blob: 7cad813bf061f38e61c0e23facfc4a232f4c5fb0 [file] [log] [blame]
/*
* Queue management functions.
*
* Copyright 2000-2009 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <common/config.h>
#include <common/memory.h>
#include <common/time.h>
#include <common/hathreads.h>
#include <proto/queue.h>
#include <proto/server.h>
#include <proto/stream.h>
#include <proto/stream_interface.h>
#include <proto/task.h>
struct pool_head *pool_head_pendconn;
/* perform minimal intializations, report 0 in case of error, 1 if OK. */
int init_pendconn()
{
pool_head_pendconn = create_pool("pendconn", sizeof(struct pendconn), MEM_F_SHARED);
return pool_head_pendconn != NULL;
}
/* returns the effective dynamic maxconn for a server, considering the minconn
* and the proxy's usage relative to its dynamic connections limit. It is
* expected that 0 < s->minconn <= s->maxconn when this is called. If the
* server is currently warming up, the slowstart is also applied to the
* resulting value, which can be lower than minconn in this case, but never
* less than 1.
*/
unsigned int srv_dynamic_maxconn(const struct server *s)
{
unsigned int max;
if (s->proxy->beconn >= s->proxy->fullconn)
/* no fullconn or proxy is full */
max = s->maxconn;
else if (s->minconn == s->maxconn)
/* static limit */
max = s->maxconn;
else max = MAX(s->minconn,
s->proxy->beconn * s->maxconn / s->proxy->fullconn);
if ((s->cur_state == SRV_ST_STARTING) &&
now.tv_sec < s->last_change + s->slowstart &&
now.tv_sec >= s->last_change) {
unsigned int ratio;
ratio = 100 * (now.tv_sec - s->last_change) / s->slowstart;
max = MAX(1, max * ratio / 100);
}
return max;
}
/* Remove the pendconn from the server/proxy queue. At this stage, the
* connection is not really dequeued. It will be done during the
* process_stream. This function must be called by function owning the locks on
* the pendconn _AND_ the server/proxy. It also decreases the pending count.
*
* The caller must own the lock on the pendconn _AND_ the queue containing the
* pendconn. The pendconn must still be queued.
*/
static void pendconn_unlink(struct pendconn *p)
{
if (p->srv)
p->srv->nbpend--;
else
p->px->nbpend--;
HA_ATOMIC_SUB(&p->px->totpend, 1);
LIST_DEL(&p->list);
LIST_INIT(&p->list);
}
/* Process the next pending connection from either a server or a proxy, and
* returns a strictly positive value on success (see below). If no pending
* connection is found, 0 is returned. Note that neither <srv> nor <px> may be
* NULL. Priority is given to the oldest request in the queue if both <srv> and
* <px> have pending requests. This ensures that no request will be left
* unserved. The <px> queue is not considered if the server (or a tracked
* server) is not RUNNING, is disabled, or has a null weight (server going
* down). The <srv> queue is still considered in this case, because if some
* connections remain there, it means that some requests have been forced there
* after it was seen down (eg: due to option persist). The stream is
* immediately marked as "assigned", and both its <srv> and <srv_conn> are set
* to <srv>.
*
* This function must only be called if the server queue _AND_ the proxy queue
* are locked. Today it is only called by process_srv_queue. When a pending
* connection is dequeued, this function returns 1 if the pending connection can
* be handled by the current thread, else it returns 2.
*/
static int pendconn_process_next_strm(struct server *srv, struct proxy *px)
{
struct pendconn *p = NULL;
struct server *rsrv;
int remote;
rsrv = srv->track;
if (!rsrv)
rsrv = srv;
if (srv->nbpend) {
list_for_each_entry(p, &srv->pendconns, list) {
if (!HA_SPIN_TRYLOCK(PENDCONN_LOCK, &p->lock))
goto ps_found;
}
p = NULL;
}
ps_found:
if (srv_currently_usable(rsrv) && px->nbpend) {
struct pendconn *pp;
list_for_each_entry(pp, &px->pendconns, list) {
/* If the server pendconn is older than the proxy one,
* we process the server one. */
if (p && !tv_islt(&pp->strm->logs.tv_request, &p->strm->logs.tv_request))
goto pendconn_found;
if (!HA_SPIN_TRYLOCK(PENDCONN_LOCK, &pp->lock)) {
/* Let's switch from the server pendconn to the
* proxy pendconn. Don't forget to unlock the
* server pendconn, if any. */
if (p)
HA_SPIN_UNLOCK(PENDCONN_LOCK, &p->lock);
p = pp;
goto pendconn_found;
}
}
}
if (!p)
return 0;
pendconn_found:
pendconn_unlink(p);
p->strm_flags |= SF_ASSIGNED;
p->srv = srv;
HA_ATOMIC_ADD(&srv->served, 1);
HA_ATOMIC_ADD(&srv->proxy->served, 1);
if (px->lbprm.server_take_conn)
px->lbprm.server_take_conn(srv);
__stream_add_srv_conn(p->strm, srv);
remote = !(p->strm->task->thread_mask & tid_bit);
task_wakeup(p->strm->task, TASK_WOKEN_RES);
HA_SPIN_UNLOCK(PENDCONN_LOCK, &p->lock);
/* Returns 1 if the current thread can process the stream, otherwise returns 2. */
return remote ? 2 : 1;
}
/* Manages a server's connection queue. This function will try to dequeue as
* many pending streams as possible, and wake them up.
*/
void process_srv_queue(struct server *s)
{
struct proxy *p = s->proxy;
int maxconn, remote = 0;
HA_SPIN_LOCK(PROXY_LOCK, &p->lock);
HA_SPIN_LOCK(SERVER_LOCK, &s->lock);
maxconn = srv_dynamic_maxconn(s);
while (s->served < maxconn) {
int ret = pendconn_process_next_strm(s, p);
if (!ret)
break;
remote |= (ret == 2);
}
HA_SPIN_UNLOCK(SERVER_LOCK, &s->lock);
HA_SPIN_UNLOCK(PROXY_LOCK, &p->lock);
if (remote)
thread_want_sync();
}
/* Adds the stream <strm> to the pending connection list of server <strm>->srv
* or to the one of <strm>->proxy if srv is NULL. All counters and back pointers
* are updated accordingly. Returns NULL if no memory is available, otherwise the
* pendconn itself. If the stream was already marked as served, its flag is
* cleared. It is illegal to call this function with a non-NULL strm->srv_conn.
*
* This function must be called by the stream itself, so in the context of
* process_stream.
*/
struct pendconn *pendconn_add(struct stream *strm)
{
struct pendconn *p;
struct proxy *px;
struct server *srv;
p = pool_alloc(pool_head_pendconn);
if (!p)
return NULL;
srv = objt_server(strm->target);
px = strm->be;
p->srv = NULL;
p->px = px;
p->strm = strm;
p->strm_flags = strm->flags;
HA_SPIN_INIT(&p->lock);
if ((strm->flags & SF_ASSIGNED) && srv) {
p->srv = srv;
HA_SPIN_LOCK(SERVER_LOCK, &srv->lock);
srv->nbpend++;
strm->logs.srv_queue_size += srv->nbpend;
if (srv->nbpend > srv->counters.nbpend_max)
srv->counters.nbpend_max = srv->nbpend;
LIST_ADDQ(&srv->pendconns, &p->list);
HA_SPIN_UNLOCK(SERVER_LOCK, &srv->lock);
}
else {
HA_SPIN_LOCK(PROXY_LOCK, &px->lock);
px->nbpend++;
strm->logs.prx_queue_size += px->nbpend;
if (px->nbpend > px->be_counters.nbpend_max)
px->be_counters.nbpend_max = px->nbpend;
LIST_ADDQ(&px->pendconns, &p->list);
HA_SPIN_UNLOCK(PROXY_LOCK, &px->lock);
}
HA_ATOMIC_ADD(&px->totpend, 1);
strm->pend_pos = p;
return p;
}
/* Redistribute pending connections when a server goes down. The number of
* connections redistributed is returned.
*/
int pendconn_redistribute(struct server *s)
{
struct pendconn *p, *pback;
int xferred = 0;
int remote = 0;
/* The REDISP option was specified. We will ignore cookie and force to
* balance or use the dispatcher. */
if ((s->proxy->options & (PR_O_REDISP|PR_O_PERSIST)) != PR_O_REDISP)
return 0;
HA_SPIN_LOCK(SERVER_LOCK, &s->lock);
list_for_each_entry_safe(p, pback, &s->pendconns, list) {
if (p->strm_flags & SF_FORCE_PRST)
continue;
if (HA_SPIN_TRYLOCK(PENDCONN_LOCK, &p->lock))
continue;
/* it's left to the dispatcher to choose a server */
pendconn_unlink(p);
p->strm_flags &= ~(SF_DIRECT | SF_ASSIGNED | SF_ADDR_SET);
remote |= !(p->strm->task->thread_mask & tid_bit);
task_wakeup(p->strm->task, TASK_WOKEN_RES);
HA_SPIN_UNLOCK(PENDCONN_LOCK, &p->lock);
}
HA_SPIN_UNLOCK(SERVER_LOCK, &s->lock);
if (remote)
thread_want_sync();
return xferred;
}
/* Check for pending connections at the backend, and assign some of them to
* the server coming up. The server's weight is checked before being assigned
* connections it may not be able to handle. The total number of transferred
* connections is returned.
*/
int pendconn_grab_from_px(struct server *s)
{
struct pendconn *p, *pback;
int maxconn, xferred = 0;
int remote = 0;
if (!srv_currently_usable(s))
return 0;
HA_SPIN_LOCK(PROXY_LOCK, &s->proxy->lock);
maxconn = srv_dynamic_maxconn(s);
list_for_each_entry_safe(p, pback, &s->proxy->pendconns, list) {
if (s->maxconn && s->served + xferred >= maxconn)
break;
if (HA_SPIN_TRYLOCK(PENDCONN_LOCK, &p->lock))
continue;
pendconn_unlink(p);
p->srv = s;
remote |= !(p->strm->task->thread_mask & tid_bit);
task_wakeup(p->strm->task, TASK_WOKEN_RES);
HA_SPIN_UNLOCK(PENDCONN_LOCK, &p->lock);
xferred++;
}
HA_SPIN_UNLOCK(PROXY_LOCK, &s->proxy->lock);
if (remote)
thread_want_sync();
return xferred;
}
/* Try to dequeue pending connection attached to the stream <strm>. It must
* always exists here. If the pendconn is still linked to the server or the
* proxy queue, nothing is done and the function returns 1. Otherwise,
* <strm>->flags and <strm>->target are updated, the pendconn is released and 0
* is returned.
*
* This function must be called by the stream itself, so in the context of
* process_stream.
*/
int pendconn_dequeue(struct stream *strm)
{
struct pendconn *p;
if (unlikely(!strm->pend_pos)) {
/* unexpected case because it is called by the stream itself and
* only the stream can release a pendconn. So it is only
* possible if a pendconn is released by someone else or if the
* stream is supposed to be queued but without its associated
* pendconn. In both cases it is a bug! */
abort();
}
p = strm->pend_pos;
HA_SPIN_LOCK(PENDCONN_LOCK, &p->lock);
/* the pendconn is still linked to the server/proxy queue, so unlock it
* and go away. */
if (!LIST_ISEMPTY(&p->list)) {
HA_SPIN_UNLOCK(PENDCONN_LOCK, &p->lock);
return 1;
}
/* the pendconn must be dequeued now */
if (p->srv)
strm->target = &p->srv->obj_type;
strm->flags &= ~(SF_DIRECT | SF_ASSIGNED | SF_ADDR_SET);
strm->flags |= p->strm_flags & (SF_DIRECT | SF_ASSIGNED | SF_ADDR_SET);
strm->pend_pos = NULL;
HA_SPIN_UNLOCK(PENDCONN_LOCK, &p->lock);
pool_free(pool_head_pendconn, p);
return 0;
}
/* Release the pending connection <p>, and decreases the pending count if
* needed. The connection might have been queued to a specific server as well as
* to the proxy. The stream also gets marked unqueued. <p> must always be
* defined here. So it is the caller responsibility to check its existance.
*
* This function must be called by the stream itself, so in the context of
* process_stream.
*/
void pendconn_free(struct pendconn *p)
{
struct stream *strm = p->strm;
HA_SPIN_LOCK(PENDCONN_LOCK, &p->lock);
/* The pendconn was already unlinked, just release it. */
if (LIST_ISEMPTY(&p->list))
goto release;
if (p->srv) {
HA_SPIN_LOCK(SERVER_LOCK, &p->srv->lock);
p->srv->nbpend--;
LIST_DEL(&p->list);
HA_SPIN_UNLOCK(SERVER_LOCK, &p->srv->lock);
}
else {
HA_SPIN_LOCK(PROXY_LOCK, &p->px->lock);
p->px->nbpend--;
LIST_DEL(&p->list);
HA_SPIN_UNLOCK(PROXY_LOCK, &p->px->lock);
}
HA_ATOMIC_SUB(&p->px->totpend, 1);
release:
strm->pend_pos = NULL;
HA_SPIN_UNLOCK(PENDCONN_LOCK, &p->lock);
pool_free(pool_head_pendconn, p);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/