| /* |
| * QUIC socket management. |
| * |
| * Copyright 2020 HAProxy Technologies, Frederic Lecaille <flecaille@haproxy.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #define _GNU_SOURCE /* required for struct in6_pktinfo */ |
| #include <errno.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <netinet/in.h> |
| #include <sys/socket.h> |
| #include <sys/types.h> |
| |
| #include <haproxy/api.h> |
| #include <haproxy/buf.h> |
| #include <haproxy/connection.h> |
| #include <haproxy/dynbuf.h> |
| #include <haproxy/fd.h> |
| #include <haproxy/freq_ctr.h> |
| #include <haproxy/global-t.h> |
| #include <haproxy/list.h> |
| #include <haproxy/listener.h> |
| #include <haproxy/log.h> |
| #include <haproxy/pool.h> |
| #include <haproxy/proto_quic.h> |
| #include <haproxy/proxy-t.h> |
| #include <haproxy/quic_conn.h> |
| #include <haproxy/quic_sock.h> |
| #include <haproxy/quic_tp-t.h> |
| #include <haproxy/session.h> |
| #include <haproxy/stats-t.h> |
| #include <haproxy/task.h> |
| #include <haproxy/trace.h> |
| #include <haproxy/tools.h> |
| #include <haproxy/trace.h> |
| |
| #define TRACE_SOURCE &trace_quic |
| |
| #define TRACE_SOURCE &trace_quic |
| |
| /* Retrieve a connection's source address. Returns -1 on failure. */ |
| int quic_sock_get_src(struct connection *conn, struct sockaddr *addr, socklen_t len) |
| { |
| struct quic_conn *qc; |
| |
| if (!conn || !conn->handle.qc) |
| return -1; |
| |
| qc = conn->handle.qc; |
| if (conn_is_back(conn)) { |
| /* no source address defined for outgoing connections for now */ |
| return -1; |
| } else { |
| /* front connection, return the peer's address */ |
| if (len > sizeof(qc->peer_addr)) |
| len = sizeof(qc->peer_addr); |
| memcpy(addr, &qc->peer_addr, len); |
| return 0; |
| } |
| } |
| |
| /* Retrieve a connection's destination address. Returns -1 on failure. */ |
| int quic_sock_get_dst(struct connection *conn, struct sockaddr *addr, socklen_t len) |
| { |
| struct quic_conn *qc; |
| |
| if (!conn || !conn->handle.qc) |
| return -1; |
| |
| qc = conn->handle.qc; |
| if (conn_is_back(conn)) { |
| /* back connection, return the peer's address */ |
| if (len > sizeof(qc->peer_addr)) |
| len = sizeof(qc->peer_addr); |
| memcpy(addr, &qc->peer_addr, len); |
| } else { |
| struct sockaddr_storage *from; |
| |
| /* Return listener address if IP_PKTINFO or friends are not |
| * supported by the socket. |
| */ |
| BUG_ON(!qc->li); |
| from = is_addr(&qc->local_addr) ? &qc->local_addr : |
| &qc->li->rx.addr; |
| if (len > sizeof(*from)) |
| len = sizeof(*from); |
| memcpy(addr, from, len); |
| } |
| return 0; |
| } |
| |
| /* |
| * Inspired from session_accept_fd(). |
| * Instantiate a new connection (connection struct) to be attached to <qc> |
| * QUIC connection of <l> listener. |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| static int new_quic_cli_conn(struct quic_conn *qc, struct listener *l, |
| struct sockaddr_storage *saddr) |
| { |
| struct connection *cli_conn; |
| |
| if (unlikely((cli_conn = conn_new(&l->obj_type)) == NULL)) |
| goto out; |
| |
| if (!sockaddr_alloc(&cli_conn->src, saddr, sizeof *saddr)) |
| goto out_free_conn; |
| |
| cli_conn->flags |= CO_FL_FDLESS; |
| qc->conn = cli_conn; |
| cli_conn->handle.qc = qc; |
| |
| cli_conn->target = &l->obj_type; |
| |
| return 1; |
| |
| out_free_conn: |
| qc->conn = NULL; |
| conn_stop_tracking(cli_conn); |
| conn_xprt_close(cli_conn); |
| conn_free(cli_conn); |
| out: |
| |
| return 0; |
| } |
| |
| /* Tests if the receiver supports accepting connections. Returns positive on |
| * success, 0 if not possible |
| */ |
| int quic_sock_accepting_conn(const struct receiver *rx) |
| { |
| return 1; |
| } |
| |
| /* Accept an incoming connection from listener <l>, and return it, as well as |
| * a CO_AC_* status code into <status> if not null. Null is returned on error. |
| * <l> must be a valid listener with a valid frontend. |
| */ |
| struct connection *quic_sock_accept_conn(struct listener *l, int *status) |
| { |
| struct quic_conn *qc; |
| struct li_per_thread *lthr = &l->per_thr[tid]; |
| |
| qc = MT_LIST_POP(<hr->quic_accept.conns, struct quic_conn *, accept_list); |
| if (!qc) |
| goto done; |
| |
| if (!new_quic_cli_conn(qc, l, &qc->peer_addr)) |
| goto err; |
| |
| done: |
| *status = CO_AC_DONE; |
| return qc ? qc->conn : NULL; |
| |
| err: |
| /* in case of error reinsert the element to process it later. */ |
| MT_LIST_INSERT(<hr->quic_accept.conns, &qc->accept_list); |
| |
| *status = CO_AC_PAUSE; |
| return NULL; |
| } |
| |
| /* QUIC datagrams handler task. */ |
| struct task *quic_lstnr_dghdlr(struct task *t, void *ctx, unsigned int state) |
| { |
| struct quic_dghdlr *dghdlr = ctx; |
| struct quic_dgram *dgram; |
| int max_dgrams = global.tune.maxpollevents; |
| |
| TRACE_ENTER(QUIC_EV_CONN_LPKT); |
| |
| while ((dgram = MT_LIST_POP(&dghdlr->dgrams, typeof(dgram), handler_list))) { |
| if (quic_dgram_parse(dgram, NULL, dgram->owner)) { |
| /* TODO should we requeue the datagram ? */ |
| break; |
| } |
| |
| if (--max_dgrams <= 0) |
| goto stop_here; |
| } |
| |
| TRACE_LEAVE(QUIC_EV_CONN_LPKT); |
| return t; |
| |
| stop_here: |
| /* too much work done at once, come back here later */ |
| if (!MT_LIST_ISEMPTY(&dghdlr->dgrams)) |
| tasklet_wakeup((struct tasklet *)t); |
| |
| TRACE_LEAVE(QUIC_EV_CONN_LPKT); |
| return t; |
| } |
| |
| /* Retrieve the DCID from the datagram found in <buf> and deliver it to the |
| * correct datagram handler. |
| * Return 1 if a correct datagram could be found, 0 if not. |
| */ |
| static int quic_lstnr_dgram_dispatch(unsigned char *buf, size_t len, void *owner, |
| struct sockaddr_storage *saddr, |
| struct sockaddr_storage *daddr, |
| struct quic_dgram *new_dgram, struct list *dgrams) |
| { |
| struct quic_dgram *dgram; |
| const struct listener *l = owner; |
| unsigned char *dcid; |
| size_t dcid_len; |
| int cid_tid; |
| |
| if (!len || !quic_get_dgram_dcid(buf, buf + len, &dcid, &dcid_len)) |
| goto err; |
| |
| dgram = new_dgram ? new_dgram : pool_alloc(pool_head_quic_dgram); |
| if (!dgram) |
| goto err; |
| |
| cid_tid = quic_get_cid_tid(dcid, &l->rx); |
| |
| /* All the members must be initialized! */ |
| dgram->owner = owner; |
| dgram->buf = buf; |
| dgram->len = len; |
| dgram->dcid = dcid; |
| dgram->dcid_len = dcid_len; |
| dgram->saddr = *saddr; |
| dgram->daddr = *daddr; |
| dgram->qc = NULL; |
| |
| /* Attached datagram to its quic_receiver_buf and quic_dghdlrs. */ |
| LIST_APPEND(dgrams, &dgram->recv_list); |
| MT_LIST_APPEND(&quic_dghdlrs[cid_tid].dgrams, &dgram->handler_list); |
| |
| /* typically quic_lstnr_dghdlr() */ |
| tasklet_wakeup(quic_dghdlrs[cid_tid].task); |
| |
| return 1; |
| |
| err: |
| pool_free(pool_head_quic_dgram, new_dgram); |
| return 0; |
| } |
| |
| /* This function is responsible to remove unused datagram attached in front of |
| * <buf>. Each instances will be freed until a not yet consumed datagram is |
| * found or end of the list is hit. The last unused datagram found is not freed |
| * and is instead returned so that the caller can reuse it if needed. |
| * |
| * Returns the last unused datagram or NULL if no occurrence found. |
| */ |
| static struct quic_dgram *quic_rxbuf_purge_dgrams(struct quic_receiver_buf *buf) |
| { |
| struct quic_dgram *cur, *prev = NULL; |
| |
| while (!LIST_ISEMPTY(&buf->dgram_list)) { |
| cur = LIST_ELEM(buf->dgram_list.n, struct quic_dgram *, recv_list); |
| |
| /* Loop until a not yet consumed datagram is found. */ |
| if (HA_ATOMIC_LOAD(&cur->buf)) |
| break; |
| |
| /* Clear buffer of current unused datagram. */ |
| LIST_DELETE(&cur->recv_list); |
| b_del(&buf->buf, cur->len); |
| |
| /* Free last found unused datagram. */ |
| if (prev) |
| pool_free(pool_head_quic_dgram, prev); |
| prev = cur; |
| } |
| |
| /* Return last unused datagram found. */ |
| return prev; |
| } |
| |
| /* Receive data from datagram socket <fd>. Data are placed in <out> buffer of |
| * length <len>. |
| * |
| * Datagram addresses will be returned via the next arguments. <from> will be |
| * the peer address and <to> the reception one. Note that <to> can only be |
| * retrieved if the socket supports IP_PKTINFO or affiliated options. If not, |
| * <to> will be set as AF_UNSPEC. The caller must specify <to_port> to ensure |
| * that <to> address is completely filled. |
| * |
| * Returns value from recvmsg syscall. |
| */ |
| static ssize_t quic_recv(int fd, void *out, size_t len, |
| struct sockaddr *from, socklen_t from_len, |
| struct sockaddr *to, socklen_t to_len, |
| uint16_t dst_port) |
| { |
| union pktinfo { |
| #ifdef IP_PKTINFO |
| struct in_pktinfo in; |
| #else /* !IP_PKTINFO */ |
| struct in_addr addr; |
| #endif |
| #ifdef IPV6_RECVPKTINFO |
| struct in6_pktinfo in6; |
| #endif |
| }; |
| char cdata[CMSG_SPACE(sizeof(union pktinfo))]; |
| struct msghdr msg; |
| struct iovec vec; |
| struct cmsghdr *cmsg; |
| ssize_t ret; |
| |
| vec.iov_base = out; |
| vec.iov_len = len; |
| |
| memset(&msg, 0, sizeof(msg)); |
| msg.msg_name = from; |
| msg.msg_namelen = from_len; |
| msg.msg_iov = &vec; |
| msg.msg_iovlen = 1; |
| msg.msg_control = &cdata; |
| msg.msg_controllen = sizeof(cdata); |
| |
| clear_addr((struct sockaddr_storage *)to); |
| |
| do { |
| ret = recvmsg(fd, &msg, 0); |
| } while (ret < 0 && errno == EINTR); |
| |
| /* TODO handle errno. On EAGAIN/EWOULDBLOCK use fd_cant_recv() if |
| * using dedicated connection socket. |
| */ |
| |
| if (ret < 0) |
| goto end; |
| |
| for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) { |
| switch (cmsg->cmsg_level) { |
| case IPPROTO_IP: |
| #if defined(IP_PKTINFO) |
| if (cmsg->cmsg_type == IP_PKTINFO) { |
| struct sockaddr_in *in = (struct sockaddr_in *)to; |
| struct in_pktinfo *info = (struct in_pktinfo *)CMSG_DATA(cmsg); |
| |
| if (to_len >= sizeof(struct sockaddr_in)) { |
| in->sin_family = AF_INET; |
| in->sin_addr = info->ipi_addr; |
| in->sin_port = dst_port; |
| } |
| } |
| #elif defined(IP_RECVDSTADDR) |
| if (cmsg->cmsg_type == IP_RECVDSTADDR) { |
| struct sockaddr_in *in = (struct sockaddr_in *)to; |
| struct in_addr *info = (struct in_addr *)CMSG_DATA(cmsg); |
| |
| if (to_len >= sizeof(struct sockaddr_in)) { |
| in->sin_family = AF_INET; |
| in->sin_addr.s_addr = info->s_addr; |
| in->sin_port = dst_port; |
| } |
| } |
| #endif /* IP_PKTINFO || IP_RECVDSTADDR */ |
| break; |
| |
| case IPPROTO_IPV6: |
| #ifdef IPV6_RECVPKTINFO |
| if (cmsg->cmsg_type == IPV6_PKTINFO) { |
| struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)to; |
| struct in6_pktinfo *info6 = (struct in6_pktinfo *)CMSG_DATA(cmsg); |
| |
| if (to_len >= sizeof(struct sockaddr_in6)) { |
| in6->sin6_family = AF_INET6; |
| memcpy(&in6->sin6_addr, &info6->ipi6_addr, sizeof(in6->sin6_addr)); |
| in6->sin6_port = dst_port; |
| } |
| } |
| #endif |
| break; |
| } |
| } |
| |
| end: |
| return ret; |
| } |
| |
| /* Function called on a read event from a listening socket. It tries |
| * to handle as many connections as possible. |
| */ |
| void quic_lstnr_sock_fd_iocb(int fd) |
| { |
| ssize_t ret; |
| struct quic_receiver_buf *rxbuf; |
| struct buffer *buf; |
| struct listener *l = objt_listener(fdtab[fd].owner); |
| struct quic_transport_params *params; |
| /* Source address */ |
| struct sockaddr_storage saddr = {0}, daddr = {0}; |
| size_t max_sz, cspace; |
| struct quic_dgram *new_dgram; |
| unsigned char *dgram_buf; |
| int max_dgrams; |
| |
| BUG_ON(!l); |
| |
| new_dgram = NULL; |
| if (!l) |
| return; |
| |
| if (!(fdtab[fd].state & FD_POLL_IN) || !fd_recv_ready(fd)) |
| return; |
| |
| rxbuf = MT_LIST_POP(&l->rx.rxbuf_list, typeof(rxbuf), rxbuf_el); |
| if (!rxbuf) |
| goto out; |
| |
| buf = &rxbuf->buf; |
| |
| max_dgrams = global.tune.maxpollevents; |
| start: |
| /* Try to reuse an existing dgram. Note that there is always at |
| * least one datagram to pick, except the first time we enter |
| * this function for this <rxbuf> buffer. |
| */ |
| new_dgram = quic_rxbuf_purge_dgrams(rxbuf); |
| |
| params = &l->bind_conf->quic_params; |
| max_sz = params->max_udp_payload_size; |
| cspace = b_contig_space(buf); |
| if (cspace < max_sz) { |
| struct proxy *px = l->bind_conf->frontend; |
| struct quic_counters *prx_counters = EXTRA_COUNTERS_GET(px->extra_counters_fe, &quic_stats_module); |
| struct quic_dgram *dgram; |
| |
| /* Do no mark <buf> as full, and do not try to consume it |
| * if the contiguous remaining space is not at the end |
| */ |
| if (b_tail(buf) + cspace < b_wrap(buf)) { |
| HA_ATOMIC_INC(&prx_counters->rxbuf_full); |
| goto out; |
| } |
| |
| /* Allocate a fake datagram, without data to locate |
| * the end of the RX buffer (required during purging). |
| */ |
| dgram = pool_alloc(pool_head_quic_dgram); |
| if (!dgram) |
| goto out; |
| |
| /* Initialize only the useful members of this fake datagram. */ |
| dgram->buf = NULL; |
| dgram->len = cspace; |
| /* Append this datagram only to the RX buffer list. It will |
| * not be treated by any datagram handler. |
| */ |
| LIST_APPEND(&rxbuf->dgram_list, &dgram->recv_list); |
| |
| /* Consume the remaining space */ |
| b_add(buf, cspace); |
| if (b_contig_space(buf) < max_sz) { |
| HA_ATOMIC_INC(&prx_counters->rxbuf_full); |
| goto out; |
| } |
| } |
| |
| dgram_buf = (unsigned char *)b_tail(buf); |
| ret = quic_recv(fd, dgram_buf, max_sz, |
| (struct sockaddr *)&saddr, sizeof(saddr), |
| (struct sockaddr *)&daddr, sizeof(daddr), |
| get_net_port(&l->rx.addr)); |
| if (ret <= 0) |
| goto out; |
| |
| b_add(buf, ret); |
| if (!quic_lstnr_dgram_dispatch(dgram_buf, ret, l, &saddr, &daddr, |
| new_dgram, &rxbuf->dgram_list)) { |
| /* If wrong, consume this datagram */ |
| b_sub(buf, ret); |
| } |
| new_dgram = NULL; |
| if (--max_dgrams > 0) |
| goto start; |
| out: |
| pool_free(pool_head_quic_dgram, new_dgram); |
| MT_LIST_APPEND(&l->rx.rxbuf_list, &rxbuf->rxbuf_el); |
| } |
| |
| /* FD-owned quic-conn socket callback. */ |
| static void quic_conn_sock_fd_iocb(int fd) |
| { |
| struct quic_conn *qc = fdtab[fd].owner; |
| |
| TRACE_ENTER(QUIC_EV_CONN_RCV, qc); |
| |
| tasklet_wakeup_after(NULL, qc->wait_event.tasklet); |
| fd_stop_recv(fd); |
| |
| TRACE_LEAVE(QUIC_EV_CONN_RCV, qc); |
| } |
| |
| /* Send a datagram stored into <buf> buffer with <sz> as size. |
| * The caller must ensure there is at least <sz> bytes in this buffer. |
| * |
| * Returns 0 on success else non-zero. When failed, this function also |
| * sets <*syscall_errno> to the errno only when the send*() syscall failed. |
| * As the C library will never set errno to 0, the caller must set |
| * <*syscall_errno> to 0 before calling this function to be sure to get |
| * the correct errno in case a send*() syscall failure. |
| * |
| * TODO standardize this function for a generic UDP sendto wrapper. This can be |
| * done by removing the <qc> arg and replace it with address/port. |
| */ |
| int qc_snd_buf(struct quic_conn *qc, const struct buffer *buf, size_t sz, |
| int flags, int *syscall_errno) |
| { |
| ssize_t ret; |
| |
| do { |
| if (qc_test_fd(qc)) { |
| ret = send(qc->fd, b_peek(buf, b_head_ofs(buf)), sz, |
| MSG_DONTWAIT | MSG_NOSIGNAL); |
| } |
| #if defined(IP_PKTINFO) || defined(IP_RECVDSTADDR) || defined(IPV6_RECVPKTINFO) |
| else if (is_addr(&qc->local_addr)) { |
| struct msghdr msg = { 0 }; |
| struct iovec vec; |
| struct cmsghdr *cmsg; |
| #ifdef IP_PKTINFO |
| struct in_pktinfo in; |
| #endif /* IP_PKTINFO */ |
| #ifdef IPV6_RECVPKTINFO |
| struct in6_pktinfo in6; |
| #endif /* IPV6_RECVPKTINFO */ |
| union { |
| #ifdef IP_PKTINFO |
| char buf[CMSG_SPACE(sizeof(in))]; |
| #endif /* IP_PKTINFO */ |
| #ifdef IPV6_RECVPKTINFO |
| char buf6[CMSG_SPACE(sizeof(in6))]; |
| #endif /* IPV6_RECVPKTINFO */ |
| char bufaddr[CMSG_SPACE(sizeof(struct in_addr))]; |
| struct cmsghdr align; |
| } u; |
| |
| vec.iov_base = b_peek(buf, b_head_ofs(buf)); |
| vec.iov_len = sz; |
| msg.msg_name = &qc->peer_addr; |
| msg.msg_namelen = get_addr_len(&qc->peer_addr); |
| msg.msg_iov = &vec; |
| msg.msg_iovlen = 1; |
| |
| switch (qc->local_addr.ss_family) { |
| case AF_INET: |
| #if defined(IP_PKTINFO) |
| memset(&in, 0, sizeof(in)); |
| memcpy(&in.ipi_spec_dst, |
| &((struct sockaddr_in *)&qc->local_addr)->sin_addr, |
| sizeof(struct in_addr)); |
| |
| msg.msg_control = u.buf; |
| msg.msg_controllen = sizeof(u.buf); |
| |
| cmsg = CMSG_FIRSTHDR(&msg); |
| cmsg->cmsg_level = IPPROTO_IP; |
| cmsg->cmsg_type = IP_PKTINFO; |
| cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_pktinfo)); |
| memcpy(CMSG_DATA(cmsg), &in, sizeof(in)); |
| #elif defined(IP_RECVDSTADDR) |
| msg.msg_control = u.bufaddr; |
| msg.msg_controllen = sizeof(u.bufaddr); |
| |
| cmsg = CMSG_FIRSTHDR(&msg); |
| cmsg->cmsg_level = IPPROTO_IP; |
| cmsg->cmsg_type = IP_SENDSRCADDR; |
| cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_addr)); |
| memcpy(CMSG_DATA(cmsg), |
| &((struct sockaddr_in *)&qc->local_addr)->sin_addr, |
| sizeof(struct in_addr)); |
| #endif /* IP_PKTINFO || IP_RECVDSTADDR */ |
| break; |
| |
| case AF_INET6: |
| #ifdef IPV6_RECVPKTINFO |
| memset(&in6, 0, sizeof(in6)); |
| memcpy(&in6.ipi6_addr, |
| &((struct sockaddr_in6 *)&qc->local_addr)->sin6_addr, |
| sizeof(struct in6_addr)); |
| |
| msg.msg_control = u.buf6; |
| msg.msg_controllen = sizeof(u.buf6); |
| |
| cmsg = CMSG_FIRSTHDR(&msg); |
| cmsg->cmsg_level = IPPROTO_IPV6; |
| cmsg->cmsg_type = IPV6_PKTINFO; |
| cmsg->cmsg_len = CMSG_LEN(sizeof(struct in6_pktinfo)); |
| memcpy(CMSG_DATA(cmsg), &in6, sizeof(in6)); |
| #endif /* IPV6_RECVPKTINFO */ |
| break; |
| |
| default: |
| break; |
| } |
| |
| ret = sendmsg(qc->li->rx.fd, &msg, |
| MSG_DONTWAIT|MSG_NOSIGNAL); |
| } |
| #endif /* IP_PKTINFO || IP_RECVDSTADDR || IPV6_RECVPKTINFO */ |
| else { |
| ret = sendto(qc->li->rx.fd, b_peek(buf, b_head_ofs(buf)), sz, |
| MSG_DONTWAIT|MSG_NOSIGNAL, |
| (struct sockaddr *)&qc->peer_addr, |
| get_addr_len(&qc->peer_addr)); |
| } |
| } while (ret < 0 && errno == EINTR); |
| |
| if (ret < 0) { |
| struct proxy *prx = qc->li->bind_conf->frontend; |
| struct quic_counters *prx_counters = |
| EXTRA_COUNTERS_GET(prx->extra_counters_fe, |
| &quic_stats_module); |
| |
| *syscall_errno = errno; |
| /* TODO adjust errno for UDP context. */ |
| if (errno == EAGAIN || errno == EWOULDBLOCK || |
| errno == ENOTCONN || errno == EINPROGRESS || errno == EBADF) { |
| if (errno == EAGAIN || errno == EWOULDBLOCK) |
| HA_ATOMIC_INC(&prx_counters->socket_full); |
| else |
| HA_ATOMIC_INC(&prx_counters->sendto_err); |
| } |
| else if (errno) { |
| /* TODO unlisted errno : handle it explicitly. |
| * ECONNRESET may be encounter on quic-conn socket. |
| */ |
| HA_ATOMIC_INC(&prx_counters->sendto_err_unknown); |
| } |
| |
| /* Note that one must not consider that this macro will not modify errno. */ |
| TRACE_PRINTF(TRACE_LEVEL_DEVELOPER, QUIC_EV_CONN_LPKT, qc, 0, 0, 0, |
| "syscall error (errno=%d)", *syscall_errno); |
| |
| return 1; |
| } |
| |
| if (ret != sz) |
| return 1; |
| |
| /* we count the total bytes sent, and the send rate for 32-byte blocks. |
| * The reason for the latter is that freq_ctr are limited to 4GB and |
| * that it's not enough per second. |
| */ |
| _HA_ATOMIC_ADD(&th_ctx->out_bytes, ret); |
| update_freq_ctr(&th_ctx->out_32bps, (ret + 16) / 32); |
| |
| return 0; |
| } |
| |
| /* Receive datagram on <qc> FD-owned socket. |
| * |
| * Returns the total number of bytes read or a negative value on error. |
| */ |
| int qc_rcv_buf(struct quic_conn *qc) |
| { |
| struct sockaddr_storage saddr = {0}, daddr = {0}; |
| struct quic_transport_params *params; |
| struct quic_dgram *new_dgram = NULL; |
| struct buffer buf = BUF_NULL; |
| size_t max_sz; |
| unsigned char *dgram_buf; |
| struct listener *l; |
| ssize_t ret = 0; |
| |
| /* Do not call this if quic-conn FD is uninitialized. */ |
| BUG_ON(qc->fd < 0); |
| |
| TRACE_ENTER(QUIC_EV_CONN_RCV, qc); |
| l = qc->li; |
| |
| params = &l->bind_conf->quic_params; |
| max_sz = params->max_udp_payload_size; |
| |
| do { |
| if (!b_alloc(&buf)) |
| break; /* TODO subscribe for memory again available. */ |
| |
| b_reset(&buf); |
| BUG_ON(b_contig_space(&buf) < max_sz); |
| |
| /* Allocate datagram on first loop or after requeuing. */ |
| if (!new_dgram && !(new_dgram = pool_alloc(pool_head_quic_dgram))) |
| break; /* TODO subscribe for memory again available. */ |
| |
| dgram_buf = (unsigned char *)b_tail(&buf); |
| ret = quic_recv(qc->fd, dgram_buf, max_sz, |
| (struct sockaddr *)&saddr, sizeof(saddr), |
| (struct sockaddr *)&daddr, sizeof(daddr), |
| get_net_port(&qc->local_addr)); |
| if (ret <= 0) { |
| /* Subscribe FD for future reception. */ |
| fd_want_recv(qc->fd); |
| break; |
| } |
| |
| b_add(&buf, ret); |
| |
| new_dgram->buf = dgram_buf; |
| new_dgram->len = ret; |
| new_dgram->dcid_len = 0; |
| new_dgram->dcid = NULL; |
| new_dgram->saddr = saddr; |
| new_dgram->daddr = daddr; |
| new_dgram->qc = NULL; /* set later via quic_dgram_parse() */ |
| |
| TRACE_DEVEL("read datagram", QUIC_EV_CONN_RCV, qc, new_dgram); |
| |
| if (!quic_get_dgram_dcid(new_dgram->buf, |
| new_dgram->buf + new_dgram->len, |
| &new_dgram->dcid, &new_dgram->dcid_len)) { |
| continue; |
| } |
| |
| if (!qc_check_dcid(qc, new_dgram->dcid, new_dgram->dcid_len)) { |
| /* Datagram received by error on the connection FD, dispatch it |
| * to its associated quic-conn. |
| * |
| * TODO count redispatch datagrams. |
| */ |
| struct quic_receiver_buf *rxbuf; |
| struct quic_dgram *tmp_dgram; |
| unsigned char *rxbuf_tail; |
| |
| TRACE_STATE("datagram for other connection on quic-conn socket, requeue it", QUIC_EV_CONN_RCV, qc); |
| |
| rxbuf = MT_LIST_POP(&l->rx.rxbuf_list, typeof(rxbuf), rxbuf_el); |
| |
| tmp_dgram = quic_rxbuf_purge_dgrams(rxbuf); |
| pool_free(pool_head_quic_dgram, tmp_dgram); |
| |
| if (b_contig_space(&rxbuf->buf) < new_dgram->len) { |
| /* TODO count lost datagrams */ |
| MT_LIST_APPEND(&l->rx.rxbuf_list, &rxbuf->rxbuf_el); |
| continue; |
| } |
| |
| rxbuf_tail = (unsigned char *)b_tail(&rxbuf->buf); |
| __b_putblk(&rxbuf->buf, (char *)dgram_buf, new_dgram->len); |
| if (!quic_lstnr_dgram_dispatch(rxbuf_tail, ret, l, &qc->peer_addr, &daddr, |
| new_dgram, &rxbuf->dgram_list)) { |
| /* TODO count lost datagrams. */ |
| b_sub(&buf, ret); |
| } |
| else { |
| /* datagram must not be freed as it was requeued. */ |
| new_dgram = NULL; |
| } |
| |
| MT_LIST_APPEND(&l->rx.rxbuf_list, &rxbuf->rxbuf_el); |
| continue; |
| } |
| |
| quic_dgram_parse(new_dgram, qc, qc->li); |
| /* A datagram must always be consumed after quic_parse_dgram(). */ |
| BUG_ON(new_dgram->buf); |
| } while (ret > 0); |
| |
| pool_free(pool_head_quic_dgram, new_dgram); |
| |
| if (b_size(&buf)) { |
| b_free(&buf); |
| offer_buffers(NULL, 1); |
| } |
| |
| TRACE_LEAVE(QUIC_EV_CONN_RCV, qc); |
| return ret; |
| } |
| |
| /* Allocate a socket file-descriptor specific for QUIC connection <qc>. |
| * Endpoint addresses are specified by the two following arguments : <src> is |
| * the local address and <dst> is the remote one. |
| * |
| * Return the socket FD or a negative error code. On error, socket is marked as |
| * uninitialized. |
| */ |
| void qc_alloc_fd(struct quic_conn *qc, const struct sockaddr_storage *src, |
| const struct sockaddr_storage *dst) |
| { |
| struct proxy *p = qc->li->bind_conf->frontend; |
| int fd = -1; |
| int ret; |
| |
| /* Must not happen. */ |
| BUG_ON(src->ss_family != dst->ss_family); |
| |
| qc_init_fd(qc); |
| |
| fd = socket(src->ss_family, SOCK_DGRAM, 0); |
| if (fd < 0) |
| goto err; |
| |
| if (fd >= global.maxsock) { |
| send_log(p, LOG_EMERG, |
| "Proxy %s reached the configured maximum connection limit. Please check the global 'maxconn' value.\n", |
| p->id); |
| goto err; |
| } |
| |
| ret = setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)); |
| if (ret < 0) |
| goto err; |
| |
| switch (src->ss_family) { |
| case AF_INET: |
| #if defined(IP_PKTINFO) |
| ret = setsockopt(fd, IPPROTO_IP, IP_PKTINFO, &one, sizeof(one)); |
| #elif defined(IP_RECVDSTADDR) |
| ret = setsockopt(fd, IPPROTO_IP, IP_RECVDSTADDR, &one, sizeof(one)); |
| #endif /* IP_PKTINFO || IP_RECVDSTADDR */ |
| break; |
| case AF_INET6: |
| #ifdef IPV6_RECVPKTINFO |
| ret = setsockopt(fd, IPPROTO_IPV6, IPV6_RECVPKTINFO, &one, sizeof(one)); |
| #endif |
| break; |
| } |
| if (ret < 0) |
| goto err; |
| |
| ret = bind(fd, (struct sockaddr *)src, get_addr_len(src)); |
| if (ret < 0) |
| goto err; |
| |
| ret = connect(fd, (struct sockaddr *)dst, get_addr_len(dst)); |
| if (ret < 0) |
| goto err; |
| |
| qc->fd = fd; |
| fd_set_nonblock(fd); |
| fd_insert(fd, qc, quic_conn_sock_fd_iocb, tgid, ti->ltid_bit); |
| fd_want_recv(fd); |
| |
| return; |
| |
| err: |
| if (fd >= 0) |
| close(fd); |
| } |
| |
| /* Release socket file-descriptor specific for QUIC connection <qc>. Set |
| * <reinit> if socket should be reinitialized after address migration. |
| */ |
| void qc_release_fd(struct quic_conn *qc, int reinit) |
| { |
| if (qc_test_fd(qc)) { |
| fd_delete(qc->fd); |
| qc->fd = DEAD_FD_MAGIC; |
| |
| if (reinit) |
| qc_init_fd(qc); |
| } |
| } |
| |
| /*********************** QUIC accept queue management ***********************/ |
| /* per-thread accept queues */ |
| struct quic_accept_queue *quic_accept_queues; |
| |
| /* Install <qc> on the queue ready to be accepted. The queue task is then woken |
| * up. If <qc> accept is already scheduled or done, nothing is done. |
| */ |
| void quic_accept_push_qc(struct quic_conn *qc) |
| { |
| struct quic_accept_queue *queue = &quic_accept_queues[qc->tid]; |
| struct li_per_thread *lthr = &qc->li->per_thr[qc->tid]; |
| |
| /* early return if accept is already in progress/done for this |
| * connection |
| */ |
| if (qc->flags & QUIC_FL_CONN_ACCEPT_REGISTERED) |
| return; |
| |
| BUG_ON(MT_LIST_INLIST(&qc->accept_list)); |
| |
| qc->flags |= QUIC_FL_CONN_ACCEPT_REGISTERED; |
| /* 1. insert the listener in the accept queue |
| * |
| * Use TRY_APPEND as there is a possible race even with INLIST if |
| * multiple threads try to add the same listener instance from several |
| * quic_conn. |
| */ |
| if (!MT_LIST_INLIST(&(lthr->quic_accept.list))) |
| MT_LIST_TRY_APPEND(&queue->listeners, &(lthr->quic_accept.list)); |
| |
| /* 2. insert the quic_conn in the listener per-thread queue. */ |
| MT_LIST_APPEND(<hr->quic_accept.conns, &qc->accept_list); |
| |
| /* 3. wake up the queue tasklet */ |
| tasklet_wakeup(quic_accept_queues[qc->tid].tasklet); |
| } |
| |
| /* Tasklet handler to accept QUIC connections. Call listener_accept on every |
| * listener instances registered in the accept queue. |
| */ |
| struct task *quic_accept_run(struct task *t, void *ctx, unsigned int i) |
| { |
| struct li_per_thread *lthr; |
| struct mt_list *elt1, elt2; |
| struct quic_accept_queue *queue = &quic_accept_queues[tid]; |
| |
| mt_list_for_each_entry_safe(lthr, &queue->listeners, quic_accept.list, elt1, elt2) { |
| listener_accept(lthr->li); |
| MT_LIST_DELETE_SAFE(elt1); |
| } |
| |
| return NULL; |
| } |
| |
| static int quic_alloc_accept_queues(void) |
| { |
| int i; |
| |
| quic_accept_queues = calloc(global.nbthread, |
| sizeof(*quic_accept_queues)); |
| if (!quic_accept_queues) { |
| ha_alert("Failed to allocate the quic accept queues.\n"); |
| return 0; |
| } |
| |
| for (i = 0; i < global.nbthread; ++i) { |
| struct tasklet *task; |
| if (!(task = tasklet_new())) { |
| ha_alert("Failed to allocate the quic accept queue on thread %d.\n", i); |
| return 0; |
| } |
| |
| tasklet_set_tid(task, i); |
| task->process = quic_accept_run; |
| quic_accept_queues[i].tasklet = task; |
| |
| MT_LIST_INIT(&quic_accept_queues[i].listeners); |
| } |
| |
| return 1; |
| } |
| REGISTER_POST_CHECK(quic_alloc_accept_queues); |
| |
| static int quic_deallocate_accept_queues(void) |
| { |
| int i; |
| |
| if (quic_accept_queues) { |
| for (i = 0; i < global.nbthread; ++i) |
| tasklet_free(quic_accept_queues[i].tasklet); |
| free(quic_accept_queues); |
| } |
| |
| return 1; |
| } |
| REGISTER_POST_DEINIT(quic_deallocate_accept_queues); |