const struct quic_conn *qc = a1;
if (qc) {
const struct quic_tls_ctx *tls_ctx;
chunk_appendf(&trace_buf, " : qc@%p", qc);
if ((mask & QUIC_EV_CONN_INIT) && qc) {
chunk_appendf(&trace_buf, "\n odcid");
quic_cid_dump(&trace_buf, &qc->odcid);
chunk_appendf(&trace_buf, "\n dcid");
quic_cid_dump(&trace_buf, &qc->dcid);
chunk_appendf(&trace_buf, "\n scid");
quic_cid_dump(&trace_buf, &qc->scid);
}
if (mask & QUIC_EV_TRANSP_PARAMS) {
const struct quic_transport_params *p = a2;
quic_transport_params_dump(&trace_buf, qc, p);
}
if (mask & QUIC_EV_CONN_ADDDATA) {
const enum ssl_encryption_level_t *level = a2;
const size_t *len = a3;
if (level) {
enum quic_tls_enc_level lvl = ssl_to_quic_enc_level(*level);
chunk_appendf(&trace_buf, " el=%c(%d)", quic_enc_level_char(lvl), lvl);
}
if (len)
chunk_appendf(&trace_buf, " len=%llu", (unsigned long long)*len);
}
if ((mask & QUIC_EV_CONN_ISEC) && qc) {
/* Initial read & write secrets. */
enum quic_tls_enc_level level = QUIC_TLS_ENC_LEVEL_INITIAL;
const unsigned char *rx_sec = a2;
const unsigned char *tx_sec = a3;
tls_ctx = &qc->els[level].tls_ctx;
if (tls_ctx->flags & QUIC_FL_TLS_SECRETS_SET) {
chunk_appendf(&trace_buf, "\n RX el=%c", quic_enc_level_char(level));
if (rx_sec)
quic_tls_secret_hexdump(&trace_buf, rx_sec, 32);
quic_tls_keys_hexdump(&trace_buf, &tls_ctx->rx);
chunk_appendf(&trace_buf, "\n TX el=%c", quic_enc_level_char(level));
if (tx_sec)
quic_tls_secret_hexdump(&trace_buf, tx_sec, 32);
quic_tls_keys_hexdump(&trace_buf, &tls_ctx->tx);
}
}
if (mask & (QUIC_EV_CONN_RSEC|QUIC_EV_CONN_RWSEC)) {
const enum ssl_encryption_level_t *level = a2;
const unsigned char *secret = a3;
const size_t *secret_len = a4;
if (level) {
enum quic_tls_enc_level lvl = ssl_to_quic_enc_level(*level);
chunk_appendf(&trace_buf, "\n RX el=%c", quic_enc_level_char(lvl));
if (secret && secret_len)
quic_tls_secret_hexdump(&trace_buf, secret, *secret_len);
tls_ctx = &qc->els[lvl].tls_ctx;
if (tls_ctx->flags & QUIC_FL_TLS_SECRETS_SET)
quic_tls_keys_hexdump(&trace_buf, &tls_ctx->rx);
}
}
if (mask & (QUIC_EV_CONN_WSEC|QUIC_EV_CONN_RWSEC)) {
const enum ssl_encryption_level_t *level = a2;
const unsigned char *secret = a3;
const size_t *secret_len = a4;
if (level) {
enum quic_tls_enc_level lvl = ssl_to_quic_enc_level(*level);
chunk_appendf(&trace_buf, "\n TX el=%c", quic_enc_level_char(lvl));
if (secret && secret_len)
quic_tls_secret_hexdump(&trace_buf, secret, *secret_len);
tls_ctx = &qc->els[lvl].tls_ctx;
if (tls_ctx->flags & QUIC_FL_TLS_SECRETS_SET)
quic_tls_keys_hexdump(&trace_buf, &tls_ctx->tx);
}
}
if (mask & QUIC_EV_CONN_FRMLIST) {
const struct list *l = a2;
if (l) {
const struct quic_frame *frm;
list_for_each_entry(frm, l, list)
chunk_frm_appendf(&trace_buf, frm);
}
}
if (mask & (QUIC_EV_CONN_HPKT|QUIC_EV_CONN_PAPKT)) {
const struct quic_tx_packet *pkt = a2;
const struct quic_enc_level *qel = a3;
const ssize_t *room = a4;
if (qel) {
const struct quic_pktns *pktns = qc->pktns;
chunk_appendf(&trace_buf, " qel=%c cwnd=%llu ppif=%lld pif=%llu "
"if=%llu pp=%u",
quic_enc_level_char_from_qel(qel, qc),
(unsigned long long)qc->path->cwnd,
(unsigned long long)qc->path->prep_in_flight,
(unsigned long long)qc->path->in_flight,
(unsigned long long)pktns->tx.in_flight,
pktns->tx.pto_probe);
}
if (pkt) {
const struct quic_frame *frm;
if (pkt->pn_node.key != (uint64_t)-1)
chunk_appendf(&trace_buf, " pn=%llu",(ull)pkt->pn_node.key);
list_for_each_entry(frm, &pkt->frms, list)
chunk_frm_appendf(&trace_buf, frm);
chunk_appendf(&trace_buf, " rx.bytes=%llu tx.bytes=%llu",
(unsigned long long)qc->rx.bytes,
(unsigned long long)qc->tx.bytes);
}
if (room) {
chunk_appendf(&trace_buf, " room=%lld", (long long)*room);
chunk_appendf(&trace_buf, " dcid.len=%llu scid.len=%llu",
(unsigned long long)qc->dcid.len, (unsigned long long)qc->scid.len);
}
}
if (mask & QUIC_EV_CONN_IO_CB) {
const enum quic_handshake_state *state = a2;
const int *err = a3;
if (state)
chunk_appendf(&trace_buf, " state=%s", quic_hdshk_state_str(*state));
if (err)
chunk_appendf(&trace_buf, " err=%s", ssl_error_str(*err));
}
if (mask & (QUIC_EV_CONN_TRMHP|QUIC_EV_CONN_ELRMHP|QUIC_EV_CONN_SPKT)) {
const struct quic_rx_packet *pkt = a2;
const unsigned long *pktlen = a3;
const SSL *ssl = a4;
if (pkt) {
chunk_appendf(&trace_buf, " pkt@%p", pkt);
if (pkt->type == QUIC_PACKET_TYPE_SHORT && pkt->data)
chunk_appendf(&trace_buf, " kp=%d",
!!(*pkt->data & QUIC_PACKET_KEY_PHASE_BIT));
chunk_appendf(&trace_buf, " el=%c",
quic_packet_type_enc_level_char(pkt->type));
if (pkt->pnl)
chunk_appendf(&trace_buf, " pnl=%u pn=%llu", pkt->pnl,
(unsigned long long)pkt->pn);
if (pkt->token_len)
chunk_appendf(&trace_buf, " toklen=%llu",
(unsigned long long)pkt->token_len);
if (pkt->aad_len)
chunk_appendf(&trace_buf, " aadlen=%llu",
(unsigned long long)pkt->aad_len);
chunk_appendf(&trace_buf, " flags=0x%x len=%llu",
pkt->flags, (unsigned long long)pkt->len);
}
if (pktlen)
chunk_appendf(&trace_buf, " (%ld)", *pktlen);
if (ssl) {
enum ssl_encryption_level_t level = SSL_quic_read_level(ssl);
chunk_appendf(&trace_buf, " el=%c",
quic_enc_level_char(ssl_to_quic_enc_level(level)));
}
}
if (mask & (QUIC_EV_CONN_ELRXPKTS|QUIC_EV_CONN_PRSHPKT|QUIC_EV_CONN_SSLDATA)) {
const struct quic_rx_packet *pkt = a2;
const struct quic_rx_crypto_frm *cf = a3;
const SSL *ssl = a4;
if (pkt)
chunk_appendf(&trace_buf, " pkt@%p el=%c pn=%llu", pkt,
quic_packet_type_enc_level_char(pkt->type),
(unsigned long long)pkt->pn);
if (cf)
chunk_appendf(&trace_buf, " cfoff=%llu cflen=%llu",
(unsigned long long)cf->offset_node.key,
(unsigned long long)cf->len);
if (ssl) {
enum ssl_encryption_level_t level = SSL_quic_read_level(ssl);
chunk_appendf(&trace_buf, " rel=%c",
quic_enc_level_char(ssl_to_quic_enc_level(level)));
}
if (qc->err_code)
chunk_appendf(&trace_buf, " err_code=0x%llx", (ull)qc->err_code);
}
if (mask & (QUIC_EV_CONN_PRSFRM|QUIC_EV_CONN_BFRM)) {
const struct quic_frame *frm = a2;
if (frm)
chunk_appendf(&trace_buf, " %s", quic_frame_type_string(frm->type));
}
if (mask & QUIC_EV_CONN_PHPKTS) {
const struct quic_enc_level *qel = a2;
if (qel) {
const struct quic_pktns *pktns = qel->pktns;
chunk_appendf(&trace_buf,
" qel=%c state=%s ack?%d cwnd=%llu ppif=%lld pif=%llu if=%llu pp=%u",
quic_enc_level_char_from_qel(qel, qc),
quic_hdshk_state_str(qc->state),
!!(qel->pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED),
(unsigned long long)qc->path->cwnd,
(unsigned long long)qc->path->prep_in_flight,
(unsigned long long)qc->path->in_flight,
(unsigned long long)pktns->tx.in_flight,
pktns->tx.pto_probe);
}
}
if (mask & QUIC_EV_CONN_ENCPKT) {
const struct enc_debug_info *edi = a2;
if (edi)
chunk_appendf(&trace_buf,
" payload=@%p payload_len=%llu"
" aad=@%p aad_len=%llu pn=%llu",
edi->payload, (unsigned long long)edi->payload_len,
edi->aad, (unsigned long long)edi->aad_len,
(unsigned long long)edi->pn);
}
if (mask & QUIC_EV_CONN_RMHP) {
const struct quic_rx_packet *pkt = a2;
if (pkt) {
const int *ret = a3;
chunk_appendf(&trace_buf, " pkt@%p", pkt);
if (ret && *ret)
chunk_appendf(&trace_buf, " pnl=%u pn=%llu",
pkt->pnl, (unsigned long long)pkt->pn);
}
}
if (mask & QUIC_EV_CONN_PRSAFRM) {
const struct quic_frame *frm = a2;
const unsigned long *val1 = a3;
const unsigned long *val2 = a4;
if (frm)
chunk_frm_appendf(&trace_buf, frm);
if (val1)
chunk_appendf(&trace_buf, " %lu", *val1);
if (val2)
chunk_appendf(&trace_buf, "..%lu", *val2);
}
if (mask & QUIC_EV_CONN_ACKSTRM) {
const struct quic_stream *s = a2;
const struct qc_stream_desc *stream = a3;
if (s)
chunk_appendf(&trace_buf, " off=%llu len=%llu", (ull)s->offset.key, (ull)s->len);
if (stream)
chunk_appendf(&trace_buf, " ack_offset=%llu", (ull)stream->ack_offset);
}
if (mask & QUIC_EV_CONN_RTTUPDT) {
const unsigned int *rtt_sample = a2;
const unsigned int *ack_delay = a3;
const struct quic_loss *ql = a4;
if (rtt_sample)
chunk_appendf(&trace_buf, " rtt_sample=%ums", *rtt_sample);
if (ack_delay)
chunk_appendf(&trace_buf, " ack_delay=%ums", *ack_delay);
if (ql)
chunk_appendf(&trace_buf,
" srtt=%ums rttvar=%ums min_rtt=%ums",
ql->srtt >> 3, ql->rtt_var >> 2, ql->rtt_min);
}
if (mask & QUIC_EV_CONN_CC) {
const struct quic_cc_event *ev = a2;
const struct quic_cc *cc = a3;
if (a2)
quic_cc_event_trace(&trace_buf, ev);
if (a3)
quic_cc_state_trace(&trace_buf, cc);
}
if (mask & QUIC_EV_CONN_PKTLOSS) {
const struct quic_pktns *pktns = a2;
const struct list *lost_pkts = a3;
if (pktns) {
chunk_appendf(&trace_buf, " pktns=%s",
pktns == &qc->pktns[QUIC_TLS_PKTNS_INITIAL] ? "I" :
pktns == &qc->pktns[QUIC_TLS_PKTNS_01RTT] ? "01RTT": "H");
if (pktns->tx.loss_time)
chunk_appendf(&trace_buf, " loss_time=%dms",
TICKS_TO_MS(tick_remain(now_ms, pktns->tx.loss_time)));
}
if (lost_pkts && !LIST_ISEMPTY(lost_pkts)) {
struct quic_tx_packet *pkt;
chunk_appendf(&trace_buf, " lost_pkts:");
list_for_each_entry(pkt, lost_pkts, list)
chunk_appendf(&trace_buf, " %lu", (unsigned long)pkt->pn_node.key);
}
}
if (mask & (QUIC_EV_CONN_STIMER|QUIC_EV_CONN_PTIMER|QUIC_EV_CONN_SPTO)) {
const struct quic_pktns *pktns = a2;
const int *duration = a3;
const uint64_t *ifae_pkts = a4;
if (ifae_pkts)
chunk_appendf(&trace_buf, " ifae_pkts=%llu",
(unsigned long long)*ifae_pkts);
if (pktns) {
chunk_appendf(&trace_buf, " pktns=%s pp=%d",
pktns == &qc->pktns[QUIC_TLS_PKTNS_INITIAL] ? "I" :
pktns == &qc->pktns[QUIC_TLS_PKTNS_01RTT] ? "01RTT": "H",
pktns->tx.pto_probe);
if (mask & (QUIC_EV_CONN_STIMER|QUIC_EV_CONN_SPTO)) {
if (pktns->tx.in_flight)
chunk_appendf(&trace_buf, " if=%llu", (ull)pktns->tx.in_flight);
if (pktns->tx.loss_time)
chunk_appendf(&trace_buf, " loss_time=%dms",
TICKS_TO_MS(pktns->tx.loss_time - now_ms));
}
if (mask & QUIC_EV_CONN_SPTO) {
if (pktns->tx.time_of_last_eliciting)
chunk_appendf(&trace_buf, " tole=%dms",
TICKS_TO_MS(pktns->tx.time_of_last_eliciting - now_ms));
if (duration)
chunk_appendf(&trace_buf, " dur=%dms", TICKS_TO_MS(*duration));
}
}
if (!(mask & (QUIC_EV_CONN_SPTO|QUIC_EV_CONN_PTIMER)) && qc->timer_task) {
chunk_appendf(&trace_buf,
" expire=%dms", TICKS_TO_MS(qc->timer - now_ms));
}
}
if (mask & QUIC_EV_CONN_SPPKTS) {
const struct quic_tx_packet *pkt = a2;
chunk_appendf(&trace_buf, " err=%u cwnd=%llu ppif=%llu pif=%llu", qc->sendto_err,
(unsigned long long)qc->path->cwnd,
(unsigned long long)qc->path->prep_in_flight,
(unsigned long long)qc->path->in_flight);
if (pkt) {
chunk_appendf(&trace_buf, " pn=%lu(%s) iflen=%llu",
(unsigned long)pkt->pn_node.key,
pkt->pktns == &qc->pktns[QUIC_TLS_PKTNS_INITIAL] ? "I" :
pkt->pktns == &qc->pktns[QUIC_TLS_PKTNS_01RTT] ? "01RTT": "H",
(unsigned long long)pkt->in_flight_len);
}
}
if (mask & QUIC_EV_CONN_SSLALERT) {
const uint8_t *alert = a2;
const enum ssl_encryption_level_t *level = a3;
if (alert)
chunk_appendf(&trace_buf, " alert=0x%02x", *alert);
if (level)
chunk_appendf(&trace_buf, " el=%c",
quic_enc_level_char(ssl_to_quic_enc_level(*level)));
}
if (mask & QUIC_EV_CONN_BCFRMS) {
const size_t *sz1 = a2;
const size_t *sz2 = a3;
const size_t *sz3 = a4;
if (sz1)
chunk_appendf(&trace_buf, " %llu", (unsigned long long)*sz1);
if (sz2)
chunk_appendf(&trace_buf, " %llu", (unsigned long long)*sz2);
if (sz3)
chunk_appendf(&trace_buf, " %llu", (unsigned long long)*sz3);
}
if (mask & QUIC_EV_CONN_PSTRM) {
const struct quic_frame *frm = a2;
if (frm)
chunk_frm_appendf(&trace_buf, frm);
}
}
if (mask & QUIC_EV_CONN_LPKT) {
const struct quic_rx_packet *pkt = a2;
const uint64_t *len = a3;
const struct quic_version *ver = a4;
if (pkt) {
chunk_appendf(&trace_buf, " pkt@%p type=0x%02x %s",
pkt, pkt->type, qc_pkt_long(pkt) ? "long" : "short");
if (pkt->pn_node.key != (uint64_t)-1)
chunk_appendf(&trace_buf, " pn=%llu", pkt->pn_node.key);
}
if (len)
chunk_appendf(&trace_buf, " len=%llu", (ull)*len);
if (ver)
chunk_appendf(&trace_buf, " ver=0x%08x", ver->num);
}
if (mask & QUIC_EV_STATELESS_RST) {
const struct quic_cid *cid = a2;
if (cid)
quic_cid_dump(&trace_buf, cid);
}
}
/* Returns 1 if the peer has validated <qc> QUIC connection address, 0 if not. */
static inline int quic_peer_validated_addr(struct quic_conn *qc)
{
struct quic_pktns *hdshk_pktns, *app_pktns;
if (!qc_is_listener(qc))
return 1;
hdshk_pktns = qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].pktns;
app_pktns = qc->els[QUIC_TLS_ENC_LEVEL_APP].pktns;
if ((hdshk_pktns->flags & QUIC_FL_PKTNS_PKT_RECEIVED) ||
(app_pktns->flags & QUIC_FL_PKTNS_PKT_RECEIVED) ||
qc->state >= QUIC_HS_ST_COMPLETE)
return 1;
return 0;
}
/* Set the timer attached to the QUIC connection with <ctx> as I/O handler and used for
* both loss detection and PTO and schedule the task assiated to this timer if needed.
*/
static inline void qc_set_timer(struct quic_conn *qc)
{
struct quic_pktns *pktns;
unsigned int pto;
int handshake_complete;
TRACE_ENTER(QUIC_EV_CONN_STIMER, qc,
NULL, NULL, &qc->path->ifae_pkts);
pktns = quic_loss_pktns(qc);
if (tick_isset(pktns->tx.loss_time)) {
qc->timer = pktns->tx.loss_time;
goto out;
}
/* anti-amplification: the timer must be
* cancelled for a server which reached the anti-amplification limit.
*/
if (!quic_peer_validated_addr(qc) &&
(qc->flags & QUIC_FL_CONN_ANTI_AMPLIFICATION_REACHED)) {
TRACE_PROTO("anti-amplification reached", QUIC_EV_CONN_STIMER, qc);
qc->timer = TICK_ETERNITY;
goto out;
}
if (!qc->path->ifae_pkts && quic_peer_validated_addr(qc)) {
TRACE_PROTO("timer cancellation", QUIC_EV_CONN_STIMER, qc);
/* Timer cancellation. */
qc->timer = TICK_ETERNITY;
goto out;
}
handshake_complete = qc->state >= QUIC_HS_ST_COMPLETE;
pktns = quic_pto_pktns(qc, handshake_complete, &pto);
if (tick_isset(pto))
qc->timer = pto;
out:
if (qc->timer_task && qc->timer != TICK_ETERNITY) {
if (tick_is_expired(qc->timer, now_ms)) {
TRACE_PROTO("wakeup asap timer task", QUIC_EV_CONN_STIMER, qc);
task_wakeup(qc->timer_task, TASK_WOKEN_MSG);
}
else {
TRACE_PROTO("timer task scheduling", QUIC_EV_CONN_STIMER, qc);
task_schedule(qc->timer_task, qc->timer);
}
}
TRACE_LEAVE(QUIC_EV_CONN_STIMER, qc, pktns);
}
/* Derive new keys and ivs required for Key Update feature for <qc> QUIC
* connection.
* Return 1 if succeeded, 0 if not.
*/
static int quic_tls_key_update(struct quic_conn *qc)
{
struct quic_tls_ctx *tls_ctx = &qc->els[QUIC_TLS_ENC_LEVEL_APP].tls_ctx;
struct quic_tls_secrets *rx, *tx;
struct quic_tls_kp *nxt_rx = &qc->ku.nxt_rx;
struct quic_tls_kp *nxt_tx = &qc->ku.nxt_tx;
const struct quic_version *ver =
qc->negotiated_version ? qc->negotiated_version : qc->original_version;
tls_ctx = &qc->els[QUIC_TLS_ENC_LEVEL_APP].tls_ctx;
rx = &tls_ctx->rx;
tx = &tls_ctx->tx;
nxt_rx = &qc->ku.nxt_rx;
nxt_tx = &qc->ku.nxt_tx;
/* Prepare new RX secrets */
if (!quic_tls_sec_update(rx->md, ver, nxt_rx->secret, nxt_rx->secretlen,
rx->secret, rx->secretlen)) {
TRACE_DEVEL("New RX secret update failed", QUIC_EV_CONN_RWSEC, qc);
return 0;
}
if (!quic_tls_derive_keys(rx->aead, NULL, rx->md, ver,
nxt_rx->key, nxt_rx->keylen,
nxt_rx->iv, nxt_rx->ivlen, NULL, 0,
nxt_rx->secret, nxt_rx->secretlen)) {
TRACE_DEVEL("New RX key derivation failed", QUIC_EV_CONN_RWSEC, qc);
return 0;
}
/* Prepare new TX secrets */
if (!quic_tls_sec_update(tx->md, ver, nxt_tx->secret, nxt_tx->secretlen,
tx->secret, tx->secretlen)) {
TRACE_DEVEL("New TX secret update failed", QUIC_EV_CONN_RWSEC, qc);
return 0;
}
if (!quic_tls_derive_keys(tx->aead, NULL, tx->md, ver,
nxt_tx->key, nxt_tx->keylen,
nxt_tx->iv, nxt_tx->ivlen, NULL, 0,
nxt_tx->secret, nxt_tx->secretlen)) {
TRACE_DEVEL("New TX key derivation failed", QUIC_EV_CONN_RWSEC, qc);
return 0;
}
if (nxt_rx->ctx) {
EVP_CIPHER_CTX_free(nxt_rx->ctx);
nxt_rx->ctx = NULL;
}
if (!quic_tls_rx_ctx_init(&nxt_rx->ctx, tls_ctx->rx.aead, nxt_rx->key)) {
TRACE_DEVEL("could not initial RX TLS cipher context", QUIC_EV_CONN_RWSEC, qc);
return 0;
}
if (nxt_tx->ctx) {
EVP_CIPHER_CTX_free(nxt_tx->ctx);
nxt_tx->ctx = NULL;
}
if (!quic_tls_rx_ctx_init(&nxt_tx->ctx, tls_ctx->tx.aead, nxt_tx->key)) {
TRACE_DEVEL("could not initial RX TLS cipher context", QUIC_EV_CONN_RWSEC, qc);
return 0;
}
return 1;
}
/* Rotate the Key Update information for <qc> QUIC connection.
* Must be used after having updated them.
* Always succeeds.
*/
static void quic_tls_rotate_keys(struct quic_conn *qc)
{
struct quic_tls_ctx *tls_ctx = &qc->els[QUIC_TLS_ENC_LEVEL_APP].tls_ctx;
unsigned char *curr_secret, *curr_iv, *curr_key;
EVP_CIPHER_CTX *curr_ctx;
/* Rotate the RX secrets */
curr_ctx = tls_ctx->rx.ctx;
curr_secret = tls_ctx->rx.secret;
curr_iv = tls_ctx->rx.iv;
curr_key = tls_ctx->rx.key;
tls_ctx->rx.ctx = qc->ku.nxt_rx.ctx;
tls_ctx->rx.secret = qc->ku.nxt_rx.secret;
tls_ctx->rx.iv = qc->ku.nxt_rx.iv;
tls_ctx->rx.key = qc->ku.nxt_rx.key;
qc->ku.nxt_rx.ctx = qc->ku.prv_rx.ctx;
qc->ku.nxt_rx.secret = qc->ku.prv_rx.secret;
qc->ku.nxt_rx.iv = qc->ku.prv_rx.iv;
qc->ku.nxt_rx.key = qc->ku.prv_rx.key;
qc->ku.prv_rx.ctx = curr_ctx;
qc->ku.prv_rx.secret = curr_secret;
qc->ku.prv_rx.iv = curr_iv;
qc->ku.prv_rx.key = curr_key;
qc->ku.prv_rx.pn = tls_ctx->rx.pn;
/* Update the TX secrets */
curr_ctx = tls_ctx->tx.ctx;
curr_secret = tls_ctx->tx.secret;
curr_iv = tls_ctx->tx.iv;
curr_key = tls_ctx->tx.key;
tls_ctx->tx.ctx = qc->ku.nxt_tx.ctx;
tls_ctx->tx.secret = qc->ku.nxt_tx.secret;
tls_ctx->tx.iv = qc->ku.nxt_tx.iv;
tls_ctx->tx.key = qc->ku.nxt_tx.key;
qc->ku.nxt_tx.ctx = curr_ctx;
qc->ku.nxt_tx.secret = curr_secret;
qc->ku.nxt_tx.iv = curr_iv;
qc->ku.nxt_tx.key = curr_key;
}
int ha_quic_set_encryption_secrets(SSL *ssl, enum ssl_encryption_level_t level,
const uint8_t *read_secret,
const uint8_t *write_secret, size_t secret_len)
{
struct quic_conn *qc = SSL_get_ex_data(ssl, ssl_qc_app_data_index);
struct quic_tls_ctx *tls_ctx = &qc->els[ssl_to_quic_enc_level(level)].tls_ctx;
const SSL_CIPHER *cipher = SSL_get_current_cipher(ssl);
struct quic_tls_secrets *rx, *tx;
const struct quic_version *ver =
qc->negotiated_version ? qc->negotiated_version : qc->original_version;
TRACE_ENTER(QUIC_EV_CONN_RWSEC, qc);
BUG_ON(secret_len > QUIC_TLS_SECRET_LEN);
if (qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE) {
TRACE_PROTO("CC required", QUIC_EV_CONN_RWSEC, qc);
goto no_secret;
}
if (!quic_tls_ctx_keys_alloc(tls_ctx)) {
TRACE_DEVEL("keys allocation failed", QUIC_EV_CONN_RWSEC, qc);
goto err;
}
rx = &tls_ctx->rx;
tx = &tls_ctx->tx;
rx->aead = tx->aead = tls_aead(cipher);
rx->md = tx->md = tls_md(cipher);
rx->hp = tx->hp = tls_hp(cipher);
if (!quic_tls_derive_keys(rx->aead, rx->hp, rx->md, ver, rx->key, rx->keylen,
rx->iv, rx->ivlen, rx->hp_key, sizeof rx->hp_key,
read_secret, secret_len)) {
TRACE_DEVEL("RX key derivation failed", QUIC_EV_CONN_RWSEC, qc);
goto err;
}
if (!quic_tls_rx_ctx_init(&rx->ctx, rx->aead, rx->key)) {
TRACE_DEVEL("could not initial RX TLS cipher context", QUIC_EV_CONN_RWSEC, qc);
goto err;
}
/* Enqueue this connection asap if we could derive O-RTT secrets as
* listener. Note that a listener derives only RX secrets for this
* level.
*/
if (qc_is_listener(qc) && level == ssl_encryption_early_data)
quic_accept_push_qc(qc);
if (!write_secret)
goto out;
if (!quic_tls_derive_keys(tx->aead, tx->hp, tx->md, ver, tx->key, tx->keylen,
tx->iv, tx->ivlen, tx->hp_key, sizeof tx->hp_key,
write_secret, secret_len)) {
TRACE_DEVEL("TX key derivation failed", QUIC_EV_CONN_RWSEC, qc);
goto err;
}
if (!quic_tls_tx_ctx_init(&tx->ctx, tx->aead, tx->key)) {
TRACE_DEVEL("could not initial RX TLS cipher context", QUIC_EV_CONN_RWSEC, qc);
goto err;
}
if (level == ssl_encryption_application) {
struct quic_tls_kp *prv_rx = &qc->ku.prv_rx;
struct quic_tls_kp *nxt_rx = &qc->ku.nxt_rx;
struct quic_tls_kp *nxt_tx = &qc->ku.nxt_tx;
/* These secrets must be stored only for Application encryption level */
if (!(rx->secret = pool_alloc(pool_head_quic_tls_secret)) ||
!(tx->secret = pool_alloc(pool_head_quic_tls_secret))) {
TRACE_DEVEL("Could not allocate secrete keys", QUIC_EV_CONN_RWSEC, qc);
goto err;
}
memcpy(rx->secret, read_secret, secret_len);
rx->secretlen = secret_len;
memcpy(tx->secret, write_secret, secret_len);
tx->secretlen = secret_len;
/* Initialize all the secret keys lengths */
prv_rx->secretlen = nxt_rx->secretlen = nxt_tx->secretlen = secret_len;
/* Prepare the next key update */
if (!quic_tls_key_update(qc))
goto err;
}
out:
tls_ctx->flags |= QUIC_FL_TLS_SECRETS_SET;
no_secret:
TRACE_LEAVE(QUIC_EV_CONN_RWSEC, qc, &level);
return 1;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_RWSEC, qc);
return 0;
}
/* This function copies the CRYPTO data provided by the TLS stack found at <data>
* with <len> as size in CRYPTO buffers dedicated to store the information about
* outgoing CRYPTO frames so that to be able to replay the CRYPTO data streams.
* It fails only if it could not managed to allocate enough CRYPTO buffers to
* store all the data.
* Note that CRYPTO data may exist at any encryption level except at 0-RTT.
*/
static int quic_crypto_data_cpy(struct quic_enc_level *qel,
const unsigned char *data, size_t len)
{
struct quic_crypto_buf **qcb;
/* The remaining byte to store in CRYPTO buffers. */
size_t cf_offset, cf_len, *nb_buf;
unsigned char *pos;
nb_buf = &qel->tx.crypto.nb_buf;
qcb = &qel->tx.crypto.bufs[*nb_buf - 1];
cf_offset = (*nb_buf - 1) * QUIC_CRYPTO_BUF_SZ + (*qcb)->sz;
cf_len = len;
while (len) {
size_t to_copy, room;
pos = (*qcb)->data + (*qcb)->sz;
room = QUIC_CRYPTO_BUF_SZ - (*qcb)->sz;
to_copy = len > room ? room : len;
if (to_copy) {
memcpy(pos, data, to_copy);
/* Increment the total size of this CRYPTO buffers by <to_copy>. */
qel->tx.crypto.sz += to_copy;
(*qcb)->sz += to_copy;
len -= to_copy;
data += to_copy;
}
else {
struct quic_crypto_buf **tmp;
tmp = realloc(qel->tx.crypto.bufs,
(*nb_buf + 1) * sizeof *qel->tx.crypto.bufs);
if (tmp) {
qel->tx.crypto.bufs = tmp;
qcb = &qel->tx.crypto.bufs[*nb_buf];
*qcb = pool_alloc(pool_head_quic_crypto_buf);
if (!*qcb)
return 0;
(*qcb)->sz = 0;
++*nb_buf;
}
else {
break;
}
}
}
/* Allocate a TX CRYPTO frame only if all the CRYPTO data
* have been buffered.
*/
if (!len) {
struct quic_frame *frm;
struct quic_frame *found = NULL;
/* There is at most one CRYPTO frame in this packet number
* space. Let's look for it.
*/
list_for_each_entry(frm, &qel->pktns->tx.frms, list) {
if (frm->type != QUIC_FT_CRYPTO)
continue;
/* Found */
found = frm;
break;
}
if (found) {
found->crypto.len += cf_len;
}
else {
frm = pool_zalloc(pool_head_quic_frame);
if (!frm)
return 0;
LIST_INIT(&frm->reflist);
frm->type = QUIC_FT_CRYPTO;
frm->crypto.offset = cf_offset;
frm->crypto.len = cf_len;
frm->crypto.qel = qel;
LIST_APPEND(&qel->pktns->tx.frms, &frm->list);
}
}
return len == 0;
}
/* Prepare the emission of CONNECTION_CLOSE with error <err>. All send/receive
* activity for <qc> will be interrupted.
*/
void quic_set_connection_close(struct quic_conn *qc, int err, int app)
{
if (qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE)
return;
qc->err_code = err;
qc->flags |= QUIC_FL_CONN_IMMEDIATE_CLOSE;
if (app)
qc->flags |= QUIC_FL_CONN_APP_ALERT;
}
/* Set <alert> TLS alert as QUIC CRYPTO_ERROR error */
void quic_set_tls_alert(struct quic_conn *qc, int alert)
{
if (!(qc->flags & QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED)) {
qc->flags |= QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED;
HA_ATOMIC_DEC(&qc->prx_counters->half_open_conn);
}
quic_set_connection_close(qc, QC_ERR_CRYPTO_ERROR | alert, 0);
qc->flags |= QUIC_FL_CONN_TLS_ALERT;
TRACE_PROTO("Alert set", QUIC_EV_CONN_SSLDATA, qc);
}
/* Set the application for <qc> QUIC connection.
* Return 1 if succeeded, 0 if not.
*/
int quic_set_app_ops(struct quic_conn *qc, const unsigned char *alpn, size_t alpn_len)
{
if (alpn_len >= 2 && memcmp(alpn, "h3", 2) == 0)
qc->app_ops = &h3_ops;
else if (alpn_len >= 10 && memcmp(alpn, "hq-interop", 10) == 0)
qc->app_ops = &hq_interop_ops;
else
return 0;
return 1;
}
/* ->add_handshake_data QUIC TLS callback used by the QUIC TLS stack when it
* wants to provide the QUIC layer with CRYPTO data.
* Returns 1 if succeeded, 0 if not.
*/
int ha_quic_add_handshake_data(SSL *ssl, enum ssl_encryption_level_t level,
const uint8_t *data, size_t len)
{
struct quic_conn *qc;
enum quic_tls_enc_level tel;
struct quic_enc_level *qel;
qc = SSL_get_ex_data(ssl, ssl_qc_app_data_index);
TRACE_ENTER(QUIC_EV_CONN_ADDDATA, qc);
if (qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE) {
TRACE_PROTO("CC required", QUIC_EV_CONN_ADDDATA, qc);
goto out;
}
tel = ssl_to_quic_enc_level(level);
if (tel == -1) {
TRACE_PROTO("Wrong encryption level", QUIC_EV_CONN_ADDDATA, qc);
goto err;
}
qel = &qc->els[tel];
if (!quic_crypto_data_cpy(qel, data, len)) {
TRACE_PROTO("Could not bufferize", QUIC_EV_CONN_ADDDATA, qc);
goto err;
}
TRACE_PROTO("CRYPTO data buffered", QUIC_EV_CONN_ADDDATA,
qc, &level, &len);
out:
TRACE_LEAVE(QUIC_EV_CONN_ADDDATA, qc);
return 1;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_ADDDATA, qc);
return 0;
}
int ha_quic_flush_flight(SSL *ssl)
{
struct quic_conn *qc = SSL_get_ex_data(ssl, ssl_qc_app_data_index);
TRACE_ENTER(QUIC_EV_CONN_FFLIGHT, qc);
TRACE_LEAVE(QUIC_EV_CONN_FFLIGHT, qc);
return 1;
}
int ha_quic_send_alert(SSL *ssl, enum ssl_encryption_level_t level, uint8_t alert)
{
struct quic_conn *qc = SSL_get_ex_data(ssl, ssl_qc_app_data_index);
TRACE_DEVEL("SSL alert", QUIC_EV_CONN_SSLALERT, qc, &alert, &level);
quic_set_tls_alert(qc, alert);
qc->flags |= QUIC_FL_CONN_IMMEDIATE_CLOSE;
return 1;
}
/* QUIC TLS methods */
static SSL_QUIC_METHOD ha_quic_method = {
.set_encryption_secrets = ha_quic_set_encryption_secrets,
.add_handshake_data = ha_quic_add_handshake_data,
.flush_flight = ha_quic_flush_flight,
.send_alert = ha_quic_send_alert,
};
/* Initialize the TLS context of a listener with <bind_conf> as configuration.
* Returns an error count.
*/
int ssl_quic_initial_ctx(struct bind_conf *bind_conf)
{
struct ssl_bind_conf __maybe_unused *ssl_conf_cur;
int cfgerr = 0;
long options =
(SSL_OP_ALL & ~SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) |
SSL_OP_SINGLE_ECDH_USE |
SSL_OP_CIPHER_SERVER_PREFERENCE;
SSL_CTX *ctx;
ctx = SSL_CTX_new(TLS_server_method());
bind_conf->initial_ctx = ctx;
SSL_CTX_set_options(ctx, options);
SSL_CTX_set_mode(ctx, SSL_MODE_RELEASE_BUFFERS);
SSL_CTX_set_min_proto_version(ctx, TLS1_3_VERSION);
SSL_CTX_set_max_proto_version(ctx, TLS1_3_VERSION);
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
if (bind_conf->ssl_conf.early_data) {
SSL_CTX_set_options(ctx, SSL_OP_NO_ANTI_REPLAY);
SSL_CTX_set_max_early_data(ctx, 0xffffffff);
}
SSL_CTX_set_client_hello_cb(ctx, ssl_sock_switchctx_cbk, NULL);
SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_err_cbk);
#else
SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_cbk);
#endif
SSL_CTX_set_tlsext_servername_arg(ctx, bind_conf);
#endif
SSL_CTX_set_quic_method(ctx, &ha_quic_method);
return cfgerr;
}
/* Decode an expected packet number from <truncated_on> its truncated value,
* depending on <largest_pn> the largest received packet number, and <pn_nbits>
* the number of bits used to encode this packet number (its length in bytes * 8).
* See https://quicwg.org/base-drafts/draft-ietf-quic-transport.html#packet-encoding
*/
static uint64_t decode_packet_number(uint64_t largest_pn,
uint32_t truncated_pn, unsigned int pn_nbits)
{
uint64_t expected_pn = largest_pn + 1;
uint64_t pn_win = (uint64_t)1 << pn_nbits;
uint64_t pn_hwin = pn_win / 2;
uint64_t pn_mask = pn_win - 1;
uint64_t candidate_pn;
candidate_pn = (expected_pn & ~pn_mask) | truncated_pn;
/* Note that <pn_win> > <pn_hwin>. */
if (candidate_pn < QUIC_MAX_PACKET_NUM - pn_win &&
candidate_pn + pn_hwin <= expected_pn)
return candidate_pn + pn_win;
if (candidate_pn > expected_pn + pn_hwin && candidate_pn >= pn_win)
return candidate_pn - pn_win;
return candidate_pn;
}
/* Remove the header protection of <pkt> QUIC packet using <tls_ctx> as QUIC TLS
* cryptographic context.
* <largest_pn> is the largest received packet number and <pn> the address of
* the packet number field for this packet with <byte0> address of its first byte.
* <end> points to one byte past the end of this packet.
* Returns 1 if succeeded, 0 if not.
*/
static int qc_do_rm_hp(struct quic_conn *qc,
struct quic_rx_packet *pkt, struct quic_tls_ctx *tls_ctx,
int64_t largest_pn, unsigned char *pn,
unsigned char *byte0, const unsigned char *end)
{
int ret, outlen, i, pnlen;
uint64_t packet_number;
uint32_t truncated_pn = 0;
unsigned char mask[5] = {0};
unsigned char *sample;
EVP_CIPHER_CTX *cctx;
unsigned char *hp_key;
/* Check there is enough data in this packet. */
if (end - pn < QUIC_PACKET_PN_MAXLEN + sizeof mask) {
TRACE_DEVEL("too short packet", QUIC_EV_CONN_RMHP, qc, pkt);
return 0;
}
cctx = EVP_CIPHER_CTX_new();
if (!cctx) {
TRACE_DEVEL("memory allocation failed", QUIC_EV_CONN_RMHP, qc, pkt);
return 0;
}
ret = 0;
sample = pn + QUIC_PACKET_PN_MAXLEN;
hp_key = tls_ctx->rx.hp_key;
if (!EVP_DecryptInit_ex(cctx, tls_ctx->rx.hp, NULL, hp_key, sample) ||
!EVP_DecryptUpdate(cctx, mask, &outlen, mask, sizeof mask) ||
!EVP_DecryptFinal_ex(cctx, mask, &outlen)) {
TRACE_DEVEL("decryption failed", QUIC_EV_CONN_RMHP, qc, pkt);
goto out;
}
*byte0 ^= mask[0] & (*byte0 & QUIC_PACKET_LONG_HEADER_BIT ? 0xf : 0x1f);
pnlen = (*byte0 & QUIC_PACKET_PNL_BITMASK) + 1;
for (i = 0; i < pnlen; i++) {
pn[i] ^= mask[i + 1];
truncated_pn = (truncated_pn << 8) | pn[i];
}
packet_number = decode_packet_number(largest_pn, truncated_pn, pnlen * 8);
/* Store remaining information for this unprotected header */
pkt->pn = packet_number;
pkt->pnl = pnlen;
ret = 1;
out:
EVP_CIPHER_CTX_free(cctx);
return ret;
}
/* Encrypt the payload of a QUIC packet with <pn> as number found at <payload>
* address, with <payload_len> as payload length, <aad> as address of
* the ADD and <aad_len> as AAD length depending on the <tls_ctx> QUIC TLS
* context.
* Returns 1 if succeeded, 0 if not.
*/
static int quic_packet_encrypt(unsigned char *payload, size_t payload_len,
unsigned char *aad, size_t aad_len, uint64_t pn,
struct quic_tls_ctx *tls_ctx, struct quic_conn *qc)
{
unsigned char iv[QUIC_TLS_IV_LEN];
unsigned char *tx_iv = tls_ctx->tx.iv;
size_t tx_iv_sz = tls_ctx->tx.ivlen;
struct enc_debug_info edi;
if (!quic_aead_iv_build(iv, sizeof iv, tx_iv, tx_iv_sz, pn)) {
TRACE_DEVEL("AEAD IV building for encryption failed", QUIC_EV_CONN_HPKT, qc);
goto err;
}
if (!quic_tls_encrypt(payload, payload_len, aad, aad_len,
tls_ctx->tx.ctx, tls_ctx->tx.aead, tls_ctx->tx.key, iv)) {
TRACE_DEVEL("QUIC packet encryption failed", QUIC_EV_CONN_HPKT, qc);
goto err;
}
return 1;
err:
enc_debug_info_init(&edi, payload, payload_len, aad, aad_len, pn);
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_ENCPKT, qc, &edi);
return 0;
}
/* Decrypt <pkt> QUIC packet with <tls_ctx> as QUIC TLS cryptographic context.
* Returns 1 if succeeded, 0 if not.
*/
static int qc_pkt_decrypt(struct quic_rx_packet *pkt, struct quic_enc_level *qel)
{
int ret, kp_changed;
unsigned char iv[QUIC_TLS_IV_LEN];
struct quic_tls_ctx *tls_ctx = &qel->tls_ctx;
EVP_CIPHER_CTX *rx_ctx = tls_ctx->rx.ctx;
unsigned char *rx_iv = tls_ctx->rx.iv;
size_t rx_iv_sz = tls_ctx->rx.ivlen;
unsigned char *rx_key = tls_ctx->rx.key;
kp_changed = 0;
if (pkt->type == QUIC_PACKET_TYPE_SHORT) {
/* The two tested bits are not at the same position,
* this is why they are first both inversed.
*/
if (!(*pkt->data & QUIC_PACKET_KEY_PHASE_BIT) ^ !(tls_ctx->flags & QUIC_FL_TLS_KP_BIT_SET)) {
if (pkt->pn < tls_ctx->rx.pn) {
/* The lowest packet number of a previous key phase
* cannot be null if it really stores previous key phase
* secrets.
*/
if (!pkt->qc->ku.prv_rx.pn)
return 0;
rx_ctx = pkt->qc->ku.prv_rx.ctx;
rx_iv = pkt->qc->ku.prv_rx.iv;
rx_key = pkt->qc->ku.prv_rx.key;
}
else if (pkt->pn > qel->pktns->rx.largest_pn) {
/* Next key phase */
kp_changed = 1;
rx_ctx = pkt->qc->ku.nxt_rx.ctx;
rx_iv = pkt->qc->ku.nxt_rx.iv;
rx_key = pkt->qc->ku.nxt_rx.key;
}
}
}
if (!quic_aead_iv_build(iv, sizeof iv, rx_iv, rx_iv_sz, pkt->pn))
return 0;
ret = quic_tls_decrypt(pkt->data + pkt->aad_len, pkt->len - pkt->aad_len,
pkt->data, pkt->aad_len,
rx_ctx, tls_ctx->rx.aead, rx_key, iv);
if (!ret)
return 0;
/* Update the keys only if the packet decryption succeeded. */
if (kp_changed) {
quic_tls_rotate_keys(pkt->qc);
/* Toggle the Key Phase bit */
tls_ctx->flags ^= QUIC_FL_TLS_KP_BIT_SET;
/* Store the lowest packet number received for the current key phase */
tls_ctx->rx.pn = pkt->pn;
/* Prepare the next key update */
if (!quic_tls_key_update(pkt->qc))
return 0;
}
/* Update the packet length (required to parse the frames). */
pkt->len -= QUIC_TLS_TAG_LEN;
return 1;
}
/* Remove references to <frm> frame */
static void qc_frm_unref(struct quic_conn *qc, struct quic_frame *frm)
{
uint64_t pn;
struct quic_frame *f, *tmp;
list_for_each_entry_safe(f, tmp, &frm->reflist, ref) {
pn = f->pkt->pn_node.key;
f->origin = NULL;
LIST_DELETE(&f->ref);
TRACE_PROTO("remove frame reference", QUIC_EV_CONN_PRSAFRM, qc, f, &pn);
}
}
/* Release <frm> frame and mark its copies as acknowledged */
void qc_release_frm(struct quic_conn *qc, struct quic_frame *frm)
{
uint64_t pn;
struct quic_frame *origin, *f, *tmp;
/* Identify this frame: a frame copy or one of its copies */
origin = frm->origin ? frm->origin : frm;
/* Ensure the source of the copies is flagged as acked, <frm> being
* possibly a copy of <origin>
*/
origin->flags |= QUIC_FL_TX_FRAME_ACKED;
/* Mark all the copy of <origin> as acknowledged. We must
* not release the packets (releasing the frames) at this time as
* they are possibly also to be acknowledged alongside the
* the current one.
*/
list_for_each_entry_safe(f, tmp, &origin->reflist, ref) {
pn = f->pkt->pn_node.key;
TRACE_PROTO("mark frame as acked from packet",
QUIC_EV_CONN_PRSAFRM, qc, f, &pn);
f->flags |= QUIC_FL_TX_FRAME_ACKED;
f->origin = NULL;
LIST_DELETE(&f->ref);
}
LIST_DELETE(&frm->list);
pn = frm->pkt->pn_node.key;
quic_tx_packet_refdec(frm->pkt);
TRACE_PROTO("freeing frame from packet",
QUIC_EV_CONN_PRSAFRM, qc, frm, &pn);
pool_free(pool_head_quic_frame, frm);
}
/* Remove from <stream> the acknowledged frames.
*
* Returns 1 if at least one frame was removed else 0.
*/
static int quic_stream_try_to_consume(struct quic_conn *qc,
struct qc_stream_desc *stream)
{
int ret;
struct eb64_node *frm_node;
ret = 0;
frm_node = eb64_first(&stream->acked_frms);
while (frm_node) {
struct quic_stream *strm;
struct quic_frame *frm;
size_t offset, len;
strm = eb64_entry(frm_node, struct quic_stream, offset);
offset = strm->offset.key;
len = strm->len;
if (offset > stream->ack_offset)
break;
if (qc_stream_desc_ack(&stream, offset, len)) {
/* cf. next comment : frame may be freed at this stage. */
TRACE_PROTO("stream consumed", QUIC_EV_CONN_ACKSTRM,
qc, stream ? strm : NULL, stream);
ret = 1;
}
/* If stream is NULL after qc_stream_desc_ack(), it means frame
* has been freed. with the stream frames tree. Nothing to do
* anymore in here.
*/
if (!stream)
return 1;
frm_node = eb64_next(frm_node);
eb64_delete(&strm->offset);
frm = container_of(strm, struct quic_frame, stream);
qc_release_frm(qc, frm);
}
return ret;
}
/* Treat <frm> frame whose packet it is attached to has just been acknowledged. */
static inline void qc_treat_acked_tx_frm(struct quic_conn *qc,
struct quic_frame *frm)
{
int stream_acked;
TRACE_PROTO("Removing frame", QUIC_EV_CONN_PRSAFRM, qc, frm);
stream_acked = 0;
switch (frm->type) {
case QUIC_FT_STREAM_8 ... QUIC_FT_STREAM_F:
{
struct quic_stream *strm_frm = &frm->stream;
struct eb64_node *node = NULL;
struct qc_stream_desc *stream = NULL;
const size_t offset = strm_frm->offset.key;
const size_t len = strm_frm->len;
/* do not use strm_frm->stream as the qc_stream_desc instance
* might be freed at this stage. Use the id to do a proper
* lookup.
*
* TODO if lookup operation impact on the perf is noticeable,
* implement a refcount on qc_stream_desc instances.
*/
node = eb64_lookup(&qc->streams_by_id, strm_frm->id);
if (!node) {
TRACE_PROTO("acked stream for released stream", QUIC_EV_CONN_ACKSTRM, qc, strm_frm);
qc_release_frm(qc, frm);
/* early return */
return;
}
stream = eb64_entry(node, struct qc_stream_desc, by_id);
TRACE_PROTO("acked stream", QUIC_EV_CONN_ACKSTRM, qc, strm_frm, stream);
if (offset <= stream->ack_offset) {
if (qc_stream_desc_ack(&stream, offset, len)) {
stream_acked = 1;
TRACE_PROTO("stream consumed", QUIC_EV_CONN_ACKSTRM,
qc, strm_frm, stream);
}
if (!stream) {
/* no need to continue if stream freed. */
TRACE_PROTO("stream released and freed", QUIC_EV_CONN_ACKSTRM, qc);
qc_release_frm(qc, frm);
break;
}
TRACE_PROTO("stream consumed", QUIC_EV_CONN_ACKSTRM,
qc, strm_frm, stream);
qc_release_frm(qc, frm);
}
else {
eb64_insert(&stream->acked_frms, &strm_frm->offset);
}
stream_acked |= quic_stream_try_to_consume(qc, stream);
}
break;
default:
qc_release_frm(qc, frm);
}
if (stream_acked && qc->mux_state == QC_MUX_READY) {
struct qcc *qcc = qc->qcc;
if (qcc->subs && qcc->subs->events & SUB_RETRY_SEND) {
tasklet_wakeup(qcc->subs->tasklet);
qcc->subs->events &= ~SUB_RETRY_SEND;
if (!qcc->subs->events)
qcc->subs = NULL;
}
}
}
/* Remove <largest> down to <smallest> node entries from <pkts> tree of TX packet,
* deallocating them, and their TX frames.
* Returns the last node reached to be used for the next range.
* May be NULL if <largest> node could not be found.
*/
static inline struct eb64_node *qc_ackrng_pkts(struct quic_conn *qc,
struct eb_root *pkts,
unsigned int *pkt_flags,
struct list *newly_acked_pkts,
struct eb64_node *largest_node,
uint64_t largest, uint64_t smallest)
{
struct eb64_node *node;
struct quic_tx_packet *pkt;
if (largest_node)
node = largest_node;
else {
node = eb64_lookup(pkts, largest);
while (!node && largest > smallest) {
node = eb64_lookup(pkts, --largest);
}
}
while (node && node->key >= smallest) {
struct quic_frame *frm, *frmbak;
pkt = eb64_entry(node, struct quic_tx_packet, pn_node);
*pkt_flags |= pkt->flags;
LIST_INSERT(newly_acked_pkts, &pkt->list);
TRACE_PROTO("Removing packet #", QUIC_EV_CONN_PRSAFRM, qc, NULL, &pkt->pn_node.key);
list_for_each_entry_safe(frm, frmbak, &pkt->frms, list)
qc_treat_acked_tx_frm(qc, frm);
node = eb64_prev(node);
eb64_delete(&pkt->pn_node);
}
return node;
}
/* Remove all frames from <pkt_frm_list> and reinsert them in the
* same order they have been sent into <pktns_frm_list>.
*/
static inline void qc_requeue_nacked_pkt_tx_frms(struct quic_conn *qc,
struct quic_tx_packet *pkt,
struct list *pktns_frm_list)
{
struct quic_frame *frm, *frmbak;
struct list tmp = LIST_HEAD_INIT(tmp);
struct list *pkt_frm_list = &pkt->frms;
list_for_each_entry_safe(frm, frmbak, pkt_frm_list, list) {
/* Only for debug */
uint64_t pn;
/* First remove this frame from the packet it was attached to */
LIST_DELETE(&frm->list);
pn = frm->pkt->pn_node.key;
quic_tx_packet_refdec(frm->pkt);
/* At this time, this frame is not freed but removed from its packet */
frm->pkt = NULL;
/* Remove any reference to this frame */
qc_frm_unref(qc, frm);
switch (frm->type) {
case QUIC_FT_STREAM_8 ... QUIC_FT_STREAM_F:
{
struct quic_stream *strm_frm = &frm->stream;
struct eb64_node *node = NULL;
struct qc_stream_desc *stream_desc;
node = eb64_lookup(&qc->streams_by_id, strm_frm->id);
if (!node) {
TRACE_PROTO("released stream", QUIC_EV_CONN_PRSAFRM, qc, frm);
TRACE_PROTO("freeing frame from packet", QUIC_EV_CONN_PRSAFRM,
qc, frm, &pn);
pool_free(pool_head_quic_frame, frm);
continue;
}
stream_desc = eb64_entry(node, struct qc_stream_desc, by_id);
/* Do not resend this frame if in the "already acked range" */
if (strm_frm->offset.key + strm_frm->len <= stream_desc->ack_offset) {
TRACE_PROTO("ignored frame in already acked range",
QUIC_EV_CONN_PRSAFRM, qc, frm);
continue;
}
else if (strm_frm->offset.key < stream_desc->ack_offset) {
strm_frm->offset.key = stream_desc->ack_offset;
TRACE_PROTO("updated partially acked frame",
QUIC_EV_CONN_PRSAFRM, qc, frm);
}
break;
}
default:
break;
}
/* Do not resend probing packet with old data */
if (pkt->flags & QUIC_FL_TX_PACKET_PROBE_WITH_OLD_DATA) {
TRACE_PROTO("ignored frame with old data from packet", QUIC_EV_CONN_PRSAFRM,
qc, frm, &pn);
if (frm->origin)
LIST_DELETE(&frm->ref);
pool_free(pool_head_quic_frame, frm);
continue;
}
if (frm->flags & QUIC_FL_TX_FRAME_ACKED) {
TRACE_PROTO("already acked frame", QUIC_EV_CONN_PRSAFRM, qc, frm);
TRACE_PROTO("freeing frame from packet", QUIC_EV_CONN_PRSAFRM,
qc, frm, &pn);
pool_free(pool_head_quic_frame, frm);
}
else {
TRACE_PROTO("to resend frame", QUIC_EV_CONN_PRSAFRM, qc, frm);
if (QUIC_FT_STREAM_8 <= frm->type && frm->type <= QUIC_FT_STREAM_F) {
/* Mark this STREAM frame as lost. A look up their stream descriptor
* will be performed to check the stream is not consumed or released.
*/
frm->flags = QUIC_FL_TX_FRAME_LOST;
}
LIST_APPEND(&tmp, &frm->list);
}
}
LIST_SPLICE(pktns_frm_list, &tmp);
}
/* Free <pkt> TX packet and its attached frames.
* This is the responsability of the caller to remove this packet of
* any data structure it was possibly attached to.
*/
static inline void free_quic_tx_packet(struct quic_tx_packet *pkt)
{
struct quic_frame *frm, *frmbak;
if (!pkt)
return;
list_for_each_entry_safe(frm, frmbak, &pkt->frms, list) {
LIST_DELETE(&frm->list);
pool_free(pool_head_quic_frame, frm);
}
pool_free(pool_head_quic_tx_packet, pkt);
}
/* Free the TX packets of <pkts> list */
static inline void free_quic_tx_pkts(struct list *pkts)
{
struct quic_tx_packet *pkt, *tmp;
list_for_each_entry_safe(pkt, tmp, pkts, list) {
LIST_DELETE(&pkt->list);
eb64_delete(&pkt->pn_node);
free_quic_tx_packet(pkt);
}
}
/* Remove already sent ranges of acknowledged packet numbers from
* <pktns> packet number space tree below <largest_acked_pn> possibly
* updating the range which contains <largest_acked_pn>.
* Never fails.
*/
static void qc_treat_ack_of_ack(struct quic_pktns *pktns,
int64_t largest_acked_pn)
{
struct eb64_node *ar, *next_ar;
struct quic_arngs *arngs = &pktns->rx.arngs;
ar = eb64_first(&arngs->root);
while (ar) {
struct quic_arng_node *ar_node;
next_ar = eb64_next(ar);
ar_node = eb64_entry(ar, struct quic_arng_node, first);
if ((int64_t)ar_node->first.key > largest_acked_pn)
break;
if (largest_acked_pn < ar_node->last) {
eb64_delete(ar);
ar_node->first.key = largest_acked_pn + 1;
eb64_insert(&arngs->root, ar);
break;
}
eb64_delete(ar);
pool_free(pool_head_quic_arng, ar_node);
arngs->sz--;
ar = next_ar;
}
}
/* Send a packet ack event nofication for each newly acked packet of
* <newly_acked_pkts> list and free them.
* Always succeeds.
*/
static inline void qc_treat_newly_acked_pkts(struct quic_conn *qc,
struct list *newly_acked_pkts)
{
struct quic_tx_packet *pkt, *tmp;
struct quic_cc_event ev = { .type = QUIC_CC_EVT_ACK, };
list_for_each_entry_safe(pkt, tmp, newly_acked_pkts, list) {
pkt->pktns->tx.in_flight -= pkt->in_flight_len;
qc->path->prep_in_flight -= pkt->in_flight_len;
qc->path->in_flight -= pkt->in_flight_len;
if (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING)
qc->path->ifae_pkts--;
/* If this packet contained an ACK frame, proceed to the
* acknowledging of range of acks from the largest acknowledged
* packet number which was sent in an ACK frame by this packet.
*/
if (pkt->largest_acked_pn != -1)
qc_treat_ack_of_ack(pkt->pktns, pkt->largest_acked_pn);
ev.ack.acked = pkt->in_flight_len;
ev.ack.time_sent = pkt->time_sent;
quic_cc_event(&qc->path->cc, &ev);
LIST_DELETE(&pkt->list);
eb64_delete(&pkt->pn_node);
quic_tx_packet_refdec(pkt);
}
}
/* Release all the frames attached to <pktns> packet number space */
static inline void qc_release_pktns_frms(struct quic_pktns *pktns)
{
struct quic_frame *frm, *frmbak;
list_for_each_entry_safe(frm, frmbak, &pktns->tx.frms, list) {
LIST_DELETE(&frm->list);
pool_free(pool_head_quic_frame, frm);
}
}
/* Handle <pkts> list of lost packets detected at <now_us> handling
* their TX frames.
* Send a packet loss event to the congestion controller if
* in flight packet have been lost.
* Also frees the packet in <pkts> list.
* Never fails.
*/
static inline void qc_release_lost_pkts(struct quic_conn *qc,
struct quic_pktns *pktns,
struct list *pkts,
uint64_t now_us)
{
struct quic_tx_packet *pkt, *tmp, *oldest_lost, *newest_lost;
uint64_t lost_bytes;
lost_bytes = 0;
oldest_lost = newest_lost = NULL;
list_for_each_entry_safe(pkt, tmp, pkts, list) {
struct list tmp = LIST_HEAD_INIT(tmp);
lost_bytes += pkt->in_flight_len;
pkt->pktns->tx.in_flight -= pkt->in_flight_len;
qc->path->prep_in_flight -= pkt->in_flight_len;
qc->path->in_flight -= pkt->in_flight_len;
if (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING)
qc->path->ifae_pkts--;
/* Treat the frames of this lost packet. */
qc_requeue_nacked_pkt_tx_frms(qc, pkt, &pktns->tx.frms);
LIST_DELETE(&pkt->list);
if (!oldest_lost) {
oldest_lost = newest_lost = pkt;
}
else {
if (newest_lost != oldest_lost)
quic_tx_packet_refdec(newest_lost);
newest_lost = pkt;
}
}
if (newest_lost) {
/* Sent a congestion event to the controller */
struct quic_cc_event ev = { };
ev.type = QUIC_CC_EVT_LOSS;
ev.loss.time_sent = newest_lost->time_sent;
quic_cc_event(&qc->path->cc, &ev);
}
/* If an RTT have been already sampled, <rtt_min> has been set.
* We must check if we are experiencing a persistent congestion.
* If this is the case, the congestion controller must re-enter
* slow start state.
*/
if (qc->path->loss.rtt_min && newest_lost != oldest_lost) {
unsigned int period = newest_lost->time_sent - oldest_lost->time_sent;
if (quic_loss_persistent_congestion(&qc->path->loss, period,
now_ms, qc->max_ack_delay))
qc->path->cc.algo->slow_start(&qc->path->cc);
}
if (lost_bytes) {
quic_tx_packet_refdec(oldest_lost);
if (newest_lost != oldest_lost)
quic_tx_packet_refdec(newest_lost);
}
}
/* Parse ACK frame into <frm> from a buffer at <buf> address with <end> being at
* one byte past the end of this buffer. Also update <rtt_sample> if needed, i.e.
* if the largest acked packet was newly acked and if there was at least one newly
* acked ack-eliciting packet.
* Return 1, if succeeded, 0 if not.
*/
static inline int qc_parse_ack_frm(struct quic_conn *qc,
struct quic_frame *frm,
struct quic_enc_level *qel,
unsigned int *rtt_sample,
const unsigned char **pos, const unsigned char *end)
{
struct quic_ack *ack = &frm->ack;
uint64_t smallest, largest;
struct eb_root *pkts;
struct eb64_node *largest_node;
unsigned int time_sent, pkt_flags;
struct list newly_acked_pkts = LIST_HEAD_INIT(newly_acked_pkts);
struct list lost_pkts = LIST_HEAD_INIT(lost_pkts);
if (ack->largest_ack > qel->pktns->tx.next_pn) {
TRACE_DEVEL("ACK for not sent packet", QUIC_EV_CONN_PRSAFRM,
qc, NULL, &ack->largest_ack);
goto err;
}
if (ack->first_ack_range > ack->largest_ack) {
TRACE_DEVEL("too big first ACK range", QUIC_EV_CONN_PRSAFRM,
qc, NULL, &ack->first_ack_range);
goto err;
}
largest = ack->largest_ack;
smallest = largest - ack->first_ack_range;
pkts = &qel->pktns->tx.pkts;
pkt_flags = 0;
largest_node = NULL;
time_sent = 0;
if ((int64_t)ack->largest_ack > qel->pktns->rx.largest_acked_pn) {
largest_node = eb64_lookup(pkts, largest);
if (!largest_node) {
TRACE_DEVEL("Largest acked packet not found",
QUIC_EV_CONN_PRSAFRM, qc);
}
else {
time_sent = eb64_entry(largest_node,
struct quic_tx_packet, pn_node)->time_sent;
}
}
TRACE_PROTO("ack range", QUIC_EV_CONN_PRSAFRM,
qc, NULL, &largest, &smallest);
do {
uint64_t gap, ack_range;
qc_ackrng_pkts(qc, pkts, &pkt_flags, &newly_acked_pkts,
largest_node, largest, smallest);
if (!ack->ack_range_num--)
break;
if (!quic_dec_int(&gap, pos, end))
goto err;
if (smallest < gap + 2) {
TRACE_DEVEL("wrong gap value", QUIC_EV_CONN_PRSAFRM,
qc, NULL, &gap, &smallest);
goto err;
}
largest = smallest - gap - 2;
if (!quic_dec_int(&ack_range, pos, end))
goto err;
if (largest < ack_range) {
TRACE_DEVEL("wrong ack range value", QUIC_EV_CONN_PRSAFRM,
qc, NULL, &largest, &ack_range);
goto err;
}
/* Do not use this node anymore. */
largest_node = NULL;
/* Next range */
smallest = largest - ack_range;
TRACE_PROTO("ack range", QUIC_EV_CONN_PRSAFRM,
qc, NULL, &largest, &smallest);
} while (1);
if (time_sent && (pkt_flags & QUIC_FL_TX_PACKET_ACK_ELICITING)) {
*rtt_sample = tick_remain(time_sent, now_ms);
qel->pktns->rx.largest_acked_pn = ack->largest_ack;
}
if (!LIST_ISEMPTY(&newly_acked_pkts)) {
if (!eb_is_empty(&qel->pktns->tx.pkts)) {
qc_packet_loss_lookup(qel->pktns, qc, &lost_pkts);
if (!LIST_ISEMPTY(&lost_pkts))
qc_release_lost_pkts(qc, qel->pktns, &lost_pkts, now_ms);
}
qc_treat_newly_acked_pkts(qc, &newly_acked_pkts);
if (quic_peer_validated_addr(qc))
qc->path->loss.pto_count = 0;
qc_set_timer(qc);
}
return 1;
err:
free_quic_tx_pkts(&newly_acked_pkts);
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_PRSAFRM, qc);
return 0;
}
/* This function gives the detail of the SSL error. It is used only
* if the debug mode and the verbose mode are activated. It dump all
* the SSL error until the stack was empty.
*/
static forceinline void qc_ssl_dump_errors(struct connection *conn)
{
if (unlikely(global.mode & MODE_DEBUG)) {
while (1) {
const char *func = NULL;
unsigned long ret;
ERR_peek_error_func(&func);
ret = ERR_get_error();
if (!ret)
return;
fprintf(stderr, "conn. @%p OpenSSL error[0x%lx] %s: %s\n", conn, ret,
func, ERR_reason_error_string(ret));
}
}
}
int ssl_sock_get_alpn(const struct connection *conn, void *xprt_ctx,
const char **str, int *len);
/* Provide CRYPTO data to the TLS stack found at <data> with <len> as length
* from <qel> encryption level with <ctx> as QUIC connection context.
* Remaining parameter are there for debugging purposes.
* Return 1 if succeeded, 0 if not.
*/
static inline int qc_provide_cdata(struct quic_enc_level *el,
struct ssl_sock_ctx *ctx,
const unsigned char *data, size_t len,
struct quic_rx_packet *pkt,
struct quic_rx_crypto_frm *cf)
{
int ssl_err, state;
struct quic_conn *qc;
ssl_err = SSL_ERROR_NONE;
qc = ctx->qc;
TRACE_ENTER(QUIC_EV_CONN_SSLDATA, qc);
if (SSL_provide_quic_data(ctx->ssl, el->level, data, len) != 1) {
TRACE_PROTO("SSL_provide_quic_data() error",
QUIC_EV_CONN_SSLDATA, qc, pkt, cf, ctx->ssl);
goto err;
}
el->rx.crypto.offset += len;
TRACE_PROTO("in order CRYPTO data",
QUIC_EV_CONN_SSLDATA, qc, NULL, cf, ctx->ssl);
state = qc->state;
if (state < QUIC_HS_ST_COMPLETE) {
ssl_err = SSL_do_handshake(ctx->ssl);
if (ssl_err != 1) {
ssl_err = SSL_get_error(ctx->ssl, ssl_err);
if (ssl_err == SSL_ERROR_WANT_READ || ssl_err == SSL_ERROR_WANT_WRITE) {
TRACE_PROTO("SSL handshake",
QUIC_EV_CONN_IO_CB, qc, &state, &ssl_err);
goto out;
}
/* TODO: Should close the connection asap */
if (!(qc->flags & QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED)) {
qc->flags |= QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED;
HA_ATOMIC_DEC(&qc->prx_counters->half_open_conn);
HA_ATOMIC_INC(&qc->prx_counters->hdshk_fail);
}
TRACE_DEVEL("SSL handshake error",
QUIC_EV_CONN_IO_CB, qc, &state, &ssl_err);
qc_ssl_dump_errors(ctx->conn);
ERR_clear_error();
goto err;
}
TRACE_PROTO("SSL handshake OK", QUIC_EV_CONN_IO_CB, qc, &state);
/* Check the alpn could be negotiated */
if (!qc->app_ops) {
TRACE_PROTO("No ALPN", QUIC_EV_CONN_IO_CB, qc, &state);
quic_set_tls_alert(qc, SSL_AD_NO_APPLICATION_PROTOCOL);
goto err;
}
if (!(qc->flags & QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED)) {
qc->flags |= QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED;
HA_ATOMIC_DEC(&qc->prx_counters->half_open_conn);
}
/* I/O callback switch */
ctx->wait_event.tasklet->process = quic_conn_app_io_cb;
if (qc_is_listener(ctx->qc)) {
qc->state = QUIC_HS_ST_CONFIRMED;
/* The connection is ready to be accepted. */
quic_accept_push_qc(qc);
}
else {
qc->state = QUIC_HS_ST_COMPLETE;
}
} else {
ssl_err = SSL_process_quic_post_handshake(ctx->ssl);
if (ssl_err != 1) {
ssl_err = SSL_get_error(ctx->ssl, ssl_err);
if (ssl_err == SSL_ERROR_WANT_READ || ssl_err == SSL_ERROR_WANT_WRITE) {
TRACE_DEVEL("SSL post handshake",
QUIC_EV_CONN_IO_CB, qc, &state, &ssl_err);
goto out;
}
TRACE_DEVEL("SSL post handshake error",
QUIC_EV_CONN_IO_CB, qc, &state, &ssl_err);
goto err;
}
TRACE_PROTO("SSL post handshake succeeded",
QUIC_EV_CONN_IO_CB, qc, &state);
}
out:
TRACE_LEAVE(QUIC_EV_CONN_SSLDATA, qc);
return 1;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_SSLDATA, qc);
return 0;
}
/* Parse a STREAM frame <strm_frm>
*
* Return 1 on success. On error, 0 is returned. In this case, the packet
* containing the frame must not be acknowledged.
*/
static inline int qc_handle_strm_frm(struct quic_rx_packet *pkt,
struct quic_stream *strm_frm,
struct quic_conn *qc)
{
int ret;
/* RFC9000 13.1. Packet Processing
*
* A packet MUST NOT be acknowledged until packet protection has been
* successfully removed and all frames contained in the packet have
* been processed. For STREAM frames, this means the data has been
* enqueued in preparation to be received by the application protocol,
* but it does not require that data be delivered and consumed.
*/
ret = qcc_recv(qc->qcc, strm_frm->id, strm_frm->len,
strm_frm->offset.key, strm_frm->fin,
(char *)strm_frm->data);
/* frame rejected - packet must not be acknowledeged */
if (ret)
return 0;
return 1;
}
/* Duplicate all frames from <pkt_frm_list> list into <out_frm_list> list
* for <qc> QUIC connection.
* This is a best effort function which never fails even if no memory could be
* allocated to duplicate these frames.
*/
static void qc_dup_pkt_frms(struct quic_conn *qc,
struct list *pkt_frm_list, struct list *out_frm_list)
{
struct quic_frame *frm, *frmbak;
struct list tmp = LIST_HEAD_INIT(tmp);
list_for_each_entry_safe(frm, frmbak, pkt_frm_list, list) {
struct quic_frame *dup_frm, *origin;
switch (frm->type) {
case QUIC_FT_STREAM_8 ... QUIC_FT_STREAM_F:
{
struct quic_stream *strm_frm = &frm->stream;
struct eb64_node *node = NULL;
struct qc_stream_desc *stream_desc;
node = eb64_lookup(&qc->streams_by_id, strm_frm->id);
if (!node) {
TRACE_PROTO("released stream", QUIC_EV_CONN_PRSAFRM, qc, frm);
continue;
}
stream_desc = eb64_entry(node, struct qc_stream_desc, by_id);
/* Do not resend this frame if in the "already acked range" */
if (strm_frm->offset.key + strm_frm->len <= stream_desc->ack_offset) {
TRACE_PROTO("ignored frame frame in already acked range",
QUIC_EV_CONN_PRSAFRM, qc, frm);
continue;
}
else if (strm_frm->offset.key < stream_desc->ack_offset) {
strm_frm->offset.key = stream_desc->ack_offset;
TRACE_PROTO("updated partially acked frame",
QUIC_EV_CONN_PRSAFRM, qc, frm);
}
break;
}
default:
break;
}
dup_frm = pool_zalloc(pool_head_quic_frame);
if (!dup_frm) {
TRACE_PROTO("could not duplicate frame", QUIC_EV_CONN_PRSAFRM, qc, frm);
break;
}
/* If <frm> is already a copy of another frame, we must take
* its original frame as source for the copy.
*/
origin = frm->origin ? frm->origin : frm;
TRACE_PROTO("probing frame", QUIC_EV_CONN_PRSAFRM, qc, origin);
*dup_frm = *origin;
LIST_INIT(&dup_frm->reflist);
TRACE_PROTO("copied from packet", QUIC_EV_CONN_PRSAFRM,
qc, NULL, &origin->pkt->pn_node.key);
dup_frm->origin = origin;
LIST_APPEND(&origin->reflist, &dup_frm->ref);
LIST_APPEND(&tmp, &dup_frm->list);
}
LIST_SPLICE(out_frm_list, &tmp);
}
/* Prepare a fast retransmission from <qel> encryption level */
static void qc_prep_fast_retrans(struct quic_conn *qc,
struct quic_enc_level *qel,
struct list *frms1, struct list *frms2)
{
struct eb_root *pkts = &qel->pktns->tx.pkts;
struct list *frms = frms1;
struct eb64_node *node;
struct quic_tx_packet *pkt;
pkt = NULL;
node = eb64_first(pkts);
start:
while (node) {
pkt = eb64_entry(node, struct quic_tx_packet, pn_node);
node = eb64_next(node);
/* Skip the empty and coalesced packets */
if (!LIST_ISEMPTY(&pkt->frms) && !(pkt->flags & QUIC_FL_TX_PACKET_COALESCED))
break;
}
if (!pkt)
return;
/* When building a packet from another one, the field which may increase the
* packet size is the packet number. And the maximum increase is 4 bytes.
*/
if (!quic_peer_validated_addr(qc) && qc_is_listener(qc) &&
pkt->len + 4 > 3 * qc->rx.bytes - qc->tx.prep_bytes) {
TRACE_PROTO("anti-amplification limit would be reached", QUIC_EV_CONN_PRSAFRM, qc);
return;
}
TRACE_PROTO("duplicating packet", QUIC_EV_CONN_PRSAFRM, qc, NULL, &pkt->pn_node.key);
qc_dup_pkt_frms(qc, &pkt->frms, frms);
if (frms == frms1 && frms2) {
frms = frms2;
goto start;
}
}
/* Prepare a fast retransmission during a handshake after a client
* has resent Initial packets. According to the RFC a server may retransmit
* Initial packets send them coalescing with others (Handshake here).
* (Listener only function).
*/
static void qc_prep_hdshk_fast_retrans(struct quic_conn *qc,
struct list *ifrms, struct list *hfrms)
{
struct list itmp = LIST_HEAD_INIT(itmp);
struct list htmp = LIST_HEAD_INIT(htmp);
struct quic_enc_level *iqel = &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL];
struct quic_enc_level *hqel = &qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE];
struct quic_enc_level *qel = iqel;
struct eb_root *pkts;
struct eb64_node *node;
struct quic_tx_packet *pkt;
struct list *tmp = &itmp;
start:
pkt = NULL;
pkts = &qel->pktns->tx.pkts;
node = eb64_first(pkts);
/* Skip the empty packet (they have already been retransmitted) */
while (node) {
pkt = eb64_entry(node, struct quic_tx_packet, pn_node);
if (!LIST_ISEMPTY(&pkt->frms) && !(pkt->flags & QUIC_FL_TX_PACKET_COALESCED))
break;
node = eb64_next(node);
}
if (!pkt)
goto end;
/* When building a packet from another one, the field which may increase the
* packet size is the packet number. And the maximum increase is 4 bytes.
*/
if (!quic_peer_validated_addr(qc) && qc_is_listener(qc) &&
pkt->len + 4 > 3 * qc->rx.bytes - qc->tx.prep_bytes) {
TRACE_PROTO("anti-amplification limit would be reached", QUIC_EV_CONN_PRSAFRM, qc);
goto end;
}
qel->pktns->tx.pto_probe += 1;
requeue:
TRACE_PROTO("duplicating packet", QUIC_EV_CONN_PRSAFRM, qc, NULL, &pkt->pn_node.key);
qc_dup_pkt_frms(qc, &pkt->frms, tmp);
if (qel == iqel) {
if (pkt->next && pkt->next->type == QUIC_PACKET_TYPE_HANDSHAKE) {
pkt = pkt->next;
tmp = &htmp;
hqel->pktns->tx.pto_probe += 1;
goto requeue;
}
}
end:
LIST_SPLICE(ifrms, &itmp);
LIST_SPLICE(hfrms, &htmp);
}
static void qc_cc_err_count_inc(struct quic_conn *qc, struct quic_frame *frm)
{
if (frm->type == QUIC_FT_CONNECTION_CLOSE)
quic_stats_transp_err_count_inc(qc->prx_counters, frm->connection_close.error_code);
else if (frm->type == QUIC_FT_CONNECTION_CLOSE_APP) {
if (qc->mux_state != QC_MUX_READY || !qc->qcc->app_ops->inc_err_cnt)
return;
qc->qcc->app_ops->inc_err_cnt(qc->qcc->ctx, frm->connection_close_app.error_code);
}
}
/* Enqueue a STOP_SENDING frame to send into 1RTT packet number space
* frame list to send.
* Return 1 if succeeded, 0 if not.
*/
static int qc_stop_sending_frm_enqueue(struct quic_conn *qc, uint64_t id)
{
struct quic_frame *frm;
struct quic_enc_level *qel = &qc->els[QUIC_TLS_ENC_LEVEL_APP];
uint64_t app_error_code;
/* TODO: the mux may be released, we cannot have more
* information about the application error code to send
* at this time.
*/
app_error_code = H3_REQUEST_REJECTED;
frm = pool_zalloc(pool_head_quic_frame);
if (!frm)
return 0;
frm->type = QUIC_FT_STOP_SENDING;
frm->stop_sending.id = id;
frm->stop_sending.app_error_code = app_error_code;
LIST_INIT(&frm->reflist);
LIST_APPEND(&qel->pktns->tx.frms, &frm->list);
return 1;
}
/* Parse all the frames of <pkt> QUIC packet for QUIC connection with <ctx>
* as I/O handler context and <qel> as encryption level.
* Returns 1 if succeeded, 0 if failed.
*/
static int qc_parse_pkt_frms(struct quic_rx_packet *pkt, struct ssl_sock_ctx *ctx,
struct quic_enc_level *qel)
{
struct quic_frame frm;
const unsigned char *pos, *end;
struct quic_conn *qc = ctx->qc;
int fast_retrans = 0;
TRACE_ENTER(QUIC_EV_CONN_PRSHPKT, qc);
/* Skip the AAD */
pos = pkt->data + pkt->aad_len;
end = pkt->data + pkt->len;
while (pos < end) {
if (!qc_parse_frm(&frm, pkt, &pos, end, qc))
goto err;
TRACE_PROTO("RX frame", QUIC_EV_CONN_PSTRM, qc, &frm);
switch (frm.type) {
case QUIC_FT_PADDING:
break;
case QUIC_FT_PING:
break;
case QUIC_FT_ACK:
{
unsigned int rtt_sample;
rtt_sample = 0;
if (!qc_parse_ack_frm(qc, &frm, qel, &rtt_sample, &pos, end))
goto err;
if (rtt_sample) {
unsigned int ack_delay;
ack_delay = !quic_application_pktns(qel->pktns, qc) ? 0 :
qc->state >= QUIC_HS_ST_CONFIRMED ?
MS_TO_TICKS(QUIC_MIN(quic_ack_delay_ms(&frm.ack, qc), qc->max_ack_delay)) :
MS_TO_TICKS(quic_ack_delay_ms(&frm.ack, qc));
quic_loss_srtt_update(&qc->path->loss, rtt_sample, ack_delay, qc);
}
break;
}
case QUIC_FT_RESET_STREAM:
/* TODO: handle this frame at STREAM level */
break;
case QUIC_FT_STOP_SENDING:
/* TODO: handle this frame at STREAM level */
break;
case QUIC_FT_CRYPTO:
{
struct quic_rx_crypto_frm *cf;
if (unlikely(qel->tls_ctx.flags & QUIC_FL_TLS_SECRETS_DCD)) {
/* XXX TO DO: <cfdebug> is used only for the traces. */
struct quic_rx_crypto_frm cfdebug = { };
cfdebug.offset_node.key = frm.crypto.offset;
cfdebug.len = frm.crypto.len;
TRACE_PROTO("CRYPTO data discarded",
QUIC_EV_CONN_ELRXPKTS, qc, pkt, &cfdebug);
break;
}
if (unlikely(frm.crypto.offset < qel->rx.crypto.offset)) {
if (frm.crypto.offset + frm.crypto.len <= qel->rx.crypto.offset) {
/* XXX TO DO: <cfdebug> is used only for the traces. */
struct quic_rx_crypto_frm cfdebug = { };
cfdebug.offset_node.key = frm.crypto.offset;
cfdebug.len = frm.crypto.len;
/* Nothing to do */
TRACE_PROTO("Already received CRYPTO data",
QUIC_EV_CONN_ELRXPKTS, qc, pkt, &cfdebug);
if (qc_is_listener(ctx->qc) &&
qel == &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL])
fast_retrans = 1;
break;
}
else {
size_t diff = qel->rx.crypto.offset - frm.crypto.offset;
/* XXX TO DO: <cfdebug> is used only for the traces. */
struct quic_rx_crypto_frm cfdebug = { };
cfdebug.offset_node.key = frm.crypto.offset;
cfdebug.len = frm.crypto.len;
TRACE_PROTO("Partially already received CRYPTO data",
QUIC_EV_CONN_ELRXPKTS, qc, pkt, &cfdebug);
frm.crypto.len -= diff;
frm.crypto.data += diff;
frm.crypto.offset = qel->rx.crypto.offset;
}
}
if (frm.crypto.offset == qel->rx.crypto.offset) {
/* XXX TO DO: <cf> is used only for the traces. */
struct quic_rx_crypto_frm cfdebug = { };
cfdebug.offset_node.key = frm.crypto.offset;
cfdebug.len = frm.crypto.len;
if (!qc_provide_cdata(qel, ctx,
frm.crypto.data, frm.crypto.len,
pkt, &cfdebug))
goto err;
break;
}
/* frm.crypto.offset > qel->rx.crypto.offset */
cf = pool_alloc(pool_head_quic_rx_crypto_frm);
if (!cf) {
TRACE_DEVEL("CRYPTO frame allocation failed",
QUIC_EV_CONN_PRSHPKT, qc);
goto err;
}
cf->offset_node.key = frm.crypto.offset;
cf->len = frm.crypto.len;
cf->data = frm.crypto.data;
cf->pkt = pkt;
eb64_insert(&qel->rx.crypto.frms, &cf->offset_node);
quic_rx_packet_refinc(pkt);
break;
}
case QUIC_FT_STREAM_8 ... QUIC_FT_STREAM_F:
{
struct quic_stream *stream = &frm.stream;
unsigned nb_streams = qc->rx.strms[qcs_id_type(stream->id)].nb_streams;
/* The upper layer may not be allocated. */
if (qc->mux_state != QC_MUX_READY) {
if ((stream->id >> QCS_ID_TYPE_SHIFT) < nb_streams) {
TRACE_PROTO("Already closed stream", QUIC_EV_CONN_PRSHPKT, qc);
break;
}
else {
TRACE_PROTO("Stream not found", QUIC_EV_CONN_PRSHPKT, qc);
if (!qc_stop_sending_frm_enqueue(qc, stream->id))
TRACE_PROTO("could not enqueue STOP_SENDING frame", QUIC_EV_CONN_PRSHPKT, qc);
goto err;
}
}
if (!qc_handle_strm_frm(pkt, stream, qc))
goto err;
break;
}
case QUIC_FT_MAX_DATA:
if (qc->mux_state == QC_MUX_READY) {
struct quic_max_data *data = &frm.max_data;
qcc_recv_max_data(qc->qcc, data->max_data);
}
break;
case QUIC_FT_MAX_STREAM_DATA:
if (qc->mux_state == QC_MUX_READY) {
struct quic_max_stream_data *data = &frm.max_stream_data;
qcc_recv_max_stream_data(qc->qcc, data->id,
data->max_stream_data);
}
break;
case QUIC_FT_MAX_STREAMS_BIDI:
case QUIC_FT_MAX_STREAMS_UNI:
break;
case QUIC_FT_DATA_BLOCKED:
HA_ATOMIC_INC(&qc->prx_counters->data_blocked);
break;
case QUIC_FT_STREAM_DATA_BLOCKED:
HA_ATOMIC_INC(&qc->prx_counters->stream_data_blocked);
break;
case QUIC_FT_STREAMS_BLOCKED_BIDI:
HA_ATOMIC_INC(&qc->prx_counters->streams_data_blocked_bidi);
break;
case QUIC_FT_STREAMS_BLOCKED_UNI:
HA_ATOMIC_INC(&qc->prx_counters->streams_data_blocked_uni);
break;
case QUIC_FT_NEW_CONNECTION_ID:
case QUIC_FT_RETIRE_CONNECTION_ID:
/* XXX TO DO XXX */
break;
case QUIC_FT_CONNECTION_CLOSE:
case QUIC_FT_CONNECTION_CLOSE_APP:
/* Increment the error counters */
qc_cc_err_count_inc(qc, &frm);
if (!(qc->flags & QUIC_FL_CONN_DRAINING)) {
if (!(qc->flags & QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED)) {
qc->flags |= QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED;
HA_ATOMIC_DEC(&qc->prx_counters->half_open_conn);
}
TRACE_PROTO("Entering draining state", QUIC_EV_CONN_PRSHPKT, qc);
/* RFC 9000 10.2. Immediate Close:
* The closing and draining connection states exist to ensure
* that connections close cleanly and that delayed or reordered
* packets are properly discarded. These states SHOULD persist
* for at least three times the current PTO interval...
*
* Rearm the idle timeout only one time when entering draining
* state.
*/
qc_idle_timer_do_rearm(qc);
qc->flags |= QUIC_FL_CONN_DRAINING|QUIC_FL_CONN_IMMEDIATE_CLOSE;
qc_notify_close(qc);
}
break;
case QUIC_FT_HANDSHAKE_DONE:
if (qc_is_listener(ctx->qc))
goto err;
qc->state = QUIC_HS_ST_CONFIRMED;
break;
default:
goto err;
}
}
/* Flag this packet number space as having received a packet. */
qel->pktns->flags |= QUIC_FL_PKTNS_PKT_RECEIVED;
if (fast_retrans) {
struct quic_enc_level *iqel = &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL];
struct quic_enc_level *hqel = &qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE];
qc_prep_hdshk_fast_retrans(qc, &iqel->pktns->tx.frms, &hqel->pktns->tx.frms);
}
/* The server must switch from INITIAL to HANDSHAKE handshake state when it
* has successfully parse a Handshake packet. The Initial encryption must also
* be discarded.
*/
if (pkt->type == QUIC_PACKET_TYPE_HANDSHAKE && qc_is_listener(ctx->qc)) {
if (qc->state >= QUIC_HS_ST_SERVER_INITIAL) {
if (!(qc->els[QUIC_TLS_ENC_LEVEL_INITIAL].tls_ctx.flags &
QUIC_FL_TLS_SECRETS_DCD)) {
quic_tls_discard_keys(&qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]);
TRACE_PROTO("discarding Initial pktns", QUIC_EV_CONN_PRSHPKT, qc);
quic_pktns_discard(qc->els[QUIC_TLS_ENC_LEVEL_INITIAL].pktns, qc);
qc_set_timer(ctx->qc);
qc_el_rx_pkts_del(&qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]);
qc_release_pktns_frms(qc->els[QUIC_TLS_ENC_LEVEL_INITIAL].pktns);
}
if (qc->state < QUIC_HS_ST_SERVER_HANDSHAKE)
qc->state = QUIC_HS_ST_SERVER_HANDSHAKE;
}
}
TRACE_LEAVE(QUIC_EV_CONN_PRSHPKT, qc);
return 1;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_PRSHPKT, qc);
return 0;
}
/* Must be called only by a <cbuf> writer (packet builder).
* Return 1 if <cbuf> may be reused to build packets, depending on its <rd> and
* <wr> internal indexes, 0 if not. When this is the case, reset <wr> writer
* index after having marked the end of written data. This the responsability
* of the caller to ensure there is enough room in <cbuf> to write the end of
* data made of a uint16_t null field.
*
* +XXXXXXXXXXXXXXXXXXXXXXX---------------+ (cannot be reused)
* ^ ^
* r w
*
* +-------XXXXXXXXXXXXXXXX---------------+ (can be reused)
* ^ ^
* r w
* +--------------------------------------+ (empty buffer, can be reused)
* ^
* (r = w)
*
* +XXXXXXXXXXXXXXXXXXXXX-XXXXXXXXXXXXXXXX+ (full buffer, cannot be reused)
* ^ ^
* w r
*/
static int qc_may_reuse_cbuf(struct cbuf *cbuf)
{
int rd = HA_ATOMIC_LOAD(&cbuf->rd);
/* We can reset the writer index only if in front of the reader index and
* if the reader index is not null. Resetting the writer when the reader
* index is null would empty the buffer.
* XXX Note than the writer index cannot reach the reader index.
* Only the reader index can reach the writer index.
*/
if (rd && rd <= cbuf->wr) {
/* Mark the end of contiguous data for the reader */
write_u16(cb_wr(cbuf), 0);
cb_add(cbuf, sizeof(uint16_t));
cb_wr_reset(cbuf);
return 1;
}
return 0;
}
/* Write <dglen> datagram length and <pkt> first packet address into <cbuf> ring
* buffer. This is the responsibility of the caller to check there is enough
* room in <cbuf>. Also increase the <cbuf> write index consequently.
* This function must be called only after having built a correct datagram.
* Always succeeds.
*/
static inline void qc_set_dg(struct cbuf *cbuf,
uint16_t dglen, struct quic_tx_packet *pkt)
{
write_u16(cb_wr(cbuf), dglen);
write_ptr(cb_wr(cbuf) + sizeof dglen, pkt);
cb_add(cbuf, dglen + sizeof dglen + sizeof pkt);
}
/* Returns 1 if a packet may be built for <qc> from <qel> encryption level
* with <frms> as ack-eliciting frame list to send, 0 if not.
* <cc> must equal to 1 if an immediate close was asked, 0 if not.
* <probe> must equalt to 1 if a probing packet is required, 0 if not.
* <force_ack> may be set to 1 if you want to force an ack.
*/
static int qc_may_build_pkt(struct quic_conn *qc, struct list *frms,
struct quic_enc_level *qel, int cc, int probe, int force_ack)
{
unsigned int must_ack = force_ack ||
qel->pktns->rx.nb_aepkts_since_last_ack >= QUIC_MAX_RX_AEPKTS_SINCE_LAST_ACK;
/* Do not build any more packet if the TX secrets are not available or
* if there is nothing to send, i.e. if no CONNECTION_CLOSE or ACK are required
* and if there is no more packets to send upon PTO expiration
* and if there is no more ack-eliciting frames to send or in flight
* congestion control limit is reached for prepared data
*/
if (!(qel->tls_ctx.flags & QUIC_FL_TLS_SECRETS_SET) ||
(!cc && !probe && !must_ack &&
(LIST_ISEMPTY(frms) || qc->path->prep_in_flight >= qc->path->cwnd))) {
TRACE_DEVEL("nothing more to do", QUIC_EV_CONN_PHPKTS, qc);
return 0;
}
return 1;
}
/* Prepare as much as possible short packets which are also datagrams into <qr>
* ring buffer for the QUIC connection with <ctx> as I/O handler context from
* <frms> list of prebuilt frames.
* A header made of two fields is added to each datagram: the datagram length followed
* by the address of the first packet in this datagram.
* Returns the number of bytes prepared in packets if succeeded (may be 0),
* or -1 if something wrong happened.
*/
static int qc_prep_app_pkts(struct quic_conn *qc, struct qring *qr,
struct list *frms)
{
struct quic_enc_level *qel;
struct cbuf *cbuf;
unsigned char *end_buf, *end, *pos;
struct quic_tx_packet *pkt;
size_t total;
size_t dg_headlen;
TRACE_ENTER(QUIC_EV_CONN_PHPKTS, qc);
/* Each datagram is prepended with its length followed by the
* address of the first packet in the datagram.
*/
dg_headlen = sizeof(uint16_t) + sizeof pkt;
qel = &qc->els[QUIC_TLS_ENC_LEVEL_APP];
total = 0;
start:
cbuf = qr->cbuf;
pos = cb_wr(cbuf);
/* Leave at least <sizeof(uint16_t)> bytes at the end of this buffer
* to ensure there is enough room to mark the end of prepared
* contiguous data with a zero length.
*/
end_buf = pos + cb_contig_space(cbuf) - sizeof(uint16_t);
while (end_buf - pos >= (int)qc->path->mtu + dg_headlen) {
int err, probe, cc;
TRACE_POINT(QUIC_EV_CONN_PHPKTS, qc, qel);
probe = 0;
cc = qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE;
/* We do not probe if an immediate close was asked */
if (!cc)
probe = qel->pktns->tx.pto_probe;
if (!qc_may_build_pkt(qc, frms, qel, cc, probe, 0))
break;
/* Leave room for the datagram header */
pos += dg_headlen;
if (!quic_peer_validated_addr(qc) && qc_is_listener(qc)) {
end = pos + QUIC_MIN(qc->path->mtu, 3 * qc->rx.bytes - qc->tx.prep_bytes);
}
else {
end = pos + qc->path->mtu;
}
pkt = qc_build_pkt(&pos, end, qel, &qel->tls_ctx, frms, qc, NULL, 0, 0,
QUIC_PACKET_TYPE_SHORT, probe, cc, &err);
switch (err) {
case -2:
goto err;
case -1:
/* As we provide qc_build_pkt() with an enough big buffer to fulfill an
* MTU, we are here because of the congestion control window. There is
* no need to try to reuse this buffer.
*/
goto out;
default:
break;
}
/* This is to please to GCC. We cannot have (err >= 0 && !pkt) */
if (!pkt)
goto err;
if (qc->flags & QUIC_FL_CONN_RETRANS_OLD_DATA)
pkt->flags |= QUIC_FL_TX_PACKET_PROBE_WITH_OLD_DATA;
total += pkt->len;
/* Set the current datagram as prepared into <cbuf>. */
qc_set_dg(cbuf, pkt->len, pkt);
}
/* Reset <wr> writer index if in front of <rd> index */
if (end_buf - pos < (int)qc->path->mtu + dg_headlen) {
TRACE_DEVEL("buffer full", QUIC_EV_CONN_PHPKTS, qc);
if (qc_may_reuse_cbuf(cbuf))
goto start;
}
out:
TRACE_LEAVE(QUIC_EV_CONN_PHPKTS, qc);
return total;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_PHPKTS, qc);
return -1;
}
/* Prepare as much as possible packets into <qr> ring buffer for
* the QUIC connection with <ctx> as I/O handler context, possibly concatenating
* several packets in the same datagram. A header made of two fields is added
* to each datagram: the datagram length followed by the address of the first
* packet in this datagram.
* Returns the number of bytes prepared in packets if succeeded (may be 0),
* or -1 if something wrong happened.
*/
static int qc_prep_pkts(struct quic_conn *qc, struct qring *qr,
enum quic_tls_enc_level tel, struct list *tel_frms,
enum quic_tls_enc_level next_tel, struct list *next_tel_frms)
{
struct quic_enc_level *qel;
struct cbuf *cbuf;
unsigned char *end_buf, *end, *pos;
struct quic_tx_packet *first_pkt, *cur_pkt, *prv_pkt;
/* length of datagrams */
uint16_t dglen;
size_t total;
int padding;
/* Each datagram is prepended with its length followed by the
* address of the first packet in the datagram.
*/
size_t dg_headlen = sizeof dglen + sizeof first_pkt;
struct list *frms;
TRACE_ENTER(QUIC_EV_CONN_PHPKTS, qc);
total = 0;
qel = &qc->els[tel];
frms = tel_frms;
start:
dglen = 0;
padding = 0;
cbuf = qr->cbuf;
pos = cb_wr(cbuf);
/* Leave at least <dglen> bytes at the end of this buffer
* to ensure there is enough room to mark the end of prepared
* contiguous data with a zero length.
*/
end_buf = pos + cb_contig_space(cbuf) - sizeof dglen;
first_pkt = prv_pkt = NULL;
while (end_buf - pos >= (int)qc->path->mtu + dg_headlen || prv_pkt) {
int err, probe, cc;
enum quic_pkt_type pkt_type;
struct quic_tls_ctx *tls_ctx;
const struct quic_version *ver;
int force_ack = (qel->pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED) &&
(qel == &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL] ||
qel == &qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE]);
TRACE_POINT(QUIC_EV_CONN_PHPKTS, qc, qel);
probe = 0;
cc = qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE;
/* We do not probe if an immediate close was asked */
if (!cc)
probe = qel->pktns->tx.pto_probe;
if (!qc_may_build_pkt(qc, frms, qel, cc, probe, force_ack)) {
if (prv_pkt)
qc_set_dg(cbuf, dglen, first_pkt);
/* Let's select the next encryption level */
if (tel != next_tel && next_tel != QUIC_TLS_ENC_LEVEL_NONE) {
tel = next_tel;
frms = next_tel_frms;
qel = &qc->els[tel];
/* Build a new datagram */
prv_pkt = NULL;
continue;
}
break;
}
pkt_type = quic_tls_level_pkt_type(tel);
if (!prv_pkt) {
/* Leave room for the datagram header */
pos += dg_headlen;
if (!quic_peer_validated_addr(qc) && qc_is_listener(qc)) {
end = pos + QUIC_MIN(qc->path->mtu, 3 * qc->rx.bytes - qc->tx.prep_bytes);
}
else {
end = pos + qc->path->mtu;
}
}
if (qc->negotiated_version) {
ver = qc->negotiated_version;
if (qel == &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL])
tls_ctx = &qc->negotiated_ictx;
else
tls_ctx = &qel->tls_ctx;
}
else {
ver = qc->original_version;
tls_ctx = &qel->tls_ctx;
}
cur_pkt = qc_build_pkt(&pos, end, qel, tls_ctx, frms,
qc, ver, dglen, padding, pkt_type, probe, cc, &err);
switch (err) {
case -2:
goto err;
case -1:
/* If there was already a correct packet present, set the
* current datagram as prepared into <cbuf>.
*/
if (prv_pkt)
qc_set_dg(cbuf, dglen, first_pkt);
goto stop_build;
default:
break;
}
/* This is to please to GCC. We cannot have (err >= 0 && !cur_pkt) */
if (!cur_pkt)
goto err;
if (qc->flags & QUIC_FL_CONN_RETRANS_OLD_DATA)
cur_pkt->flags |= QUIC_FL_TX_PACKET_PROBE_WITH_OLD_DATA;
total += cur_pkt->len;
/* keep trace of the first packet in the datagram */
if (!first_pkt)
first_pkt = cur_pkt;
/* Attach the current one to the previous one */
if (prv_pkt) {
prv_pkt->next = cur_pkt;
cur_pkt->flags |= QUIC_FL_TX_PACKET_COALESCED;
}
/* Let's say we have to build a new dgram */
prv_pkt = NULL;
dglen += cur_pkt->len;
/* Client: discard the Initial encryption keys as soon as
* a handshake packet could be built.
*/
if (qc->state == QUIC_HS_ST_CLIENT_INITIAL &&
pkt_type == QUIC_PACKET_TYPE_HANDSHAKE) {
quic_tls_discard_keys(&qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]);
TRACE_PROTO("discarding Initial pktns", QUIC_EV_CONN_PHPKTS, qc);
quic_pktns_discard(qc->els[QUIC_TLS_ENC_LEVEL_INITIAL].pktns, qc);
qc_set_timer(qc);
qc_el_rx_pkts_del(&qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]);
qc_release_pktns_frms(qc->els[QUIC_TLS_ENC_LEVEL_INITIAL].pktns);
qc->state = QUIC_HS_ST_CLIENT_HANDSHAKE;
}
/* If the data for the current encryption level have all been sent,
* select the next level.
*/
if ((tel == QUIC_TLS_ENC_LEVEL_INITIAL || tel == QUIC_TLS_ENC_LEVEL_HANDSHAKE) &&
next_tel != QUIC_TLS_ENC_LEVEL_NONE && (LIST_ISEMPTY(frms) && !qel->pktns->tx.pto_probe)) {
/* If QUIC_TLS_ENC_LEVEL_HANDSHAKE was already reached let's try QUIC_TLS_ENC_LEVEL_APP */
if (tel == QUIC_TLS_ENC_LEVEL_HANDSHAKE && next_tel == tel)
next_tel = QUIC_TLS_ENC_LEVEL_APP;
tel = next_tel;
if (tel == QUIC_TLS_ENC_LEVEL_APP)
frms = &qc->els[tel].pktns->tx.frms;
else
frms = next_tel_frms;
qel = &qc->els[tel];
if (!LIST_ISEMPTY(frms)) {
/* If there is data for the next level, do not
* consume a datagram.
*/
prv_pkt = cur_pkt;
}
}
/* If we have to build a new datagram, set the current datagram as
* prepared into <cbuf>.
*/
if (!prv_pkt) {
qc_set_dg(cbuf, dglen, first_pkt);
first_pkt = NULL;
dglen = 0;
padding = 0;
}
else if (prv_pkt->type == QUIC_TLS_ENC_LEVEL_INITIAL &&
(!qc_is_listener(qc) ||
prv_pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING)) {
padding = 1;
}
}
stop_build:
/* Reset <wr> writer index if in front of <rd> index */
if (end_buf - pos < (int)qc->path->mtu + dg_headlen) {
TRACE_DEVEL("buffer full", QUIC_EV_CONN_PHPKTS, qc);
if (qc_may_reuse_cbuf(cbuf))
goto start;
}
out:
TRACE_LEAVE(QUIC_EV_CONN_PHPKTS, qc);
return total;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_PHPKTS, qc);
return -1;
}
/* Send the QUIC packets which have been prepared for QUIC connections
* from <qr> ring buffer with <ctx> as I/O handler context.
*/
int qc_send_ppkts(struct qring *qr, struct ssl_sock_ctx *ctx)
{
struct quic_conn *qc;
struct cbuf *cbuf;
qc = ctx->qc;
cbuf = qr->cbuf;
TRACE_ENTER(QUIC_EV_CONN_SPPKTS, qc);
while (cb_contig_data(cbuf)) {
unsigned char *pos;
struct buffer tmpbuf = { };
struct quic_tx_packet *first_pkt, *pkt, *next_pkt;
uint16_t dglen;
size_t headlen = sizeof dglen + sizeof first_pkt;
unsigned int time_sent;
pos = cb_rd(cbuf);
dglen = read_u16(pos);
/* End of prepared datagrams.
* Reset the reader index only if in front of the writer index.
*/
if (!dglen) {
int wr = HA_ATOMIC_LOAD(&cbuf->wr);
if (wr && wr < cbuf->rd) {
cb_rd_reset(cbuf);
continue;
}
break;
}
pos += sizeof dglen;
first_pkt = read_ptr(pos);
pos += sizeof first_pkt;
tmpbuf.area = (char *)pos;
tmpbuf.size = tmpbuf.data = dglen;
TRACE_PROTO("to send", QUIC_EV_CONN_SPPKTS, qc);
if(qc_snd_buf(qc, &tmpbuf, tmpbuf.data, 0) <= 0)
break;
cb_del(cbuf, dglen + headlen);
qc->tx.bytes += tmpbuf.data;
time_sent = now_ms;
for (pkt = first_pkt; pkt; pkt = next_pkt) {
pkt->time_sent = time_sent;
if (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING) {
pkt->pktns->tx.time_of_last_eliciting = time_sent;
qc->path->ifae_pkts++;
if (qc->flags & QUIC_FL_CONN_IDLE_TIMER_RESTARTED_AFTER_READ)
qc_idle_timer_rearm(qc, 0);
}
if (!(qc->flags & QUIC_FL_CONN_CLOSING) &&
(pkt->flags & QUIC_FL_TX_PACKET_CC)) {
qc->flags |= QUIC_FL_CONN_CLOSING;
qc_notify_close(qc);
/* RFC 9000 10.2. Immediate Close:
* The closing and draining connection states exist to ensure
* that connections close cleanly and that delayed or reordered
* packets are properly discarded. These states SHOULD persist
* for at least three times the current PTO interval...
*
* Rearm the idle timeout only one time when entering closing
* state.
*/
qc_idle_timer_do_rearm(qc);
if (qc->timer_task) {
task_destroy(qc->timer_task);
qc->timer_task = NULL;
}
}
qc->path->in_flight += pkt->in_flight_len;
pkt->pktns->tx.in_flight += pkt->in_flight_len;
if (pkt->in_flight_len)
qc_set_timer(qc);
TRACE_PROTO("sent pkt", QUIC_EV_CONN_SPPKTS, qc, pkt);
next_pkt = pkt->next;
quic_tx_packet_refinc(pkt);
eb64_insert(&pkt->pktns->tx.pkts, &pkt->pn_node);
}
}
TRACE_LEAVE(QUIC_EV_CONN_SPPKTS, qc);
return 1;
}
/* Copy into <buf> buffer a stateless reset token depending on the
* <salt> salt input. This is the cluster secret which will be derived
* as HKDF input secret to generate this token.
* Return 1 if succeeded, 0 if not.
*/
static int quic_stateless_reset_token_cpy(unsigned char *buf, size_t len,
const unsigned char *salt, size_t saltlen)
{
/* Input secret */
const unsigned char *key = (const unsigned char *)global.cluster_secret;
size_t keylen = strlen(global.cluster_secret);
/* Info */
const unsigned char label[] = "stateless token";
size_t labellen = sizeof label - 1;
return quic_hkdf_extract_and_expand(EVP_sha256(), buf, len,
key, keylen, salt, saltlen, label, labellen);
}
/* Initialize the stateless reset token attached to <cid> connection ID.
* Returns 1 if succeeded, 0 if not.
*/
static int quic_stateless_reset_token_init(struct quic_connection_id *quic_cid)
{
if (global.cluster_secret) {
/* Output secret */
unsigned char *token = quic_cid->stateless_reset_token;
size_t tokenlen = sizeof quic_cid->stateless_reset_token;
/* Salt */
const unsigned char *cid = quic_cid->cid.data;
size_t cidlen = quic_cid->cid.len;
return quic_stateless_reset_token_cpy(token, tokenlen, cid, cidlen);
}
else {
return RAND_bytes(quic_cid->stateless_reset_token,
sizeof quic_cid->stateless_reset_token) == 1;
}
}
/* Allocate a new CID with <seq_num> as sequence number and attach it to <root>
* ebtree.
*
* The CID is randomly generated in part with the result altered to be
* associated with the current thread ID. This means this function must only
* be called by the quic_conn thread.
*
* Returns the new CID if succeeded, NULL if not.
*/
static struct quic_connection_id *new_quic_cid(struct eb_root *root,
struct quic_conn *qc,
int seq_num)
{
struct quic_connection_id *cid;
cid = pool_alloc(pool_head_quic_connection_id);
if (!cid)
return NULL;
cid->cid.len = QUIC_HAP_CID_LEN;
if (RAND_bytes(cid->cid.data, cid->cid.len) != 1)
goto err;
quic_pin_cid_to_tid(cid->cid.data, tid);
if (quic_stateless_reset_token_init(cid) != 1)
goto err;
cid->qc = qc;
cid->seq_num.key = seq_num;
cid->retire_prior_to = 0;
/* insert the allocated CID in the quic_conn tree */
eb64_insert(root, &cid->seq_num);
return cid;
err:
pool_free(pool_head_quic_connection_id, cid);
return NULL;
}
/* Build all the frames which must be sent just after the handshake have succeeded.
* This is essentially NEW_CONNECTION_ID frames. A QUIC server must also send
* a HANDSHAKE_DONE frame.
* Return 1 if succeeded, 0 if not.
*/
static int quic_build_post_handshake_frames(struct quic_conn *qc)
{
int i, first, max;
struct quic_enc_level *qel;
struct quic_frame *frm, *frmbak;
struct list frm_list = LIST_HEAD_INIT(frm_list);
struct eb64_node *node;
qel = &qc->els[QUIC_TLS_ENC_LEVEL_APP];
/* Only servers must send a HANDSHAKE_DONE frame. */
if (qc_is_listener(qc)) {
frm = pool_zalloc(pool_head_quic_frame);
if (!frm)
return 0;
LIST_INIT(&frm->reflist);
frm->type = QUIC_FT_HANDSHAKE_DONE;
LIST_APPEND(&frm_list, &frm->list);
}
first = 1;
max = qc->tx.params.active_connection_id_limit;
for (i = first; i < max; i++) {
struct quic_connection_id *cid;
frm = pool_zalloc(pool_head_quic_frame);
if (!frm)
goto err;
LIST_INIT(&frm->reflist);
cid = new_quic_cid(&qc->cids, qc, i);
if (!cid)
goto err;
/* insert the allocated CID in the receiver datagram handler tree */
ebmb_insert(&quic_dghdlrs[tid].cids, &cid->node, cid->cid.len);
quic_connection_id_to_frm_cpy(frm, cid);
LIST_APPEND(&frm_list, &frm->list);
}
LIST_SPLICE(&qel->pktns->tx.frms, &frm_list);
qc->flags |= QUIC_FL_CONN_POST_HANDSHAKE_FRAMES_BUILT;
return 1;
err:
/* free the frames */
list_for_each_entry_safe(frm, frmbak, &frm_list, list)
pool_free(pool_head_quic_frame, frm);
node = eb64_first(&qc->cids);
while (node) {
struct quic_connection_id *cid;
cid = eb64_entry(node, struct quic_connection_id, seq_num);
if (cid->seq_num.key >= max)
break;
if (cid->seq_num.key < first)
continue;
node = eb64_next(node);
ebmb_delete(&cid->node);
eb64_delete(&cid->seq_num);
pool_free(pool_head_quic_connection_id, cid);
}
return 0;
}
/* Deallocate <l> list of ACK ranges. */
void quic_free_arngs(struct quic_arngs *arngs)
{
struct eb64_node *n;
struct quic_arng_node *ar;
n = eb64_first(&arngs->root);
while (n) {
struct eb64_node *next;
ar = eb64_entry(n, struct quic_arng_node, first);
next = eb64_next(n);
eb64_delete(n);
pool_free(pool_head_quic_arng, ar);
n = next;
}
}
/* Return the gap value between <p> and <q> ACK ranges where <q> follows <p> in
* descending order.
*/
static inline size_t sack_gap(struct quic_arng_node *p,
struct quic_arng_node *q)
{
return p->first.key - q->last - 2;
}
/* Remove the last elements of <ack_ranges> list of ack range updating its
* encoded size until it goes below <limit>.
* Returns 1 if succeeded, 0 if not (no more element to remove).
*/
static int quic_rm_last_ack_ranges(struct quic_arngs *arngs, size_t limit)
{
struct eb64_node *last, *prev;
last = eb64_last(&arngs->root);
while (last && arngs->enc_sz > limit) {
struct quic_arng_node *last_node, *prev_node;
prev = eb64_prev(last);
if (!prev)
return 0;
last_node = eb64_entry(last, struct quic_arng_node, first);
prev_node = eb64_entry(prev, struct quic_arng_node, first);
arngs->enc_sz -= quic_int_getsize(last_node->last - last_node->first.key);
arngs->enc_sz -= quic_int_getsize(sack_gap(prev_node, last_node));
arngs->enc_sz -= quic_decint_size_diff(arngs->sz);
--arngs->sz;
eb64_delete(last);
pool_free(pool_head_quic_arng, last);
last = prev;
}
return 1;
}
/* Set the encoded size of <arngs> QUIC ack ranges. */
static void quic_arngs_set_enc_sz(struct quic_arngs *arngs)
{
struct eb64_node *node, *next;
struct quic_arng_node *ar, *ar_next;
node = eb64_last(&arngs->root);
if (!node)
return;
ar = eb64_entry(node, struct quic_arng_node, first);
arngs->enc_sz = quic_int_getsize(ar->last) +
quic_int_getsize(ar->last - ar->first.key) + quic_int_getsize(arngs->sz - 1);
while ((next = eb64_prev(node))) {
ar_next = eb64_entry(next, struct quic_arng_node, first);
arngs->enc_sz += quic_int_getsize(sack_gap(ar, ar_next)) +
quic_int_getsize(ar_next->last - ar_next->first.key);
node = next;
ar = eb64_entry(node, struct quic_arng_node, first);
}
}
/* Insert <ar> ack range into <argns> tree of ack ranges.
* Returns the ack range node which has been inserted if succeeded, NULL if not.
*/
static inline
struct quic_arng_node *quic_insert_new_range(struct quic_arngs *arngs,
struct quic_arng *ar)
{
struct quic_arng_node *new_ar;
new_ar = pool_alloc(pool_head_quic_arng);
if (new_ar) {
new_ar->first.key = ar->first;
new_ar->last = ar->last;
eb64_insert(&arngs->root, &new_ar->first);
arngs->sz++;
}
return new_ar;
}
/* Update <arngs> tree of ACK ranges with <ar> as new ACK range value.
* Note that this function computes the number of bytes required to encode
* this tree of ACK ranges in descending order.
*
* Descending order
* ------------->
* range1 range2
* ..........|--------|..............|--------|
* ^ ^ ^ ^
* | | | |
* last1 first1 last2 first2
* ..........+--------+--------------+--------+......
* diff1 gap12 diff2
*
* To encode the previous list of ranges we must encode integers as follows in
* descending order:
* enc(last2),enc(diff2),enc(gap12),enc(diff1)
* with diff1 = last1 - first1
* diff2 = last2 - first2
* gap12 = first1 - last2 - 2 (>= 0)
*
*/
int quic_update_ack_ranges_list(struct quic_arngs *arngs,
struct quic_arng *ar)
{
struct eb64_node *le;
struct quic_arng_node *new_node;
struct eb64_node *new;
new = NULL;
if (eb_is_empty(&arngs->root)) {
new_node = quic_insert_new_range(arngs, ar);
if (!new_node)
return 0;
goto out;
}
le = eb64_lookup_le(&arngs->root, ar->first);
if (!le) {
new_node = quic_insert_new_range(arngs, ar);
if (!new_node)
return 0;
new = &new_node->first;
}
else {
struct quic_arng_node *le_ar =
eb64_entry(le, struct quic_arng_node, first);
/* Already existing range */
if (le_ar->last >= ar->last)
return 1;
if (le_ar->last + 1 >= ar->first) {
le_ar->last = ar->last;
new = le;
new_node = le_ar;
}
else {
new_node = quic_insert_new_range(arngs, ar);
if (!new_node)
return 0;
new = &new_node->first;
}
}
/* Verify that the new inserted node does not overlap the nodes
* which follow it.
*/
if (new) {
struct eb64_node *next;
struct quic_arng_node *next_node;
while ((next = eb64_next(new))) {
next_node =
eb64_entry(next, struct quic_arng_node, first);
if (new_node->last + 1 < next_node->first.key)
break;
if (next_node->last > new_node->last)
new_node->last = next_node->last;
eb64_delete(next);
pool_free(pool_head_quic_arng, next_node);
/* Decrement the size of these ranges. */
arngs->sz--;
}
}
out:
quic_arngs_set_enc_sz(arngs);
return 1;
}
/* Remove the header protection of packets at <el> encryption level.
* Always succeeds.
*/
static inline void qc_rm_hp_pkts(struct quic_conn *qc, struct quic_enc_level *el)
{
struct quic_tls_ctx *tls_ctx;
struct quic_rx_packet *pqpkt;
struct mt_list *pkttmp1, pkttmp2;
struct quic_enc_level *app_qel;
TRACE_ENTER(QUIC_EV_CONN_ELRMHP, qc);
app_qel = &qc->els[QUIC_TLS_ENC_LEVEL_APP];
/* A server must not process incoming 1-RTT packets before the handshake is complete. */
if (el == app_qel && qc_is_listener(qc) && qc->state < QUIC_HS_ST_COMPLETE) {
TRACE_PROTO("hp not removed (handshake not completed)",
QUIC_EV_CONN_ELRMHP, qc);
goto out;
}
tls_ctx = &el->tls_ctx;
mt_list_for_each_entry_safe(pqpkt, &el->rx.pqpkts, list, pkttmp1, pkttmp2) {
if (!qc_do_rm_hp(qc, pqpkt, tls_ctx, el->pktns->rx.largest_pn,
pqpkt->data + pqpkt->pn_offset,
pqpkt->data, pqpkt->data + pqpkt->len)) {
TRACE_PROTO("hp removing error", QUIC_EV_CONN_ELRMHP, qc);
/* XXX TO DO XXX */
}
else {
/* The AAD includes the packet number field */
pqpkt->aad_len = pqpkt->pn_offset + pqpkt->pnl;
/* Store the packet into the tree of packets to decrypt. */
pqpkt->pn_node.key = pqpkt->pn;
HA_RWLOCK_WRLOCK(QUIC_LOCK, &el->rx.pkts_rwlock);
eb64_insert(&el->rx.pkts, &pqpkt->pn_node);
quic_rx_packet_refinc(pqpkt);
HA_RWLOCK_WRUNLOCK(QUIC_LOCK, &el->rx.pkts_rwlock);
TRACE_PROTO("hp removed", QUIC_EV_CONN_ELRMHP, qc, pqpkt);
}
MT_LIST_DELETE_SAFE(pkttmp1);
quic_rx_packet_refdec(pqpkt);
}
out:
TRACE_LEAVE(QUIC_EV_CONN_ELRMHP, qc);
}
/* Process all the CRYPTO frame at <el> encryption level.
* Return 1 if succeeded, 0 if not.
*/
static inline int qc_treat_rx_crypto_frms(struct quic_enc_level *el,
struct ssl_sock_ctx *ctx)
{
struct eb64_node *node;
node = eb64_first(&el->rx.crypto.frms);
while (node) {
struct quic_rx_crypto_frm *cf;
cf = eb64_entry(node, struct quic_rx_crypto_frm, offset_node);
if (cf->offset_node.key != el->rx.crypto.offset)
break;
if (!qc_provide_cdata(el, ctx, cf->data, cf->len, cf->pkt, cf))
goto err;
node = eb64_next(node);
quic_rx_packet_refdec(cf->pkt);
eb64_delete(&cf->offset_node);
pool_free(pool_head_quic_rx_crypto_frm, cf);
}
return 1;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_RXCDATA, ctx->qc);
return 0;
}
/* Process all the packets at <el> and <next_el> encryption level.
* This is the caller responsibility to check that <cur_el> is different of <next_el>
* as pointer value.
* Return 1 if succeeded, 0 if not.
*/
int qc_treat_rx_pkts(struct quic_enc_level *cur_el, struct quic_enc_level *next_el,
struct ssl_sock_ctx *ctx, int force_ack)
{
struct eb64_node *node;
int64_t largest_pn = -1;
unsigned int largest_pn_time_received = 0;
struct quic_conn *qc = ctx->qc;
struct quic_enc_level *qel = cur_el;
TRACE_ENTER(QUIC_EV_CONN_ELRXPKTS, ctx->qc);
qel = cur_el;
next_tel:
if (!qel)
goto out;
HA_RWLOCK_WRLOCK(QUIC_LOCK, &qel->rx.pkts_rwlock);
node = eb64_first(&qel->rx.pkts);
while (node) {
struct quic_rx_packet *pkt;
pkt = eb64_entry(node, struct quic_rx_packet, pn_node);
TRACE_PROTO("new packet", QUIC_EV_CONN_ELRXPKTS,
ctx->qc, pkt, NULL, ctx->ssl);
if (!qc_pkt_decrypt(pkt, qel)) {
/* Drop the packet */
TRACE_PROTO("packet decryption failed -> dropped",
QUIC_EV_CONN_ELRXPKTS, ctx->qc, pkt);
}
else {
if (!qc_parse_pkt_frms(pkt, ctx, qel)) {
/* Drop the packet */
TRACE_PROTO("packet parsing failed -> dropped",
QUIC_EV_CONN_ELRXPKTS, ctx->qc, pkt);
HA_ATOMIC_INC(&qc->prx_counters->dropped_parsing);
}
else {
struct quic_arng ar = { .first = pkt->pn, .last = pkt->pn };
if (pkt->flags & QUIC_FL_RX_PACKET_ACK_ELICITING || force_ack) {
qel->pktns->flags |= QUIC_FL_PKTNS_ACK_REQUIRED;
qel->pktns->rx.nb_aepkts_since_last_ack++;
qc_idle_timer_rearm(qc, 1);
}
if (pkt->pn > largest_pn) {
largest_pn = pkt->pn;
largest_pn_time_received = pkt->time_received;
}
/* Update the list of ranges to acknowledge. */
if (!quic_update_ack_ranges_list(&qel->pktns->rx.arngs, &ar))
TRACE_DEVEL("Could not update ack range list",
QUIC_EV_CONN_ELRXPKTS, ctx->qc);
}
}
node = eb64_next(node);
eb64_delete(&pkt->pn_node);
quic_rx_packet_refdec(pkt);
}
HA_RWLOCK_WRUNLOCK(QUIC_LOCK, &qel->rx.pkts_rwlock);
if (largest_pn != -1 && largest_pn > qel->pktns->rx.largest_pn) {
/* Update the largest packet number. */
qel->pktns->rx.largest_pn = largest_pn;
/* Update the largest acknowledged packet timestamps */
qel->pktns->rx.largest_time_received = largest_pn_time_received;
qel->pktns->flags |= QUIC_FL_PKTNS_NEW_LARGEST_PN;
}
if (!qc_treat_rx_crypto_frms(qel, ctx))
goto err;
if (qel == cur_el) {
BUG_ON(qel == next_el);
qel = next_el;
largest_pn = -1;
goto next_tel;
}
out:
TRACE_LEAVE(QUIC_EV_CONN_ELRXPKTS, ctx->qc);
return 1;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_ELRXPKTS, ctx->qc);
return 0;
}
/* Check if it's possible to remove header protection for packets related to
* encryption level <qel>. If <qel> is NULL, assume it's false.
*
* Return true if the operation is possible else false.
*/
static int qc_qel_may_rm_hp(struct quic_conn *qc, struct quic_enc_level *qel)
{
enum quic_tls_enc_level tel;
if (!qel)
return 0;
tel = ssl_to_quic_enc_level(qel->level);
/* check if tls secrets are available */
if (qel->tls_ctx.flags & QUIC_FL_TLS_SECRETS_DCD) {
TRACE_DEVEL("Discarded keys", QUIC_EV_CONN_TRMHP, qc);
return 0;
}
if (!(qel->tls_ctx.flags & QUIC_FL_TLS_SECRETS_SET))
return 0;
/* check if the connection layer is ready before using app level */
if ((tel == QUIC_TLS_ENC_LEVEL_APP || tel == QUIC_TLS_ENC_LEVEL_EARLY_DATA) &&
qc->mux_state == QC_MUX_NULL)
return 0;
return 1;
}
/* Sends application level packets from <qc> QUIC connection */
int qc_send_app_pkts(struct quic_conn *qc, int old_data, struct list *frms)
{
int ret;
struct qring *qr;
qr = MT_LIST_POP(qc->tx.qring_list, typeof(qr), mt_list);
if (!qr)
/* Never happens */
return 1;
if (old_data)
qc->flags |= QUIC_FL_CONN_RETRANS_OLD_DATA;
ret = qc_prep_app_pkts(qc, qr, frms);
if (ret == -1)
goto err;
else if (ret == 0)
goto out;
if (!qc_send_ppkts(qr, qc->xprt_ctx))
goto err;
out:
qc->flags &= ~QUIC_FL_CONN_RETRANS_OLD_DATA;
MT_LIST_APPEND(qc->tx.qring_list, &qr->mt_list);
return 1;
err:
qc->flags &= ~QUIC_FL_CONN_RETRANS_OLD_DATA;
MT_LIST_APPEND(qc->tx.qring_list, &qr->mt_list);
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_IO_CB, qc);
return 0;
}
/* Sends handshake packets from up to two encryption levels <tel> and <next_te>
* with <tel_frms> and <next_tel_frms> as frame list respectively for <qc>
* QUIC connection
* Returns 1 if succeeded, 0 if not.
*/
int qc_send_hdshk_pkts(struct quic_conn *qc, int old_data,
enum quic_tls_enc_level tel, struct list *tel_frms,
enum quic_tls_enc_level next_tel, struct list *next_tel_frms)
{
int ret;
struct qring *qr;
qr = MT_LIST_POP(qc->tx.qring_list, typeof(qr), mt_list);
if (!qr)
/* Never happens */
return 1;
if (old_data)
qc->flags |= QUIC_FL_CONN_RETRANS_OLD_DATA;
ret = qc_prep_pkts(qc, qr, tel, tel_frms, next_tel, next_tel_frms);
if (ret == -1)
goto err;
else if (ret == 0)
goto out;
if (!qc_send_ppkts(qr, qc->xprt_ctx))
goto err;
out:
qc->flags &= ~QUIC_FL_CONN_RETRANS_OLD_DATA;
MT_LIST_APPEND(qc->tx.qring_list, &qr->mt_list);
return 1;
err:
qc->flags &= ~QUIC_FL_CONN_RETRANS_OLD_DATA;
MT_LIST_APPEND(qc->tx.qring_list, &qr->mt_list);
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_IO_CB, qc);
return 0;
}
/* Retransmit up to two datagrams depending on packet number space */
static void qc_dgrams_retransmit(struct quic_conn *qc)
{
struct quic_enc_level *iqel = &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL];
struct quic_enc_level *hqel = &qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE];
struct quic_enc_level *aqel = &qc->els[QUIC_TLS_ENC_LEVEL_APP];
if (iqel->pktns->flags & QUIC_FL_PKTNS_PROBE_NEEDED) {
struct list ifrms = LIST_HEAD_INIT(ifrms);
struct list hfrms = LIST_HEAD_INIT(hfrms);
qc_prep_hdshk_fast_retrans(qc, &ifrms, &hfrms);
TRACE_PROTO("Avail. ack eliciting frames", QUIC_EV_CONN_FRMLIST, qc, &ifrms);
TRACE_PROTO("Avail. ack eliciting frames", QUIC_EV_CONN_FRMLIST, qc, &hfrms);
if (!LIST_ISEMPTY(&ifrms)) {
iqel->pktns->tx.pto_probe = 1;
if (!LIST_ISEMPTY(&hfrms)) {
hqel->pktns->tx.pto_probe = 1;
qc_send_hdshk_pkts(qc, 1, QUIC_TLS_ENC_LEVEL_INITIAL, &ifrms,
QUIC_TLS_ENC_LEVEL_HANDSHAKE, &hfrms);
}
}
if (hqel->pktns->flags & QUIC_FL_PKTNS_PROBE_NEEDED) {
qc_prep_fast_retrans(qc, hqel, &hfrms, NULL);
TRACE_PROTO("Avail. ack eliciting frames", QUIC_EV_CONN_FRMLIST, qc, &hfrms);
if (!LIST_ISEMPTY(&hfrms)) {
hqel->pktns->tx.pto_probe = 1;
qc_send_hdshk_pkts(qc, 1, QUIC_TLS_ENC_LEVEL_HANDSHAKE, &hfrms,
QUIC_TLS_ENC_LEVEL_NONE, NULL);
}
hqel->pktns->flags &= ~QUIC_FL_PKTNS_PROBE_NEEDED;
}
iqel->pktns->flags &= ~QUIC_FL_PKTNS_PROBE_NEEDED;
}
else {
int i;
struct list frms1 = LIST_HEAD_INIT(frms1);
struct list frms2 = LIST_HEAD_INIT(frms2);
if (hqel->pktns->flags & QUIC_FL_PKTNS_PROBE_NEEDED) {
hqel->pktns->tx.pto_probe = 0;
for (i = 0; i < QUIC_MAX_NB_PTO_DGRAMS; i++) {
qc_prep_fast_retrans(qc, hqel, &frms1, NULL);
TRACE_PROTO("Avail. ack eliciting frames", QUIC_EV_CONN_FRMLIST, qc, &frms1);
if (!LIST_ISEMPTY(&frms1)) {
hqel->pktns->tx.pto_probe = 1;
qc_send_hdshk_pkts(qc, 1, QUIC_TLS_ENC_LEVEL_HANDSHAKE, &frms1,
QUIC_TLS_ENC_LEVEL_NONE, NULL);
}
}
hqel->pktns->flags &= ~QUIC_FL_PKTNS_PROBE_NEEDED;
}
else if (aqel->pktns->flags & QUIC_FL_PKTNS_PROBE_NEEDED) {
aqel->pktns->tx.pto_probe = 0;
qc_prep_fast_retrans(qc, aqel, &frms1, &frms2);
TRACE_PROTO("Avail. ack eliciting frames", QUIC_EV_CONN_FRMLIST, qc, &frms1);
TRACE_PROTO("Avail. ack eliciting frames", QUIC_EV_CONN_FRMLIST, qc, &frms2);
if (!LIST_ISEMPTY(&frms1)) {
aqel->pktns->tx.pto_probe = 1;
qc_send_app_pkts(qc, 1, &frms1);
}
if (!LIST_ISEMPTY(&frms2)) {
aqel->pktns->tx.pto_probe = 1;
qc_send_app_pkts(qc, 1, &frms2);
}
aqel->pktns->flags &= ~QUIC_FL_PKTNS_PROBE_NEEDED;
}
}
}
/* QUIC connection packet handler task (post handshake) */
static struct task *quic_conn_app_io_cb(struct task *t, void *context, unsigned int state)
{
struct ssl_sock_ctx *ctx;
struct quic_conn *qc;
struct quic_enc_level *qel;
ctx = context;
qc = ctx->qc;
qel = &qc->els[QUIC_TLS_ENC_LEVEL_APP];
TRACE_PROTO("state", QUIC_EV_CONN_IO_CB, qc, &qc->state);
/* Retranmissions */
if (qc->flags & QUIC_FL_CONN_RETRANS_NEEDED) {
TRACE_PROTO("retransmission needed", QUIC_EV_CONN_IO_CB, qc);
qc->flags &= ~QUIC_FL_CONN_RETRANS_NEEDED;
qc_dgrams_retransmit(qc);
}
if (!MT_LIST_ISEMPTY(&qel->rx.pqpkts) && qc_qel_may_rm_hp(qc, qel))
qc_rm_hp_pkts(qc, qel);
if (!qc_treat_rx_pkts(qel, NULL, ctx, 0))
goto err;
if ((qc->flags & QUIC_FL_CONN_DRAINING) &&
!(qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE))
goto out;
if (!qc_send_app_pkts(qc, 0, &qel->pktns->tx.frms))
goto err;
out:
return t;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_IO_CB, qc, &qc->state);
return t;
}
/* QUIC connection packet handler task. */
struct task *quic_conn_io_cb(struct task *t, void *context, unsigned int state)
{
int ret, ssl_err;
struct ssl_sock_ctx *ctx;
struct quic_conn *qc;
enum quic_tls_enc_level tel, next_tel;
struct quic_enc_level *qel, *next_qel;
struct qring *qr; // Tx ring
int st, force_ack, zero_rtt;
ctx = context;
qc = ctx->qc;
TRACE_ENTER(QUIC_EV_CONN_IO_CB, qc);
qr = NULL;
st = qc->state;
TRACE_PROTO("state", QUIC_EV_CONN_IO_CB, qc, &st);
/* Retranmissions */
if (qc->flags & QUIC_FL_CONN_RETRANS_NEEDED) {
TRACE_PROTO("retransmission needed", QUIC_EV_CONN_PHPKTS, qc);
qc->flags &= ~QUIC_FL_CONN_RETRANS_NEEDED;
qc_dgrams_retransmit(qc);
}
if (qc->flags & QUIC_FL_CONN_IO_CB_WAKEUP) {
qc->flags &= ~QUIC_FL_CONN_IO_CB_WAKEUP;
/* The I/O handler has been woken up by the dgram listener
* after the anti-amplification was reached.
*/
qc_set_timer(qc);
if (tick_isset(qc->timer) && tick_is_lt(qc->timer, now_ms))
task_wakeup(qc->timer_task, TASK_WOKEN_MSG);
}
ssl_err = SSL_ERROR_NONE;
zero_rtt = st < QUIC_HS_ST_COMPLETE &&
(!MT_LIST_ISEMPTY(&qc->els[QUIC_TLS_ENC_LEVEL_EARLY_DATA].rx.pqpkts) ||
qc_el_rx_pkts(&qc->els[QUIC_TLS_ENC_LEVEL_EARLY_DATA]));
start:
if (st >= QUIC_HS_ST_COMPLETE &&
qc_el_rx_pkts(&qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE])) {
TRACE_PROTO("remaining Handshake packets", QUIC_EV_CONN_PHPKTS, qc);
/* There may be remaining Handshake packets to treat and acknowledge. */
tel = QUIC_TLS_ENC_LEVEL_HANDSHAKE;
next_tel = QUIC_TLS_ENC_LEVEL_APP;
}
else if (!quic_get_tls_enc_levels(&tel, &next_tel, st, zero_rtt))
goto err;
qel = &qc->els[tel];
next_qel = next_tel == QUIC_TLS_ENC_LEVEL_NONE ? NULL : &qc->els[next_tel];
next_level:
/* Treat packets waiting for header packet protection decryption */
if (!MT_LIST_ISEMPTY(&qel->rx.pqpkts) && qc_qel_may_rm_hp(qc, qel))
qc_rm_hp_pkts(qc, qel);
force_ack = qel == &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL] ||
qel == &qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE];
if (!qc_treat_rx_pkts(qel, next_qel, ctx, force_ack))
goto err;
if ((qc->flags & QUIC_FL_CONN_DRAINING) &&
!(qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE))
goto out;
if (next_qel && next_qel == &qc->els[QUIC_TLS_ENC_LEVEL_EARLY_DATA] &&
!MT_LIST_ISEMPTY(&next_qel->rx.pqpkts)) {
if ((next_qel->tls_ctx.flags & QUIC_FL_TLS_SECRETS_SET)) {
qel = next_qel;
next_qel = NULL;
goto next_level;
}
else {
struct quic_rx_packet *pkt;
struct mt_list *elt1, elt2;
struct quic_enc_level *aqel = &qc->els[QUIC_TLS_ENC_LEVEL_EARLY_DATA];
/* Drop these 0-RTT packets */
TRACE_PROTO("drop all 0-RTT packets", QUIC_EV_CONN_PHPKTS, qc);
mt_list_for_each_entry_safe(pkt, &aqel->rx.pqpkts, list, elt1, elt2) {
MT_LIST_DELETE_SAFE(elt1);
quic_rx_packet_refdec(pkt);
}
}
}
st = qc->state;
if (st >= QUIC_HS_ST_COMPLETE) {
if (!(qc->flags & QUIC_FL_CONN_POST_HANDSHAKE_FRAMES_BUILT) &&
!quic_build_post_handshake_frames(qc))
goto err;
if (!(qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].tls_ctx.flags &
QUIC_FL_TLS_SECRETS_DCD)) {
/* Discard the Handshake keys. */
quic_tls_discard_keys(&qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE]);
TRACE_PROTO("discarding Handshake pktns", QUIC_EV_CONN_PHPKTS, qc);
quic_pktns_discard(qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].pktns, qc);
qc_set_timer(qc);
qc_el_rx_pkts_del(&qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE]);
qc_release_pktns_frms(qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].pktns);
}
if (qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED) {
/* There may be remaining handshake to build (acks) */
st = QUIC_HS_ST_SERVER_HANDSHAKE;
}
}
if (!qr)
qr = MT_LIST_POP(qc->tx.qring_list, typeof(qr), mt_list);
/* A listener does not send any O-RTT packet. O-RTT packet number space must not
* be considered.
*/
if (!quic_get_tls_enc_levels(&tel, &next_tel, st, 0))
goto err;
ret = qc_prep_pkts(qc, qr, tel, &qc->els[tel].pktns->tx.frms,
next_tel, &qc->els[next_tel].pktns->tx.frms);
if (ret == -1)
goto err;
else if (ret == 0)
goto skip_send;
if (!qc_send_ppkts(qr, ctx))
goto err;
skip_send:
/* Check if there is something to do for the next level.
*/
if (next_qel && next_qel != qel &&
(next_qel->tls_ctx.flags & QUIC_FL_TLS_SECRETS_SET) &&
(!MT_LIST_ISEMPTY(&next_qel->rx.pqpkts) || qc_el_rx_pkts(next_qel))) {
qel = next_qel;
next_qel = NULL;
goto next_level;
}
out:
if (qr)
MT_LIST_APPEND(qc->tx.qring_list, &qr->mt_list);
TRACE_LEAVE(QUIC_EV_CONN_IO_CB, qc, &st);
return t;
err:
if (qr)
MT_LIST_APPEND(qc->tx.qring_list, &qr->mt_list);
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_IO_CB, qc, &st, &ssl_err);
return t;
}
/* Uninitialize <qel> QUIC encryption level. Never fails. */
static void quic_conn_enc_level_uninit(struct quic_enc_level *qel)
{
int i;
for (i = 0; i < qel->tx.crypto.nb_buf; i++) {
if (qel->tx.crypto.bufs[i]) {
pool_free(pool_head_quic_crypto_buf, qel->tx.crypto.bufs[i]);
qel->tx.crypto.bufs[i] = NULL;
}
}
ha_free(&qel->tx.crypto.bufs);
}
/* Initialize QUIC TLS encryption level with <level<> as level for <qc> QUIC
* connection allocating everything needed.
* Returns 1 if succeeded, 0 if not.
*/
static int quic_conn_enc_level_init(struct quic_conn *qc,
enum quic_tls_enc_level level)
{
struct quic_enc_level *qel;
qel = &qc->els[level];
qel->level = quic_to_ssl_enc_level(level);
qel->tls_ctx.rx.aead = qel->tls_ctx.tx.aead = NULL;
qel->tls_ctx.rx.md = qel->tls_ctx.tx.md = NULL;
qel->tls_ctx.rx.hp = qel->tls_ctx.tx.hp = NULL;
qel->tls_ctx.flags = 0;
qel->rx.pkts = EB_ROOT;
HA_RWLOCK_INIT(&qel->rx.pkts_rwlock);
MT_LIST_INIT(&qel->rx.pqpkts);
qel->rx.crypto.offset = 0;
qel->rx.crypto.frms = EB_ROOT_UNIQUE;
/* Allocate only one buffer. */
qel->tx.crypto.bufs = malloc(sizeof *qel->tx.crypto.bufs);
if (!qel->tx.crypto.bufs)
goto err;
qel->tx.crypto.bufs[0] = pool_alloc(pool_head_quic_crypto_buf);
if (!qel->tx.crypto.bufs[0])
goto err;
qel->tx.crypto.bufs[0]->sz = 0;
qel->tx.crypto.nb_buf = 1;
qel->tx.crypto.sz = 0;
qel->tx.crypto.offset = 0;
return 1;
err:
ha_free(&qel->tx.crypto.bufs);
return 0;
}
/* Release the quic_conn <qc>. The connection is removed from the CIDs tree.
* The connection tasklet is killed.
*
* This function must only be called by the thread responsible of the quic_conn
* tasklet.
*/
static void quic_conn_release(struct quic_conn *qc)
{
int i;
struct ssl_sock_ctx *conn_ctx;
struct eb64_node *node;
struct quic_tls_ctx *app_tls_ctx;
struct quic_rx_packet *pkt, *pktback;
/* We must not free the quic-conn if the MUX is still allocated. */
BUG_ON(qc->mux_state == QC_MUX_READY);
/* free remaining stream descriptors */
node = eb64_first(&qc->streams_by_id);
while (node) {
struct qc_stream_desc *stream;
stream = eb64_entry(node, struct qc_stream_desc, by_id);
node = eb64_next(node);
/* all streams attached to the quic-conn are released, so
* qc_stream_desc_free will liberate the stream instance.
*/
BUG_ON(!stream->release);
qc_stream_desc_free(stream);
}
/* Purge Rx packet list. */
list_for_each_entry_safe(pkt, pktback, &qc->rx.pkt_list, qc_rx_pkt_list) {
LIST_DELETE(&pkt->qc_rx_pkt_list);
pool_free(pool_head_quic_rx_packet, pkt);
}
if (qc->idle_timer_task) {
task_destroy(qc->idle_timer_task);
qc->idle_timer_task = NULL;
}
if (qc->timer_task) {
task_destroy(qc->timer_task);
qc->timer_task = NULL;
}
/* remove the connection from receiver cids trees */
ebmb_delete(&qc->odcid_node);
ebmb_delete(&qc->scid_node);
free_quic_conn_cids(qc);
conn_ctx = qc->xprt_ctx;
if (conn_ctx) {
tasklet_free(conn_ctx->wait_event.tasklet);
SSL_free(conn_ctx->ssl);
pool_free(pool_head_quic_conn_ctx, conn_ctx);
}
quic_tls_ku_free(qc);
for (i = 0; i < QUIC_TLS_ENC_LEVEL_MAX; i++) {
quic_tls_ctx_secs_free(&qc->els[i].tls_ctx);
quic_conn_enc_level_uninit(&qc->els[i]);
}
quic_tls_ctx_secs_free(&qc->negotiated_ictx);
app_tls_ctx = &qc->els[QUIC_TLS_ENC_LEVEL_APP].tls_ctx;
pool_free(pool_head_quic_tls_secret, app_tls_ctx->rx.secret);
pool_free(pool_head_quic_tls_secret, app_tls_ctx->tx.secret);
for (i = 0; i < QUIC_TLS_PKTNS_MAX; i++) {
quic_pktns_tx_pkts_release(&qc->pktns[i]);
quic_free_arngs(&qc->pktns[i].rx.arngs);
}
pool_free(pool_head_quic_conn_rxbuf, qc->rx.buf.area);
pool_free(pool_head_quic_conn, qc);
TRACE_PROTO("QUIC conn. freed", QUIC_EV_CONN_FREED, qc);
}
static void quic_close(struct connection *conn, void *xprt_ctx)
{
struct ssl_sock_ctx *conn_ctx = xprt_ctx;
struct quic_conn *qc = conn_ctx->qc;
TRACE_ENTER(QUIC_EV_CONN_CLOSE, qc);
/* Next application data can be dropped. */
qc->mux_state = QC_MUX_RELEASED;
/* If the quic-conn timer has already expired free the quic-conn. */
if (qc->flags & QUIC_FL_CONN_EXP_TIMER) {
quic_conn_release(qc);
TRACE_LEAVE(QUIC_EV_CONN_CLOSE);
return;
}
TRACE_LEAVE(QUIC_EV_CONN_CLOSE, qc);
}
/* Callback called upon loss detection and PTO timer expirations. */
static struct task *process_timer(struct task *task, void *ctx, unsigned int state)
{
struct ssl_sock_ctx *conn_ctx;
struct quic_conn *qc;
struct quic_pktns *pktns;
conn_ctx = task->context;
qc = conn_ctx->qc;
TRACE_ENTER(QUIC_EV_CONN_PTIMER, qc,
NULL, NULL, &qc->path->ifae_pkts);
task->expire = TICK_ETERNITY;
pktns = quic_loss_pktns(qc);
if (tick_isset(pktns->tx.loss_time)) {
struct list lost_pkts = LIST_HEAD_INIT(lost_pkts);
qc_packet_loss_lookup(pktns, qc, &lost_pkts);
if (!LIST_ISEMPTY(&lost_pkts))
qc_release_lost_pkts(qc, pktns, &lost_pkts, now_ms);
qc_set_timer(qc);
goto out;
}
if (qc->path->in_flight) {
pktns = quic_pto_pktns(qc, qc->state >= QUIC_HS_ST_COMPLETE, NULL);
if (qc->mux_state == QC_MUX_READY && qc->qcc->subs &&
qc->qcc->subs->events & SUB_RETRY_SEND) {
struct qcc *qcc = qc->qcc;
pktns->tx.pto_probe = QUIC_MAX_NB_PTO_DGRAMS;
tasklet_wakeup(qcc->subs->tasklet);
qcc->subs->events &= ~SUB_RETRY_SEND;
if (!qcc->subs->events)
qcc->subs = NULL;
}
else {
qc->flags |= QUIC_FL_CONN_RETRANS_NEEDED;
pktns->flags |= QUIC_FL_PKTNS_PROBE_NEEDED;
if (pktns == &qc->pktns[QUIC_TLS_PKTNS_INITIAL]) {
if (qc->pktns[QUIC_TLS_PKTNS_HANDSHAKE].tx.in_flight)
qc->pktns[QUIC_TLS_PKTNS_HANDSHAKE].flags |= QUIC_FL_PKTNS_PROBE_NEEDED;
}
}
}
else if (!qc_is_listener(qc) && qc->state <= QUIC_HS_ST_COMPLETE) {
struct quic_enc_level *iel = &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL];
struct quic_enc_level *hel = &qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE];
if (hel->tls_ctx.flags == QUIC_FL_TLS_SECRETS_SET)
hel->pktns->tx.pto_probe = 1;
if (iel->tls_ctx.flags == QUIC_FL_TLS_SECRETS_SET)
iel->pktns->tx.pto_probe = 1;
}
tasklet_wakeup(conn_ctx->wait_event.tasklet);
qc->path->loss.pto_count++;
out:
TRACE_LEAVE(QUIC_EV_CONN_PTIMER, qc, pktns);
return task;
}
/* Parse the Retry token from buffer <token> with <end> a pointer to
* one byte past the end of this buffer. This will extract the ODCID
* which will be stored into <odcid>
*
* Returns 0 on success else non-zero.
*/
static int parse_retry_token(const unsigned char *token, const unsigned char *end,
struct quic_cid *odcid)
{
uint64_t odcid_len;
uint32_t timestamp;
if (!quic_dec_int(&odcid_len, &token, end))
return 1;
/* RFC 9000 7.2. Negotiating Connection IDs:
* When an Initial packet is sent by a client that has not previously
* received an Initial or Retry packet from the server, the client
* populates the Destination Connection ID field with an unpredictable
* value. This Destination Connection ID MUST be at least 8 bytes in length.
*/
if (odcid_len < QUIC_ODCID_MINLEN || odcid_len > QUIC_CID_MAXLEN)
return 1;
if (end - token < odcid_len + sizeof timestamp)
return 1;
timestamp = ntohl(read_u32(token + odcid_len));
if (timestamp + MS_TO_TICKS(QUIC_RETRY_DURATION_MS) <= now_ms)
return 1;
memcpy(odcid->data, token, odcid_len);
odcid->len = odcid_len;
return 0;
}
/* Allocate a new QUIC connection with <version> as QUIC version. <ipv4>
* boolean is set to 1 for IPv4 connection, 0 for IPv6. <server> is set to 1
* for QUIC servers (or haproxy listeners).
* <dcid> is the destination connection ID, <scid> is the source connection ID,
* <token> the token found to be used for this connection with <token_len> as
* length. <saddr> is the source address.
* Returns the connection if succeeded, NULL if not.
*/
static struct quic_conn *qc_new_conn(const struct quic_version *qv, int ipv4,
struct quic_cid *dcid, struct quic_cid *scid,
const struct quic_cid *odcid,
struct sockaddr_storage *saddr,
int server, int token, void *owner)
{
int i;
struct quic_conn *qc;
/* Initial CID. */
struct quic_connection_id *icid;
char *buf_area = NULL;
struct listener *l = NULL;
TRACE_ENTER(QUIC_EV_CONN_INIT);
qc = pool_zalloc(pool_head_quic_conn);
if (!qc) {
TRACE_PROTO("Could not allocate a new connection", QUIC_EV_CONN_INIT);
goto err;
}
buf_area = pool_alloc(pool_head_quic_conn_rxbuf);
if (!buf_area) {
TRACE_PROTO("Could not allocate a new RX buffer", QUIC_EV_CONN_INIT, qc);
goto err;
}
qc->cids = EB_ROOT;
/* QUIC Server (or listener). */
if (server) {
struct proxy *prx;
l = owner;
prx = l->bind_conf->frontend;
qc->prx_counters = EXTRA_COUNTERS_GET(prx->extra_counters_fe,
&quic_stats_module);
qc->flags |= QUIC_FL_CONN_LISTENER;
qc->state = QUIC_HS_ST_SERVER_INITIAL;
/* Copy the initial DCID with the address. */
qc->odcid.len = dcid->len;
qc->odcid.addrlen = dcid->addrlen;
memcpy(qc->odcid.data, dcid->data, dcid->len + dcid->addrlen);
/* copy the packet SCID to reuse it as DCID for sending */
if (scid->len)
memcpy(qc->dcid.data, scid->data, scid->len);
qc->dcid.len = scid->len;
qc->tx.qring_list = &l->rx.tx_qring_list;
qc->li = l;
}
/* QUIC Client (outgoing connection to servers) */
else {
qc->state = QUIC_HS_ST_CLIENT_INITIAL;
if (dcid->len)
memcpy(qc->dcid.data, dcid->data, dcid->len);
qc->dcid.len = dcid->len;
}
qc->mux_state = QC_MUX_NULL;
icid = new_quic_cid(&qc->cids, qc, 0);
if (!icid) {
TRACE_PROTO("Could not allocate a new connection ID", QUIC_EV_CONN_INIT, qc);
goto err;
}
/* insert the allocated CID in the receiver datagram handler tree */
if (server)
ebmb_insert(&quic_dghdlrs[tid].cids, &icid->node, icid->cid.len);
/* Select our SCID which is the first CID with 0 as sequence number. */
qc->scid = icid->cid;
/* Packet number spaces initialization. */
for (i = 0; i < QUIC_TLS_PKTNS_MAX; i++)
quic_pktns_init(&qc->pktns[i]);
/* QUIC encryption level context initialization. */
for (i = 0; i < QUIC_TLS_ENC_LEVEL_MAX; i++) {
if (!quic_conn_enc_level_init(qc, i)) {
TRACE_PROTO("Could not initialize an encryption level", QUIC_EV_CONN_INIT, qc);
goto err;
}
/* Initialize the packet number space. */
qc->els[i].pktns = &qc->pktns[quic_tls_pktns(i)];
}
qc->original_version = qv;
qc->tps_tls_ext = (qc->original_version->num & 0xff000000) == 0xff000000 ?
TLS_EXTENSION_QUIC_TRANSPORT_PARAMETERS_DRAFT:
TLS_EXTENSION_QUIC_TRANSPORT_PARAMETERS;
/* TX part. */
LIST_INIT(&qc->tx.frms_to_send);
qc->tx.nb_buf = QUIC_CONN_TX_BUFS_NB;
qc->tx.wbuf = qc->tx.rbuf = 0;
qc->tx.bytes = 0;
/* RX part. */
qc->rx.bytes = 0;
qc->rx.buf = b_make(buf_area, QUIC_CONN_RX_BUFSZ, 0, 0);
for (i = 0; i < QCS_MAX_TYPES; i++)
qc->rx.strms[i].nb_streams = 0;
qc->nb_pkt_for_cc = 1;
qc->nb_pkt_since_cc = 0;
LIST_INIT(&qc->rx.pkt_list);
if (!quic_tls_ku_init(qc)) {
TRACE_PROTO("Key update initialization failed", QUIC_EV_CONN_INIT, qc);
goto err;
}
/* XXX TO DO: Only one path at this time. */
qc->path = &qc->paths[0];
quic_path_init(qc->path, ipv4, default_quic_cc_algo, qc);
/* required to use MTLIST_IN_LIST */
MT_LIST_INIT(&qc->accept_list);
qc->streams_by_id = EB_ROOT_UNIQUE;
qc->stream_buf_count = 0;
qc->sendto_err = 0;
memcpy(&qc->peer_addr, saddr, sizeof qc->peer_addr);
if (server && !qc_lstnr_params_init(qc, &l->bind_conf->quic_params,
icid->stateless_reset_token,
dcid->data, dcid->len,
qc->scid.data, qc->scid.len,
odcid->data, odcid->len, token))
goto err;
if (qc_conn_alloc_ssl_ctx(qc) ||
!quic_conn_init_timer(qc) ||
!quic_conn_init_idle_timer_task(qc))
goto err;
if (!qc_new_isecs(qc, &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL].tls_ctx,
qc->original_version, dcid->data, dcid->len, 1))
goto err;
TRACE_LEAVE(QUIC_EV_CONN_INIT, qc);
return qc;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_INIT, qc ? qc : NULL);
pool_free(pool_head_quic_conn_rxbuf, buf_area);
if (qc)
qc->rx.buf.area = NULL;
quic_conn_release(qc);
return NULL;
}
/* Initialize the timer task of <qc> QUIC connection.
* Returns 1 if succeeded, 0 if not.
*/
static int quic_conn_init_timer(struct quic_conn *qc)
{
/* Attach this task to the same thread ID used for the connection */
qc->timer_task = task_new_on(qc->tid);
if (!qc->timer_task)
return 0;
qc->timer = TICK_ETERNITY;
qc->timer_task->process = process_timer;
qc->timer_task->context = qc->xprt_ctx;
return 1;
}
/* Rearm the idle timer for <qc> QUIC connection. */
static void qc_idle_timer_do_rearm(struct quic_conn *qc)
{
unsigned int expire;
expire = QUIC_MAX(3 * quic_pto(qc), qc->max_idle_timeout);
qc->idle_timer_task->expire = tick_add(now_ms, MS_TO_TICKS(expire));
}
/* Rearm the idle timer for <qc> QUIC connection depending on <read> boolean
* which is set to 1 when receiving a packet , and 0 when sending packet
*/
static void qc_idle_timer_rearm(struct quic_conn *qc, int read)
{
if (read) {
qc->flags |= QUIC_FL_CONN_IDLE_TIMER_RESTARTED_AFTER_READ;
}
else {
qc->flags &= ~QUIC_FL_CONN_IDLE_TIMER_RESTARTED_AFTER_READ;
}
qc_idle_timer_do_rearm(qc);
}
/* The task handling the idle timeout */
static struct task *qc_idle_timer_task(struct task *t, void *ctx, unsigned int state)
{
struct quic_conn *qc = ctx;
struct quic_counters *prx_counters = qc->prx_counters;
unsigned int qc_flags = qc->flags;
/* Notify the MUX before settings QUIC_FL_CONN_EXP_TIMER or the MUX
* might free the quic-conn too early via quic_close().
*/
qc_notify_close(qc);
/* If the MUX is still alive, keep the quic-conn. The MUX is
* responsible to call quic_close to release it.
*/
qc->flags |= QUIC_FL_CONN_EXP_TIMER;
if (qc->mux_state != QC_MUX_READY)
quic_conn_release(qc);
/* TODO if the quic-conn cannot be freed because of the MUX, we may at
* least clean some parts of it such as the tasklet.
*/
if (!(qc_flags & QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED)) {
qc_flags |= QUIC_FL_CONN_HALF_OPEN_CNT_DECREMENTED;
HA_ATOMIC_DEC(&prx_counters->half_open_conn);
}
return NULL;
}
/* Initialize the idle timeout task for <qc>.
* Returns 1 if succeeded, 0 if not.
*/
static int quic_conn_init_idle_timer_task(struct quic_conn *qc)
{
qc->idle_timer_task = task_new_here();
if (!qc->idle_timer_task)
return 0;
qc->idle_timer_task->process = qc_idle_timer_task;
qc->idle_timer_task->context = qc;
qc_idle_timer_rearm(qc, 1);
task_queue(qc->idle_timer_task);
return 1;
}
/* Parse into <pkt> a long header located at <*buf> buffer, <end> begin a pointer to the end
* past one byte of this buffer.
*/
static inline int quic_packet_read_long_header(unsigned char **buf, const unsigned char *end,
struct quic_rx_packet *pkt)
{
unsigned char dcid_len, scid_len;
if (end == *buf)
return 0;
/* Destination Connection ID Length */
dcid_len = *(*buf)++;
/* We want to be sure we can read <dcid_len> bytes and one more for <scid_len> value */
if (dcid_len > QUIC_CID_MAXLEN || end - *buf < dcid_len + 1)
/* XXX MUST BE DROPPED */
return 0;
if (dcid_len) {
/* Check that the length of this received DCID matches the CID lengths
* of our implementation for non Initials packets only.
*/
if (pkt->type != QUIC_PACKET_TYPE_INITIAL &&
pkt->type != QUIC_PACKET_TYPE_0RTT &&
dcid_len != QUIC_HAP_CID_LEN)
return 0;
memcpy(pkt->dcid.data, *buf, dcid_len);
}
pkt->dcid.len = dcid_len;
*buf += dcid_len;
/* Source Connection ID Length */
scid_len = *(*buf)++;
if (scid_len > QUIC_CID_MAXLEN || end - *buf < scid_len)
/* XXX MUST BE DROPPED */
return 0;
if (scid_len)
memcpy(pkt->scid.data, *buf, scid_len);
pkt->scid.len = scid_len;
*buf += scid_len;
return 1;
}
/* Insert <pkt> RX packet in its <qel> RX packets tree */
static void qc_pkt_insert(struct quic_rx_packet *pkt, struct quic_enc_level *qel)
{
pkt->pn_node.key = pkt->pn;
quic_rx_packet_refinc(pkt);
HA_RWLOCK_WRLOCK(QUIC_LOCK, &qel->rx.pkts_rwlock);
eb64_insert(&qel->rx.pkts, &pkt->pn_node);
HA_RWLOCK_WRUNLOCK(QUIC_LOCK, &qel->rx.pkts_rwlock);
}
/* Try to remove the header protection of <pkt> QUIC packet attached to <qc>
* QUIC connection with <buf> as packet number field address, <end> a pointer to one
* byte past the end of the buffer containing this packet and <beg> the address of
* the packet first byte.
* If succeeded, this function updates <*buf> to point to the next packet in the buffer.
* Returns 1 if succeeded, 0 if not.
*/
static inline int qc_try_rm_hp(struct quic_conn *qc,
struct quic_rx_packet *pkt,
unsigned char *buf, unsigned char *beg,
const unsigned char *end,
struct quic_enc_level **el)
{
unsigned char *pn = NULL; /* Packet number field */
enum quic_tls_enc_level tel;
struct quic_enc_level *qel;
/* Only for traces. */
struct quic_rx_packet *qpkt_trace;
qpkt_trace = NULL;
TRACE_ENTER(QUIC_EV_CONN_TRMHP, qc);
/* The packet number is here. This is also the start minus
* QUIC_PACKET_PN_MAXLEN of the sample used to add/remove the header
* protection.
*/
pn = buf;
tel = quic_packet_type_enc_level(pkt->type);
qel = &qc->els[tel];
if (qc_qel_may_rm_hp(qc, qel)) {
/* Note that the following function enables us to unprotect the packet
* number and its length subsequently used to decrypt the entire
* packets.
*/
if (!qc_do_rm_hp(qc, pkt, &qel->tls_ctx,
qel->pktns->rx.largest_pn, pn, beg, end)) {
TRACE_PROTO("hp error", QUIC_EV_CONN_TRMHP, qc);
goto err;
}
/* The AAD includes the packet number field found at <pn>. */
pkt->aad_len = pn - beg + pkt->pnl;
qpkt_trace = pkt;
}
else {
if (qel->tls_ctx.flags & QUIC_FL_TLS_SECRETS_DCD) {
/* If the packet number space has been discarded, this packet
* will be not parsed.
*/
TRACE_PROTO("Discarded pktns", QUIC_EV_CONN_TRMHP, qc, pkt);
goto out;
}
TRACE_PROTO("hp not removed", QUIC_EV_CONN_TRMHP, qc, pkt);
pkt->pn_offset = pn - beg;
MT_LIST_APPEND(&qel->rx.pqpkts, &pkt->list);
quic_rx_packet_refinc(pkt);
}
*el = qel;
/* No reference counter incrementation here!!! */
LIST_APPEND(&qc->rx.pkt_list, &pkt->qc_rx_pkt_list);
memcpy(b_tail(&qc->rx.buf), beg, pkt->len);
pkt->data = (unsigned char *)b_tail(&qc->rx.buf);
b_add(&qc->rx.buf, pkt->len);
out:
TRACE_LEAVE(QUIC_EV_CONN_TRMHP, qc, qpkt_trace);
return 1;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_TRMHP, qc, qpkt_trace);
return 0;
}
/* Parse the header form from <byte0> first byte of <pkt> packet to set its type.
* Also set <*long_header> to 1 if this form is long, 0 if not and the version
* of this packet into <*version>.
*/
static inline int qc_parse_hd_form(struct quic_rx_packet *pkt,
unsigned char **buf, const unsigned char *end,
int *long_header, uint32_t *version)
{
const unsigned char byte0 = **buf;
(*buf)++;
if (byte0 & QUIC_PACKET_LONG_HEADER_BIT) {
unsigned char type =
(byte0 >> QUIC_PACKET_TYPE_SHIFT) & QUIC_PACKET_TYPE_BITMASK;
*long_header = 1;
/* Version */
if (!quic_read_uint32(version, (const unsigned char **)buf, end))
return 0;
if (*version != QUIC_PROTOCOL_VERSION_2_DRAFT) {
pkt->type = type;
}
else {
switch (type) {
case 0:
pkt->type = QUIC_PACKET_TYPE_RETRY;
break;
case 1:
pkt->type = QUIC_PACKET_TYPE_INITIAL;
break;
case 2:
pkt->type = QUIC_PACKET_TYPE_0RTT;
break;
case 3:
pkt->type = QUIC_PACKET_TYPE_HANDSHAKE;
break;
}
}
}
else {
pkt->type = QUIC_PACKET_TYPE_SHORT;
*long_header = 0;
}
return 1;
}
/* Return the QUIC version (quic_version struct) with <version> as version number
* if supported or NULL if not.
*/
static inline const struct quic_version *qc_supported_version(uint32_t version)
{
int i;
for (i = 0; i < quic_versions_nb; i++)
if (quic_versions[i].num == version)
return &quic_versions[i];
return NULL;
}
/*
* Send a Version Negotiation packet on response to <pkt> on socket <fd> to
* address <addr>.
* Implementation of RFC9000 6. Version Negotiation
*
* TODO implement a rate-limiting sending of Version Negotiation packets
*
* Returns 0 on success else non-zero
*/
static int send_version_negotiation(int fd, struct sockaddr_storage *addr,
struct quic_rx_packet *pkt)
{
char buf[256];
int i = 0, j;
uint32_t version;
const socklen_t addrlen = get_addr_len(addr);
/*
* header form
* long header, fixed bit to 0 for Version Negotiation
*/
if (RAND_bytes((unsigned char *)buf, 1) != 1)
return 1;
buf[i++] |= '\x80';
/* null version for Version Negotiation */
buf[i++] = '\x00';
buf[i++] = '\x00';
buf[i++] = '\x00';
buf[i++] = '\x00';
/* source connection id */
buf[i++] = pkt->scid.len;
memcpy(&buf[i], pkt->scid.data, pkt->scid.len);
i += pkt->scid.len;
/* destination connection id */
buf[i++] = pkt->dcid.len;
memcpy(&buf[i], pkt->dcid.data, pkt->dcid.len);
i += pkt->dcid.len;
/* supported version */
for (j = 0; j < quic_versions_nb; j++) {
version = htonl(quic_versions[j].num);
memcpy(&buf[i], &version, sizeof(version));
i += sizeof(version);
}
if (sendto(fd, buf, i, 0, (struct sockaddr *)addr, addrlen) < 0)
return 1;
return 0;
}
/* Send a stateless reset packet depending on <pkt> RX packet information
* from <fd> UDP socket to <dst>
* Return 1 if succeeded, 0 if not.
*/
static int send_stateless_reset(struct listener *l, struct sockaddr_storage *dstaddr,
struct quic_rx_packet *rxpkt)
{
int pktlen, rndlen;
unsigned char pkt[64];
const socklen_t addrlen = get_addr_len(dstaddr);
struct proxy *prx;
struct quic_counters *prx_counters;
prx = l->bind_conf->frontend;
prx_counters = EXTRA_COUNTERS_GET(prx->extra_counters_fe, &quic_stats_module);
/* 10.3 Stateless Reset (https://www.rfc-editor.org/rfc/rfc9000.html#section-10.3)
* The resulting minimum size of 21 bytes does not guarantee that a Stateless
* Reset is difficult to distinguish from other packets if the recipient requires
* the use of a connection ID. To achieve that end, the endpoint SHOULD ensure
* that all packets it sends are at least 22 bytes longer than the minimum
* connection ID length that it requests the peer to include in its packets,
* adding PADDING frames as necessary. This ensures that any Stateless Reset
* sent by the peer is indistinguishable from a valid packet sent to the endpoint.
* An endpoint that sends a Stateless Reset in response to a packet that is
* 43 bytes or shorter SHOULD send a Stateless Reset that is one byte shorter
* than the packet it responds to.
*/
/* Note that we build at most a 42 bytes QUIC packet to mimic a short packet */
pktlen = rxpkt->len <= 43 ? rxpkt->len - 1 : 0;
pktlen = QUIC_MAX(QUIC_STATELESS_RESET_PACKET_MINLEN, pktlen);
rndlen = pktlen - QUIC_STATELESS_RESET_TOKEN_LEN;
/* Put a header of random bytes */
if (RAND_bytes(pkt, rndlen) != 1)
return 0;
/* Clear the most significant bit, and set the second one */
*pkt = (*pkt & ~0x80) | 0x40;
if (!quic_stateless_reset_token_cpy(pkt + rndlen, QUIC_STATELESS_RESET_TOKEN_LEN,
rxpkt->dcid.data, rxpkt->dcid.len))
return 0;
if (sendto(l->rx.fd, pkt, pktlen, 0, (struct sockaddr *)dstaddr, addrlen) < 0)
return 0;
HA_ATOMIC_INC(&prx_counters->stateless_reset_sent);
TRACE_PROTO("stateless reset sent", QUIC_EV_STATELESS_RST, NULL, &rxpkt->dcid);
return 1;
}
/* QUIC server only function.
* Add AAD to <add> buffer from <cid> connection ID and <addr> socket address.
* This is the responsability of the caller to check <aad> size is big enough
* to contain these data.
* Return the number of bytes copied to <aad>.
*/
static int quic_generate_retry_token_aad(unsigned char *aad,
uint32_t version,
const struct quic_cid *cid,
const struct sockaddr_storage *addr)
{
unsigned char *p;
p = aad;
memcpy(p, &version, sizeof version);
p += sizeof version;
p += quic_saddr_cpy(p, addr);
memcpy(p, cid->data, cid->len);
p += cid->len;
return p - aad;
}
/* QUIC server only function.
* Generate the token to be used in Retry packets. The token is written to
* <buf> whith <len> as length. <odcid> is the original destination connection
* ID and <dcid> is our side destination connection ID (or client source
* connection ID).
* Returns the length of the encoded token or 0 on error.
*/
static int quic_generate_retry_token(unsigned char *buf, size_t len,
const uint32_t version,
const struct quic_cid *odcid,
const struct quic_cid *dcid,
struct sockaddr_storage *addr)
{
unsigned char *p;
unsigned char aad[sizeof(uint32_t) + sizeof(in_port_t) +
sizeof(struct in6_addr) + QUIC_HAP_CID_LEN];
size_t aadlen;
unsigned char salt[QUIC_RETRY_TOKEN_SALTLEN];
unsigned char key[QUIC_TLS_KEY_LEN];
unsigned char iv[QUIC_TLS_IV_LEN];
const unsigned char *sec = (const unsigned char *)global.cluster_secret;
size_t seclen = strlen(global.cluster_secret);
EVP_CIPHER_CTX *ctx = NULL;
const EVP_CIPHER *aead = EVP_aes_128_gcm();
uint32_t timestamp = now_ms;
/* We copy the odcid into the token, prefixed by its one byte
* length, the format token byte. It is followed by an AEAD TAG, and finally
* the random bytes used to derive the secret to encrypt the token.
*/
if (1 + dcid->len + 1 + QUIC_TLS_TAG_LEN + sizeof salt > len)
return 0;
aadlen = quic_generate_retry_token_aad(aad, version, dcid, addr);
if (RAND_bytes(salt, sizeof salt) != 1)
goto err;
if (!quic_tls_derive_retry_token_secret(EVP_sha256(), key, sizeof key, iv, sizeof iv,
salt, sizeof salt, sec, seclen))
goto err;
if (!quic_tls_tx_ctx_init(&ctx, aead, key))
goto err;
/* Token build */
p = buf;
*p++ = QUIC_TOKEN_FMT_RETRY,
*p++ = odcid->len;
memcpy(p, odcid->data, odcid->len);
p += odcid->len;
write_u32(p, htonl(timestamp));
p += sizeof timestamp;
/* Do not encrypt the QUIC_TOKEN_FMT_RETRY byte */
if (!quic_tls_encrypt(buf + 1, p - buf - 1, aad, aadlen, ctx, aead, key, iv))
goto err;
p += QUIC_TLS_TAG_LEN;
memcpy(p, salt, sizeof salt);
p += sizeof salt;
EVP_CIPHER_CTX_free(ctx);
return p - buf;
err:
if (ctx)
EVP_CIPHER_CTX_free(ctx);
return 0;
}
/* QUIC server only function.
* Check the validity of the Retry token from <token> buffer with <tokenlen>
* as length. If valid, the ODCID of <qc> QUIC connection will be put
* into <odcid> connection ID. <dcid> is our side destination connection ID
* of client source connection ID.
* Return 1 if succeeded, 0 if not.
*/
static int quic_retry_token_check(const unsigned char *token, size_t tokenlen,
const struct quic_version *qv,
struct quic_cid *odcid,
const struct quic_cid *dcid,
struct quic_conn *qc,
struct sockaddr_storage *addr)
{
unsigned char buf[128];
unsigned char aad[sizeof(uint32_t) + sizeof(in_port_t) +
sizeof(struct in6_addr) + QUIC_HAP_CID_LEN];
size_t aadlen;
const unsigned char *salt;
unsigned char key[QUIC_TLS_KEY_LEN];
unsigned char iv[QUIC_TLS_IV_LEN];
const unsigned char *sec = (const unsigned char *)global.cluster_secret;
size_t seclen = strlen(global.cluster_secret);
EVP_CIPHER_CTX *ctx = NULL;
const EVP_CIPHER *aead = EVP_aes_128_gcm();
if (sizeof buf < tokenlen)
return 0;
aadlen = quic_generate_retry_token_aad(aad, qv->num, dcid, addr);
salt = token + tokenlen - QUIC_RETRY_TOKEN_SALTLEN;
if (!quic_tls_derive_retry_token_secret(EVP_sha256(), key, sizeof key, iv, sizeof iv,
salt, QUIC_RETRY_TOKEN_SALTLEN, sec, seclen)) {
TRACE_PROTO("Could not derive retry secret", QUIC_EV_CONN_LPKT, qc);
return 0;
}
if (!quic_tls_rx_ctx_init(&ctx, aead, key))
goto err;
/* Do not decrypt the QUIC_TOKEN_FMT_RETRY byte */
if (!quic_tls_decrypt2(buf, token + 1, tokenlen - QUIC_RETRY_TOKEN_SALTLEN - 1, aad, aadlen,
ctx, aead, key, iv)) {
TRACE_PROTO("Could not decrypt retry token", QUIC_EV_CONN_LPKT, qc);
goto err;
}
if (parse_retry_token(buf, buf + tokenlen - QUIC_RETRY_TOKEN_SALTLEN - 1, odcid)) {
TRACE_PROTO("Error during Initial token parsing", QUIC_EV_CONN_LPKT, qc);
goto err;
}
EVP_CIPHER_CTX_free(ctx);
return 1;
err:
if (ctx)
EVP_CIPHER_CTX_free(ctx);
return 0;
}
/* Generate a Retry packet and send it on <fd> socket to <addr> in response to
* the Initial <pkt> packet.
*
* Returns 0 on success else non-zero.
*/
static int send_retry(int fd, struct sockaddr_storage *addr,
struct quic_rx_packet *pkt, const struct quic_version *qv)
{
unsigned char buf[128];
int i = 0, token_len;
const socklen_t addrlen = get_addr_len(addr);
struct quic_cid scid;
/* long header + fixed bit + packet type QUIC_PACKET_TYPE_RETRY */
buf[i++] = (QUIC_PACKET_LONG_HEADER_BIT | QUIC_PACKET_FIXED_BIT) |
(quic_pkt_type(QUIC_PACKET_TYPE_RETRY, qv->num) << QUIC_PACKET_TYPE_SHIFT);
/* version */
buf[i++] = *((unsigned char *)&qv->num + 3);
buf[i++] = *((unsigned char *)&qv->num + 2);
buf[i++] = *((unsigned char *)&qv->num + 1);
buf[i++] = *(unsigned char *)&qv->num;
/* Use the SCID from <pkt> for Retry DCID. */
buf[i++] = pkt->scid.len;
memcpy(&buf[i], pkt->scid.data, pkt->scid.len);
i += pkt->scid.len;
/* Generate a new CID to be used as SCID for the Retry packet. */
scid.len = QUIC_HAP_CID_LEN;
if (RAND_bytes(scid.data, scid.len) != 1)
return 1;
buf[i++] = scid.len;
memcpy(&buf[i], scid.data, scid.len);
i += scid.len;
/* token */
if (!(token_len = quic_generate_retry_token(&buf[i], sizeof(buf) - i, qv->num,
&pkt->dcid, &pkt->scid, addr)))
return 1;
i += token_len;
/* token integrity tag */
if ((&buf[i] - buf < QUIC_TLS_TAG_LEN) ||
!quic_tls_generate_retry_integrity_tag(pkt->dcid.data,
pkt->dcid.len, buf, i, qv)) {
return 1;
}
i += QUIC_TLS_TAG_LEN;
if (sendto(fd, buf, i, 0, (struct sockaddr *)addr, addrlen) < 0)
return 1;
return 0;
}
/* Retrieve a quic_conn instance from the <pkt> DCID field. If the packet is of
* type INITIAL, the ODCID tree is first used. In this case, <saddr> is
* concatenated to the <pkt> DCID field.
*
* Returns the instance or NULL if not found.
*/
static struct quic_conn *retrieve_qc_conn_from_cid(struct quic_rx_packet *pkt,
struct listener *l,
struct sockaddr_storage *saddr)
{
struct quic_conn *qc = NULL;
struct ebmb_node *node;
struct quic_connection_id *id;
/* set if the quic_conn is found in the second DCID tree */
int found_in_dcid = 0;
/* Look first into ODCIDs tree for INITIAL/0-RTT packets. */
if (pkt->type == QUIC_PACKET_TYPE_INITIAL ||
pkt->type == QUIC_PACKET_TYPE_0RTT) {
/* DCIDs of first packets coming from multiple clients may have
* the same values. Let's distinguish them by concatenating the
* socket addresses.
*/
quic_cid_saddr_cat(&pkt->dcid, saddr);
node = ebmb_lookup(&quic_dghdlrs[tid].odcids, pkt->dcid.data,
pkt->dcid.len + pkt->dcid.addrlen);
if (node) {
qc = ebmb_entry(node, struct quic_conn, odcid_node);
goto end;
}
}
/* Look into DCIDs tree for non-INITIAL/0-RTT packets. This may be used
* also for INITIAL/0-RTT non-first packets with the final DCID in
* used.
*/
node = ebmb_lookup(&quic_dghdlrs[tid].cids, pkt->dcid.data, pkt->dcid.len);
if (!node)
goto end;
id = ebmb_entry(node, struct quic_connection_id, node);
qc = id->qc;
found_in_dcid = 1;
end:
/* If found in DCIDs tree, remove the quic_conn from the ODCIDs tree.
* If already done, this is a noop.
*/
if (qc && found_in_dcid)
ebmb_delete(&qc->odcid_node);
return qc;
}
/* Try to allocate the <*ssl> SSL session object for <qc> QUIC connection
* with <ssl_ctx> as SSL context inherited settings. Also set the transport
* parameters of this session.
* This is the responsibility of the caller to check the validity of all the
* pointers passed as parameter to this function.
* Return 0 if succeeded, -1 if not. If failed, sets the ->err_code member of <qc->conn> to
* CO_ER_SSL_NO_MEM.
*/
static int qc_ssl_sess_init(struct quic_conn *qc, SSL_CTX *ssl_ctx, SSL **ssl,
unsigned char *params, size_t params_len)
{
int retry;
retry = 1;
retry:
*ssl = SSL_new(ssl_ctx);
if (!*ssl) {
if (!retry--)
goto err;
pool_gc(NULL);
goto retry;
}
if (!SSL_set_quic_method(*ssl, &ha_quic_method) ||
!SSL_set_ex_data(*ssl, ssl_qc_app_data_index, qc)) {
SSL_free(*ssl);
*ssl = NULL;
if (!retry--)
goto err;
pool_gc(NULL);
goto retry;
}
return 0;
err:
qc->conn->err_code = CO_ER_SSL_NO_MEM;
return -1;
}
/* Finalize <qc> QUIC connection:
* - initialize the Initial QUIC TLS context for negotiated version,
* - derive the secrets for this context,
* - encode the transport parameters to be sent,
* - set them into the TLS stack,
* - initialize ->max_ack_delay and max_idle_timeout,
*
* MUST be called after having received the remote transport parameters.
* Return 1 if succeeded, 0 if not.
*/
int qc_conn_finalize(struct quic_conn *qc, int server)
{
struct quic_transport_params *tx_tp = &qc->tx.params;
struct quic_transport_params *rx_tp = &qc->rx.params;
const struct quic_version *ver;
if (tx_tp->version_information.negotiated_version &&
tx_tp->version_information.negotiated_version != qc->original_version) {
qc->negotiated_version =
qc->tx.params.version_information.negotiated_version;
if (!qc_new_isecs(qc, &qc->negotiated_ictx, qc->negotiated_version,
qc->odcid.data, qc->odcid.len, !server))
return 0;
ver = qc->negotiated_version;
}
else {
ver = qc->original_version;
}
qc->enc_params_len =
quic_transport_params_encode(qc->enc_params,
qc->enc_params + sizeof qc->enc_params,
&qc->rx.params, ver, 1);
if (!qc->enc_params_len)
return 0;
if (!SSL_set_quic_transport_params(qc->xprt_ctx->ssl, qc->enc_params, qc->enc_params_len))
return 0;
if (tx_tp->max_ack_delay)
qc->max_ack_delay = tx_tp->max_ack_delay;
if (tx_tp->max_idle_timeout && rx_tp->max_idle_timeout)
qc->max_idle_timeout =
QUIC_MIN(tx_tp->max_idle_timeout, rx_tp->max_idle_timeout);
else
qc->max_idle_timeout =
QUIC_MAX(tx_tp->max_idle_timeout, rx_tp->max_idle_timeout);
TRACE_PROTO("\nTX(remote) transp. params.", QUIC_EV_TRANSP_PARAMS, qc, tx_tp);
return 1;
}
/* Allocate the ssl_sock_ctx from connection <qc>. This creates the tasklet
* used to process <qc> received packets. The allocated context is stored in
* <qc.xprt_ctx>.
*
* Returns 0 on success else non-zero.
*/
static int qc_conn_alloc_ssl_ctx(struct quic_conn *qc)
{
struct bind_conf *bc = qc->li->bind_conf;
struct ssl_sock_ctx *ctx = NULL;
ctx = pool_zalloc(pool_head_quic_conn_ctx);
if (!ctx)
goto err;
ctx->wait_event.tasklet = tasklet_new();
if (!ctx->wait_event.tasklet)
goto err;
ctx->wait_event.tasklet->process = quic_conn_io_cb;
ctx->wait_event.tasklet->context = ctx;
ctx->wait_event.events = 0;
ctx->subs = NULL;
ctx->xprt_ctx = NULL;
ctx->qc = qc;
/* Set tasklet tid based on the SCID selected by us for this
* connection. The upper layer will also be binded on the same thread.
*/
qc->tid = ctx->wait_event.tasklet->tid = quic_get_cid_tid(qc->scid.data);
if (qc_is_listener(qc)) {
if (qc_ssl_sess_init(qc, bc->initial_ctx, &ctx->ssl,
qc->enc_params, qc->enc_params_len) == -1) {
goto err;
}
/* Enabling 0-RTT */
if (bc->ssl_conf.early_data)
SSL_set_quic_early_data_enabled(ctx->ssl, 1);
SSL_set_accept_state(ctx->ssl);
}
ctx->xprt = xprt_get(XPRT_QUIC);
/* Store the allocated context in <qc>. */
qc->xprt_ctx = ctx;
return 0;
err:
if (ctx && ctx->wait_event.tasklet)
tasklet_free(ctx->wait_event.tasklet);
pool_free(pool_head_quic_conn_ctx, ctx);
return 1;
}
/* Check that all the bytes between <buf> included and <end> address
* excluded are null. This is the responsability of the caller to
* check that there is at least one byte between <buf> end <end>.
* Return 1 if this all the bytes are null, 0 if not.
*/
static inline int quic_padding_check(const unsigned char *buf,
const unsigned char *end)
{
while (buf < end && !*buf)
buf++;
return buf == end;
}
/* Parse a QUIC packet from UDP datagram found in <buf> buffer with <end> the
* end of this buffer past one byte and populate <pkt> RX packet structure
* with the information collected from the packet.
* This function sets ->len <pkt> field value to the end of the packet past one
* byte to enable the caller to run this function again to continue to parse
* the remaing QUIC packets carried by the datagram.
* Note that this function always sets this ->len value. If a paquet could
* not be correctly found, ->len value will be set to the remaining number
* bytes in the datagram to entirely consume this latter.
*/
static void qc_lstnr_pkt_rcv(unsigned char *buf, const unsigned char *end,
struct quic_rx_packet *pkt, int first_pkt,
struct quic_dgram *dgram)
{
unsigned char *beg, *payload;
struct quic_conn *qc, *qc_to_purge = NULL;
struct listener *l;
struct proxy *prx;
struct quic_counters *prx_counters;
struct ssl_sock_ctx *conn_ctx;
int drop_no_conn = 0, long_header = 0, io_cb_wakeup = 0;
size_t b_cspace;
struct quic_enc_level *qel;
uint32_t version;
const struct quic_version *qv = NULL;
beg = buf;
qc = NULL;
conn_ctx = NULL;
qel = NULL;
TRACE_ENTER(QUIC_EV_CONN_LPKT);
l = dgram->owner;
prx = l->bind_conf->frontend;
prx_counters = EXTRA_COUNTERS_GET(prx->extra_counters_fe, &quic_stats_module);
/* This ist only to please to traces and distinguish the
* packet with parsed packet number from others.
*/
pkt->pn_node.key = (uint64_t)-1;
if (end <= buf) {
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
goto drop;
}
/* Fixed bit */
if (!(*buf & QUIC_PACKET_FIXED_BIT)) {
if (!first_pkt && quic_padding_check(buf, end)) {
/* Some browsers may pad the remaining datagram space with null bytes.
* That is what we called add padding out of QUIC packets. Such
* datagrams must be considered as valid. But we can only consume
* the remaining space.
*/
pkt->len = end - buf;
goto drop_no_conn;
}
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
goto drop;
}
/* Header form */
if (!qc_parse_hd_form(pkt, &buf, end, &long_header, &version)) {
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
goto drop;
}
if (long_header) {
uint64_t len;
struct quic_cid odcid;
int check_token = 0;
if (!quic_packet_read_long_header(&buf, end, pkt)) {
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
goto drop;
}
if (pkt->type == QUIC_PACKET_TYPE_0RTT && !l->bind_conf->ssl_conf.early_data) {
TRACE_PROTO("0-RTT packet not supported", QUIC_EV_CONN_LPKT, qc);
drop_no_conn = 1;
}
else if (pkt->type == QUIC_PACKET_TYPE_INITIAL &&
dgram->len < QUIC_INITIAL_PACKET_MINLEN) {
TRACE_PROTO("Too short datagram with an Initial packet", QUIC_EV_CONN_LPKT, qc);
HA_ATOMIC_INC(&prx_counters->too_short_initial_dgram);
}
/* When multiple QUIC packets are coalesced on the same UDP datagram,
* they must have the same DCID.
*/
if (!first_pkt &&
(pkt->dcid.len != dgram->dcid_len ||
memcmp(dgram->dcid, pkt->dcid.data, pkt->dcid.len))) {
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc);
goto drop;
}
/* Retry of Version Negotiation packets are only sent by servers */
if (pkt->type == QUIC_PACKET_TYPE_RETRY || !version) {
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
goto drop;
}
/* RFC9000 6. Version Negotiation */
qv = qc_supported_version(version);
if (!qv) {
/* unsupported version, send Negotiation packet */
if (send_version_negotiation(l->rx.fd, &dgram->saddr, pkt)) {
TRACE_PROTO("VN packet not sent", QUIC_EV_CONN_LPKT);
goto err;
}
TRACE_PROTO("VN packet sent", QUIC_EV_CONN_LPKT);
goto err;
}
/* For Initial packets, and for servers (QUIC clients connections),
* there is no Initial connection IDs storage.
*/
if (pkt->type == QUIC_PACKET_TYPE_INITIAL) {
uint64_t token_len;
if (!quic_dec_int(&token_len, (const unsigned char **)&buf, end) ||
end - buf < token_len) {
TRACE_PROTO("Packet dropped",
QUIC_EV_CONN_LPKT, NULL, NULL, NULL, qv);
goto drop;
}
/* TODO Retry should be automatically activated if
* suspect network usage is detected.
*/
if (global.cluster_secret) {
if (!token_len) {
if (l->bind_conf->options & BC_O_QUIC_FORCE_RETRY) {
TRACE_PROTO("Initial without token, sending retry",
QUIC_EV_CONN_LPKT, NULL, NULL, NULL, qv);
if (send_retry(l->rx.fd, &dgram->saddr, pkt, qv)) {
TRACE_PROTO("Error during Retry generation",
QUIC_EV_CONN_LPKT, NULL, NULL, NULL, qv);
goto err;
}
HA_ATOMIC_INC(&prx_counters->retry_sent);
goto err;
}
}
else {
check_token = 1;
}
}
pkt->token = buf;
pkt->token_len = token_len;
buf += pkt->token_len;
}
else if (pkt->type != QUIC_PACKET_TYPE_0RTT) {
if (pkt->dcid.len != QUIC_HAP_CID_LEN) {
TRACE_PROTO("Packet dropped",
QUIC_EV_CONN_LPKT, NULL, NULL, NULL, qv);
goto drop;
}
}
if (!quic_dec_int(&len, (const unsigned char **)&buf, end) ||
end - buf < len) {
TRACE_PROTO("Packet dropped",
QUIC_EV_CONN_LPKT, NULL, NULL, NULL, qv);
goto drop;
}
payload = buf;
pkt->len = len + payload - beg;
if (drop_no_conn)
goto drop_no_conn;
qc = retrieve_qc_conn_from_cid(pkt, l, &dgram->saddr);
if (check_token && pkt->token) {
if (*pkt->token == QUIC_TOKEN_FMT_RETRY) {
const struct quic_version *ver = qc ? qc->original_version : qv;
if (!quic_retry_token_check(pkt->token, pkt->token_len, ver, &odcid,
&pkt->scid, qc, &dgram->saddr)) {
HA_ATOMIC_INC(&prx_counters->retry_error);
TRACE_PROTO("Wrong retry token",
QUIC_EV_CONN_LPKT, qc, NULL, NULL, qv);
/* TODO: RFC 9000 8.1.2 A server SHOULD immediately close the connection
* with an INVALID_TOKEN error.
*/
goto drop;
}
HA_ATOMIC_INC(&prx_counters->retry_validated);
}
else {
/* TODO: New token check */
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc, NULL, NULL, qv);
goto drop;
}
}
if (!qc) {
int ipv4;
struct ebmb_node *n = NULL;
if (pkt->type != QUIC_PACKET_TYPE_INITIAL) {
TRACE_PROTO("Non Initial packet", QUIC_EV_CONN_LPKT, NULL, NULL, NULL, qv);
goto drop;
}
if (global.cluster_secret && !pkt->token_len && !(l->bind_conf->options & BC_O_QUIC_FORCE_RETRY) &&
HA_ATOMIC_LOAD(&prx_counters->half_open_conn) >= global.tune.quic_retry_threshold) {
TRACE_PROTO("Initial without token, sending retry",
QUIC_EV_CONN_LPKT, NULL, NULL, NULL, qv);
if (send_retry(l->rx.fd, &dgram->saddr, pkt, qv)) {
TRACE_PROTO("Error during Retry generation",
QUIC_EV_CONN_LPKT, NULL, NULL, NULL, qv);
goto err;
}
HA_ATOMIC_INC(&prx_counters->retry_sent);
goto err;
}
/* RFC 9000 7.2. Negotiating Connection IDs:
* When an Initial packet is sent by a client that has not previously
* received an Initial or Retry packet from the server, the client
* populates the Destination Connection ID field with an unpredictable
* value. This Destination Connection ID MUST be at least 8 bytes in length.
*/
if (pkt->dcid.len < QUIC_ODCID_MINLEN) {
TRACE_PROTO("dropped packet",
QUIC_EV_CONN_LPKT, NULL, NULL, NULL, qv);
goto drop;
}
pkt->saddr = dgram->saddr;
ipv4 = dgram->saddr.ss_family == AF_INET;
qc = qc_new_conn(qv, ipv4, &pkt->dcid, &pkt->scid, &odcid,
&pkt->saddr, 1, !!pkt->token_len, l);
if (qc == NULL)
goto drop;
HA_ATOMIC_INC(&prx_counters->half_open_conn);
/* Insert the DCID the QUIC client has chosen (only for listeners) */
n = ebmb_insert(&quic_dghdlrs[tid].odcids, &qc->odcid_node,
qc->odcid.len + qc->odcid.addrlen);
/* If the insertion failed, it means that another
* thread has already allocated a QUIC connection for
* the same CID. Liberate our allocated connection.
*/
if (unlikely(n != &qc->odcid_node)) {
qc_to_purge = qc;
qc = ebmb_entry(n, struct quic_conn, odcid_node);
pkt->qc = qc;
}
if (likely(!qc_to_purge)) {
/* Enqueue this packet. */
pkt->qc = qc;
}
else {
quic_conn_release(qc_to_purge);
}
}
else {
pkt->qc = qc;
}
}
else {
if (end - buf < QUIC_HAP_CID_LEN) {
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
goto drop;
}
memcpy(pkt->dcid.data, buf, QUIC_HAP_CID_LEN);
pkt->dcid.len = QUIC_HAP_CID_LEN;
/* When multiple QUIC packets are coalesced on the same UDP datagram,
* they must have the same DCID.
*/
if (!first_pkt &&
(pkt->dcid.len != dgram->dcid_len ||
memcmp(dgram->dcid, pkt->dcid.data, pkt->dcid.len))) {
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc);
goto drop;
}
buf += QUIC_HAP_CID_LEN;
/* A short packet is the last one of a UDP datagram. */
payload = buf;
pkt->len = end - beg;
qc = retrieve_qc_conn_from_cid(pkt, l, &dgram->saddr);
if (!qc) {
size_t pktlen = end - buf;
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, NULL, pkt, &pktlen);
if (global.cluster_secret && !send_stateless_reset(l, &dgram->saddr, pkt))
TRACE_PROTO("stateless reset not sent", QUIC_EV_CONN_LPKT, qc);
goto drop;
}
pkt->qc = qc;
}
if (qc->flags & QUIC_FL_CONN_CLOSING) {
if (++qc->nb_pkt_since_cc >= qc->nb_pkt_for_cc) {
qc->flags |= QUIC_FL_CONN_IMMEDIATE_CLOSE;
qc->nb_pkt_for_cc++;
qc->nb_pkt_since_cc = 0;
}
/* Skip the entire datagram */
pkt->len = end - beg;
TRACE_PROTO("Closing state connection",
QUIC_EV_CONN_LPKT, pkt->qc, NULL, NULL, qv);
goto drop;
}
/* When multiple QUIC packets are coalesced on the same UDP datagram,
* they must have the same DCID.
*
* This check must be done after the final update to pkt.len to
* properly drop the packet on failure.
*/
if (first_pkt && !quic_peer_validated_addr(qc) &&
qc->flags & QUIC_FL_CONN_ANTI_AMPLIFICATION_REACHED) {
TRACE_PROTO("PTO timer must be armed after anti-amplication was reached",
QUIC_EV_CONN_LPKT, qc, NULL, NULL, qv);
/* Reset the anti-amplification bit. It will be set again
* when sending the next packet if reached again.
*/
qc->flags &= ~QUIC_FL_CONN_ANTI_AMPLIFICATION_REACHED;
qc->flags |= QUIC_FL_CONN_IO_CB_WAKEUP;
io_cb_wakeup = 1;
}
dgram->qc = qc;
if (qc->err_code) {
TRACE_PROTO("Connection error",
QUIC_EV_CONN_LPKT, qc, NULL, NULL, qv);
goto out;
}
pkt->raw_len = pkt->len;
quic_rx_pkts_del(qc);
b_cspace = b_contig_space(&qc->rx.buf);
if (b_cspace < pkt->len) {
/* Do not consume buf if space not at the end. */
if (b_tail(&qc->rx.buf) + b_cspace < b_wrap(&qc->rx.buf)) {
TRACE_PROTO("Packet dropped",
QUIC_EV_CONN_LPKT, qc, NULL, NULL, qv);
goto err;
}
/* Let us consume the remaining contiguous space. */
if (b_cspace) {
b_putchr(&qc->rx.buf, 0x00);
b_cspace--;
}
b_add(&qc->rx.buf, b_cspace);
if (b_contig_space(&qc->rx.buf) < pkt->len) {
TRACE_PROTO("Too big packet",
QUIC_EV_CONN_LPKT, qc, pkt, &pkt->len, qv);
qc_list_all_rx_pkts(qc);
goto drop;
}
}
if (!qc_try_rm_hp(qc, pkt, payload, beg, end, &qel)) {
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc, NULL, NULL, qv);
goto drop;
}
TRACE_PROTO("New packet", QUIC_EV_CONN_LPKT, qc, pkt, NULL, qv);
if (pkt->aad_len)
qc_pkt_insert(pkt, qel);
out:
/* Wake up the connection packet handler task from here only if all
* the contexts have been initialized, especially the mux context
* conn_ctx->conn->ctx. Note that this is ->start xprt callback which
* will start it if these contexts for the connection are not already
* initialized.
*/
conn_ctx = qc->xprt_ctx;
if (conn_ctx)
tasklet_wakeup(conn_ctx->wait_event.tasklet);
drop_no_conn:
if (drop_no_conn)
HA_ATOMIC_INC(&prx_counters->dropped_pkt);
TRACE_LEAVE(QUIC_EV_CONN_LPKT, qc ? qc : NULL, pkt, NULL, qv);
return;
drop:
HA_ATOMIC_INC(&prx_counters->dropped_pkt);
err:
/* Wakeup the I/O handler callback if the PTO timer must be armed.
* This cannot be done by this thread.
*/
if (io_cb_wakeup) {
conn_ctx = qc->xprt_ctx;
if (conn_ctx && conn_ctx->wait_event.tasklet)
tasklet_wakeup(conn_ctx->wait_event.tasklet);
}
/* If length not found, consume the entire datagram */
if (!pkt->len)
pkt->len = end - beg;
TRACE_DEVEL("Leaving in error", QUIC_EV_CONN_LPKT,
qc ? qc : NULL, pkt, NULL, qv);
}
/* This function builds into <buf> buffer a QUIC long packet header.
* Return 1 if enough room to build this header, 0 if not.
*/
static int quic_build_packet_long_header(unsigned char **buf, const unsigned char *end,
int type, size_t pn_len,
struct quic_conn *conn, const struct quic_version *ver)
{
if (end - *buf < sizeof ver->num + conn->dcid.len + conn->scid.len + 3)
return 0;
type = quic_pkt_type(type, ver->num);
/* #0 byte flags */
*(*buf)++ = QUIC_PACKET_FIXED_BIT | QUIC_PACKET_LONG_HEADER_BIT |
(type << QUIC_PACKET_TYPE_SHIFT) | (pn_len - 1);
/* Version */
quic_write_uint32(buf, end, ver->num);
*(*buf)++ = conn->dcid.len;
/* Destination connection ID */
if (conn->dcid.len) {
memcpy(*buf, conn->dcid.data, conn->dcid.len);
*buf += conn->dcid.len;
}
/* Source connection ID */
*(*buf)++ = conn->scid.len;
if (conn->scid.len) {
memcpy(*buf, conn->scid.data, conn->scid.len);
*buf += conn->scid.len;
}
return 1;
}
/* This function builds into <buf> buffer a QUIC short packet header.
* Return 1 if enough room to build this header, 0 if not.
*/
static int quic_build_packet_short_header(unsigned char **buf, const unsigned char *end,
size_t pn_len, struct quic_conn *conn,
unsigned char tls_flags)
{
if (end - *buf < 1 + conn->dcid.len)
return 0;
/* #0 byte flags */
*(*buf)++ = QUIC_PACKET_FIXED_BIT |
((tls_flags & QUIC_FL_TLS_KP_BIT_SET) ? QUIC_PACKET_KEY_PHASE_BIT : 0) | (pn_len - 1);
/* Destination connection ID */
if (conn->dcid.len) {
memcpy(*buf, conn->dcid.data, conn->dcid.len);
*buf += conn->dcid.len;
}
return 1;
}
/* Apply QUIC header protection to the packet with <buf> as first byte address,
* <pn> as address of the Packet number field, <pnlen> being this field length
* with <aead> as AEAD cipher and <key> as secret key.
* Returns 1 if succeeded or 0 if failed.
*/
static int quic_apply_header_protection(unsigned char *buf, unsigned char *pn, size_t pnlen,
const EVP_CIPHER *aead, const unsigned char *key)
{
int i, ret, outlen;
EVP_CIPHER_CTX *ctx;
/* We need an IV of at least 5 bytes: one byte for bytes #0
* and at most 4 bytes for the packet number
*/
unsigned char mask[5] = {0};
ret = 0;
ctx = EVP_CIPHER_CTX_new();
if (!ctx)
return 0;
if (!EVP_EncryptInit_ex(ctx, aead, NULL, key, pn + QUIC_PACKET_PN_MAXLEN) ||
!EVP_EncryptUpdate(ctx, mask, &outlen, mask, sizeof mask) ||
!EVP_EncryptFinal_ex(ctx, mask, &outlen))
goto out;
*buf ^= mask[0] & (*buf & QUIC_PACKET_LONG_HEADER_BIT ? 0xf : 0x1f);
for (i = 0; i < pnlen; i++)
pn[i] ^= mask[i + 1];
ret = 1;
out:
EVP_CIPHER_CTX_free(ctx);
return ret;
}
/* Reduce the encoded size of <ack_frm> ACK frame removing the last
* ACK ranges if needed to a value below <limit> in bytes.
* Return 1 if succeeded, 0 if not.
*/
static int quic_ack_frm_reduce_sz(struct quic_frame *ack_frm, size_t limit)
{
size_t room, ack_delay_sz;
ack_delay_sz = quic_int_getsize(ack_frm->tx_ack.ack_delay);
/* A frame is made of 1 byte for the frame type. */
room = limit - ack_delay_sz - 1;
if (!quic_rm_last_ack_ranges(ack_frm->tx_ack.arngs, room))
return 0;
return 1 + ack_delay_sz + ack_frm->tx_ack.arngs->enc_sz;
}
/* Prepare into <outlist> as most as possible ack-eliciting frame from their
* <inlist> prebuilt frames for <qel> encryption level to be encoded in a buffer
* with <room> as available room, and <*len> the packet Length field initialized
* with the number of bytes already present in this buffer which must be taken
* into an account for the Length packet field value. <headlen> is the number of
* bytes already present in this packet before building frames.
*
* Update consequently <*len> to reflect the size of these frames built
* by this function. Also attach these frames to <l> frame list.
* Return 1 if at least one ack-eleciting frame could be built, 0 if not.
*/
static inline int qc_build_frms(struct list *outlist, struct list *inlist,
size_t room, size_t *len, size_t headlen,
struct quic_enc_level *qel,
struct quic_conn *qc)
{
int ret;
struct quic_frame *cf, *cfbak;
ret = 0;
if (*len > room)
return 0;
/* If we are not probing we must take into an account the congestion
* control window.
*/
if (!qel->pktns->tx.pto_probe) {
size_t remain = quic_path_prep_data(qc->path);
if (headlen > remain)
return 0;
room = QUIC_MIN(room, remain - headlen);
}
TRACE_PROTO("************** frames build (headlen)",
QUIC_EV_CONN_BCFRMS, qc, &headlen);
/* NOTE: switch/case block inside a loop, a successful status must be
* returned by this function only if at least one frame could be built
* in the switch/case block.
*/
list_for_each_entry_safe(cf, cfbak, inlist, list) {
/* header length, data length, frame length. */
size_t hlen, dlen, dlen_sz, avail_room, flen;
if (!room)
break;
switch (cf->type) {
case QUIC_FT_CRYPTO:
TRACE_PROTO(" New CRYPTO frame build (room, len)",
QUIC_EV_CONN_BCFRMS, qc, &room, len);
/* Compute the length of this CRYPTO frame header */
hlen = 1 + quic_int_getsize(cf->crypto.offset);
/* Compute the data length of this CRyPTO frame. */
dlen = max_stream_data_size(room, *len + hlen, cf->crypto.len);
TRACE_PROTO(" CRYPTO data length (hlen, crypto.len, dlen)",
QUIC_EV_CONN_BCFRMS, qc, &hlen, &cf->crypto.len, &dlen);
if (!dlen)
continue;
/* CRYPTO frame length. */
flen = hlen + quic_int_getsize(dlen) + dlen;
TRACE_PROTO(" CRYPTO frame length (flen)",
QUIC_EV_CONN_BCFRMS, qc, &flen);
/* Add the CRYPTO data length and its encoded length to the packet
* length and the length of this length.
*/
*len += flen;
room -= flen;
if (dlen == cf->crypto.len) {
/* <cf> CRYPTO data have been consumed. */
LIST_DELETE(&cf->list);
LIST_APPEND(outlist, &cf->list);
}
else {
struct quic_frame *new_cf;
new_cf = pool_zalloc(pool_head_quic_frame);
if (!new_cf) {
TRACE_PROTO("No memory for new crypto frame", QUIC_EV_CONN_BCFRMS, qc);
continue;
}
LIST_INIT(&new_cf->reflist);
new_cf->type = QUIC_FT_CRYPTO;
new_cf->crypto.len = dlen;
new_cf->crypto.offset = cf->crypto.offset;
new_cf->crypto.qel = qel;
LIST_APPEND(outlist, &new_cf->list);
/* Consume <dlen> bytes of the current frame. */
cf->crypto.len -= dlen;
cf->crypto.offset += dlen;
}
break;
case QUIC_FT_STREAM_8 ... QUIC_FT_STREAM_F:
if (cf->flags & QUIC_FL_TX_FRAME_LOST) {
struct eb64_node *node = NULL;
struct qc_stream_desc *stream_desc = NULL;
struct quic_stream *strm = &cf->stream;
/* As this frame has been already lost, ensure the stream is always
* available or the range of this frame is not consumed before
* resending it.
*/
node = eb64_lookup(&qc->streams_by_id, strm->id);
if (!node) {
TRACE_PROTO("released stream", QUIC_EV_CONN_PRSAFRM, qc, cf);
LIST_DELETE(&cf->list);
pool_free(pool_head_quic_frame, cf);
continue;
}
stream_desc = eb64_entry(node, struct qc_stream_desc, by_id);
if (strm->offset.key + strm->len <= stream_desc->ack_offset) {
TRACE_PROTO("ignored frame frame in already acked range",
QUIC_EV_CONN_PRSAFRM, qc, cf);
LIST_DELETE(&cf->list);
pool_free(pool_head_quic_frame, cf);
continue;
}
else if (strm->offset.key < stream_desc->ack_offset) {
strm->offset.key = stream_desc->ack_offset;
TRACE_PROTO("updated partially acked frame",
QUIC_EV_CONN_PRSAFRM, qc, cf);
}
}
/* Note that these frames are accepted in short packets only without
* "Length" packet field. Here, <*len> is used only to compute the
* sum of the lengths of the already built frames for this packet.
*
* Compute the length of this STREAM frame "header" made a all the field
* excepting the variable ones. Note that +1 is for the type of this frame.
*/
hlen = 1 + quic_int_getsize(cf->stream.id) +
((cf->type & QUIC_STREAM_FRAME_TYPE_OFF_BIT) ? quic_int_getsize(cf->stream.offset.key) : 0);
/* Compute the data length of this STREAM frame. */
avail_room = room - hlen - *len;
TRACE_PROTO(" New STREAM frame build (room, len)",
QUIC_EV_CONN_BCFRMS, qc, &room, len);
if ((ssize_t)avail_room <= 0)
continue;
if (cf->type & QUIC_STREAM_FRAME_TYPE_LEN_BIT) {
dlen = max_available_room(avail_room, &dlen_sz);
if (dlen > cf->stream.len) {
dlen = cf->stream.len;
}
dlen_sz = quic_int_getsize(dlen);
flen = hlen + dlen_sz + dlen;
}
else {
dlen = QUIC_MIN(avail_room, cf->stream.len);
flen = hlen + dlen;
}
TRACE_PROTO(" STREAM data length (hlen, stream.len, dlen)",
QUIC_EV_CONN_BCFRMS, qc, &hlen, &cf->stream.len, &dlen);
TRACE_PROTO(" STREAM frame length (flen)",
QUIC_EV_CONN_BCFRMS, qc, &flen);
/* Add the STREAM data length and its encoded length to the packet
* length and the length of this length.
*/
*len += flen;
room -= flen;
if (dlen == cf->stream.len) {
/* <cf> STREAM data have been consumed. */
LIST_DELETE(&cf->list);
LIST_APPEND(outlist, &cf->list);
/* The MUX stream might be released at this
* stage. This can most notably happen on
* retransmission.
*/
if (qc->mux_state == QC_MUX_READY &&
!cf->stream.stream->release) {
qcc_streams_sent_done(cf->stream.stream->ctx,
cf->stream.len,
cf->stream.offset.key);
}
}
else {
struct quic_frame *new_cf;
struct buffer cf_buf;
new_cf = pool_zalloc(pool_head_quic_frame);
if (!new_cf) {
TRACE_PROTO("No memory for new STREAM frame", QUIC_EV_CONN_BCFRMS, qc);
continue;
}
LIST_INIT(&new_cf->reflist);
new_cf->type = cf->type;
new_cf->stream.stream = cf->stream.stream;
new_cf->stream.buf = cf->stream.buf;
new_cf->stream.id = cf->stream.id;
if (cf->type & QUIC_STREAM_FRAME_TYPE_OFF_BIT)
new_cf->stream.offset = cf->stream.offset;
new_cf->stream.len = dlen;
new_cf->type |= QUIC_STREAM_FRAME_TYPE_LEN_BIT;
/* FIN bit reset */
new_cf->type &= ~QUIC_STREAM_FRAME_TYPE_FIN_BIT;
new_cf->stream.data = cf->stream.data;
LIST_APPEND(outlist, &new_cf->list);
cf->type |= QUIC_STREAM_FRAME_TYPE_OFF_BIT;
/* Consume <dlen> bytes of the current frame. */
cf_buf = b_make(b_orig(cf->stream.buf),
b_size(cf->stream.buf),
(char *)cf->stream.data - b_orig(cf->stream.buf), 0);
cf->stream.len -= dlen;
cf->stream.offset.key += dlen;
cf->stream.data = (unsigned char *)b_peek(&cf_buf, dlen);
/* The MUX stream might be released at this
* stage. This can most notably happen on
* retransmission.
*/
if (qc->mux_state == QC_MUX_READY &&
!cf->stream.stream->release) {
qcc_streams_sent_done(new_cf->stream.stream->ctx,
new_cf->stream.len,
new_cf->stream.offset.key);
}
}
/* TODO the MUX is notified about the frame sending via
* previous qcc_streams_sent_done call. However, the
* sending can fail later, for example if the sendto
* system call returns an error. As the MUX has been
* notified, the transport layer is responsible to
* bufferize and resent the announced data later.
*/
break;
default:
flen = qc_frm_len(cf);
BUG_ON(!flen);
if (flen > room)
continue;
*len += flen;
room -= flen;
LIST_DELETE(&cf->list);
LIST_APPEND(outlist, &cf->list);
break;
}
/* Successful status as soon as a frame could be built */
ret = 1;
}
return ret;
}
/* This function builds a clear packet from <pkt> information (its type)
* into a buffer with <pos> as position pointer and <qel> as QUIC TLS encryption
* level for <conn> QUIC connection and <qel> as QUIC TLS encryption level,
* filling the buffer with as much frames as possible from <frms> list of
* prebuilt frames.
* The trailing QUIC_TLS_TAG_LEN bytes of this packet are not built. But they are
* reserved so that to ensure there is enough room to build this AEAD TAG after
* having returned from this function.
* This function also updates the value of <buf_pn> pointer to point to the packet
* number field in this packet. <pn_len> will also have the packet number
* length as value.
*
* Return 1 if succeeded (enough room to buile this packet), O if not.
*/
static int qc_do_build_pkt(unsigned char *pos, const unsigned char *end,
size_t dglen, struct quic_tx_packet *pkt,
int64_t pn, size_t *pn_len, unsigned char **buf_pn,
int padding, int cc, int probe,
struct quic_enc_level *qel, struct quic_conn *qc,
const struct quic_version *ver, struct list *frms)
{
unsigned char *beg;
size_t len, len_sz, len_frms, padding_len;
struct quic_frame frm = { .type = QUIC_FT_CRYPTO, };
struct quic_frame ack_frm = { .type = QUIC_FT_ACK, };
struct quic_frame cc_frm = { };
size_t ack_frm_len, head_len;
int64_t rx_largest_acked_pn;
int add_ping_frm;
struct list frm_list = LIST_HEAD_INIT(frm_list);
struct quic_frame *cf;
/* Length field value with CRYPTO frames if present. */
len_frms = 0;
beg = pos;
/* When not probing, and no immediate close is required, reduce the size of this
* buffer to respect the congestion controller window.
* This size will be limited if we have ack-eliciting frames to send from <frms>.
*/
if (!probe && !LIST_ISEMPTY(frms) && !cc) {
size_t path_room;
path_room = quic_path_prep_data(qc->path);
if (end - beg > path_room)
end = beg + path_room;
}
/* Ensure there is enough room for the TLS encryption tag and a zero token
* length field if any.
*/
if (end - pos < QUIC_TLS_TAG_LEN +
(pkt->type == QUIC_PACKET_TYPE_INITIAL ? 1 : 0))
goto no_room;
end -= QUIC_TLS_TAG_LEN;
rx_largest_acked_pn = qel->pktns->rx.largest_acked_pn;
/* packet number length */
*pn_len = quic_packet_number_length(pn, rx_largest_acked_pn);
/* Build the header */
if ((pkt->type == QUIC_PACKET_TYPE_SHORT &&
!quic_build_packet_short_header(&pos, end, *pn_len, qc, qel->tls_ctx.flags)) ||
(pkt->type != QUIC_PACKET_TYPE_SHORT &&
!quic_build_packet_long_header(&pos, end, pkt->type, *pn_len, qc, ver)))
goto no_room;
/* XXX FIXME XXX Encode the token length (0) for an Initial packet. */
if (pkt->type == QUIC_PACKET_TYPE_INITIAL)
*pos++ = 0;
head_len = pos - beg;
/* Build an ACK frame if required. */
ack_frm_len = 0;
if ((qel->pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED) && !qel->pktns->tx.pto_probe) {
struct quic_arngs *arngs = &qel->pktns->rx.arngs;
BUG_ON(eb_is_empty(&qel->pktns->rx.arngs.root));
ack_frm.tx_ack.arngs = arngs;
if (qel->pktns->flags & QUIC_FL_PKTNS_NEW_LARGEST_PN) {
qel->pktns->tx.ack_delay =
quic_compute_ack_delay_us(qel->pktns->rx.largest_time_received, qc);
qel->pktns->flags &= ~QUIC_FL_PKTNS_NEW_LARGEST_PN;
}
ack_frm.tx_ack.ack_delay = qel->pktns->tx.ack_delay;
/* XXX BE CAREFUL XXX : here we reserved at least one byte for the
* smallest frame (PING) and <*pn_len> more for the packet number. Note
* that from here, we do not know if we will have to send a PING frame.
* This will be decided after having computed the ack-eliciting frames
* to be added to this packet.
*/
ack_frm_len = quic_ack_frm_reduce_sz(&ack_frm, end - 1 - *pn_len - pos);
if (!ack_frm_len)
goto no_room;
}
/* Length field value without the ack-eliciting frames. */
len = ack_frm_len + *pn_len;
len_frms = 0;
if (!cc && !LIST_ISEMPTY(frms)) {
ssize_t room = end - pos;
TRACE_PROTO("Avail. ack eliciting frames", QUIC_EV_CONN_FRMLIST, qc, frms);
/* Initialize the length of the frames built below to <len>.
* If any frame could be successfully built by qc_build_frms(),
* we will have len_frms > len.
*/
len_frms = len;
if (!qc_build_frms(&frm_list, frms,
end - pos, &len_frms, pos - beg, qel, qc)) {
TRACE_PROTO("Not enough room", QUIC_EV_CONN_HPKT,
qc, NULL, NULL, &room);
if (!ack_frm_len && !qel->pktns->tx.pto_probe)
goto no_room;
}
}
/* Length (of the remaining data). Must not fail because, the buffer size
* has been checked above. Note that we have reserved QUIC_TLS_TAG_LEN bytes
* for the encryption tag. It must be taken into an account for the length
* of this packet.
*/
if (len_frms)
len = len_frms + QUIC_TLS_TAG_LEN;
else
len += QUIC_TLS_TAG_LEN;
/* CONNECTION_CLOSE frame */
if (cc) {
cc_frm.type = qc->flags & QUIC_FL_CONN_APP_ALERT ?
QUIC_FT_CONNECTION_CLOSE_APP : QUIC_FT_CONNECTION_CLOSE;
cc_frm.connection_close.error_code = qc->err_code;
len += qc_frm_len(&cc_frm);
}
add_ping_frm = 0;
padding_len = 0;
len_sz = quic_int_getsize(len);
/* Add this packet size to <dglen> */
dglen += head_len + len_sz + len;
if (padding && dglen < QUIC_INITIAL_PACKET_MINLEN) {
/* This is a maximum padding size */
padding_len = QUIC_INITIAL_PACKET_MINLEN - dglen;
/* The length field value is of this packet is <len> + <padding_len>
* the size of which may be greater than the initial computed size
* <len_sz>. So, let's deduce the difference between these to packet
* sizes from <padding_len>.
*/
padding_len -= quic_int_getsize(len + padding_len) - len_sz;
len += padding_len;
}
else if (LIST_ISEMPTY(&frm_list) || len_frms == len) {
if (qel->pktns->tx.pto_probe) {
/* If we cannot send a frame, we send a PING frame. */
add_ping_frm = 1;
len += 1;
}
/* If there is no frame at all to follow, add at least a PADDING frame. */
if (!ack_frm_len && !cc)
len += padding_len = QUIC_PACKET_PN_MAXLEN - *pn_len;
}
if (pkt->type != QUIC_PACKET_TYPE_SHORT && !quic_enc_int(&pos, end, len))
goto no_room;
/* Packet number field address. */
*buf_pn = pos;
/* Packet number encoding. */
if (!quic_packet_number_encode(&pos, end, pn, *pn_len))
goto no_room;
if (ack_frm_len) {
if (!qc_build_frm(&pos, end, &ack_frm, pkt, qc))
goto no_room;
pkt->largest_acked_pn = quic_pktns_get_largest_acked_pn(qel->pktns);
pkt->flags |= QUIC_FL_TX_PACKET_ACK;
}
/* Ack-eliciting frames */
if (!LIST_ISEMPTY(&frm_list)) {
list_for_each_entry(cf, &frm_list, list) {
unsigned char *spos = pos;
if (!qc_build_frm(&spos, end, cf, pkt, qc)) {
ssize_t room = end - pos;
TRACE_PROTO("Not enough room", QUIC_EV_CONN_HPKT,
qc, NULL, NULL, &room);
/* TODO: this should not have happened if qc_build_frms()
* had correctly computed and sized the frames to be
* added to this packet. Note that <cf> was added
* from <frm_list> to <frms> list by qc_build_frms().
*/
LIST_DELETE(&cf->list);
LIST_INSERT(frms, &cf->list);
break;
}
pos = spos;
quic_tx_packet_refinc(pkt);
cf->pkt = pkt;
}
}
/* Build a PING frame if needed. */
if (add_ping_frm) {
frm.type = QUIC_FT_PING;
if (!qc_build_frm(&pos, end, &frm, pkt, qc))
goto no_room;
}
/* Build a CONNECTION_CLOSE frame if needed. */
if (cc) {
if (!qc_build_frm(&pos, end, &cc_frm, pkt, qc))
goto no_room;
pkt->flags |= QUIC_FL_TX_PACKET_CC;
}
/* Build a PADDING frame if needed. */
if (padding_len) {
frm.type = QUIC_FT_PADDING;
frm.padding.len = padding_len;
if (!qc_build_frm(&pos, end, &frm, pkt, qc))
goto no_room;
}
/* If this packet is ack-eliciting and we are probing let's
* decrement the PTO probe counter.
*/
if (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING &&
qel->pktns->tx.pto_probe)
qel->pktns->tx.pto_probe--;
pkt->len = pos - beg;
LIST_SPLICE(&pkt->frms, &frm_list);
TRACE_PROTO("Packet ack-eliciting frames", QUIC_EV_CONN_HPKT, qc, pkt);
return 1;
no_room:
/* Replace the pre-built frames which could not be add to this packet */
LIST_SPLICE(frms, &frm_list);
TRACE_PROTO("Remaining ack-eliciting frames", QUIC_EV_CONN_FRMLIST, qc, frms);
return 0;
}
static inline void quic_tx_packet_init(struct quic_tx_packet *pkt, int type)
{
pkt->type = type;
pkt->len = 0;
pkt->in_flight_len = 0;
pkt->pn_node.key = (uint64_t)-1;
LIST_INIT(&pkt->frms);
pkt->time_sent = TICK_ETERNITY;
pkt->next = NULL;
pkt->largest_acked_pn = -1;
pkt->flags = 0;
pkt->refcnt = 0;
}
/* Build a packet into <buf> packet buffer with <pkt_type> as packet
* type for <qc> QUIC connection from <qel> encryption level from <frms> list
* of prebuilt frames.
*
* Return -2 if the packet could not be allocated or encrypted for any reason,
* -1 if there was not enough room to build a packet.
* XXX NOTE XXX
* If you provide provide qc_build_pkt() with a big enough buffer to build a packet as big as
* possible (to fill an MTU), the unique reason why this function may fail is the congestion
* control window limitation.
*/
static struct quic_tx_packet *qc_build_pkt(unsigned char **pos,
const unsigned char *buf_end,
struct quic_enc_level *qel,
struct quic_tls_ctx *tls_ctx, struct list *frms,
struct quic_conn *qc, const struct quic_version *ver,
size_t dglen, int padding,
int pkt_type, int probe, int cc, int *err)
{
/* The pointer to the packet number field. */
unsigned char *buf_pn;
unsigned char *beg, *end, *payload;
int64_t pn;
size_t pn_len, payload_len, aad_len;
struct quic_tx_packet *pkt;
TRACE_ENTER(QUIC_EV_CONN_HPKT, qc, NULL, qel);
*err = 0;
pkt = pool_alloc(pool_head_quic_tx_packet);
if (!pkt) {
TRACE_DEVEL("Not enough memory for a new packet", QUIC_EV_CONN_HPKT, qc);
*err = -2;
goto err;
}
quic_tx_packet_init(pkt, pkt_type);
beg = *pos;
pn_len = 0;
buf_pn = NULL;
pn = qel->pktns->tx.next_pn + 1;
if (!qc_do_build_pkt(*pos, buf_end, dglen, pkt, pn, &pn_len, &buf_pn,
padding, cc, probe, qel, qc, ver, frms)) {
*err = -1;
goto err;
}
end = beg + pkt->len;
payload = buf_pn + pn_len;
payload_len = end - payload;
aad_len = payload - beg;
if (!quic_packet_encrypt(payload, payload_len, beg, aad_len, pn, tls_ctx, qc)) {
*err = -2;
goto err;
}
end += QUIC_TLS_TAG_LEN;
pkt->len += QUIC_TLS_TAG_LEN;
if (!quic_apply_header_protection(beg, buf_pn, pn_len,
tls_ctx->tx.hp, tls_ctx->tx.hp_key)) {
TRACE_DEVEL("Could not apply the header protection", QUIC_EV_CONN_HPKT, qc);
*err = -2;
goto err;
}
/* Consume a packet number */
qel->pktns->tx.next_pn++;
qc->tx.prep_bytes += pkt->len;
if (qc->tx.prep_bytes >= 3 * qc->rx.bytes && !quic_peer_validated_addr(qc))
qc->flags |= QUIC_FL_CONN_ANTI_AMPLIFICATION_REACHED;
/* Now that a correct packet is built, let us consume <*pos> buffer. */
*pos = end;
/* Attach the built packet to its tree. */
pkt->pn_node.key = pn;
/* Set the packet in fligth length for in flight packet only. */
if (pkt->flags & QUIC_FL_TX_PACKET_IN_FLIGHT) {
pkt->in_flight_len = pkt->len;
qc->path->prep_in_flight += pkt->len;
}
/* Always reset this flags */
qc->flags &= ~QUIC_FL_CONN_IMMEDIATE_CLOSE;
if (pkt->flags & QUIC_FL_TX_PACKET_ACK) {
qel->pktns->flags &= ~QUIC_FL_PKTNS_ACK_REQUIRED;
qel->pktns->rx.nb_aepkts_since_last_ack = 0;
}
pkt->pktns = qel->pktns;
TRACE_LEAVE(QUIC_EV_CONN_HPKT, qc, pkt);
return pkt;
err:
/* TODO: what about the frames which have been built
* for this packet.
*/
free_quic_tx_packet(pkt);
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_HPKT, qc);
return NULL;
}
/* Called from the upper layer, to subscribe <es> to events <event_type>. The
* event subscriber <es> is not allowed to change from a previous call as long
* as at least one event is still subscribed. The <event_type> must only be a
* combination of SUB_RETRY_RECV and SUB_RETRY_SEND. It always returns 0.
*/
static int quic_conn_subscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es)
{
struct qcc *qcc = conn->handle.qc->qcc;
BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV));
BUG_ON(qcc->subs && qcc->subs != es);
es->events |= event_type;
qcc->subs = es;
if (event_type & SUB_RETRY_RECV)
TRACE_DEVEL("subscribe(recv)", QUIC_EV_CONN_XPRTRECV, conn->handle.qc, qcc);
if (event_type & SUB_RETRY_SEND)
TRACE_DEVEL("subscribe(send)", QUIC_EV_CONN_XPRTSEND, conn->handle.qc, qcc);
return 0;
}
/* Called from the upper layer, to unsubscribe <es> from events <event_type>.
* The <es> pointer is not allowed to differ from the one passed to the
* subscribe() call. It always returns zero.
*/
static int quic_conn_unsubscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es)
{
return conn_unsubscribe(conn, xprt_ctx, event_type, es);
}
/* Store in <xprt_ctx> the context attached to <conn>.
* Returns always 0.
*/
static int qc_conn_init(struct connection *conn, void **xprt_ctx)
{
struct quic_conn *qc = NULL;
TRACE_ENTER(QUIC_EV_CONN_NEW, conn);
/* do not store the context if already set */
if (*xprt_ctx)
goto out;
*xprt_ctx = conn->handle.qc->xprt_ctx;
out:
TRACE_LEAVE(QUIC_EV_CONN_NEW, qc);
return 0;
}
/* Start the QUIC transport layer */
static int qc_xprt_start(struct connection *conn, void *ctx)
{
struct quic_conn *qc;
struct ssl_sock_ctx *qctx = ctx;
qc = conn->handle.qc;
if (qcc_install_app_ops(qc->qcc, qc->app_ops)) {
TRACE_PROTO("Cannot install app layer", QUIC_EV_CONN_LPKT, qc);
/* prepare a CONNECTION_CLOSE frame */
qc->err_code = QC_ERR_APPLICATION_ERROR;
qc->flags |= QUIC_FL_CONN_IMMEDIATE_CLOSE;
return -1;
}
/* mux-quic can now be considered ready. */
qc->mux_state = QC_MUX_READY;
tasklet_wakeup(qctx->wait_event.tasklet);
return 1;
}
static struct ssl_sock_ctx *qc_get_ssl_sock_ctx(struct connection *conn)
{
if (!conn || conn->xprt != xprt_get(XPRT_QUIC) || !conn->handle.qc || !conn->xprt_ctx)
return NULL;
return conn->handle.qc->xprt_ctx;
}
/* transport-layer operations for QUIC connections. */
static struct xprt_ops ssl_quic = {
.close = quic_close,
.subscribe = quic_conn_subscribe,
.unsubscribe = quic_conn_unsubscribe,
.init = qc_conn_init,
.start = qc_xprt_start,
.prepare_bind_conf = ssl_sock_prepare_bind_conf,
.destroy_bind_conf = ssl_sock_destroy_bind_conf,
.get_alpn = ssl_sock_get_alpn,
.get_ssl_sock_ctx = qc_get_ssl_sock_ctx,
.name = "QUIC",
};
static void __quic_conn_init(void)
{
ha_quic_meth = BIO_meth_new(0x666, "ha QUIC methods");
xprt_register(XPRT_QUIC, &ssl_quic);
}
INITCALL0(STG_REGISTER, __quic_conn_init);
static void __quic_conn_deinit(void)
{
BIO_meth_free(ha_quic_meth);
}
REGISTER_POST_DEINIT(__quic_conn_deinit);
/* Read all the QUIC packets found in <buf> from QUIC connection with <owner>
* as owner calling <func> function.
* Return the number of bytes read if succeeded, -1 if not.
*/
struct task *quic_lstnr_dghdlr(struct task *t, void *ctx, unsigned int state)
{
unsigned char *pos;
const unsigned char *end;
struct quic_dghdlr *dghdlr = ctx;
struct quic_dgram *dgram;
int first_pkt = 1;
while ((dgram = MT_LIST_POP(&dghdlr->dgrams, typeof(dgram), mt_list))) {
pos = dgram->buf;
end = pos + dgram->len;
do {
struct quic_rx_packet *pkt;
pkt = pool_zalloc(pool_head_quic_rx_packet);
if (!pkt)
goto err;
LIST_INIT(&pkt->qc_rx_pkt_list);
pkt->time_received = now_ms;
quic_rx_packet_refinc(pkt);
qc_lstnr_pkt_rcv(pos, end, pkt, first_pkt, dgram);
first_pkt = 0;
pos += pkt->len;
quic_rx_packet_refdec(pkt);
/* Free rejected packets */
if (!pkt->refcnt) {
BUG_ON(LIST_INLIST(&pkt->qc_rx_pkt_list));
pool_free(pool_head_quic_rx_packet, pkt);
}
} while (pos < end);
/* Increasing the received bytes counter by the UDP datagram length
* if this datagram could be associated to a connection.
*/
if (dgram->qc)
dgram->qc->rx.bytes += dgram->len;
/* Mark this datagram as consumed */
HA_ATOMIC_STORE(&dgram->buf, NULL);
}
return t;
err:
return t;
}
/* Retreive the DCID from a QUIC datagram or packet with <buf> as first octet.
* Returns 1 if succeeded, 0 if not.
*/
int quic_get_dgram_dcid(unsigned char *buf, const unsigned char *end,
unsigned char **dcid, size_t *dcid_len)
{
int long_header;
size_t minlen, skip;
if (!(*buf & QUIC_PACKET_FIXED_BIT))
goto err;
long_header = *buf & QUIC_PACKET_LONG_HEADER_BIT;
minlen = long_header ? QUIC_LONG_PACKET_MINLEN :
QUIC_SHORT_PACKET_MINLEN + QUIC_HAP_CID_LEN + QUIC_TLS_TAG_LEN;
skip = long_header ? QUIC_LONG_PACKET_DCID_OFF : QUIC_SHORT_PACKET_DCID_OFF;
if (end - buf <= minlen)
goto err;
buf += skip;
*dcid_len = long_header ? *buf++ : QUIC_HAP_CID_LEN;
if (*dcid_len > QUIC_CID_MAXLEN || end - buf <= *dcid_len)
goto err;
*dcid = buf;
return 1;
err:
TRACE_PROTO("wrong datagram", QUIC_EV_CONN_LPKT);
return 0;
}
/* Notify the MUX layer if alive about an imminent close of <qc>. */
void qc_notify_close(struct quic_conn *qc)
{
if (qc->flags & QUIC_FL_CONN_NOTIFY_CLOSE)
return;
qc->flags |= QUIC_FL_CONN_NOTIFY_CLOSE;
/* wake up the MUX */
if (qc->mux_state == QC_MUX_READY && qc->conn->mux->wake)
qc->conn->mux->wake(qc->conn);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/