blob: 38b13835c495974b9274b6dd7637937147f80e67 [file] [log] [blame]
/*
* Pattern management functions.
*
* Copyright 2000-2013 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <ctype.h>
#include <stdio.h>
#include <common/config.h>
#include <common/standard.h>
#include <types/global.h>
#include <types/pattern.h>
#include <proto/pattern.h>
#include <proto/sample.h>
#include <ebsttree.h>
char *pat_match_names[PAT_MATCH_NUM] = {
[PAT_MATCH_FOUND] = "found",
[PAT_MATCH_BOOL] = "bool",
[PAT_MATCH_INT] = "int",
[PAT_MATCH_IP] = "ip",
[PAT_MATCH_BIN] = "bin",
[PAT_MATCH_LEN] = "len",
[PAT_MATCH_STR] = "str",
[PAT_MATCH_BEG] = "beg",
[PAT_MATCH_SUB] = "sub",
[PAT_MATCH_DIR] = "dir",
[PAT_MATCH_DOM] = "dom",
[PAT_MATCH_END] = "end",
[PAT_MATCH_REG] = "reg",
};
int (*pat_parse_fcts[PAT_MATCH_NUM])(const char **, struct pattern *, enum pat_usage, int *, char **) = {
[PAT_MATCH_FOUND] = pat_parse_nothing,
[PAT_MATCH_BOOL] = pat_parse_nothing,
[PAT_MATCH_INT] = pat_parse_int,
[PAT_MATCH_IP] = pat_parse_ip,
[PAT_MATCH_BIN] = pat_parse_bin,
[PAT_MATCH_LEN] = pat_parse_len,
[PAT_MATCH_STR] = pat_parse_str,
[PAT_MATCH_BEG] = pat_parse_str,
[PAT_MATCH_SUB] = pat_parse_str,
[PAT_MATCH_DIR] = pat_parse_str,
[PAT_MATCH_DOM] = pat_parse_str,
[PAT_MATCH_END] = pat_parse_str,
[PAT_MATCH_REG] = pat_parse_reg,
};
enum pat_match_res (*pat_match_fcts[PAT_MATCH_NUM])(struct sample *, struct pattern *) = {
[PAT_MATCH_FOUND] = NULL,
[PAT_MATCH_BOOL] = pat_match_nothing,
[PAT_MATCH_INT] = pat_match_int,
[PAT_MATCH_IP] = pat_match_ip,
[PAT_MATCH_BIN] = pat_match_bin,
[PAT_MATCH_LEN] = pat_match_len,
[PAT_MATCH_STR] = pat_match_str,
[PAT_MATCH_BEG] = pat_match_beg,
[PAT_MATCH_SUB] = pat_match_sub,
[PAT_MATCH_DIR] = pat_match_dir,
[PAT_MATCH_DOM] = pat_match_dom,
[PAT_MATCH_END] = pat_match_end,
[PAT_MATCH_REG] = pat_match_reg,
};
/* Just used for checking configuration compatibility */
int pat_match_types[PAT_MATCH_NUM] = {
[PAT_MATCH_FOUND] = SMP_T_UINT,
[PAT_MATCH_BOOL] = SMP_T_UINT,
[PAT_MATCH_INT] = SMP_T_UINT,
[PAT_MATCH_IP] = SMP_T_ADDR,
[PAT_MATCH_BIN] = SMP_T_CBIN,
[PAT_MATCH_LEN] = SMP_T_CSTR,
[PAT_MATCH_STR] = SMP_T_CSTR,
[PAT_MATCH_BEG] = SMP_T_CSTR,
[PAT_MATCH_SUB] = SMP_T_CSTR,
[PAT_MATCH_DIR] = SMP_T_CSTR,
[PAT_MATCH_DOM] = SMP_T_CSTR,
[PAT_MATCH_END] = SMP_T_CSTR,
[PAT_MATCH_REG] = SMP_T_CSTR,
};
/*
* These functions are exported and may be used by any other component.
*/
/* ignore the current line */
int pat_parse_nothing(const char **text, struct pattern *pattern, enum pat_usage usage, int *opaque, char **err)
{
return 1;
}
/* always return false */
enum pat_match_res pat_match_nothing(struct sample *smp, struct pattern *pattern)
{
return PAT_NOMATCH;
}
/* NB: For two strings to be identical, it is required that their lengths match */
enum pat_match_res pat_match_str(struct sample *smp, struct pattern *pattern)
{
int icase;
if (pattern->len != smp->data.str.len)
return PAT_NOMATCH;
icase = pattern->flags & PAT_F_IGNORE_CASE;
if ((icase && strncasecmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) == 0) ||
(!icase && strncmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) == 0))
return PAT_MATCH;
return PAT_NOMATCH;
}
/* NB: For two binaries buf to be identical, it is required that their lengths match */
enum pat_match_res pat_match_bin(struct sample *smp, struct pattern *pattern)
{
if (pattern->len != smp->data.str.len)
return PAT_NOMATCH;
if (memcmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) == 0)
return PAT_MATCH;
return PAT_NOMATCH;
}
/* Lookup a string in the expression's pattern tree. The node is returned if it
* exists, otherwise NULL.
*/
static void *pat_lookup_str(struct sample *smp, struct pattern_expr *expr)
{
/* data are stored in a tree */
struct ebmb_node *node;
char prev;
/* we may have to force a trailing zero on the test pattern */
prev = smp->data.str.str[smp->data.str.len];
if (prev)
smp->data.str.str[smp->data.str.len] = '\0';
node = ebst_lookup(&expr->pattern_tree, smp->data.str.str);
if (prev)
smp->data.str.str[smp->data.str.len] = prev;
return node;
}
/* Executes a regex. It temporarily changes the data to add a trailing zero,
* and restores the previous character when leaving.
*/
enum pat_match_res pat_match_reg(struct sample *smp, struct pattern *pattern)
{
if (regex_exec(pattern->ptr.reg, smp->data.str.str, smp->data.str.len) == 0)
return PAT_MATCH;
return PAT_NOMATCH;
}
/* Checks that the pattern matches the beginning of the tested string. */
enum pat_match_res pat_match_beg(struct sample *smp, struct pattern *pattern)
{
int icase;
if (pattern->len > smp->data.str.len)
return PAT_NOMATCH;
icase = pattern->flags & PAT_F_IGNORE_CASE;
if ((icase && strncasecmp(pattern->ptr.str, smp->data.str.str, pattern->len) != 0) ||
(!icase && strncmp(pattern->ptr.str, smp->data.str.str, pattern->len) != 0))
return PAT_NOMATCH;
return PAT_MATCH;
}
/* Checks that the pattern matches the end of the tested string. */
enum pat_match_res pat_match_end(struct sample *smp, struct pattern *pattern)
{
int icase;
if (pattern->len > smp->data.str.len)
return PAT_NOMATCH;
icase = pattern->flags & PAT_F_IGNORE_CASE;
if ((icase && strncasecmp(pattern->ptr.str, smp->data.str.str + smp->data.str.len - pattern->len, pattern->len) != 0) ||
(!icase && strncmp(pattern->ptr.str, smp->data.str.str + smp->data.str.len - pattern->len, pattern->len) != 0))
return PAT_NOMATCH;
return PAT_MATCH;
}
/* Checks that the pattern is included inside the tested string.
* NB: Suboptimal, should be rewritten using a Boyer-Moore method.
*/
enum pat_match_res pat_match_sub(struct sample *smp, struct pattern *pattern)
{
int icase;
char *end;
char *c;
if (pattern->len > smp->data.str.len)
return PAT_NOMATCH;
end = smp->data.str.str + smp->data.str.len - pattern->len;
icase = pattern->flags & PAT_F_IGNORE_CASE;
if (icase) {
for (c = smp->data.str.str; c <= end; c++) {
if (tolower(*c) != tolower(*pattern->ptr.str))
continue;
if (strncasecmp(pattern->ptr.str, c, pattern->len) == 0)
return PAT_MATCH;
}
} else {
for (c = smp->data.str.str; c <= end; c++) {
if (*c != *pattern->ptr.str)
continue;
if (strncmp(pattern->ptr.str, c, pattern->len) == 0)
return PAT_MATCH;
}
}
return PAT_NOMATCH;
}
/* Background: Fast way to find a zero byte in a word
* http://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord
* hasZeroByte = (v - 0x01010101UL) & ~v & 0x80808080UL;
*
* To look for 4 different byte values, xor the word with those bytes and
* then check for zero bytes:
*
* v = (((unsigned char)c * 0x1010101U) ^ delimiter)
* where <delimiter> is the 4 byte values to look for (as an uint)
* and <c> is the character that is being tested
*/
static inline unsigned int is_delimiter(unsigned char c, unsigned int mask)
{
mask ^= (c * 0x01010101); /* propagate the char to all 4 bytes */
return (mask - 0x01010101) & ~mask & 0x80808080U;
}
static inline unsigned int make_4delim(unsigned char d1, unsigned char d2, unsigned char d3, unsigned char d4)
{
return d1 << 24 | d2 << 16 | d3 << 8 | d4;
}
/* This one is used by other real functions. It checks that the pattern is
* included inside the tested string, but enclosed between the specified
* delimiters or at the beginning or end of the string. The delimiters are
* provided as an unsigned int made by make_4delim() and match up to 4 different
* delimiters. Delimiters are stripped at the beginning and end of the pattern.
*/
static int match_word(struct sample *smp, struct pattern *pattern, unsigned int delimiters)
{
int may_match, icase;
char *c, *end;
char *ps;
int pl;
pl = pattern->len;
ps = pattern->ptr.str;
while (pl > 0 && is_delimiter(*ps, delimiters)) {
pl--;
ps++;
}
while (pl > 0 && is_delimiter(ps[pl - 1], delimiters))
pl--;
if (pl > smp->data.str.len)
return PAT_NOMATCH;
may_match = 1;
icase = pattern->flags & PAT_F_IGNORE_CASE;
end = smp->data.str.str + smp->data.str.len - pl;
for (c = smp->data.str.str; c <= end; c++) {
if (is_delimiter(*c, delimiters)) {
may_match = 1;
continue;
}
if (!may_match)
continue;
if (icase) {
if ((tolower(*c) == tolower(*ps)) &&
(strncasecmp(ps, c, pl) == 0) &&
(c == end || is_delimiter(c[pl], delimiters)))
return PAT_MATCH;
} else {
if ((*c == *ps) &&
(strncmp(ps, c, pl) == 0) &&
(c == end || is_delimiter(c[pl], delimiters)))
return PAT_MATCH;
}
may_match = 0;
}
return PAT_NOMATCH;
}
/* Checks that the pattern is included inside the tested string, but enclosed
* between the delimiters '?' or '/' or at the beginning or end of the string.
* Delimiters at the beginning or end of the pattern are ignored.
*/
enum pat_match_res pat_match_dir(struct sample *smp, struct pattern *pattern)
{
return match_word(smp, pattern, make_4delim('/', '?', '?', '?'));
}
/* Checks that the pattern is included inside the tested string, but enclosed
* between the delmiters '/', '?', '.' or ":" or at the beginning or end of
* the string. Delimiters at the beginning or end of the pattern are ignored.
*/
enum pat_match_res pat_match_dom(struct sample *smp, struct pattern *pattern)
{
return match_word(smp, pattern, make_4delim('/', '?', '.', ':'));
}
/* Checks that the integer in <test> is included between min and max */
enum pat_match_res pat_match_int(struct sample *smp, struct pattern *pattern)
{
if ((!pattern->val.range.min_set || pattern->val.range.min <= smp->data.uint) &&
(!pattern->val.range.max_set || smp->data.uint <= pattern->val.range.max))
return PAT_MATCH;
return PAT_NOMATCH;
}
/* Checks that the length of the pattern in <test> is included between min and max */
enum pat_match_res pat_match_len(struct sample *smp, struct pattern *pattern)
{
if ((!pattern->val.range.min_set || pattern->val.range.min <= smp->data.str.len) &&
(!pattern->val.range.max_set || smp->data.str.len <= pattern->val.range.max))
return PAT_MATCH;
return PAT_NOMATCH;
}
enum pat_match_res pat_match_ip(struct sample *smp, struct pattern *pattern)
{
unsigned int v4; /* in network byte order */
struct in6_addr *v6;
int bits, pos;
struct in6_addr tmp6;
if (pattern->type == SMP_T_IPV4) {
if (smp->type == SMP_T_IPV4) {
v4 = smp->data.ipv4.s_addr;
}
else if (smp->type == SMP_T_IPV6) {
/* v4 match on a V6 sample. We want to check at least for
* the following forms :
* - ::ffff:ip:v4 (ipv4 mapped)
* - ::0000:ip:v4 (old ipv4 mapped)
* - 2002:ip:v4:: (6to4)
*/
if (*(uint32_t*)&smp->data.ipv6.s6_addr[0] == 0 &&
*(uint32_t*)&smp->data.ipv6.s6_addr[4] == 0 &&
(*(uint32_t*)&smp->data.ipv6.s6_addr[8] == 0 ||
*(uint32_t*)&smp->data.ipv6.s6_addr[8] == htonl(0xFFFF))) {
v4 = *(uint32_t*)&smp->data.ipv6.s6_addr[12];
}
else if (*(uint16_t*)&smp->data.ipv6.s6_addr[0] == htons(0x2002)) {
v4 = htonl((ntohs(*(uint16_t*)&smp->data.ipv6.s6_addr[2]) << 16) +
ntohs(*(uint16_t*)&smp->data.ipv6.s6_addr[4]));
}
else
return PAT_NOMATCH;
}
else
return PAT_NOMATCH;
if (((v4 ^ pattern->val.ipv4.addr.s_addr) & pattern->val.ipv4.mask.s_addr) == 0)
return PAT_MATCH;
else
return PAT_NOMATCH;
}
else if (pattern->type == SMP_T_IPV6) {
if (smp->type == SMP_T_IPV4) {
/* Convert the IPv4 sample address to IPv4 with the
* mapping method using the ::ffff: prefix.
*/
memset(&tmp6, 0, 10);
*(uint16_t*)&tmp6.s6_addr[10] = htons(0xffff);
*(uint32_t*)&tmp6.s6_addr[12] = smp->data.ipv4.s_addr;
v6 = &tmp6;
}
else if (smp->type == SMP_T_IPV6) {
v6 = &smp->data.ipv6;
}
else {
return PAT_NOMATCH;
}
bits = pattern->val.ipv6.mask;
for (pos = 0; bits > 0; pos += 4, bits -= 32) {
v4 = *(uint32_t*)&v6->s6_addr[pos] ^ *(uint32_t*)&pattern->val.ipv6.addr.s6_addr[pos];
if (bits < 32)
v4 &= htonl((~0U) << (32-bits));
if (v4)
return PAT_NOMATCH;
}
return PAT_MATCH;
}
return PAT_NOMATCH;
}
/* Lookup an IPv4 address in the expression's pattern tree using the longest
* match method. The node is returned if it exists, otherwise NULL.
*/
static void *pat_lookup_ip(struct sample *smp, struct pattern_expr *expr)
{
struct in_addr *s;
if (smp->type != SMP_T_IPV4)
return PAT_NOMATCH;
s = &smp->data.ipv4;
return ebmb_lookup_longest(&expr->pattern_tree, &s->s_addr);
}
/* Parse a string. It is allocated and duplicated. */
int pat_parse_str(const char **text, struct pattern *pattern, enum pat_usage usage, int *opaque, char **err)
{
pattern->type = SMP_T_CSTR;
pattern->expect_type = SMP_T_CSTR;
if (usage == PAT_U_COMPILE) {
pattern->ptr.str = strdup(*text);
if (!pattern->ptr.str) {
memprintf(err, "out of memory while loading string pattern");
return 0;
}
}
else
pattern->ptr.str = (char *)*text;
pattern->len = strlen(*text);
return 1;
}
/* Parse a binary written in hexa. It is allocated. */
int pat_parse_bin(const char **text, struct pattern *pattern, enum pat_usage usage, int *opaque, char **err)
{
struct chunk *trash;
pattern->type = SMP_T_CBIN;
pattern->expect_type = SMP_T_CBIN;
if (usage == PAT_U_COMPILE)
return parse_binary(*text, &pattern->ptr.str, &pattern->len, err);
trash = get_trash_chunk();
pattern->len = trash->size;
pattern->ptr.str = trash->str;
return parse_binary(*text, &pattern->ptr.str, &pattern->len, err);
}
/* Parse and concatenate all further strings into one. */
int
pat_parse_strcat(const char **text, struct pattern *pattern, enum pat_usage usage, int *opaque, char **err)
{
int len = 0, i;
char *s;
struct chunk *trash;
for (i = 0; *text[i]; i++)
len += strlen(text[i])+1;
pattern->type = SMP_T_CSTR;
if (usage == PAT_U_COMPILE) {
pattern->ptr.str = calloc(1, len);
if (!pattern->ptr.str) {
memprintf(err, "out of memory while loading pattern");
return 0;
}
}
else {
trash = get_trash_chunk();
if (trash->size < len) {
memprintf(err, "no space avalaible in the buffer. expect %d, provides %d",
len, trash->size);
return 0;
}
pattern->ptr.str = trash->str;
}
s = pattern->ptr.str;
for (i = 0; *text[i]; i++)
s += sprintf(s, i?" %s":"%s", text[i]);
pattern->len = len;
return i;
}
/* Free data allocated by pat_parse_reg */
static void pat_free_reg(void *ptr)
{
regex_free(ptr);
}
/* Parse a regex. It is allocated. */
int pat_parse_reg(const char **text, struct pattern *pattern, enum pat_usage usage, int *opaque, char **err)
{
struct my_regex *preg;
struct chunk *trash;
if (usage == PAT_U_COMPILE) {
preg = calloc(1, sizeof(*preg));
if (!preg) {
memprintf(err, "out of memory while loading pattern");
return 0;
}
if (!regex_comp(*text, preg, !(pattern->flags & PAT_F_IGNORE_CASE), 0, err)) {
free(preg);
return 0;
}
pattern->freeptrbuf = &pat_free_reg;
}
else {
trash = get_trash_chunk();
if (trash->size < sizeof(*preg)) {
memprintf(err, "no space avalaible in the buffer. expect %d, provides %d",
(int)sizeof(*preg), trash->size);
return 0;
}
preg = (struct my_regex *)trash->str;
preg->regstr = (char *)*text;
pattern->freeptrbuf = NULL;
}
pattern->ptr.reg = preg;
pattern->expect_type = SMP_T_CSTR;
return 1;
}
/* Parse a range of positive integers delimited by either ':' or '-'. If only
* one integer is read, it is set as both min and max. An operator may be
* specified as the prefix, among this list of 5 :
*
* 0:eq, 1:gt, 2:ge, 3:lt, 4:le
*
* The default operator is "eq". It supports range matching. Ranges are
* rejected for other operators. The operator may be changed at any time.
* The operator is stored in the 'opaque' argument.
*
* If err is non-NULL, an error message will be returned there on errors and
* the caller will have to free it.
*
*/
int pat_parse_int(const char **text, struct pattern *pattern, enum pat_usage usage, int *opaque, char **err)
{
signed long long i;
unsigned int j, last, skip = 0;
const char *ptr = *text;
pattern->type = SMP_T_UINT;
pattern->expect_type = SMP_T_UINT;
while (!isdigit((unsigned char)*ptr)) {
switch (get_std_op(ptr)) {
case STD_OP_EQ: *opaque = 0; break;
case STD_OP_GT: *opaque = 1; break;
case STD_OP_GE: *opaque = 2; break;
case STD_OP_LT: *opaque = 3; break;
case STD_OP_LE: *opaque = 4; break;
default:
memprintf(err, "'%s' is neither a number nor a supported operator", ptr);
return 0;
}
skip++;
ptr = text[skip];
}
last = i = 0;
while (1) {
j = *ptr++;
if ((j == '-' || j == ':') && !last) {
last++;
pattern->val.range.min = i;
i = 0;
continue;
}
j -= '0';
if (j > 9)
// also catches the terminating zero
break;
i *= 10;
i += j;
}
if (last && *opaque >= 1 && *opaque <= 4) {
/* having a range with a min or a max is absurd */
memprintf(err, "integer range '%s' specified with a comparison operator", text[skip]);
return 0;
}
if (!last)
pattern->val.range.min = i;
pattern->val.range.max = i;
switch (*opaque) {
case 0: /* eq */
pattern->val.range.min_set = 1;
pattern->val.range.max_set = 1;
break;
case 1: /* gt */
pattern->val.range.min++; /* gt = ge + 1 */
case 2: /* ge */
pattern->val.range.min_set = 1;
pattern->val.range.max_set = 0;
break;
case 3: /* lt */
pattern->val.range.max--; /* lt = le - 1 */
case 4: /* le */
pattern->val.range.min_set = 0;
pattern->val.range.max_set = 1;
break;
}
return skip + 1;
}
int pat_parse_len(const char **text, struct pattern *pattern, enum pat_usage usage, int *opaque, char **err)
{
int ret;
ret = pat_parse_int(text, pattern, usage, opaque, err);
pattern->expect_type = SMP_T_CSTR;
return ret;
}
/* Parse a range of positive 2-component versions delimited by either ':' or
* '-'. The version consists in a major and a minor, both of which must be
* smaller than 65536, because internally they will be represented as a 32-bit
* integer.
* If only one version is read, it is set as both min and max. Just like for
* pure integers, an operator may be specified as the prefix, among this list
* of 5 :
*
* 0:eq, 1:gt, 2:ge, 3:lt, 4:le
*
* The default operator is "eq". It supports range matching. Ranges are
* rejected for other operators. The operator may be changed at any time.
* The operator is stored in the 'opaque' argument. This allows constructs
* such as the following one :
*
* acl obsolete_ssl ssl_req_proto lt 3
* acl unsupported_ssl ssl_req_proto gt 3.1
* acl valid_ssl ssl_req_proto 3.0-3.1
*
*/
int pat_parse_dotted_ver(const char **text, struct pattern *pattern, enum pat_usage usage, int *opaque, char **err)
{
signed long long i;
unsigned int j, last, skip = 0;
const char *ptr = *text;
while (!isdigit((unsigned char)*ptr)) {
switch (get_std_op(ptr)) {
case STD_OP_EQ: *opaque = 0; break;
case STD_OP_GT: *opaque = 1; break;
case STD_OP_GE: *opaque = 2; break;
case STD_OP_LT: *opaque = 3; break;
case STD_OP_LE: *opaque = 4; break;
default:
memprintf(err, "'%s' is neither a number nor a supported operator", ptr);
return 0;
}
skip++;
ptr = text[skip];
}
last = i = 0;
while (1) {
j = *ptr++;
if (j == '.') {
/* minor part */
if (i >= 65536)
return 0;
i <<= 16;
continue;
}
if ((j == '-' || j == ':') && !last) {
last++;
if (i < 65536)
i <<= 16;
pattern->val.range.min = i;
i = 0;
continue;
}
j -= '0';
if (j > 9)
// also catches the terminating zero
break;
i = (i & 0xFFFF0000) + (i & 0xFFFF) * 10;
i += j;
}
/* if we only got a major version, let's shift it now */
if (i < 65536)
i <<= 16;
if (last && *opaque >= 1 && *opaque <= 4) {
/* having a range with a min or a max is absurd */
memprintf(err, "version range '%s' specified with a comparison operator", text[skip]);
return 0;
}
pattern->expect_type = SMP_T_CSTR;
if (!last)
pattern->val.range.min = i;
pattern->val.range.max = i;
switch (*opaque) {
case 0: /* eq */
pattern->val.range.min_set = 1;
pattern->val.range.max_set = 1;
break;
case 1: /* gt */
pattern->val.range.min++; /* gt = ge + 1 */
case 2: /* ge */
pattern->val.range.min_set = 1;
pattern->val.range.max_set = 0;
break;
case 3: /* lt */
pattern->val.range.max--; /* lt = le - 1 */
case 4: /* le */
pattern->val.range.min_set = 0;
pattern->val.range.max_set = 1;
break;
}
return skip + 1;
}
/* Parse an IP address and an optional mask in the form addr[/mask].
* The addr may either be an IPv4 address or a hostname. The mask
* may either be a dotted mask or a number of bits. Returns 1 if OK,
* otherwise 0. NOTE: IP address patterns are typed (IPV4/IPV6).
*/
int pat_parse_ip(const char **text, struct pattern *pattern, enum pat_usage usage, int *opaque, char **err)
{
pattern->expect_type = SMP_T_ADDR;
if (str2net(*text, &pattern->val.ipv4.addr, &pattern->val.ipv4.mask)) {
pattern->type = SMP_T_IPV4;
return 1;
}
else if (str62net(*text, &pattern->val.ipv6.addr, &pattern->val.ipv6.mask)) {
/* no tree support right now */
pattern->type = SMP_T_IPV6;
return 1;
}
else {
memprintf(err, "'%s' is not a valid IPv4 or IPv6 address", *text);
return 0;
}
}
/* NB: does nothing if <pat> is NULL */
void pattern_free(struct pattern *pat)
{
if (!pat)
return;
if (pat->ptr.ptr) {
if (pat->freeptrbuf)
pat->freeptrbuf(pat->ptr.ptr);
free(pat->ptr.ptr);
}
free(pat->smp);
free(pat);
}
void free_pattern_list(struct list *head)
{
struct pattern *pat, *tmp;
list_for_each_entry_safe(pat, tmp, head, list)
pattern_free(pat);
}
void free_pattern_tree(struct eb_root *root)
{
struct eb_node *node, *next;
struct pat_idx_elt *elt;
node = eb_first(root);
while (node) {
next = eb_next(node);
eb_delete(node);
elt = container_of(node, struct pat_idx_elt, node);
free(elt->smp);
free(elt);
node = next;
}
}
void pattern_prune_expr(struct pattern_expr *expr)
{
free_pattern_list(&expr->patterns);
free_pattern_tree(&expr->pattern_tree);
LIST_INIT(&expr->patterns);
}
void pattern_init_expr(struct pattern_expr *expr)
{
LIST_INIT(&expr->patterns);
expr->pattern_tree = EB_ROOT_UNIQUE;
}
/* return 1 if the process is ok
* return -1 if the parser fail. The err message is filled.
* return -2 if out of memory
*/
int pattern_register(struct pattern_expr *expr, const char **args,
struct sample_storage *smp,
struct pattern **pattern,
int patflags, char **err)
{
int opaque = 0;
unsigned int mask = 0;
struct pat_idx_elt *node;
int len;
int ret;
/* eat args */
while (**args) {
/* we keep the previous pattern along iterations as long as it's not used */
if (!*pattern)
*pattern = (struct pattern *)malloc(sizeof(**pattern));
if (!*pattern) {
memprintf(err, "out of memory while loading pattern");
return 0;
}
memset(*pattern, 0, sizeof(**pattern));
(*pattern)->flags = patflags;
ret = expr->parse(args, *pattern, PAT_U_COMPILE, &opaque, err);
if (!ret)
return 0;
/* each parser return the number of args eated */
args += ret;
/*
*
* SMP_T_CSTR tree indexation
*
* The match "pat_match_str()" can use tree.
*
*/
if (expr->match == pat_match_str) {
/* If the flag PAT_F_IGNORE_CASE is set, we cannot use trees */
if ((*pattern)->flags & PAT_F_IGNORE_CASE)
goto just_chain_the_pattern;
/* Process the key len */
len = strlen((*pattern)->ptr.str) + 1;
/* node memory allocation */
node = calloc(1, sizeof(*node) + len);
if (!node) {
memprintf(err, "out of memory while loading pattern");
return 0;
}
/* copy the pointer to sample associated to this node */
node->smp = smp;
/* copy the string */
memcpy(node->node.key, (*pattern)->ptr.str, len);
/* the "map_parser_str()" function always duplicate string information */
free((*pattern)->ptr.str);
(*pattern)->ptr.str = NULL;
/* we pre-set the data pointer to the tree's head so that functions
* which are able to insert in a tree know where to do that.
*
* because "val" is an "union", the previous data are crushed.
*/
(*pattern)->flags |= PAT_F_TREE;
(*pattern)->val.tree = &expr->pattern_tree;
/* index the new node */
if (ebst_insert((*pattern)->val.tree, &node->node) != &node->node)
free(node); /* was a duplicate */
}
/*
*
* SMP_T_IPV4 tree indexation
*
* The match "pat_match_ip()" can use tree.
*
*/
else if (expr->match == pat_match_ip) {
/* Only IPv4 can be indexed */
if ((*pattern)->type != SMP_T_IPV4)
goto just_chain_the_pattern;
/* in IPv4 case, check if the mask is contiguous so that we can
* insert the network into the tree. A continuous mask has only
* ones on the left. This means that this mask + its lower bit
* added once again is null.
*/
mask = ntohl((*pattern)->val.ipv4.mask.s_addr);
if (mask + (mask & -mask) != 0)
goto just_chain_the_pattern;
mask = mask ? 33 - flsnz(mask & -mask) : 0; /* equals cidr value */
/* node memory allocation */
node = calloc(1, sizeof(*node) + 4);
if (!node) {
memprintf(err, "out of memory while loading pattern");
return 0;
}
/* copy the pointer to sample associated to this node */
node->smp = smp;
/* FIXME: insert <addr>/<mask> into the tree here */
memcpy(node->node.key, &(*pattern)->val.ipv4.addr, 4); /* network byte order */
/* we pre-set the data pointer to the tree's head so that functions
* which are able to insert in a tree know where to do that.
*
* because "val" is an "union", the previous data are crushed.
*/
(*pattern)->flags |= PAT_F_TREE;
(*pattern)->val.tree = &expr->pattern_tree;
/* Index the new node
* FIXME: insert <addr>/<mask> into the tree here
*/
node->node.node.pfx = mask;
if (ebmb_insert_prefix((*pattern)->val.tree, &node->node, 4) != &node->node)
free(node); /* was a duplicate */
}
/*
*
* if the parser did not feed the tree, let's chain the pattern to the list
*
*/
else {
just_chain_the_pattern:
LIST_ADDQ(&expr->patterns, &(*pattern)->list);
/* copy the pointer to sample associated to this node */
(*pattern)->smp = smp;
/* get a new one */
*pattern = NULL;
}
}
return 1;
}
/* Reads patterns from a file. If <err_msg> is non-NULL, an error message will
* be returned there on errors and the caller will have to free it.
*/
int pattern_read_from_file(struct pattern_expr *expr,
const char *filename, int patflags,
char **err)
{
FILE *file;
char *c;
char *arg;
struct pattern *pattern;
int ret = 0;
int line = 0;
int code;
const char *args[2];
file = fopen(filename, "r");
if (!file) {
memprintf(err, "failed to open pattern file <%s>", filename);
return 0;
}
/* now parse all patterns. The file may contain only one pattern per
* line. If the line contains spaces, they will be part of the pattern.
* The pattern stops at the first CR, LF or EOF encountered.
*/
pattern = NULL;
while (fgets(trash.str, trash.size, file) != NULL) {
line++;
c = trash.str;
/* ignore lines beginning with a dash */
if (*c == '#')
continue;
/* strip leading spaces and tabs */
while (*c == ' ' || *c == '\t')
c++;
arg = c;
while (*c && *c != '\n' && *c != '\r')
c++;
*c = 0;
/* empty lines are ignored too */
if (c == arg)
continue;
args[0] = arg;
args[1] = "";
code = pattern_register(expr, args, NULL, &pattern, patflags, err);
if (code == -2) {
memprintf(err, "out of memory when loading patterns from file <%s>", filename);
goto out_close;
}
else if (code < 0) {
memprintf(err, "%s when loading patterns from file <%s>", *err, filename);
goto out_free_pattern;
}
}
ret = 1; /* success */
out_free_pattern:
pattern_free(pattern);
out_close:
fclose(file);
return ret;
}
/* This function matches a sample <smp> against a set of patterns presented in
* pattern expression <expr>. Upon success, if <sample> is not NULL, it is fed
* with the pointer associated with the matching pattern. This function returns
* PAT_NOMATCH or PAT_MATCH.
*/
enum pat_match_res pattern_exec_match(struct pattern_expr *expr, struct sample *smp,
struct sample_storage **sample,
struct pattern **pat, struct pat_idx_elt **idx_elt)
{
enum pat_match_res pat_res = PAT_NOMATCH;
struct pattern *pattern;
struct ebmb_node *node = NULL;
struct pat_idx_elt *elt;
if (expr->match == pat_match_nothing) {
if (smp->data.uint)
pat_res |= PAT_MATCH;
else
pat_res |= PAT_NOMATCH;
}
else if (!expr->match) {
/* just check for existence */
pat_res |= PAT_MATCH;
}
else {
if (!eb_is_empty(&expr->pattern_tree)) {
/* a tree is present, let's check what type it is */
if (expr->match == pat_match_str) {
if (sample_convert(smp, SMP_T_STR))
node = pat_lookup_str(smp, expr);
}
else if (expr->match == pat_match_ip) {
if (sample_convert(smp, SMP_T_IPV4))
node = pat_lookup_ip(smp, expr);
}
if (node) {
pat_res |= PAT_MATCH;
elt = ebmb_entry(node, struct pat_idx_elt, node);
if (sample)
*sample = elt->smp;
if (idx_elt)
*idx_elt = elt;
}
}
/* call the match() function for all tests on this value */
list_for_each_entry(pattern, &expr->patterns, list) {
if (pat_res == PAT_MATCH)
break;
if (sample_convert(smp, pattern->expect_type))
pat_res |= expr->match(smp, pattern);
if (sample)
*sample = pattern->smp;
if (pat)
*pat = pattern;
}
}
return pat_res;
}
/* This function browse the pattern expr <expr> to lookup the key <key>. On
* error it returns 0. On success, it returns 1 and fills either <pat_elt>
* or <idx_elt> with the respectively matched pointers, and the other one with
* NULL. Pointers are not set if they're passed as NULL.
*/
int pattern_lookup(const char *key, struct pattern_expr *expr,
struct pattern **pat_elt, struct pat_idx_elt **idx_elt, char **err)
{
struct pattern pattern;
struct pattern *pat;
struct ebmb_node *node;
struct pat_idx_elt *elt;
const char *args[2];
int opaque = 0;
unsigned int mask = 0;
/* no real pattern */
if (!expr->match || expr->match == pat_match_nothing)
return 0;
/* build lookup pattern */
args[0] = key;
args[1] = "";
if (!expr->parse(args, &pattern, PAT_U_LOOKUP, &opaque, NULL))
return 0;
pat = NULL;
elt = NULL;
/* Try to look up the tree first. IPv6 is not indexed */
if (!eb_is_empty(&expr->pattern_tree) && pattern.type != SMP_T_IPV6) {
/* Check the pattern type */
if (pattern.type != SMP_T_STR &&
pattern.type != SMP_T_CSTR &&
pattern.type != SMP_T_IPV4) {
memprintf(err, "Unexpected pattern type.");
return 0;
}
/* Convert mask. If the mask is not contiguous, ignore the lookup
* in the tree, and browse the list.
*/
if (expr->match == pat_match_ip) {
mask = ntohl(pattern.val.ipv4.mask.s_addr);
if (mask + (mask & -mask) != 0)
goto browse_list;
mask = mask ? 33 - flsnz(mask & -mask) : 0; /* equals cidr value */
}
/* browse each node of the tree, and check string */
if (expr->match == pat_match_str) {
for (node = ebmb_first(&expr->pattern_tree);
node;
node = ebmb_next(node)) {
elt = container_of(node, struct pat_idx_elt, node);
if (strcmp(pattern.ptr.str, (char *)elt->node.key) == 0)
goto found;
}
}
else if (expr->match == pat_match_ip) {
for (node = ebmb_first(&expr->pattern_tree);
node;
node = ebmb_next(node)) {
elt = container_of(node, struct pat_idx_elt, node);
if (elt->node.node.pfx == mask &&
memcmp(&pattern.val.ipv4.addr.s_addr, elt->node.key, 4) == 0)
goto found;
}
}
}
browse_list:
elt = NULL;
if (expr->parse == pat_parse_int ||
expr->parse == pat_parse_len) {
list_for_each_entry(pat, &expr->patterns, list) {
if (pat->flags & PAT_F_TREE)
continue;
if (pattern.val.range.min_set != pat->val.range.min_set)
continue;
if (pattern.val.range.max_set != pat->val.range.max_set)
continue;
if (pattern.val.range.min_set &&
pattern.val.range.min != pat->val.range.min)
continue;
if (pattern.val.range.max_set &&
pattern.val.range.max != pat->val.range.max)
continue;
goto found;
}
}
else if (expr->parse == pat_parse_ip) {
list_for_each_entry(pat, &expr->patterns, list) {
if (pat->flags & PAT_F_TREE)
continue;
if (pattern.type != pat->type)
continue;
if (pattern.type == SMP_T_IPV4 &&
memcmp(&pattern.val.ipv4.addr, &pat->val.ipv4.addr, sizeof(pat->val.ipv4.addr)) != 0)
continue;
if (pattern.type == SMP_T_IPV4 &&
memcmp(&pattern.val.ipv4.mask, &pat->val.ipv4.mask, sizeof(pat->val.ipv4.addr)) != 0)
continue;
if (pattern.type == SMP_T_IPV6 &&
memcmp(&pattern.val.ipv6.addr, &pat->val.ipv6.addr, sizeof(pat->val.ipv6.addr)) != 0)
continue;
if (pattern.type == SMP_T_IPV6 &&
pattern.val.ipv6.mask != pat->val.ipv6.mask)
continue;
goto found;
}
}
else if (expr->parse == pat_parse_str) {
list_for_each_entry(pat, &expr->patterns, list) {
if (pat->flags & PAT_F_TREE)
continue;
if (pattern.len != pat->len)
continue;
if (pat->flags & PAT_F_IGNORE_CASE) {
if (strncasecmp(pattern.ptr.str, pat->ptr.str, pat->len) != 0)
continue;
}
else {
if (strncmp(pattern.ptr.str, pat->ptr.str, pat->len) != 0)
continue;
}
goto found;
}
}
else if (expr->parse == pat_parse_bin) {
list_for_each_entry(pat, &expr->patterns, list) {
if (pat->flags & PAT_F_TREE)
continue;
if (pattern.len != pat->len)
continue;
if (memcmp(pattern.ptr.ptr, pat->ptr.ptr, pat->len) != 0)
continue;
goto found;
}
}
else if (expr->parse == pat_parse_reg) {
list_for_each_entry(pat, &expr->patterns, list) {
if (pat->flags & PAT_F_TREE)
continue;
if (pat->flags & PAT_F_IGNORE_CASE) {
if (strcasecmp(pattern.ptr.reg->regstr, pat->ptr.reg->regstr) != 0)
continue;
}
else {
if (strcmp(pattern.ptr.reg->regstr, pat->ptr.reg->regstr) != 0)
continue;
}
goto found;
}
}
/* if we get there, we didn't find the pattern */
return 0;
found:
if (idx_elt)
*idx_elt = elt;
if (pat_elt)
*pat_elt = pat;
return 1;
}