| /* |
| * Pattern management functions. |
| * |
| * Copyright 2000-2013 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <ctype.h> |
| #include <stdio.h> |
| |
| #include <common/config.h> |
| #include <common/standard.h> |
| |
| #include <types/global.h> |
| #include <types/pattern.h> |
| |
| #include <proto/pattern.h> |
| |
| #include <ebsttree.h> |
| |
| char *pat_match_names[PAT_MATCH_NUM] = { |
| [PAT_MATCH_FOUND] = "found", |
| [PAT_MATCH_BOOL] = "bool", |
| [PAT_MATCH_INT] = "int", |
| [PAT_MATCH_IP] = "ip", |
| [PAT_MATCH_BIN] = "bin", |
| [PAT_MATCH_LEN] = "len", |
| [PAT_MATCH_STR] = "str", |
| [PAT_MATCH_BEG] = "beg", |
| [PAT_MATCH_SUB] = "sub", |
| [PAT_MATCH_DIR] = "dir", |
| [PAT_MATCH_DOM] = "dom", |
| [PAT_MATCH_END] = "end", |
| [PAT_MATCH_REG] = "reg", |
| }; |
| |
| int (*pat_parse_fcts[PAT_MATCH_NUM])(const char **, struct pattern *, struct sample_storage *, int *, char **) = { |
| [PAT_MATCH_FOUND] = pat_parse_nothing, |
| [PAT_MATCH_BOOL] = pat_parse_nothing, |
| [PAT_MATCH_INT] = pat_parse_int, |
| [PAT_MATCH_IP] = pat_parse_ip, |
| [PAT_MATCH_BIN] = pat_parse_bin, |
| [PAT_MATCH_LEN] = pat_parse_int, |
| [PAT_MATCH_STR] = pat_parse_str, |
| [PAT_MATCH_BEG] = pat_parse_str, |
| [PAT_MATCH_SUB] = pat_parse_str, |
| [PAT_MATCH_DIR] = pat_parse_str, |
| [PAT_MATCH_DOM] = pat_parse_str, |
| [PAT_MATCH_END] = pat_parse_str, |
| [PAT_MATCH_REG] = pat_parse_reg, |
| }; |
| |
| enum pat_match_res (*pat_match_fcts[PAT_MATCH_NUM])(struct sample *, struct pattern *) = { |
| [PAT_MATCH_FOUND] = NULL, |
| [PAT_MATCH_BOOL] = pat_match_nothing, |
| [PAT_MATCH_INT] = pat_match_int, |
| [PAT_MATCH_IP] = pat_match_ip, |
| [PAT_MATCH_BIN] = pat_match_bin, |
| [PAT_MATCH_LEN] = pat_match_len, |
| [PAT_MATCH_STR] = pat_match_str, |
| [PAT_MATCH_BEG] = pat_match_beg, |
| [PAT_MATCH_SUB] = pat_match_sub, |
| [PAT_MATCH_DIR] = pat_match_dir, |
| [PAT_MATCH_DOM] = pat_match_dom, |
| [PAT_MATCH_END] = pat_match_end, |
| [PAT_MATCH_REG] = pat_match_reg, |
| }; |
| |
| /* |
| * These functions are exported and may be used by any other component. |
| */ |
| |
| /* ignore the current line */ |
| int pat_parse_nothing(const char **text, struct pattern *pattern, struct sample_storage *smp, int *opaque, char **err) |
| { |
| return 1; |
| } |
| |
| /* always return false */ |
| enum pat_match_res pat_match_nothing(struct sample *smp, struct pattern *pattern) |
| { |
| return PAT_NOMATCH; |
| } |
| |
| |
| /* NB: For two strings to be identical, it is required that their lengths match */ |
| enum pat_match_res pat_match_str(struct sample *smp, struct pattern *pattern) |
| { |
| int icase; |
| |
| if (pattern->len != smp->data.str.len) |
| return PAT_NOMATCH; |
| |
| icase = pattern->flags & PAT_F_IGNORE_CASE; |
| if ((icase && strncasecmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) == 0) || |
| (!icase && strncmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) == 0)) |
| return PAT_MATCH; |
| return PAT_NOMATCH; |
| } |
| |
| /* NB: For two binaries buf to be identical, it is required that their lengths match */ |
| enum pat_match_res pat_match_bin(struct sample *smp, struct pattern *pattern) |
| { |
| if (pattern->len != smp->data.str.len) |
| return PAT_NOMATCH; |
| |
| if (memcmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) == 0) |
| return PAT_MATCH; |
| return PAT_NOMATCH; |
| } |
| |
| /* Lookup a string in the expression's pattern tree. The node is returned if it |
| * exists, otherwise NULL. |
| */ |
| static void *pat_lookup_str(struct sample *smp, struct pattern_expr *expr) |
| { |
| /* data are stored in a tree */ |
| struct ebmb_node *node; |
| char prev; |
| |
| /* we may have to force a trailing zero on the test pattern */ |
| prev = smp->data.str.str[smp->data.str.len]; |
| if (prev) |
| smp->data.str.str[smp->data.str.len] = '\0'; |
| node = ebst_lookup(&expr->pattern_tree, smp->data.str.str); |
| if (prev) |
| smp->data.str.str[smp->data.str.len] = prev; |
| return node; |
| } |
| |
| /* Executes a regex. It temporarily changes the data to add a trailing zero, |
| * and restores the previous character when leaving. |
| */ |
| enum pat_match_res pat_match_reg(struct sample *smp, struct pattern *pattern) |
| { |
| if (regex_exec(pattern->ptr.reg, smp->data.str.str, smp->data.str.len) == 0) |
| return PAT_MATCH; |
| return PAT_NOMATCH; |
| } |
| |
| /* Checks that the pattern matches the beginning of the tested string. */ |
| enum pat_match_res pat_match_beg(struct sample *smp, struct pattern *pattern) |
| { |
| int icase; |
| |
| if (pattern->len > smp->data.str.len) |
| return PAT_NOMATCH; |
| |
| icase = pattern->flags & PAT_F_IGNORE_CASE; |
| if ((icase && strncasecmp(pattern->ptr.str, smp->data.str.str, pattern->len) != 0) || |
| (!icase && strncmp(pattern->ptr.str, smp->data.str.str, pattern->len) != 0)) |
| return PAT_NOMATCH; |
| return PAT_MATCH; |
| } |
| |
| /* Checks that the pattern matches the end of the tested string. */ |
| enum pat_match_res pat_match_end(struct sample *smp, struct pattern *pattern) |
| { |
| int icase; |
| |
| if (pattern->len > smp->data.str.len) |
| return PAT_NOMATCH; |
| icase = pattern->flags & PAT_F_IGNORE_CASE; |
| if ((icase && strncasecmp(pattern->ptr.str, smp->data.str.str + smp->data.str.len - pattern->len, pattern->len) != 0) || |
| (!icase && strncmp(pattern->ptr.str, smp->data.str.str + smp->data.str.len - pattern->len, pattern->len) != 0)) |
| return PAT_NOMATCH; |
| return PAT_MATCH; |
| } |
| |
| /* Checks that the pattern is included inside the tested string. |
| * NB: Suboptimal, should be rewritten using a Boyer-Moore method. |
| */ |
| enum pat_match_res pat_match_sub(struct sample *smp, struct pattern *pattern) |
| { |
| int icase; |
| char *end; |
| char *c; |
| |
| if (pattern->len > smp->data.str.len) |
| return PAT_NOMATCH; |
| |
| end = smp->data.str.str + smp->data.str.len - pattern->len; |
| icase = pattern->flags & PAT_F_IGNORE_CASE; |
| if (icase) { |
| for (c = smp->data.str.str; c <= end; c++) { |
| if (tolower(*c) != tolower(*pattern->ptr.str)) |
| continue; |
| if (strncasecmp(pattern->ptr.str, c, pattern->len) == 0) |
| return PAT_MATCH; |
| } |
| } else { |
| for (c = smp->data.str.str; c <= end; c++) { |
| if (*c != *pattern->ptr.str) |
| continue; |
| if (strncmp(pattern->ptr.str, c, pattern->len) == 0) |
| return PAT_MATCH; |
| } |
| } |
| return PAT_NOMATCH; |
| } |
| |
| /* Background: Fast way to find a zero byte in a word |
| * http://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord |
| * hasZeroByte = (v - 0x01010101UL) & ~v & 0x80808080UL; |
| * |
| * To look for 4 different byte values, xor the word with those bytes and |
| * then check for zero bytes: |
| * |
| * v = (((unsigned char)c * 0x1010101U) ^ delimiter) |
| * where <delimiter> is the 4 byte values to look for (as an uint) |
| * and <c> is the character that is being tested |
| */ |
| static inline unsigned int is_delimiter(unsigned char c, unsigned int mask) |
| { |
| mask ^= (c * 0x01010101); /* propagate the char to all 4 bytes */ |
| return (mask - 0x01010101) & ~mask & 0x80808080U; |
| } |
| |
| static inline unsigned int make_4delim(unsigned char d1, unsigned char d2, unsigned char d3, unsigned char d4) |
| { |
| return d1 << 24 | d2 << 16 | d3 << 8 | d4; |
| } |
| |
| /* This one is used by other real functions. It checks that the pattern is |
| * included inside the tested string, but enclosed between the specified |
| * delimiters or at the beginning or end of the string. The delimiters are |
| * provided as an unsigned int made by make_4delim() and match up to 4 different |
| * delimiters. Delimiters are stripped at the beginning and end of the pattern. |
| */ |
| static int match_word(struct sample *smp, struct pattern *pattern, unsigned int delimiters) |
| { |
| int may_match, icase; |
| char *c, *end; |
| char *ps; |
| int pl; |
| |
| pl = pattern->len; |
| ps = pattern->ptr.str; |
| |
| while (pl > 0 && is_delimiter(*ps, delimiters)) { |
| pl--; |
| ps++; |
| } |
| |
| while (pl > 0 && is_delimiter(ps[pl - 1], delimiters)) |
| pl--; |
| |
| if (pl > smp->data.str.len) |
| return PAT_NOMATCH; |
| |
| may_match = 1; |
| icase = pattern->flags & PAT_F_IGNORE_CASE; |
| end = smp->data.str.str + smp->data.str.len - pl; |
| for (c = smp->data.str.str; c <= end; c++) { |
| if (is_delimiter(*c, delimiters)) { |
| may_match = 1; |
| continue; |
| } |
| |
| if (!may_match) |
| continue; |
| |
| if (icase) { |
| if ((tolower(*c) == tolower(*ps)) && |
| (strncasecmp(ps, c, pl) == 0) && |
| (c == end || is_delimiter(c[pl], delimiters))) |
| return PAT_MATCH; |
| } else { |
| if ((*c == *ps) && |
| (strncmp(ps, c, pl) == 0) && |
| (c == end || is_delimiter(c[pl], delimiters))) |
| return PAT_MATCH; |
| } |
| may_match = 0; |
| } |
| return PAT_NOMATCH; |
| } |
| |
| /* Checks that the pattern is included inside the tested string, but enclosed |
| * between the delimiters '?' or '/' or at the beginning or end of the string. |
| * Delimiters at the beginning or end of the pattern are ignored. |
| */ |
| enum pat_match_res pat_match_dir(struct sample *smp, struct pattern *pattern) |
| { |
| return match_word(smp, pattern, make_4delim('/', '?', '?', '?')); |
| } |
| |
| /* Checks that the pattern is included inside the tested string, but enclosed |
| * between the delmiters '/', '?', '.' or ":" or at the beginning or end of |
| * the string. Delimiters at the beginning or end of the pattern are ignored. |
| */ |
| enum pat_match_res pat_match_dom(struct sample *smp, struct pattern *pattern) |
| { |
| return match_word(smp, pattern, make_4delim('/', '?', '.', ':')); |
| } |
| |
| /* Checks that the integer in <test> is included between min and max */ |
| enum pat_match_res pat_match_int(struct sample *smp, struct pattern *pattern) |
| { |
| if ((!pattern->val.range.min_set || pattern->val.range.min <= smp->data.uint) && |
| (!pattern->val.range.max_set || smp->data.uint <= pattern->val.range.max)) |
| return PAT_MATCH; |
| return PAT_NOMATCH; |
| } |
| |
| /* Checks that the length of the pattern in <test> is included between min and max */ |
| enum pat_match_res pat_match_len(struct sample *smp, struct pattern *pattern) |
| { |
| if ((!pattern->val.range.min_set || pattern->val.range.min <= smp->data.str.len) && |
| (!pattern->val.range.max_set || smp->data.str.len <= pattern->val.range.max)) |
| return PAT_MATCH; |
| return PAT_NOMATCH; |
| } |
| |
| enum pat_match_res pat_match_ip(struct sample *smp, struct pattern *pattern) |
| { |
| unsigned int v4; /* in network byte order */ |
| struct in6_addr *v6; |
| int bits, pos; |
| struct in6_addr tmp6; |
| |
| if (pattern->type == SMP_T_IPV4) { |
| if (smp->type == SMP_T_IPV4) { |
| v4 = smp->data.ipv4.s_addr; |
| } |
| else if (smp->type == SMP_T_IPV6) { |
| /* v4 match on a V6 sample. We want to check at least for |
| * the following forms : |
| * - ::ffff:ip:v4 (ipv4 mapped) |
| * - ::0000:ip:v4 (old ipv4 mapped) |
| * - 2002:ip:v4:: (6to4) |
| */ |
| if (*(uint32_t*)&smp->data.ipv6.s6_addr[0] == 0 && |
| *(uint32_t*)&smp->data.ipv6.s6_addr[4] == 0 && |
| (*(uint32_t*)&smp->data.ipv6.s6_addr[8] == 0 || |
| *(uint32_t*)&smp->data.ipv6.s6_addr[8] == htonl(0xFFFF))) { |
| v4 = *(uint32_t*)&smp->data.ipv6.s6_addr[12]; |
| } |
| else if (*(uint16_t*)&smp->data.ipv6.s6_addr[0] == htons(0x2002)) { |
| v4 = htonl((ntohs(*(uint16_t*)&smp->data.ipv6.s6_addr[2]) << 16) + |
| ntohs(*(uint16_t*)&smp->data.ipv6.s6_addr[4])); |
| } |
| else |
| return PAT_NOMATCH; |
| } |
| else |
| return PAT_NOMATCH; |
| |
| if (((v4 ^ pattern->val.ipv4.addr.s_addr) & pattern->val.ipv4.mask.s_addr) == 0) |
| return PAT_MATCH; |
| else |
| return PAT_NOMATCH; |
| } |
| else if (pattern->type == SMP_T_IPV6) { |
| if (smp->type == SMP_T_IPV4) { |
| /* Convert the IPv4 sample address to IPv4 with the |
| * mapping method using the ::ffff: prefix. |
| */ |
| memset(&tmp6, 0, 10); |
| *(uint16_t*)&tmp6.s6_addr[10] = htons(0xffff); |
| *(uint32_t*)&tmp6.s6_addr[12] = smp->data.ipv4.s_addr; |
| v6 = &tmp6; |
| } |
| else if (smp->type == SMP_T_IPV6) { |
| v6 = &smp->data.ipv6; |
| } |
| else { |
| return PAT_NOMATCH; |
| } |
| |
| bits = pattern->val.ipv6.mask; |
| for (pos = 0; bits > 0; pos += 4, bits -= 32) { |
| v4 = *(uint32_t*)&v6->s6_addr[pos] ^ *(uint32_t*)&pattern->val.ipv6.addr.s6_addr[pos]; |
| if (bits < 32) |
| v4 &= htonl((~0U) << (32-bits)); |
| if (v4) |
| return PAT_NOMATCH; |
| } |
| return PAT_MATCH; |
| } |
| return PAT_NOMATCH; |
| } |
| |
| /* Lookup an IPv4 address in the expression's pattern tree using the longest |
| * match method. The node is returned if it exists, otherwise NULL. |
| */ |
| static void *pat_lookup_ip(struct sample *smp, struct pattern_expr *expr) |
| { |
| struct in_addr *s; |
| |
| if (smp->type != SMP_T_IPV4) |
| return PAT_NOMATCH; |
| |
| s = &smp->data.ipv4; |
| return ebmb_lookup_longest(&expr->pattern_tree, &s->s_addr); |
| } |
| |
| /* Parse a string. It is allocated and duplicated. */ |
| int pat_parse_str(const char **text, struct pattern *pattern, struct sample_storage *smp, int *opaque, char **err) |
| { |
| int len; |
| |
| len = strlen(*text); |
| pattern->type = SMP_T_CSTR; |
| |
| if (pattern->flags & PAT_F_TREE_OK) { |
| /* we're allowed to put the data in a tree whose root is pointed |
| * to by val.tree. |
| */ |
| struct pat_idx_elt *node; |
| |
| node = calloc(1, sizeof(*node) + len + 1); |
| if (!node) { |
| memprintf(err, "out of memory while loading string pattern"); |
| return 0; |
| } |
| node->smp = smp; |
| memcpy(node->node.key, *text, len + 1); |
| if (ebst_insert(pattern->val.tree, &node->node) != &node->node) |
| free(node); /* was a duplicate */ |
| pattern->flags |= PAT_F_TREE; /* this pattern now contains a tree */ |
| return 1; |
| } |
| |
| pattern->ptr.str = strdup(*text); |
| pattern->smp = smp; |
| if (!pattern->ptr.str) { |
| memprintf(err, "out of memory while loading string pattern"); |
| return 0; |
| } |
| pattern->len = len; |
| return 1; |
| } |
| |
| /* Parse a binary written in hexa. It is allocated. */ |
| int pat_parse_bin(const char **text, struct pattern *pattern, struct sample_storage *smp, int *opaque, char **err) |
| { |
| int len; |
| const char *p = *text; |
| int i,j; |
| |
| len = strlen(p); |
| if (len%2) { |
| memprintf(err, "an even number of hex digit is expected"); |
| return 0; |
| } |
| |
| pattern->type = SMP_T_CBIN; |
| pattern->len = len >> 1; |
| pattern->ptr.str = malloc(pattern->len); |
| pattern->smp = smp; |
| if (!pattern->ptr.str) { |
| memprintf(err, "out of memory while loading string pattern"); |
| return 0; |
| } |
| |
| i = j = 0; |
| while (j < pattern->len) { |
| if (!ishex(p[i++])) |
| goto bad_input; |
| if (!ishex(p[i++])) |
| goto bad_input; |
| pattern->ptr.str[j++] = (hex2i(p[i-2]) << 4) + hex2i(p[i-1]); |
| } |
| return 1; |
| |
| bad_input: |
| memprintf(err, "an hex digit is expected (found '%c')", p[i-1]); |
| free(pattern->ptr.str); |
| return 0; |
| } |
| |
| /* Parse and concatenate all further strings into one. */ |
| int |
| pat_parse_strcat(const char **text, struct pattern *pattern, struct sample_storage *smp, int *opaque, char **err) |
| { |
| |
| int len = 0, i; |
| char *s; |
| |
| for (i = 0; *text[i]; i++) |
| len += strlen(text[i])+1; |
| |
| pattern->type = SMP_T_CSTR; |
| pattern->ptr.str = s = calloc(1, len); |
| pattern->smp = smp; |
| if (!pattern->ptr.str) { |
| memprintf(err, "out of memory while loading pattern"); |
| return 0; |
| } |
| |
| for (i = 0; *text[i]; i++) |
| s += sprintf(s, i?" %s":"%s", text[i]); |
| |
| pattern->len = len; |
| |
| return i; |
| } |
| |
| /* Free data allocated by pat_parse_reg */ |
| static void pat_free_reg(void *ptr) |
| { |
| regex_free(ptr); |
| } |
| |
| /* Parse a regex. It is allocated. */ |
| int pat_parse_reg(const char **text, struct pattern *pattern, struct sample_storage *smp, int *opaque, char **err) |
| { |
| regex *preg; |
| |
| preg = calloc(1, sizeof(*preg)); |
| |
| if (!preg) { |
| memprintf(err, "out of memory while loading pattern"); |
| return 0; |
| } |
| |
| if (!regex_comp(*text, preg, !(pattern->flags & PAT_F_IGNORE_CASE), 0, err)) { |
| free(preg); |
| return 0; |
| } |
| |
| pattern->ptr.reg = preg; |
| pattern->freeptrbuf = &pat_free_reg; |
| pattern->smp = smp; |
| return 1; |
| } |
| |
| /* Parse a range of positive integers delimited by either ':' or '-'. If only |
| * one integer is read, it is set as both min and max. An operator may be |
| * specified as the prefix, among this list of 5 : |
| * |
| * 0:eq, 1:gt, 2:ge, 3:lt, 4:le |
| * |
| * The default operator is "eq". It supports range matching. Ranges are |
| * rejected for other operators. The operator may be changed at any time. |
| * The operator is stored in the 'opaque' argument. |
| * |
| * If err is non-NULL, an error message will be returned there on errors and |
| * the caller will have to free it. |
| * |
| */ |
| int pat_parse_int(const char **text, struct pattern *pattern, struct sample_storage *smp, int *opaque, char **err) |
| { |
| signed long long i; |
| unsigned int j, last, skip = 0; |
| const char *ptr = *text; |
| |
| pattern->type = SMP_T_UINT; |
| pattern->smp = smp; |
| while (!isdigit((unsigned char)*ptr)) { |
| switch (get_std_op(ptr)) { |
| case STD_OP_EQ: *opaque = 0; break; |
| case STD_OP_GT: *opaque = 1; break; |
| case STD_OP_GE: *opaque = 2; break; |
| case STD_OP_LT: *opaque = 3; break; |
| case STD_OP_LE: *opaque = 4; break; |
| default: |
| memprintf(err, "'%s' is neither a number nor a supported operator", ptr); |
| return 0; |
| } |
| |
| skip++; |
| ptr = text[skip]; |
| } |
| |
| last = i = 0; |
| while (1) { |
| j = *ptr++; |
| if ((j == '-' || j == ':') && !last) { |
| last++; |
| pattern->val.range.min = i; |
| i = 0; |
| continue; |
| } |
| j -= '0'; |
| if (j > 9) |
| // also catches the terminating zero |
| break; |
| i *= 10; |
| i += j; |
| } |
| |
| if (last && *opaque >= 1 && *opaque <= 4) { |
| /* having a range with a min or a max is absurd */ |
| memprintf(err, "integer range '%s' specified with a comparison operator", text[skip]); |
| return 0; |
| } |
| |
| if (!last) |
| pattern->val.range.min = i; |
| pattern->val.range.max = i; |
| |
| switch (*opaque) { |
| case 0: /* eq */ |
| pattern->val.range.min_set = 1; |
| pattern->val.range.max_set = 1; |
| break; |
| case 1: /* gt */ |
| pattern->val.range.min++; /* gt = ge + 1 */ |
| case 2: /* ge */ |
| pattern->val.range.min_set = 1; |
| pattern->val.range.max_set = 0; |
| break; |
| case 3: /* lt */ |
| pattern->val.range.max--; /* lt = le - 1 */ |
| case 4: /* le */ |
| pattern->val.range.min_set = 0; |
| pattern->val.range.max_set = 1; |
| break; |
| } |
| return skip + 1; |
| } |
| |
| /* Parse a range of positive 2-component versions delimited by either ':' or |
| * '-'. The version consists in a major and a minor, both of which must be |
| * smaller than 65536, because internally they will be represented as a 32-bit |
| * integer. |
| * If only one version is read, it is set as both min and max. Just like for |
| * pure integers, an operator may be specified as the prefix, among this list |
| * of 5 : |
| * |
| * 0:eq, 1:gt, 2:ge, 3:lt, 4:le |
| * |
| * The default operator is "eq". It supports range matching. Ranges are |
| * rejected for other operators. The operator may be changed at any time. |
| * The operator is stored in the 'opaque' argument. This allows constructs |
| * such as the following one : |
| * |
| * acl obsolete_ssl ssl_req_proto lt 3 |
| * acl unsupported_ssl ssl_req_proto gt 3.1 |
| * acl valid_ssl ssl_req_proto 3.0-3.1 |
| * |
| */ |
| int pat_parse_dotted_ver(const char **text, struct pattern *pattern, struct sample_storage *smp, int *opaque, char **err) |
| { |
| signed long long i; |
| unsigned int j, last, skip = 0; |
| const char *ptr = *text; |
| |
| |
| while (!isdigit((unsigned char)*ptr)) { |
| switch (get_std_op(ptr)) { |
| case STD_OP_EQ: *opaque = 0; break; |
| case STD_OP_GT: *opaque = 1; break; |
| case STD_OP_GE: *opaque = 2; break; |
| case STD_OP_LT: *opaque = 3; break; |
| case STD_OP_LE: *opaque = 4; break; |
| default: |
| memprintf(err, "'%s' is neither a number nor a supported operator", ptr); |
| return 0; |
| } |
| |
| skip++; |
| ptr = text[skip]; |
| } |
| |
| last = i = 0; |
| while (1) { |
| j = *ptr++; |
| if (j == '.') { |
| /* minor part */ |
| if (i >= 65536) |
| return 0; |
| i <<= 16; |
| continue; |
| } |
| if ((j == '-' || j == ':') && !last) { |
| last++; |
| if (i < 65536) |
| i <<= 16; |
| pattern->val.range.min = i; |
| i = 0; |
| continue; |
| } |
| j -= '0'; |
| if (j > 9) |
| // also catches the terminating zero |
| break; |
| i = (i & 0xFFFF0000) + (i & 0xFFFF) * 10; |
| i += j; |
| } |
| |
| /* if we only got a major version, let's shift it now */ |
| if (i < 65536) |
| i <<= 16; |
| |
| if (last && *opaque >= 1 && *opaque <= 4) { |
| /* having a range with a min or a max is absurd */ |
| memprintf(err, "version range '%s' specified with a comparison operator", text[skip]); |
| return 0; |
| } |
| |
| pattern->smp = smp; |
| |
| if (!last) |
| pattern->val.range.min = i; |
| pattern->val.range.max = i; |
| |
| switch (*opaque) { |
| case 0: /* eq */ |
| pattern->val.range.min_set = 1; |
| pattern->val.range.max_set = 1; |
| break; |
| case 1: /* gt */ |
| pattern->val.range.min++; /* gt = ge + 1 */ |
| case 2: /* ge */ |
| pattern->val.range.min_set = 1; |
| pattern->val.range.max_set = 0; |
| break; |
| case 3: /* lt */ |
| pattern->val.range.max--; /* lt = le - 1 */ |
| case 4: /* le */ |
| pattern->val.range.min_set = 0; |
| pattern->val.range.max_set = 1; |
| break; |
| } |
| return skip + 1; |
| } |
| |
| /* Parse an IP address and an optional mask in the form addr[/mask]. |
| * The addr may either be an IPv4 address or a hostname. The mask |
| * may either be a dotted mask or a number of bits. Returns 1 if OK, |
| * otherwise 0. NOTE: IP address patterns are typed (IPV4/IPV6). |
| */ |
| int pat_parse_ip(const char **text, struct pattern *pattern, struct sample_storage *smp, int *opaque, char **err) |
| { |
| struct eb_root *tree = NULL; |
| if (pattern->flags & PAT_F_TREE_OK) |
| tree = pattern->val.tree; |
| |
| if (str2net(*text, &pattern->val.ipv4.addr, &pattern->val.ipv4.mask)) { |
| unsigned int mask = ntohl(pattern->val.ipv4.mask.s_addr); |
| struct pat_idx_elt *node; |
| /* check if the mask is contiguous so that we can insert the |
| * network into the tree. A continuous mask has only ones on |
| * the left. This means that this mask + its lower bit added |
| * once again is null. |
| */ |
| pattern->type = SMP_T_IPV4; |
| if (mask + (mask & -mask) == 0 && tree) { |
| mask = mask ? 33 - flsnz(mask & -mask) : 0; /* equals cidr value */ |
| /* FIXME: insert <addr>/<mask> into the tree here */ |
| node = calloc(1, sizeof(*node) + 4); /* reserve 4 bytes for IPv4 address */ |
| if (!node) { |
| memprintf(err, "out of memory while loading IPv4 pattern"); |
| return 0; |
| } |
| node->smp = smp; |
| memcpy(node->node.key, &pattern->val.ipv4.addr, 4); /* network byte order */ |
| node->node.node.pfx = mask; |
| if (ebmb_insert_prefix(tree, &node->node, 4) != &node->node) |
| free(node); /* was a duplicate */ |
| pattern->flags |= PAT_F_TREE; |
| return 1; |
| } |
| return 1; |
| } |
| else if (str62net(*text, &pattern->val.ipv6.addr, &pattern->val.ipv6.mask)) { |
| /* no tree support right now */ |
| pattern->type = SMP_T_IPV6; |
| return 1; |
| } |
| else { |
| memprintf(err, "'%s' is not a valid IPv4 or IPv6 address", *text); |
| return 0; |
| } |
| } |
| |
| /* NB: does nothing if <pat> is NULL */ |
| void pattern_free(struct pattern *pat) |
| { |
| if (!pat) |
| return; |
| |
| if (pat->ptr.ptr) { |
| if (pat->freeptrbuf) |
| pat->freeptrbuf(pat->ptr.ptr); |
| |
| free(pat->ptr.ptr); |
| } |
| |
| free(pat); |
| } |
| |
| void free_pattern_list(struct list *head) |
| { |
| struct pattern *pat, *tmp; |
| list_for_each_entry_safe(pat, tmp, head, list) |
| pattern_free(pat); |
| } |
| |
| void free_pattern_tree(struct eb_root *root) |
| { |
| struct eb_node *node, *next; |
| node = eb_first(root); |
| while (node) { |
| next = eb_next(node); |
| eb_delete(node); |
| free(node); |
| node = next; |
| } |
| } |
| |
| void pattern_prune_expr(struct pattern_expr *expr) |
| { |
| free_pattern_list(&expr->patterns); |
| free_pattern_tree(&expr->pattern_tree); |
| LIST_INIT(&expr->patterns); |
| } |
| |
| void pattern_init_expr(struct pattern_expr *expr) |
| { |
| LIST_INIT(&expr->patterns); |
| expr->pattern_tree = EB_ROOT_UNIQUE; |
| } |
| |
| /* return 1 if the process is ok |
| * return -1 if the parser fail. The err message is filled. |
| * return -2 if out of memory |
| */ |
| int pattern_register(struct pattern_expr *expr, char *text, |
| struct sample_storage *smp, |
| struct pattern **pattern, |
| int patflags, char **err) |
| { |
| const char *args[2]; |
| int opaque = 0; |
| |
| args[0] = text; |
| args[1] = ""; |
| |
| /* we keep the previous pattern along iterations as long as it's not used */ |
| if (!*pattern) |
| *pattern = (struct pattern *)malloc(sizeof(**pattern)); |
| if (!*pattern) |
| return -1; |
| |
| memset(*pattern, 0, sizeof(**pattern)); |
| (*pattern)->flags = patflags; |
| |
| if (!((*pattern)->flags & PAT_F_IGNORE_CASE) && |
| (expr->match == pat_match_str || expr->match == pat_match_ip)) { |
| /* we pre-set the data pointer to the tree's head so that functions |
| * which are able to insert in a tree know where to do that. |
| */ |
| (*pattern)->flags |= PAT_F_TREE_OK; |
| (*pattern)->val.tree = &expr->pattern_tree; |
| } |
| |
| (*pattern)->type = SMP_TYPES; /* unspecified type by default */ |
| if (!expr->parse(args, *pattern, smp, &opaque, err)) |
| return -1; |
| |
| /* if the parser did not feed the tree, let's chain the pattern to the list */ |
| if (!((*pattern)->flags & PAT_F_TREE)) { |
| LIST_ADDQ(&expr->patterns, &(*pattern)->list); |
| *pattern = NULL; /* get a new one */ |
| } |
| |
| return 1; |
| } |
| |
| /* Reads patterns from a file. If <err_msg> is non-NULL, an error message will |
| * be returned there on errors and the caller will have to free it. |
| */ |
| int pattern_read_from_file(struct pattern_expr *expr, |
| const char *filename, int patflags, |
| char **err) |
| { |
| FILE *file; |
| char *c; |
| char *arg; |
| struct pattern *pattern; |
| int ret = 0; |
| int line = 0; |
| int code; |
| |
| file = fopen(filename, "r"); |
| if (!file) { |
| memprintf(err, "failed to open pattern file <%s>", filename); |
| return 0; |
| } |
| |
| /* now parse all patterns. The file may contain only one pattern per |
| * line. If the line contains spaces, they will be part of the pattern. |
| * The pattern stops at the first CR, LF or EOF encountered. |
| */ |
| pattern = NULL; |
| while (fgets(trash.str, trash.size, file) != NULL) { |
| line++; |
| c = trash.str; |
| |
| /* ignore lines beginning with a dash */ |
| if (*c == '#') |
| continue; |
| |
| /* strip leading spaces and tabs */ |
| while (*c == ' ' || *c == '\t') |
| c++; |
| |
| |
| arg = c; |
| while (*c && *c != '\n' && *c != '\r') |
| c++; |
| *c = 0; |
| |
| /* empty lines are ignored too */ |
| if (c == arg) |
| continue; |
| |
| code = pattern_register(expr, arg, NULL, &pattern, patflags, err); |
| if (code == -2) { |
| memprintf(err, "out of memory when loading patterns from file <%s>", filename); |
| goto out_close; |
| } |
| else if (code < 0) { |
| memprintf(err, "%s when loading patterns from file <%s>", *err, filename); |
| goto out_free_pattern; |
| } |
| } |
| |
| ret = 1; /* success */ |
| |
| out_free_pattern: |
| pattern_free(pattern); |
| out_close: |
| fclose(file); |
| return ret; |
| } |
| |
| /* This function matches a sample <smp> against a set of patterns presented in |
| * pattern expression <expr>. Upon success, if <sample> is not NULL, it is fed |
| * with the pointer associated with the matching pattern. This function returns |
| * PAT_NOMATCH or PAT_MATCH. |
| */ |
| enum pat_match_res pattern_exec_match(struct pattern_expr *expr, struct sample *smp, |
| struct sample_storage **sample) |
| { |
| enum pat_match_res pat_res = PAT_NOMATCH; |
| struct pattern *pattern; |
| struct ebmb_node *node = NULL; |
| struct pat_idx_elt *elt; |
| |
| if (expr->match == pat_match_nothing) { |
| if (smp->data.uint) |
| pat_res |= PAT_MATCH; |
| else |
| pat_res |= PAT_NOMATCH; |
| } |
| else if (!expr->match) { |
| /* just check for existence */ |
| pat_res |= PAT_MATCH; |
| } |
| else { |
| if (!eb_is_empty(&expr->pattern_tree)) { |
| /* a tree is present, let's check what type it is */ |
| if (expr->match == pat_match_str) |
| node = pat_lookup_str(smp, expr); |
| else if (expr->match == pat_match_ip) |
| node = pat_lookup_ip(smp, expr); |
| if (node) { |
| pat_res |= PAT_MATCH; |
| elt = ebmb_entry(node, struct pat_idx_elt, node); |
| if (sample) |
| *sample = elt->smp; |
| } |
| } |
| |
| /* call the match() function for all tests on this value */ |
| list_for_each_entry(pattern, &expr->patterns, list) { |
| if (pat_res == PAT_MATCH) |
| break; |
| pat_res |= expr->match(smp, pattern); |
| if (sample) |
| *sample = pattern->smp; |
| } |
| } |
| |
| return pat_res; |
| } |
| |