| /* |
| * HTTP/2 mux-demux for connections |
| * |
| * Copyright 2017 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <common/cfgparse.h> |
| #include <common/config.h> |
| #include <common/h2.h> |
| #include <common/hpack-dec.h> |
| #include <common/hpack-enc.h> |
| #include <common/hpack-tbl.h> |
| #include <common/initcall.h> |
| #include <common/net_helper.h> |
| #include <proto/connection.h> |
| #include <proto/h1.h> |
| #include <proto/stream.h> |
| #include <types/session.h> |
| #include <eb32tree.h> |
| |
| |
| /* dummy streams returned for idle and closed states */ |
| static const struct h2s *h2_closed_stream; |
| static const struct h2s *h2_idle_stream; |
| |
| /* Connection flags (32 bit), in h2c->flags */ |
| #define H2_CF_NONE 0x00000000 |
| |
| /* Flags indicating why writing to the mux is blocked. */ |
| #define H2_CF_MUX_MALLOC 0x00000001 // mux blocked on lack of connection's mux buffer |
| #define H2_CF_MUX_MFULL 0x00000002 // mux blocked on connection's mux buffer full |
| #define H2_CF_MUX_BLOCK_ANY 0x00000003 // aggregate of the mux flags above |
| |
| /* Flags indicating why writing to the demux is blocked. |
| * The first two ones directly affect the ability for the mux to receive data |
| * from the connection. The other ones affect the mux's ability to demux |
| * received data. |
| */ |
| #define H2_CF_DEM_DALLOC 0x00000004 // demux blocked on lack of connection's demux buffer |
| #define H2_CF_DEM_DFULL 0x00000008 // demux blocked on connection's demux buffer full |
| |
| #define H2_CF_DEM_MBUSY 0x00000010 // demux blocked on connection's mux side busy |
| #define H2_CF_DEM_MROOM 0x00000020 // demux blocked on lack of room in mux buffer |
| #define H2_CF_DEM_SALLOC 0x00000040 // demux blocked on lack of stream's request buffer |
| #define H2_CF_DEM_SFULL 0x00000080 // demux blocked on stream request buffer full |
| #define H2_CF_DEM_TOOMANY 0x00000100 // demux blocked waiting for some conn_streams to leave |
| #define H2_CF_DEM_BLOCK_ANY 0x000001F0 // aggregate of the demux flags above except DALLOC/DFULL |
| |
| /* other flags */ |
| #define H2_CF_GOAWAY_SENT 0x00001000 // a GOAWAY frame was successfully sent |
| #define H2_CF_GOAWAY_FAILED 0x00002000 // a GOAWAY frame failed to be sent |
| #define H2_CF_WAIT_FOR_HS 0x00004000 // We did check that at least a stream was waiting for handshake |
| #define H2_CF_IS_BACK 0x00008000 // this is an outgoing connection |
| |
| /* H2 connection state, in h2c->st0 */ |
| enum h2_cs { |
| H2_CS_PREFACE, // init done, waiting for connection preface |
| H2_CS_SETTINGS1, // preface OK, waiting for first settings frame |
| H2_CS_FRAME_H, // first settings frame ok, waiting for frame header |
| H2_CS_FRAME_P, // frame header OK, waiting for frame payload |
| H2_CS_FRAME_A, // frame payload OK, trying to send ACK frame |
| H2_CS_FRAME_E, // frame payload OK, trying to send RST frame |
| H2_CS_ERROR, // send GOAWAY(errcode) and close the connection ASAP |
| H2_CS_ERROR2, // GOAWAY(errcode) sent, close the connection ASAP |
| H2_CS_ENTRIES // must be last |
| } __attribute__((packed)); |
| |
| /* H2 connection descriptor */ |
| struct h2c { |
| struct connection *conn; |
| |
| enum h2_cs st0; /* mux state */ |
| enum h2_err errcode; /* H2 err code (H2_ERR_*) */ |
| |
| /* 16 bit hole here */ |
| uint32_t flags; /* connection flags: H2_CF_* */ |
| int32_t max_id; /* highest ID known on this connection, <0 before preface */ |
| uint32_t rcvd_c; /* newly received data to ACK for the connection */ |
| uint32_t rcvd_s; /* newly received data to ACK for the current stream (dsi) */ |
| |
| /* states for the demux direction */ |
| struct hpack_dht *ddht; /* demux dynamic header table */ |
| struct buffer dbuf; /* demux buffer */ |
| |
| int32_t dsi; /* demux stream ID (<0 = idle) */ |
| int32_t dfl; /* demux frame length (if dsi >= 0) */ |
| int8_t dft; /* demux frame type (if dsi >= 0) */ |
| int8_t dff; /* demux frame flags (if dsi >= 0) */ |
| uint8_t dpl; /* demux pad length (part of dfl), init to 0 */ |
| /* 8 bit hole here */ |
| int32_t last_sid; /* last processed stream ID for GOAWAY, <0 before preface */ |
| |
| /* states for the mux direction */ |
| struct buffer mbuf; /* mux buffer */ |
| int32_t msi; /* mux stream ID (<0 = idle) */ |
| int32_t mfl; /* mux frame length (if dsi >= 0) */ |
| int8_t mft; /* mux frame type (if dsi >= 0) */ |
| int8_t mff; /* mux frame flags (if dsi >= 0) */ |
| /* 16 bit hole here */ |
| int32_t miw; /* mux initial window size for all new streams */ |
| int32_t mws; /* mux window size. Can be negative. */ |
| int32_t mfs; /* mux's max frame size */ |
| |
| int timeout; /* idle timeout duration in ticks */ |
| int shut_timeout; /* idle timeout duration in ticks after GOAWAY was sent */ |
| unsigned int nb_streams; /* number of streams in the tree */ |
| unsigned int nb_cs; /* number of attached conn_streams */ |
| struct proxy *proxy; /* the proxy this connection was created for */ |
| struct task *task; /* timeout management task */ |
| struct eb_root streams_by_id; /* all active streams by their ID */ |
| struct list send_list; /* list of blocked streams requesting to send */ |
| struct list fctl_list; /* list of streams blocked by connection's fctl */ |
| struct list sending_list; /* list of h2s scheduled to send data */ |
| struct buffer_wait buf_wait; /* wait list for buffer allocations */ |
| struct wait_event wait_event; /* To be used if we're waiting for I/Os */ |
| }; |
| |
| /* H2 stream state, in h2s->st */ |
| enum h2_ss { |
| H2_SS_IDLE = 0, // idle |
| H2_SS_RLOC, // reserved(local) |
| H2_SS_RREM, // reserved(remote) |
| H2_SS_OPEN, // open |
| H2_SS_HREM, // half-closed(remote) |
| H2_SS_HLOC, // half-closed(local) |
| H2_SS_ERROR, // an error needs to be sent using RST_STREAM |
| H2_SS_CLOSED, // closed |
| H2_SS_ENTRIES // must be last |
| } __attribute__((packed)); |
| |
| /* HTTP/2 stream flags (32 bit), in h2s->flags */ |
| #define H2_SF_NONE 0x00000000 |
| #define H2_SF_ES_RCVD 0x00000001 |
| #define H2_SF_ES_SENT 0x00000002 |
| |
| #define H2_SF_RST_RCVD 0x00000004 // received RST_STREAM |
| #define H2_SF_RST_SENT 0x00000008 // sent RST_STREAM |
| |
| /* stream flags indicating the reason the stream is blocked */ |
| #define H2_SF_BLK_MBUSY 0x00000010 // blocked waiting for mux access (transient) |
| #define H2_SF_BLK_MROOM 0x00000020 // blocked waiting for room in the mux |
| #define H2_SF_BLK_MFCTL 0x00000040 // blocked due to mux fctl |
| #define H2_SF_BLK_SFCTL 0x00000080 // blocked due to stream fctl |
| #define H2_SF_BLK_ANY 0x000000F0 // any of the reasons above |
| |
| /* stream flags indicating how data is supposed to be sent */ |
| #define H2_SF_DATA_CLEN 0x00000100 // data sent using content-length |
| #define H2_SF_DATA_CHNK 0x00000200 // data sent using chunked-encoding |
| |
| /* step we're currently in when sending chunks. This is needed because we may |
| * have to transfer chunks as large as a full buffer so there's no room left |
| * for size nor crlf around. |
| */ |
| #define H2_SF_CHNK_SIZE 0x00000000 // trying to send chunk size |
| #define H2_SF_CHNK_DATA 0x00000400 // trying to send chunk data |
| #define H2_SF_CHNK_CRLF 0x00000800 // trying to send chunk crlf after data |
| |
| #define H2_SF_CHNK_MASK 0x00000C00 // trying to send chunk size |
| |
| #define H2_SF_HEADERS_SENT 0x00001000 // a HEADERS frame was sent for this stream |
| #define H2_SF_OUTGOING_DATA 0x00002000 // set whenever we've seen outgoing data |
| |
| /* H2 stream descriptor, describing the stream as it appears in the H2C, and as |
| * it is being processed in the internal HTTP representation (H1 for now). |
| */ |
| struct h2s { |
| struct conn_stream *cs; |
| struct h2c *h2c; |
| struct h1m h1m; /* request or response parser state for H1 */ |
| struct eb32_node by_id; /* place in h2c's streams_by_id */ |
| int32_t id; /* stream ID */ |
| uint32_t flags; /* H2_SF_* */ |
| int mws; /* mux window size for this stream */ |
| enum h2_err errcode; /* H2 err code (H2_ERR_*) */ |
| enum h2_ss st; |
| uint16_t status; /* HTTP response status */ |
| struct buffer rxbuf; /* receive buffer, always valid (buf_empty or real buffer) */ |
| struct wait_event wait_event; /* Wait list, when we're attempting to send a RST but we can't send */ |
| struct wait_event *recv_wait; /* Address of the wait_event the conn_stream associated is waiting on */ |
| struct wait_event *send_wait; /* The streeam is waiting for flow control */ |
| struct list list; /* To be used when adding in h2c->send_list or h2c->fctl_lsit */ |
| }; |
| |
| /* descriptor for an h2 frame header */ |
| struct h2_fh { |
| uint32_t len; /* length, host order, 24 bits */ |
| uint32_t sid; /* stream id, host order, 31 bits */ |
| uint8_t ft; /* frame type */ |
| uint8_t ff; /* frame flags */ |
| }; |
| |
| /* the h2c connection pool */ |
| DECLARE_STATIC_POOL(pool_head_h2c, "h2c", sizeof(struct h2c)); |
| |
| /* the h2s stream pool */ |
| DECLARE_STATIC_POOL(pool_head_h2s, "h2s", sizeof(struct h2s)); |
| |
| /* a few settings from the global section */ |
| static int h2_settings_header_table_size = 4096; /* initial value */ |
| static int h2_settings_initial_window_size = 65535; /* initial value */ |
| static int h2_settings_max_concurrent_streams = 100; |
| |
| /* a dmumy closed stream */ |
| static const struct h2s *h2_closed_stream = &(const struct h2s){ |
| .cs = NULL, |
| .h2c = NULL, |
| .st = H2_SS_CLOSED, |
| .errcode = H2_ERR_STREAM_CLOSED, |
| .flags = H2_SF_RST_RCVD, |
| .id = 0, |
| }; |
| |
| /* and a dummy idle stream for use with any unannounced stream */ |
| static const struct h2s *h2_idle_stream = &(const struct h2s){ |
| .cs = NULL, |
| .h2c = NULL, |
| .st = H2_SS_IDLE, |
| .errcode = H2_ERR_STREAM_CLOSED, |
| .id = 0, |
| }; |
| |
| static struct task *h2_timeout_task(struct task *t, void *context, unsigned short state); |
| static int h2_send(struct h2c *h2c); |
| static int h2_recv(struct h2c *h2c); |
| static int h2_process(struct h2c *h2c); |
| static struct task *h2_io_cb(struct task *t, void *ctx, unsigned short state); |
| static inline struct h2s *h2c_st_by_id(struct h2c *h2c, int id); |
| static int h2_frt_decode_headers(struct h2s *h2s); |
| static int h2_frt_transfer_data(struct h2s *h2s); |
| static struct task *h2_deferred_shut(struct task *t, void *ctx, unsigned short state); |
| |
| /*****************************************************/ |
| /* functions below are for dynamic buffer management */ |
| /*****************************************************/ |
| |
| /* indicates whether or not the we may call the h2_recv() function to attempt |
| * to receive data into the buffer and/or demux pending data. The condition is |
| * a bit complex due to some API limits for now. The rules are the following : |
| * - if an error or a shutdown was detected on the connection and the buffer |
| * is empty, we must not attempt to receive |
| * - if the demux buf failed to be allocated, we must not try to receive and |
| * we know there is nothing pending |
| * - if no flag indicates a blocking condition, we may attempt to receive, |
| * regardless of whether the demux buffer is full or not, so that only |
| * de demux part decides whether or not to block. This is needed because |
| * the connection API indeed prevents us from re-enabling receipt that is |
| * already enabled in a polled state, so we must always immediately stop |
| * as soon as the demux can't proceed so as never to hit an end of read |
| * with data pending in the buffers. |
| * - otherwise must may not attempt |
| */ |
| static inline int h2_recv_allowed(const struct h2c *h2c) |
| { |
| if (b_data(&h2c->dbuf) == 0 && |
| (h2c->st0 >= H2_CS_ERROR || |
| h2c->conn->flags & CO_FL_ERROR || |
| conn_xprt_read0_pending(h2c->conn))) |
| return 0; |
| |
| if (!(h2c->flags & H2_CF_DEM_DALLOC) && |
| !(h2c->flags & H2_CF_DEM_BLOCK_ANY)) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* returns true if the connection has too many conn_streams attached */ |
| static inline int h2_has_too_many_cs(const struct h2c *h2c) |
| { |
| return h2c->nb_cs >= h2_settings_max_concurrent_streams; |
| } |
| |
| /* Tries to grab a buffer and to re-enable processing on mux <target>. The h2c |
| * flags are used to figure what buffer was requested. It returns 1 if the |
| * allocation succeeds, in which case the connection is woken up, or 0 if it's |
| * impossible to wake up and we prefer to be woken up later. |
| */ |
| static int h2_buf_available(void *target) |
| { |
| struct h2c *h2c = target; |
| struct h2s *h2s; |
| |
| if ((h2c->flags & H2_CF_DEM_DALLOC) && b_alloc_margin(&h2c->dbuf, 0)) { |
| h2c->flags &= ~H2_CF_DEM_DALLOC; |
| if (h2_recv_allowed(h2c)) |
| tasklet_wakeup(h2c->wait_event.task); |
| return 1; |
| } |
| |
| if ((h2c->flags & H2_CF_MUX_MALLOC) && b_alloc_margin(&h2c->mbuf, 0)) { |
| h2c->flags &= ~H2_CF_MUX_MALLOC; |
| |
| if (h2c->flags & H2_CF_DEM_MROOM) { |
| h2c->flags &= ~H2_CF_DEM_MROOM; |
| if (h2_recv_allowed(h2c)) |
| tasklet_wakeup(h2c->wait_event.task); |
| } |
| return 1; |
| } |
| |
| if ((h2c->flags & H2_CF_DEM_SALLOC) && |
| (h2s = h2c_st_by_id(h2c, h2c->dsi)) && h2s->cs && |
| b_alloc_margin(&h2s->rxbuf, 0)) { |
| h2c->flags &= ~H2_CF_DEM_SALLOC; |
| if (h2_recv_allowed(h2c)) |
| tasklet_wakeup(h2c->wait_event.task); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static inline struct buffer *h2_get_buf(struct h2c *h2c, struct buffer *bptr) |
| { |
| struct buffer *buf = NULL; |
| |
| if (likely(LIST_ISEMPTY(&h2c->buf_wait.list)) && |
| unlikely((buf = b_alloc_margin(bptr, 0)) == NULL)) { |
| h2c->buf_wait.target = h2c; |
| h2c->buf_wait.wakeup_cb = h2_buf_available; |
| HA_SPIN_LOCK(BUF_WQ_LOCK, &buffer_wq_lock); |
| LIST_ADDQ(&buffer_wq, &h2c->buf_wait.list); |
| HA_SPIN_UNLOCK(BUF_WQ_LOCK, &buffer_wq_lock); |
| __conn_xprt_stop_recv(h2c->conn); |
| } |
| return buf; |
| } |
| |
| static inline void h2_release_buf(struct h2c *h2c, struct buffer *bptr) |
| { |
| if (bptr->size) { |
| b_free(bptr); |
| offer_buffers(h2c->buf_wait.target, tasks_run_queue); |
| } |
| } |
| |
| static int h2_avail_streams(struct connection *conn) |
| { |
| struct h2c *h2c = conn->mux_ctx; |
| |
| return (h2_settings_max_concurrent_streams - h2c->nb_streams); |
| } |
| |
| |
| /*****************************************************************/ |
| /* functions below are dedicated to the mux setup and management */ |
| /*****************************************************************/ |
| |
| /* Initialize the mux once it's attached. For outgoing connections, the context |
| * is already initialized before installing the mux, so we detect incoming |
| * connections from the fact that the context is still NULL. Returns < 0 on |
| * error. |
| */ |
| static int h2_init(struct connection *conn, struct proxy *prx) |
| { |
| struct h2c *h2c; |
| struct task *t = NULL; |
| |
| /* we don't support outgoing connections for now */ |
| if (conn->mux_ctx) |
| goto fail_no_h2c; |
| |
| h2c = pool_alloc(pool_head_h2c); |
| if (!h2c) |
| goto fail_no_h2c; |
| |
| h2c->shut_timeout = h2c->timeout = prx->timeout.client; |
| if (tick_isset(prx->timeout.clientfin)) |
| h2c->shut_timeout = prx->timeout.clientfin; |
| |
| h2c->proxy = prx; |
| h2c->task = NULL; |
| if (tick_isset(h2c->timeout)) { |
| t = task_new(tid_bit); |
| if (!t) |
| goto fail; |
| |
| h2c->task = t; |
| t->process = h2_timeout_task; |
| t->context = h2c; |
| t->expire = tick_add(now_ms, h2c->timeout); |
| } |
| |
| h2c->wait_event.task = tasklet_new(); |
| if (!h2c->wait_event.task) |
| goto fail; |
| h2c->wait_event.task->process = h2_io_cb; |
| h2c->wait_event.task->context = h2c; |
| h2c->wait_event.wait_reason = 0; |
| |
| h2c->ddht = hpack_dht_alloc(h2_settings_header_table_size); |
| if (!h2c->ddht) |
| goto fail; |
| |
| /* Initialise the context. */ |
| h2c->st0 = H2_CS_PREFACE; |
| h2c->conn = conn; |
| h2c->max_id = -1; |
| h2c->errcode = H2_ERR_NO_ERROR; |
| h2c->flags = H2_CF_NONE; |
| h2c->rcvd_c = 0; |
| h2c->rcvd_s = 0; |
| h2c->nb_streams = 0; |
| h2c->nb_cs = 0; |
| |
| h2c->dbuf = BUF_NULL; |
| h2c->dsi = -1; |
| h2c->msi = -1; |
| h2c->last_sid = -1; |
| |
| h2c->mbuf = BUF_NULL; |
| h2c->miw = 65535; /* mux initial window size */ |
| h2c->mws = 65535; /* mux window size */ |
| h2c->mfs = 16384; /* initial max frame size */ |
| h2c->streams_by_id = EB_ROOT_UNIQUE; |
| LIST_INIT(&h2c->send_list); |
| LIST_INIT(&h2c->fctl_list); |
| LIST_INIT(&h2c->sending_list); |
| LIST_INIT(&h2c->buf_wait.list); |
| conn->mux_ctx = h2c; |
| |
| if (t) |
| task_queue(t); |
| |
| /* prepare to read something */ |
| tasklet_wakeup(h2c->wait_event.task); |
| return 0; |
| fail: |
| if (t) |
| task_free(t); |
| if (h2c->wait_event.task) |
| tasklet_free(h2c->wait_event.task); |
| pool_free(pool_head_h2c, h2c); |
| fail_no_h2c: |
| return -1; |
| } |
| |
| /* returns the stream associated with id <id> or NULL if not found */ |
| static inline struct h2s *h2c_st_by_id(struct h2c *h2c, int id) |
| { |
| struct eb32_node *node; |
| |
| if (id > h2c->max_id) |
| return (struct h2s *)h2_idle_stream; |
| |
| node = eb32_lookup(&h2c->streams_by_id, id); |
| if (!node) |
| return (struct h2s *)h2_closed_stream; |
| |
| return container_of(node, struct h2s, by_id); |
| } |
| |
| /* release function for a connection. This one should be called to free all |
| * resources allocated to the mux. |
| */ |
| static void h2_release(struct connection *conn) |
| { |
| struct h2c *h2c = conn->mux_ctx; |
| |
| LIST_DEL(&conn->list); |
| |
| if (h2c) { |
| hpack_dht_free(h2c->ddht); |
| |
| HA_SPIN_LOCK(BUF_WQ_LOCK, &buffer_wq_lock); |
| LIST_DEL(&h2c->buf_wait.list); |
| HA_SPIN_UNLOCK(BUF_WQ_LOCK, &buffer_wq_lock); |
| |
| h2_release_buf(h2c, &h2c->dbuf); |
| h2_release_buf(h2c, &h2c->mbuf); |
| |
| if (h2c->task) { |
| h2c->task->context = NULL; |
| task_wakeup(h2c->task, TASK_WOKEN_OTHER); |
| h2c->task = NULL; |
| } |
| if (h2c->wait_event.task) |
| tasklet_free(h2c->wait_event.task); |
| if (h2c->wait_event.wait_reason != 0) |
| conn->xprt->unsubscribe(conn, h2c->wait_event.wait_reason, |
| &h2c->wait_event); |
| |
| pool_free(pool_head_h2c, h2c); |
| } |
| |
| conn->mux = NULL; |
| conn->mux_ctx = NULL; |
| |
| conn_stop_tracking(conn); |
| conn_full_close(conn); |
| if (conn->destroy_cb) |
| conn->destroy_cb(conn); |
| conn_free(conn); |
| } |
| |
| |
| /******************************************************/ |
| /* functions below are for the H2 protocol processing */ |
| /******************************************************/ |
| |
| /* returns the stream if of stream <h2s> or 0 if <h2s> is NULL */ |
| static inline __maybe_unused int h2s_id(const struct h2s *h2s) |
| { |
| return h2s ? h2s->id : 0; |
| } |
| |
| /* returns true of the mux is currently busy as seen from stream <h2s> */ |
| static inline __maybe_unused int h2c_mux_busy(const struct h2c *h2c, const struct h2s *h2s) |
| { |
| if (h2c->msi < 0) |
| return 0; |
| |
| if (h2c->msi == h2s_id(h2s)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* marks an error on the connection */ |
| static inline __maybe_unused void h2c_error(struct h2c *h2c, enum h2_err err) |
| { |
| h2c->errcode = err; |
| h2c->st0 = H2_CS_ERROR; |
| } |
| |
| /* marks an error on the stream */ |
| static inline __maybe_unused void h2s_error(struct h2s *h2s, enum h2_err err) |
| { |
| if (h2s->id && h2s->st < H2_SS_ERROR) { |
| h2s->errcode = err; |
| h2s->st = H2_SS_ERROR; |
| if (h2s->cs) |
| h2s->cs->flags |= CS_FL_ERROR; |
| } |
| } |
| |
| /* writes the 24-bit frame size <len> at address <frame> */ |
| static inline __maybe_unused void h2_set_frame_size(void *frame, uint32_t len) |
| { |
| uint8_t *out = frame; |
| |
| *out = len >> 16; |
| write_n16(out + 1, len); |
| } |
| |
| /* reads <bytes> bytes from buffer <b> starting at relative offset <o> from the |
| * current pointer, dealing with wrapping, and stores the result in <dst>. It's |
| * the caller's responsibility to verify that there are at least <bytes> bytes |
| * available in the buffer's input prior to calling this function. The buffer |
| * is assumed not to hold any output data. |
| */ |
| static inline __maybe_unused void h2_get_buf_bytes(void *dst, size_t bytes, |
| const struct buffer *b, int o) |
| { |
| readv_bytes(dst, bytes, b_peek(b, o), b_wrap(b) - b_peek(b, o), b_orig(b)); |
| } |
| |
| static inline __maybe_unused uint16_t h2_get_n16(const struct buffer *b, int o) |
| { |
| return readv_n16(b_peek(b, o), b_wrap(b) - b_peek(b, o), b_orig(b)); |
| } |
| |
| static inline __maybe_unused uint32_t h2_get_n32(const struct buffer *b, int o) |
| { |
| return readv_n32(b_peek(b, o), b_wrap(b) - b_peek(b, o), b_orig(b)); |
| } |
| |
| static inline __maybe_unused uint64_t h2_get_n64(const struct buffer *b, int o) |
| { |
| return readv_n64(b_peek(b, o), b_wrap(b) - b_peek(b, o), b_orig(b)); |
| } |
| |
| |
| /* Peeks an H2 frame header from buffer <b> into descriptor <h>. The algorithm |
| * is not obvious. It turns out that H2 headers are neither aligned nor do they |
| * use regular sizes. And to add to the trouble, the buffer may wrap so each |
| * byte read must be checked. The header is formed like this : |
| * |
| * b0 b1 b2 b3 b4 b5..b8 |
| * +----------+---------+--------+----+----+----------------------+ |
| * |len[23:16]|len[15:8]|len[7:0]|type|flag|sid[31:0] (big endian)| |
| * +----------+---------+--------+----+----+----------------------+ |
| * |
| * Here we read a big-endian 64 bit word from h[1]. This way in a single read |
| * we get the sid properly aligned and ordered, and 16 bits of len properly |
| * ordered as well. The type and flags can be extracted using bit shifts from |
| * the word, and only one extra read is needed to fetch len[16:23]. |
| * Returns zero if some bytes are missing, otherwise non-zero on success. The |
| * buffer is assumed not to contain any output data. |
| */ |
| static __maybe_unused int h2_peek_frame_hdr(const struct buffer *b, struct h2_fh *h) |
| { |
| uint64_t w; |
| |
| if (b_data(b) < 9) |
| return 0; |
| |
| w = h2_get_n64(b, 1); |
| h->len = *(uint8_t*)b_head(b) << 16; |
| h->sid = w & 0x7FFFFFFF; /* RFC7540#4.1: R bit must be ignored */ |
| h->ff = w >> 32; |
| h->ft = w >> 40; |
| h->len += w >> 48; |
| return 1; |
| } |
| |
| /* skip the next 9 bytes corresponding to the frame header possibly parsed by |
| * h2_peek_frame_hdr() above. |
| */ |
| static inline __maybe_unused void h2_skip_frame_hdr(struct buffer *b) |
| { |
| b_del(b, 9); |
| } |
| |
| /* same as above, automatically advances the buffer on success */ |
| static inline __maybe_unused int h2_get_frame_hdr(struct buffer *b, struct h2_fh *h) |
| { |
| int ret; |
| |
| ret = h2_peek_frame_hdr(b, h); |
| if (ret > 0) |
| h2_skip_frame_hdr(b); |
| return ret; |
| } |
| |
| /* marks stream <h2s> as CLOSED and decrement the number of active streams for |
| * its connection if the stream was not yet closed. Please use this exclusively |
| * before closing a stream to ensure stream count is well maintained. |
| */ |
| static inline void h2s_close(struct h2s *h2s) |
| { |
| if (h2s->st != H2_SS_CLOSED) |
| h2s->h2c->nb_streams--; |
| h2s->st = H2_SS_CLOSED; |
| } |
| |
| /* detaches an H2 stream from its H2C and releases it to the H2S pool. */ |
| static void h2s_destroy(struct h2s *h2s) |
| { |
| h2s_close(h2s); |
| eb32_delete(&h2s->by_id); |
| if (b_size(&h2s->rxbuf)) { |
| b_free(&h2s->rxbuf); |
| offer_buffers(NULL, tasks_run_queue); |
| } |
| if (h2s->send_wait != NULL) |
| h2s->send_wait->wait_reason &= ~SUB_CAN_SEND; |
| if (h2s->recv_wait != NULL) |
| h2s->recv_wait->wait_reason &= ~SUB_CAN_RECV; |
| /* There's no need to explicitely call unsubscribe here, the only |
| * reference left would be in the h2c send_list/fctl_list, and if |
| * we're in it, we're getting out anyway |
| */ |
| LIST_DEL(&h2s->list); |
| LIST_INIT(&h2s->list); |
| tasklet_free(h2s->wait_event.task); |
| pool_free(pool_head_h2s, h2s); |
| } |
| |
| /* allocates a new stream <id> for connection <h2c> and adds it into h2c's |
| * stream tree. In case of error, nothing is added and NULL is returned. The |
| * causes of errors can be any failed memory allocation. The caller is |
| * responsible for checking if the connection may support an extra stream |
| * prior to calling this function. |
| */ |
| static struct h2s *h2s_new(struct h2c *h2c, int id) |
| { |
| struct h2s *h2s; |
| |
| h2s = pool_alloc(pool_head_h2s); |
| if (!h2s) |
| goto out; |
| |
| h2s->wait_event.task = tasklet_new(); |
| if (!h2s->wait_event.task) { |
| pool_free(pool_head_h2s, h2s); |
| goto out; |
| } |
| h2s->send_wait = NULL; |
| h2s->recv_wait = NULL; |
| h2s->wait_event.task->process = h2_deferred_shut; |
| h2s->wait_event.task->context = h2s; |
| h2s->wait_event.handle = NULL; |
| h2s->wait_event.wait_reason = 0; |
| LIST_INIT(&h2s->list); |
| h2s->h2c = h2c; |
| h2s->cs = NULL; |
| h2s->mws = h2c->miw; |
| h2s->flags = H2_SF_NONE; |
| h2s->errcode = H2_ERR_NO_ERROR; |
| h2s->st = H2_SS_IDLE; |
| h2s->status = 0; |
| h2s->rxbuf = BUF_NULL; |
| h1m_init_res(&h2s->h1m); |
| h2s->h1m.err_pos = -1; // don't care about errors on the response path |
| h2s->h1m.flags |= H1_MF_TOLOWER; |
| h2s->by_id.key = h2s->id = id; |
| h2c->max_id = id; |
| |
| eb32_insert(&h2c->streams_by_id, &h2s->by_id); |
| h2c->nb_streams++; |
| |
| return h2s; |
| |
| out_free_h2s: |
| pool_free(pool_head_h2s, h2s); |
| out: |
| return NULL; |
| } |
| |
| /* creates a new stream <id> on the h2c connection and returns it, or NULL in |
| * case of memory allocation error. |
| */ |
| static struct h2s *h2c_frt_stream_new(struct h2c *h2c, int id) |
| { |
| struct session *sess = h2c->conn->owner; |
| struct conn_stream *cs; |
| struct h2s *h2s; |
| |
| if (h2c->nb_streams >= h2_settings_max_concurrent_streams) |
| goto out; |
| |
| h2s = h2s_new(h2c, id); |
| if (!h2s) |
| goto out; |
| |
| cs = cs_new(h2c->conn); |
| if (!cs) |
| goto out_close; |
| |
| h2s->cs = cs; |
| cs->ctx = h2s; |
| h2c->nb_cs++; |
| |
| if (stream_create_from_cs(cs) < 0) |
| goto out_free_cs; |
| |
| /* We want the accept date presented to the next stream to be the one |
| * we have now, the handshake time to be null (since the next stream |
| * is not delayed by a handshake), and the idle time to count since |
| * right now. |
| */ |
| sess->accept_date = date; |
| sess->tv_accept = now; |
| sess->t_handshake = 0; |
| |
| /* OK done, the stream lives its own life now */ |
| if (h2_has_too_many_cs(h2c)) |
| h2c->flags |= H2_CF_DEM_TOOMANY; |
| return h2s; |
| |
| out_free_cs: |
| h2c->nb_cs--; |
| cs_free(cs); |
| out_close: |
| h2s_destroy(h2s); |
| out: |
| sess_log(sess); |
| return NULL; |
| } |
| |
| /* try to send a settings frame on the connection. Returns > 0 on success, 0 if |
| * it couldn't do anything. It may return an error in h2c. See RFC7540#11.3 for |
| * the various settings codes. |
| */ |
| static int h2c_send_settings(struct h2c *h2c) |
| { |
| struct buffer *res; |
| char buf_data[100]; // enough for 15 settings |
| struct buffer buf; |
| int ret; |
| |
| if (h2c_mux_busy(h2c, NULL)) { |
| h2c->flags |= H2_CF_DEM_MBUSY; |
| return 0; |
| } |
| |
| res = h2_get_buf(h2c, &h2c->mbuf); |
| if (!res) { |
| h2c->flags |= H2_CF_MUX_MALLOC; |
| h2c->flags |= H2_CF_DEM_MROOM; |
| return 0; |
| } |
| |
| chunk_init(&buf, buf_data, sizeof(buf_data)); |
| chunk_memcpy(&buf, |
| "\x00\x00\x00" /* length : 0 for now */ |
| "\x04\x00" /* type : 4 (settings), flags : 0 */ |
| "\x00\x00\x00\x00", /* stream ID : 0 */ |
| 9); |
| |
| if (h2_settings_header_table_size != 4096) { |
| char str[6] = "\x00\x01"; /* header_table_size */ |
| |
| write_n32(str + 2, h2_settings_header_table_size); |
| chunk_memcat(&buf, str, 6); |
| } |
| |
| if (h2_settings_initial_window_size != 65535) { |
| char str[6] = "\x00\x04"; /* initial_window_size */ |
| |
| write_n32(str + 2, h2_settings_initial_window_size); |
| chunk_memcat(&buf, str, 6); |
| } |
| |
| if (h2_settings_max_concurrent_streams != 0) { |
| char str[6] = "\x00\x03"; /* max_concurrent_streams */ |
| |
| /* Note: 0 means "unlimited" for haproxy's config but not for |
| * the protocol, so never send this value! |
| */ |
| write_n32(str + 2, h2_settings_max_concurrent_streams); |
| chunk_memcat(&buf, str, 6); |
| } |
| |
| if (global.tune.bufsize != 16384) { |
| char str[6] = "\x00\x05"; /* max_frame_size */ |
| |
| /* note: similarly we could also emit MAX_HEADER_LIST_SIZE to |
| * match bufsize - rewrite size, but at the moment it seems |
| * that clients don't take care of it. |
| */ |
| write_n32(str + 2, global.tune.bufsize); |
| chunk_memcat(&buf, str, 6); |
| } |
| |
| h2_set_frame_size(buf.area, buf.data - 9); |
| ret = b_istput(res, ist2(buf.area, buf.data)); |
| if (unlikely(ret <= 0)) { |
| if (!ret) { |
| h2c->flags |= H2_CF_MUX_MFULL; |
| h2c->flags |= H2_CF_DEM_MROOM; |
| return 0; |
| } |
| else { |
| h2c_error(h2c, H2_ERR_INTERNAL_ERROR); |
| return 0; |
| } |
| } |
| return ret; |
| } |
| |
| /* Try to receive a connection preface, then upon success try to send our |
| * preface which is a SETTINGS frame. Returns > 0 on success or zero on |
| * missing data. It may return an error in h2c. |
| */ |
| static int h2c_frt_recv_preface(struct h2c *h2c) |
| { |
| int ret1; |
| int ret2; |
| |
| ret1 = b_isteq(&h2c->dbuf, 0, b_data(&h2c->dbuf), ist(H2_CONN_PREFACE)); |
| |
| if (unlikely(ret1 <= 0)) { |
| if (ret1 < 0) |
| sess_log(h2c->conn->owner); |
| |
| if (ret1 < 0 || conn_xprt_read0_pending(h2c->conn)) |
| h2c_error(h2c, H2_ERR_PROTOCOL_ERROR); |
| return 0; |
| } |
| |
| ret2 = h2c_send_settings(h2c); |
| if (ret2 > 0) |
| b_del(&h2c->dbuf, ret1); |
| |
| return ret2; |
| } |
| |
| /* try to send a GOAWAY frame on the connection to report an error or a graceful |
| * shutdown, with h2c->errcode as the error code. Returns > 0 on success or zero |
| * if nothing was done. It uses h2c->last_sid as the advertised ID, or copies it |
| * from h2c->max_id if it's not set yet (<0). In case of lack of room to write |
| * the message, it subscribes the requester (either <h2s> or <h2c>) to future |
| * notifications. It sets H2_CF_GOAWAY_SENT on success, and H2_CF_GOAWAY_FAILED |
| * on unrecoverable failure. It will not attempt to send one again in this last |
| * case so that it is safe to use h2c_error() to report such errors. |
| */ |
| static int h2c_send_goaway_error(struct h2c *h2c, struct h2s *h2s) |
| { |
| struct buffer *res; |
| char str[17]; |
| int ret; |
| |
| if (h2c->flags & H2_CF_GOAWAY_FAILED) |
| return 1; // claim that it worked |
| |
| if (h2c_mux_busy(h2c, h2s)) { |
| if (h2s) |
| h2s->flags |= H2_SF_BLK_MBUSY; |
| else |
| h2c->flags |= H2_CF_DEM_MBUSY; |
| return 0; |
| } |
| |
| res = h2_get_buf(h2c, &h2c->mbuf); |
| if (!res) { |
| h2c->flags |= H2_CF_MUX_MALLOC; |
| if (h2s) |
| h2s->flags |= H2_SF_BLK_MROOM; |
| else |
| h2c->flags |= H2_CF_DEM_MROOM; |
| return 0; |
| } |
| |
| /* len: 8, type: 7, flags: none, sid: 0 */ |
| memcpy(str, "\x00\x00\x08\x07\x00\x00\x00\x00\x00", 9); |
| |
| if (h2c->last_sid < 0) |
| h2c->last_sid = h2c->max_id; |
| |
| write_n32(str + 9, h2c->last_sid); |
| write_n32(str + 13, h2c->errcode); |
| ret = b_istput(res, ist2(str, 17)); |
| if (unlikely(ret <= 0)) { |
| if (!ret) { |
| h2c->flags |= H2_CF_MUX_MFULL; |
| if (h2s) |
| h2s->flags |= H2_SF_BLK_MROOM; |
| else |
| h2c->flags |= H2_CF_DEM_MROOM; |
| return 0; |
| } |
| else { |
| /* we cannot report this error using GOAWAY, so we mark |
| * it and claim a success. |
| */ |
| h2c_error(h2c, H2_ERR_INTERNAL_ERROR); |
| h2c->flags |= H2_CF_GOAWAY_FAILED; |
| return 1; |
| } |
| } |
| h2c->flags |= H2_CF_GOAWAY_SENT; |
| return ret; |
| } |
| |
| /* Try to send an RST_STREAM frame on the connection for the indicated stream |
| * during mux operations. This stream must be valid and cannot be closed |
| * already. h2s->id will be used for the stream ID and h2s->errcode will be |
| * used for the error code. h2s->st will be update to H2_SS_CLOSED if it was |
| * not yet. |
| * |
| * Returns > 0 on success or zero if nothing was done. In case of lack of room |
| * to write the message, it subscribes the stream to future notifications. |
| */ |
| static int h2s_send_rst_stream(struct h2c *h2c, struct h2s *h2s) |
| { |
| struct buffer *res; |
| char str[13]; |
| int ret; |
| |
| if (!h2s || h2s->st == H2_SS_CLOSED) |
| return 1; |
| |
| /* RFC7540#5.4.2: To avoid looping, an endpoint MUST NOT send a |
| * RST_STREAM in response to a RST_STREAM frame. |
| */ |
| if (h2c->dft == H2_FT_RST_STREAM) { |
| ret = 1; |
| goto ignore; |
| } |
| |
| if (h2c_mux_busy(h2c, h2s)) { |
| h2s->flags |= H2_SF_BLK_MBUSY; |
| return 0; |
| } |
| |
| res = h2_get_buf(h2c, &h2c->mbuf); |
| if (!res) { |
| h2c->flags |= H2_CF_MUX_MALLOC; |
| h2s->flags |= H2_SF_BLK_MROOM; |
| return 0; |
| } |
| |
| /* len: 4, type: 3, flags: none */ |
| memcpy(str, "\x00\x00\x04\x03\x00", 5); |
| write_n32(str + 5, h2s->id); |
| write_n32(str + 9, h2s->errcode); |
| ret = b_istput(res, ist2(str, 13)); |
| |
| if (unlikely(ret <= 0)) { |
| if (!ret) { |
| h2c->flags |= H2_CF_MUX_MFULL; |
| h2s->flags |= H2_SF_BLK_MROOM; |
| return 0; |
| } |
| else { |
| h2c_error(h2c, H2_ERR_INTERNAL_ERROR); |
| return 0; |
| } |
| } |
| |
| ignore: |
| h2s->flags |= H2_SF_RST_SENT; |
| h2s_close(h2s); |
| return ret; |
| } |
| |
| /* Try to send an RST_STREAM frame on the connection for the stream being |
| * demuxed using h2c->dsi for the stream ID. It will use h2s->errcode as the |
| * error code unless the stream's state already is IDLE or CLOSED in which |
| * case STREAM_CLOSED will be used, and will update h2s->st to H2_SS_CLOSED if |
| * it was not yet. |
| * |
| * Returns > 0 on success or zero if nothing was done. In case of lack of room |
| * to write the message, it blocks the demuxer and subscribes it to future |
| * notifications. It's worth mentionning that an RST may even be sent for a |
| * closed stream. |
| */ |
| static int h2c_send_rst_stream(struct h2c *h2c, struct h2s *h2s) |
| { |
| struct buffer *res; |
| char str[13]; |
| int ret; |
| |
| /* RFC7540#5.4.2: To avoid looping, an endpoint MUST NOT send a |
| * RST_STREAM in response to a RST_STREAM frame. |
| */ |
| if (h2c->dft == H2_FT_RST_STREAM) { |
| ret = 1; |
| goto ignore; |
| } |
| |
| if (h2c_mux_busy(h2c, h2s)) { |
| h2c->flags |= H2_CF_DEM_MBUSY; |
| return 0; |
| } |
| |
| res = h2_get_buf(h2c, &h2c->mbuf); |
| if (!res) { |
| h2c->flags |= H2_CF_MUX_MALLOC; |
| h2c->flags |= H2_CF_DEM_MROOM; |
| return 0; |
| } |
| |
| /* len: 4, type: 3, flags: none */ |
| memcpy(str, "\x00\x00\x04\x03\x00", 5); |
| |
| write_n32(str + 5, h2c->dsi); |
| write_n32(str + 9, h2s->id ? h2s->errcode : H2_ERR_STREAM_CLOSED); |
| ret = b_istput(res, ist2(str, 13)); |
| |
| if (unlikely(ret <= 0)) { |
| if (!ret) { |
| h2c->flags |= H2_CF_MUX_MFULL; |
| h2c->flags |= H2_CF_DEM_MROOM; |
| return 0; |
| } |
| else { |
| h2c_error(h2c, H2_ERR_INTERNAL_ERROR); |
| return 0; |
| } |
| } |
| |
| ignore: |
| if (h2s->id) { |
| h2s->flags |= H2_SF_RST_SENT; |
| h2s_close(h2s); |
| } |
| |
| return ret; |
| } |
| |
| /* try to send an empty DATA frame with the ES flag set to notify about the |
| * end of stream and match a shutdown(write). If an ES was already sent as |
| * indicated by HLOC/ERROR/RESET/CLOSED states, nothing is done. Returns > 0 |
| * on success or zero if nothing was done. In case of lack of room to write the |
| * message, it subscribes the requesting stream to future notifications. |
| */ |
| static int h2_send_empty_data_es(struct h2s *h2s) |
| { |
| struct h2c *h2c = h2s->h2c; |
| struct buffer *res; |
| char str[9]; |
| int ret; |
| |
| if (h2s->st == H2_SS_HLOC || h2s->st == H2_SS_ERROR || h2s->st == H2_SS_CLOSED) |
| return 1; |
| |
| if (h2c_mux_busy(h2c, h2s)) { |
| h2s->flags |= H2_SF_BLK_MBUSY; |
| return 0; |
| } |
| |
| res = h2_get_buf(h2c, &h2c->mbuf); |
| if (!res) { |
| h2c->flags |= H2_CF_MUX_MALLOC; |
| h2s->flags |= H2_SF_BLK_MROOM; |
| return 0; |
| } |
| |
| /* len: 0x000000, type: 0(DATA), flags: ES=1 */ |
| memcpy(str, "\x00\x00\x00\x00\x01", 5); |
| write_n32(str + 5, h2s->id); |
| ret = b_istput(res, ist2(str, 9)); |
| if (likely(ret > 0)) { |
| h2s->flags |= H2_SF_ES_SENT; |
| } |
| else if (!ret) { |
| h2c->flags |= H2_CF_MUX_MFULL; |
| h2s->flags |= H2_SF_BLK_MROOM; |
| return 0; |
| } |
| else { |
| h2c_error(h2c, H2_ERR_INTERNAL_ERROR); |
| return 0; |
| } |
| return ret; |
| } |
| |
| /* wake the streams attached to the connection, whose id is greater than <last>, |
| * and assign their conn_stream the CS_FL_* flags <flags> in addition to |
| * CS_FL_ERROR in case of error and CS_FL_REOS in case of closed connection. |
| * The stream's state is automatically updated accordingly. |
| */ |
| static void h2_wake_some_streams(struct h2c *h2c, int last, uint32_t flags) |
| { |
| struct eb32_node *node; |
| struct h2s *h2s; |
| |
| if (h2c->st0 >= H2_CS_ERROR || h2c->conn->flags & CO_FL_ERROR) |
| flags |= CS_FL_ERROR; |
| |
| if (conn_xprt_read0_pending(h2c->conn)) |
| flags |= CS_FL_REOS; |
| |
| node = eb32_lookup_ge(&h2c->streams_by_id, last + 1); |
| while (node) { |
| h2s = container_of(node, struct h2s, by_id); |
| if (h2s->id <= last) |
| break; |
| node = eb32_next(node); |
| |
| if (!h2s->cs) { |
| /* this stream was already orphaned */ |
| h2s_destroy(h2s); |
| continue; |
| } |
| |
| h2s->cs->flags |= flags; |
| if (h2s->recv_wait) { |
| struct wait_event *sw = h2s->recv_wait; |
| sw->wait_reason &= ~SUB_CAN_RECV; |
| tasklet_wakeup(sw->task); |
| h2s->recv_wait = NULL; |
| } else if (h2s->cs->data_cb->wake != NULL) |
| h2s->cs->data_cb->wake(h2s->cs); |
| |
| if (flags & CS_FL_ERROR && h2s->st < H2_SS_ERROR) |
| h2s->st = H2_SS_ERROR; |
| else if (flags & CS_FL_REOS && h2s->st == H2_SS_OPEN) |
| h2s->st = H2_SS_HREM; |
| else if (flags & CS_FL_REOS && h2s->st == H2_SS_HLOC) |
| h2s_close(h2s); |
| } |
| } |
| |
| /* Increase all streams' outgoing window size by the difference passed in |
| * argument. This is needed upon receipt of the settings frame if the initial |
| * window size is different. The difference may be negative and the resulting |
| * window size as well, for the time it takes to receive some window updates. |
| */ |
| static void h2c_update_all_ws(struct h2c *h2c, int diff) |
| { |
| struct h2s *h2s; |
| struct eb32_node *node; |
| |
| if (!diff) |
| return; |
| |
| node = eb32_first(&h2c->streams_by_id); |
| while (node) { |
| h2s = container_of(node, struct h2s, by_id); |
| h2s->mws += diff; |
| node = eb32_next(node); |
| } |
| } |
| |
| /* processes a SETTINGS frame whose payload is <payload> for <plen> bytes, and |
| * ACKs it if needed. Returns > 0 on success or zero on missing data. It may |
| * return an error in h2c. Described in RFC7540#6.5. |
| */ |
| static int h2c_handle_settings(struct h2c *h2c) |
| { |
| unsigned int offset; |
| int error; |
| |
| if (h2c->dff & H2_F_SETTINGS_ACK) { |
| if (h2c->dfl) { |
| error = H2_ERR_FRAME_SIZE_ERROR; |
| goto fail; |
| } |
| return 1; |
| } |
| |
| if (h2c->dsi != 0) { |
| error = H2_ERR_PROTOCOL_ERROR; |
| goto fail; |
| } |
| |
| if (h2c->dfl % 6) { |
| error = H2_ERR_FRAME_SIZE_ERROR; |
| goto fail; |
| } |
| |
| /* that's the limit we can process */ |
| if (h2c->dfl > global.tune.bufsize) { |
| error = H2_ERR_FRAME_SIZE_ERROR; |
| goto fail; |
| } |
| |
| /* process full frame only */ |
| if (b_data(&h2c->dbuf) < h2c->dfl) |
| return 0; |
| |
| /* parse the frame */ |
| for (offset = 0; offset < h2c->dfl; offset += 6) { |
| uint16_t type = h2_get_n16(&h2c->dbuf, offset); |
| int32_t arg = h2_get_n32(&h2c->dbuf, offset + 2); |
| |
| switch (type) { |
| case H2_SETTINGS_INITIAL_WINDOW_SIZE: |
| /* we need to update all existing streams with the |
| * difference from the previous iws. |
| */ |
| if (arg < 0) { // RFC7540#6.5.2 |
| error = H2_ERR_FLOW_CONTROL_ERROR; |
| goto fail; |
| } |
| h2c_update_all_ws(h2c, arg - h2c->miw); |
| h2c->miw = arg; |
| break; |
| case H2_SETTINGS_MAX_FRAME_SIZE: |
| if (arg < 16384 || arg > 16777215) { // RFC7540#6.5.2 |
| error = H2_ERR_PROTOCOL_ERROR; |
| goto fail; |
| } |
| h2c->mfs = arg; |
| break; |
| case H2_SETTINGS_ENABLE_PUSH: |
| if (arg < 0 || arg > 1) { // RFC7540#6.5.2 |
| error = H2_ERR_PROTOCOL_ERROR; |
| goto fail; |
| } |
| break; |
| } |
| } |
| |
| /* need to ACK this frame now */ |
| h2c->st0 = H2_CS_FRAME_A; |
| return 1; |
| fail: |
| sess_log(h2c->conn->owner); |
| h2c_error(h2c, error); |
| return 0; |
| } |
| |
| /* try to send an ACK for a settings frame on the connection. Returns > 0 on |
| * success or one of the h2_status values. |
| */ |
| static int h2c_ack_settings(struct h2c *h2c) |
| { |
| struct buffer *res; |
| char str[9]; |
| int ret = -1; |
| |
| if (h2c_mux_busy(h2c, NULL)) { |
| h2c->flags |= H2_CF_DEM_MBUSY; |
| return 0; |
| } |
| |
| res = h2_get_buf(h2c, &h2c->mbuf); |
| if (!res) { |
| h2c->flags |= H2_CF_MUX_MALLOC; |
| h2c->flags |= H2_CF_DEM_MROOM; |
| return 0; |
| } |
| |
| memcpy(str, |
| "\x00\x00\x00" /* length : 0 (no data) */ |
| "\x04" "\x01" /* type : 4, flags : ACK */ |
| "\x00\x00\x00\x00" /* stream ID */, 9); |
| |
| ret = b_istput(res, ist2(str, 9)); |
| if (unlikely(ret <= 0)) { |
| if (!ret) { |
| h2c->flags |= H2_CF_MUX_MFULL; |
| h2c->flags |= H2_CF_DEM_MROOM; |
| return 0; |
| } |
| else { |
| h2c_error(h2c, H2_ERR_INTERNAL_ERROR); |
| return 0; |
| } |
| } |
| return ret; |
| } |
| |
| /* processes a PING frame and schedules an ACK if needed. The caller must pass |
| * the pointer to the payload in <payload>. Returns > 0 on success or zero on |
| * missing data. It may return an error in h2c. |
| */ |
| static int h2c_handle_ping(struct h2c *h2c) |
| { |
| /* frame length must be exactly 8 */ |
| if (h2c->dfl != 8) { |
| h2c_error(h2c, H2_ERR_FRAME_SIZE_ERROR); |
| return 0; |
| } |
| |
| /* schedule a response */ |
| if (!(h2c->dff & H2_F_PING_ACK)) |
| h2c->st0 = H2_CS_FRAME_A; |
| return 1; |
| } |
| |
| /* Try to send a window update for stream id <sid> and value <increment>. |
| * Returns > 0 on success or zero on missing room or failure. It may return an |
| * error in h2c. |
| */ |
| static int h2c_send_window_update(struct h2c *h2c, int sid, uint32_t increment) |
| { |
| struct buffer *res; |
| char str[13]; |
| int ret = -1; |
| |
| if (h2c_mux_busy(h2c, NULL)) { |
| h2c->flags |= H2_CF_DEM_MBUSY; |
| return 0; |
| } |
| |
| res = h2_get_buf(h2c, &h2c->mbuf); |
| if (!res) { |
| h2c->flags |= H2_CF_MUX_MALLOC; |
| h2c->flags |= H2_CF_DEM_MROOM; |
| return 0; |
| } |
| |
| /* length: 4, type: 8, flags: none */ |
| memcpy(str, "\x00\x00\x04\x08\x00", 5); |
| write_n32(str + 5, sid); |
| write_n32(str + 9, increment); |
| |
| ret = b_istput(res, ist2(str, 13)); |
| |
| if (unlikely(ret <= 0)) { |
| if (!ret) { |
| h2c->flags |= H2_CF_MUX_MFULL; |
| h2c->flags |= H2_CF_DEM_MROOM; |
| return 0; |
| } |
| else { |
| h2c_error(h2c, H2_ERR_INTERNAL_ERROR); |
| return 0; |
| } |
| } |
| return ret; |
| } |
| |
| /* try to send pending window update for the connection. It's safe to call it |
| * with no pending updates. Returns > 0 on success or zero on missing room or |
| * failure. It may return an error in h2c. |
| */ |
| static int h2c_send_conn_wu(struct h2c *h2c) |
| { |
| int ret = 1; |
| |
| if (h2c->rcvd_c <= 0) |
| return 1; |
| |
| /* send WU for the connection */ |
| ret = h2c_send_window_update(h2c, 0, h2c->rcvd_c); |
| if (ret > 0) |
| h2c->rcvd_c = 0; |
| |
| return ret; |
| } |
| |
| /* try to send pending window update for the current dmux stream. It's safe to |
| * call it with no pending updates. Returns > 0 on success or zero on missing |
| * room or failure. It may return an error in h2c. |
| */ |
| static int h2c_send_strm_wu(struct h2c *h2c) |
| { |
| int ret = 1; |
| |
| if (h2c->rcvd_s <= 0) |
| return 1; |
| |
| /* send WU for the stream */ |
| ret = h2c_send_window_update(h2c, h2c->dsi, h2c->rcvd_s); |
| if (ret > 0) |
| h2c->rcvd_s = 0; |
| |
| return ret; |
| } |
| |
| /* try to send an ACK for a ping frame on the connection. Returns > 0 on |
| * success, 0 on missing data or one of the h2_status values. |
| */ |
| static int h2c_ack_ping(struct h2c *h2c) |
| { |
| struct buffer *res; |
| char str[17]; |
| int ret = -1; |
| |
| if (b_data(&h2c->dbuf) < 8) |
| return 0; |
| |
| if (h2c_mux_busy(h2c, NULL)) { |
| h2c->flags |= H2_CF_DEM_MBUSY; |
| return 0; |
| } |
| |
| res = h2_get_buf(h2c, &h2c->mbuf); |
| if (!res) { |
| h2c->flags |= H2_CF_MUX_MALLOC; |
| h2c->flags |= H2_CF_DEM_MROOM; |
| return 0; |
| } |
| |
| memcpy(str, |
| "\x00\x00\x08" /* length : 8 (same payload) */ |
| "\x06" "\x01" /* type : 6, flags : ACK */ |
| "\x00\x00\x00\x00" /* stream ID */, 9); |
| |
| /* copy the original payload */ |
| h2_get_buf_bytes(str + 9, 8, &h2c->dbuf, 0); |
| |
| ret = b_istput(res, ist2(str, 17)); |
| if (unlikely(ret <= 0)) { |
| if (!ret) { |
| h2c->flags |= H2_CF_MUX_MFULL; |
| h2c->flags |= H2_CF_DEM_MROOM; |
| return 0; |
| } |
| else { |
| h2c_error(h2c, H2_ERR_INTERNAL_ERROR); |
| return 0; |
| } |
| } |
| return ret; |
| } |
| |
| /* processes a WINDOW_UPDATE frame whose payload is <payload> for <plen> bytes. |
| * Returns > 0 on success or zero on missing data. It may return an error in |
| * h2c or h2s. Described in RFC7540#6.9. |
| */ |
| static int h2c_handle_window_update(struct h2c *h2c, struct h2s *h2s) |
| { |
| int32_t inc; |
| int error; |
| |
| if (h2c->dfl != 4) { |
| error = H2_ERR_FRAME_SIZE_ERROR; |
| goto conn_err; |
| } |
| |
| /* process full frame only */ |
| if (b_data(&h2c->dbuf) < h2c->dfl) |
| return 0; |
| |
| inc = h2_get_n32(&h2c->dbuf, 0); |
| |
| if (h2c->dsi != 0) { |
| /* stream window update */ |
| |
| /* it's not an error to receive WU on a closed stream */ |
| if (h2s->st == H2_SS_CLOSED) |
| return 1; |
| |
| if (!inc) { |
| error = H2_ERR_PROTOCOL_ERROR; |
| goto strm_err; |
| } |
| |
| if (h2s->mws >= 0 && h2s->mws + inc < 0) { |
| error = H2_ERR_FLOW_CONTROL_ERROR; |
| goto strm_err; |
| } |
| |
| h2s->mws += inc; |
| if (h2s->mws > 0 && (h2s->flags & H2_SF_BLK_SFCTL)) { |
| h2s->flags &= ~H2_SF_BLK_SFCTL; |
| if (h2s->send_wait) |
| LIST_ADDQ(&h2c->send_list, &h2s->list); |
| |
| } |
| } |
| else { |
| /* connection window update */ |
| if (!inc) { |
| error = H2_ERR_PROTOCOL_ERROR; |
| goto conn_err; |
| } |
| |
| if (h2c->mws >= 0 && h2c->mws + inc < 0) { |
| error = H2_ERR_FLOW_CONTROL_ERROR; |
| goto conn_err; |
| } |
| |
| h2c->mws += inc; |
| } |
| |
| return 1; |
| |
| conn_err: |
| h2c_error(h2c, error); |
| return 0; |
| |
| strm_err: |
| if (h2s) { |
| h2s_error(h2s, error); |
| h2c->st0 = H2_CS_FRAME_E; |
| } |
| else |
| h2c_error(h2c, error); |
| return 0; |
| } |
| |
| /* processes a GOAWAY frame, and signals all streams whose ID is greater than |
| * the last ID. Returns > 0 on success or zero on missing data. It may return |
| * an error in h2c. Described in RFC7540#6.8. |
| */ |
| static int h2c_handle_goaway(struct h2c *h2c) |
| { |
| int error; |
| int last; |
| |
| if (h2c->dsi != 0) { |
| error = H2_ERR_PROTOCOL_ERROR; |
| goto conn_err; |
| } |
| |
| if (h2c->dfl < 8) { |
| error = H2_ERR_FRAME_SIZE_ERROR; |
| goto conn_err; |
| } |
| |
| /* process full frame only */ |
| if (b_data(&h2c->dbuf) < h2c->dfl) |
| return 0; |
| |
| last = h2_get_n32(&h2c->dbuf, 0); |
| h2c->errcode = h2_get_n32(&h2c->dbuf, 4); |
| h2_wake_some_streams(h2c, last, CS_FL_ERROR); |
| if (h2c->last_sid < 0) |
| h2c->last_sid = last; |
| return 1; |
| |
| conn_err: |
| h2c_error(h2c, error); |
| return 0; |
| } |
| |
| /* processes a PRIORITY frame, and either skips it or rejects if it is |
| * invalid. Returns > 0 on success or zero on missing data. It may return |
| * an error in h2c. Described in RFC7540#6.3. |
| */ |
| static int h2c_handle_priority(struct h2c *h2c) |
| { |
| int error; |
| |
| if (h2c->dsi == 0) { |
| error = H2_ERR_PROTOCOL_ERROR; |
| goto conn_err; |
| } |
| |
| if (h2c->dfl != 5) { |
| error = H2_ERR_FRAME_SIZE_ERROR; |
| goto conn_err; |
| } |
| |
| /* process full frame only */ |
| if (b_data(&h2c->dbuf) < h2c->dfl) |
| return 0; |
| |
| if (h2_get_n32(&h2c->dbuf, 0) == h2c->dsi) { |
| /* 7540#5.3 : can't depend on itself */ |
| error = H2_ERR_PROTOCOL_ERROR; |
| goto conn_err; |
| } |
| return 1; |
| |
| conn_err: |
| h2c_error(h2c, error); |
| return 0; |
| } |
| |
| /* processes an RST_STREAM frame, and sets the 32-bit error code on the stream. |
| * Returns > 0 on success or zero on missing data. It may return an error in |
| * h2c. Described in RFC7540#6.4. |
| */ |
| static int h2c_handle_rst_stream(struct h2c *h2c, struct h2s *h2s) |
| { |
| int error; |
| |
| if (h2c->dsi == 0) { |
| error = H2_ERR_PROTOCOL_ERROR; |
| goto conn_err; |
| } |
| |
| if (h2c->dfl != 4) { |
| error = H2_ERR_FRAME_SIZE_ERROR; |
| goto conn_err; |
| } |
| |
| /* process full frame only */ |
| if (b_data(&h2c->dbuf) < h2c->dfl) |
| return 0; |
| |
| /* late RST, already handled */ |
| if (h2s->st == H2_SS_CLOSED) |
| return 1; |
| |
| h2s->errcode = h2_get_n32(&h2c->dbuf, 0); |
| h2s_close(h2s); |
| |
| if (h2s->cs) { |
| h2s->cs->flags |= CS_FL_REOS | CS_FL_ERROR; |
| if (h2s->recv_wait) { |
| struct wait_event *sw = h2s->recv_wait; |
| |
| sw->wait_reason &= ~SUB_CAN_RECV; |
| tasklet_wakeup(sw->task); |
| h2s->recv_wait = NULL; |
| } |
| } |
| |
| h2s->flags |= H2_SF_RST_RCVD; |
| return 1; |
| |
| conn_err: |
| h2c_error(h2c, error); |
| return 0; |
| } |
| |
| /* processes a HEADERS frame. Returns h2s on success or NULL on missing data. |
| * It may return an error in h2c or h2s. The caller must consider that the |
| * return value is the new h2s in case one was allocated (most common case). |
| * Described in RFC7540#6.2. Most of the |
| * errors here are reported as connection errors since it's impossible to |
| * recover from such errors after the compression context has been altered. |
| */ |
| static struct h2s *h2c_frt_handle_headers(struct h2c *h2c, struct h2s *h2s) |
| { |
| int error; |
| |
| if (!h2c->dfl) { |
| error = H2_ERR_PROTOCOL_ERROR; // empty headers frame! |
| sess_log(h2c->conn->owner); |
| goto strm_err; |
| } |
| |
| if (!b_size(&h2c->dbuf)) |
| return NULL; // empty buffer |
| |
| if (b_data(&h2c->dbuf) < h2c->dfl && !b_full(&h2c->dbuf)) |
| return NULL; // incomplete frame |
| |
| if (h2c->flags & H2_CF_DEM_TOOMANY) |
| return 0; // too many cs still present |
| |
| /* now either the frame is complete or the buffer is complete */ |
| if (h2s->st != H2_SS_IDLE) { |
| /* FIXME: stream already exists, this is only allowed for |
| * trailers (not supported for now). |
| */ |
| error = H2_ERR_PROTOCOL_ERROR; |
| sess_log(h2c->conn->owner); |
| goto conn_err; |
| } |
| else if (h2c->dsi <= h2c->max_id || !(h2c->dsi & 1)) { |
| /* RFC7540#5.1.1 stream id > prev ones, and must be odd here */ |
| error = H2_ERR_PROTOCOL_ERROR; |
| sess_log(h2c->conn->owner); |
| goto conn_err; |
| } |
| |
| /* Note: we don't emit any other logs below because ff we return |
| * positively from h2c_frt_stream_new(), the stream will report the error, |
| * and if we return in error, h2c_frt_stream_new() will emit the error. |
| */ |
| h2s = h2c_frt_stream_new(h2c, h2c->dsi); |
| if (!h2s) { |
| error = H2_ERR_INTERNAL_ERROR; |
| goto conn_err; |
| } |
| |
| h2s->st = H2_SS_OPEN; |
| if (h2c->dff & H2_F_HEADERS_END_STREAM) { |
| h2s->st = H2_SS_HREM; |
| h2s->flags |= H2_SF_ES_RCVD; |
| /* note: cs cannot be null for now (just created above) */ |
| h2s->cs->flags |= CS_FL_REOS; |
| } |
| |
| if (!h2_frt_decode_headers(h2s)) |
| return NULL; |
| |
| if (h2c->st0 >= H2_CS_ERROR) |
| return NULL; |
| |
| if (h2s->st >= H2_SS_ERROR) { |
| /* stream error : send RST_STREAM */ |
| h2c->st0 = H2_CS_FRAME_E; |
| } |
| else { |
| /* update the max stream ID if the request is being processed */ |
| if (h2s->id > h2c->max_id) |
| h2c->max_id = h2s->id; |
| } |
| |
| return h2s; |
| |
| conn_err: |
| h2c_error(h2c, error); |
| return NULL; |
| |
| strm_err: |
| if (h2s) { |
| h2s_error(h2s, error); |
| h2c->st0 = H2_CS_FRAME_E; |
| } |
| else |
| h2c_error(h2c, error); |
| return NULL; |
| } |
| |
| /* processes a DATA frame. Returns > 0 on success or zero on missing data. |
| * It may return an error in h2c or h2s. Described in RFC7540#6.1. |
| */ |
| static int h2c_frt_handle_data(struct h2c *h2c, struct h2s *h2s) |
| { |
| int error; |
| |
| /* note that empty DATA frames are perfectly valid and sometimes used |
| * to signal an end of stream (with the ES flag). |
| */ |
| |
| if (!b_size(&h2c->dbuf) && h2c->dfl) |
| return 0; // empty buffer |
| |
| if (b_data(&h2c->dbuf) < h2c->dfl && !b_full(&h2c->dbuf)) |
| return 0; // incomplete frame |
| |
| /* now either the frame is complete or the buffer is complete */ |
| |
| if (!h2c->dsi) { |
| /* RFC7540#6.1 */ |
| error = H2_ERR_PROTOCOL_ERROR; |
| goto conn_err; |
| } |
| |
| if (h2s->st != H2_SS_OPEN && h2s->st != H2_SS_HLOC) { |
| /* RFC7540#6.1 */ |
| error = H2_ERR_STREAM_CLOSED; |
| goto strm_err; |
| } |
| |
| if (!h2_frt_transfer_data(h2s)) |
| return 0; |
| |
| /* call the upper layers to process the frame, then let the upper layer |
| * notify the stream about any change. |
| */ |
| if (!h2s->cs) { |
| error = H2_ERR_STREAM_CLOSED; |
| goto strm_err; |
| } |
| |
| if (h2c->st0 >= H2_CS_ERROR) |
| return 0; |
| |
| if (h2s->st >= H2_SS_ERROR) { |
| /* stream error : send RST_STREAM */ |
| h2c->st0 = H2_CS_FRAME_E; |
| } |
| |
| /* check for completion : the callee will change this to FRAME_A or |
| * FRAME_H once done. |
| */ |
| if (h2c->st0 == H2_CS_FRAME_P) |
| return 0; |
| |
| |
| /* last frame */ |
| if (h2c->dff & H2_F_DATA_END_STREAM) { |
| h2s->st = H2_SS_HREM; |
| h2s->flags |= H2_SF_ES_RCVD; |
| h2s->cs->flags |= CS_FL_REOS; |
| } |
| |
| return 1; |
| |
| conn_err: |
| h2c_error(h2c, error); |
| return 0; |
| |
| strm_err: |
| if (h2s) { |
| h2s_error(h2s, error); |
| h2c->st0 = H2_CS_FRAME_E; |
| } |
| else |
| h2c_error(h2c, error); |
| return 0; |
| } |
| |
| /* process Rx frames to be demultiplexed */ |
| static void h2_process_demux(struct h2c *h2c) |
| { |
| struct h2s *h2s = NULL, *tmp_h2s; |
| |
| if (h2c->st0 >= H2_CS_ERROR) |
| return; |
| |
| if (unlikely(h2c->st0 < H2_CS_FRAME_H)) { |
| if (h2c->st0 == H2_CS_PREFACE) { |
| if (unlikely(h2c_frt_recv_preface(h2c) <= 0)) { |
| /* RFC7540#3.5: a GOAWAY frame MAY be omitted */ |
| if (h2c->st0 == H2_CS_ERROR) { |
| h2c->st0 = H2_CS_ERROR2; |
| sess_log(h2c->conn->owner); |
| } |
| goto fail; |
| } |
| |
| h2c->max_id = 0; |
| h2c->st0 = H2_CS_SETTINGS1; |
| } |
| |
| if (h2c->st0 == H2_CS_SETTINGS1) { |
| struct h2_fh hdr; |
| |
| /* ensure that what is pending is a valid SETTINGS frame |
| * without an ACK. |
| */ |
| if (!h2_get_frame_hdr(&h2c->dbuf, &hdr)) { |
| /* RFC7540#3.5: a GOAWAY frame MAY be omitted */ |
| if (h2c->st0 == H2_CS_ERROR) { |
| h2c->st0 = H2_CS_ERROR2; |
| sess_log(h2c->conn->owner); |
| } |
| goto fail; |
| } |
| |
| if (hdr.sid || hdr.ft != H2_FT_SETTINGS || hdr.ff & H2_F_SETTINGS_ACK) { |
| /* RFC7540#3.5: a GOAWAY frame MAY be omitted */ |
| h2c_error(h2c, H2_ERR_PROTOCOL_ERROR); |
| h2c->st0 = H2_CS_ERROR2; |
| sess_log(h2c->conn->owner); |
| goto fail; |
| } |
| |
| if ((int)hdr.len < 0 || (int)hdr.len > global.tune.bufsize) { |
| /* RFC7540#3.5: a GOAWAY frame MAY be omitted */ |
| h2c_error(h2c, H2_ERR_FRAME_SIZE_ERROR); |
| h2c->st0 = H2_CS_ERROR2; |
| sess_log(h2c->conn->owner); |
| goto fail; |
| } |
| |
| /* that's OK, switch to FRAME_P to process it */ |
| h2c->dfl = hdr.len; |
| h2c->dsi = hdr.sid; |
| h2c->dft = hdr.ft; |
| h2c->dff = hdr.ff; |
| h2c->dpl = 0; |
| h2c->st0 = H2_CS_FRAME_P; |
| } |
| } |
| |
| /* process as many incoming frames as possible below */ |
| while (b_data(&h2c->dbuf)) { |
| int ret = 0; |
| |
| if (h2c->st0 >= H2_CS_ERROR) |
| break; |
| |
| if (h2c->st0 == H2_CS_FRAME_H) { |
| struct h2_fh hdr; |
| |
| if (!h2_peek_frame_hdr(&h2c->dbuf, &hdr)) |
| break; |
| |
| if ((int)hdr.len < 0 || (int)hdr.len > global.tune.bufsize) { |
| h2c_error(h2c, H2_ERR_FRAME_SIZE_ERROR); |
| h2c->st0 = H2_CS_ERROR; |
| if (!h2c->nb_streams) { |
| /* only log if no other stream can report the error */ |
| sess_log(h2c->conn->owner); |
| } |
| break; |
| } |
| |
| h2c->dfl = hdr.len; |
| h2c->dsi = hdr.sid; |
| h2c->dft = hdr.ft; |
| h2c->dff = hdr.ff; |
| h2c->dpl = 0; |
| h2c->st0 = H2_CS_FRAME_P; |
| h2_skip_frame_hdr(&h2c->dbuf); |
| } |
| |
| /* Only H2_CS_FRAME_P and H2_CS_FRAME_A here */ |
| tmp_h2s = h2c_st_by_id(h2c, h2c->dsi); |
| |
| if (tmp_h2s != h2s && h2s && h2s->cs && b_data(&h2s->rxbuf)) { |
| /* we may have to signal the upper layers */ |
| h2s->cs->flags |= CS_FL_RCV_MORE; |
| if (h2s->recv_wait) { |
| h2s->recv_wait->wait_reason &= ~SUB_CAN_RECV; |
| tasklet_wakeup(h2s->recv_wait->task); |
| h2s->recv_wait = NULL; |
| } |
| } |
| h2s = tmp_h2s; |
| |
| if (h2c->st0 == H2_CS_FRAME_E) |
| goto strm_err; |
| |
| if (h2s->st == H2_SS_IDLE && |
| h2c->dft != H2_FT_HEADERS && h2c->dft != H2_FT_PRIORITY) { |
| /* RFC7540#5.1: any frame other than HEADERS or PRIORITY in |
| * this state MUST be treated as a connection error |
| */ |
| h2c_error(h2c, H2_ERR_PROTOCOL_ERROR); |
| h2c->st0 = H2_CS_ERROR; |
| if (!h2c->nb_streams) { |
| /* only log if no other stream can report the error */ |
| sess_log(h2c->conn->owner); |
| } |
| break; |
| } |
| |
| if (h2s->st == H2_SS_HREM && h2c->dft != H2_FT_WINDOW_UPDATE && |
| h2c->dft != H2_FT_RST_STREAM && h2c->dft != H2_FT_PRIORITY) { |
| /* RFC7540#5.1: any frame other than WU/PRIO/RST in |
| * this state MUST be treated as a stream error |
| */ |
| h2s_error(h2s, H2_ERR_STREAM_CLOSED); |
| goto strm_err; |
| } |
| |
| /* Below the management of frames received in closed state is a |
| * bit hackish because the spec makes strong differences between |
| * streams closed by receiving RST, sending RST, and seeing ES |
| * in both directions. In addition to this, the creation of a |
| * new stream reusing the identifier of a closed one will be |
| * detected here. Given that we cannot keep track of all closed |
| * streams forever, we consider that unknown closed streams were |
| * closed on RST received, which allows us to respond with an |
| * RST without breaking the connection (eg: to abort a transfer). |
| * Some frames have to be silently ignored as well. |
| */ |
| if (h2s->st == H2_SS_CLOSED && h2c->dsi) { |
| if (h2c->dft == H2_FT_HEADERS || h2c->dft == H2_FT_PUSH_PROMISE) { |
| /* #5.1.1: The identifier of a newly |
| * established stream MUST be numerically |
| * greater than all streams that the initiating |
| * endpoint has opened or reserved. This |
| * governs streams that are opened using a |
| * HEADERS frame and streams that are reserved |
| * using PUSH_PROMISE. An endpoint that |
| * receives an unexpected stream identifier |
| * MUST respond with a connection error. |
| */ |
| h2c_error(h2c, H2_ERR_STREAM_CLOSED); |
| goto strm_err; |
| } |
| |
| if (h2s->flags & H2_SF_RST_RCVD) { |
| /* RFC7540#5.1:closed: an endpoint that |
| * receives any frame other than PRIORITY after |
| * receiving a RST_STREAM MUST treat that as a |
| * stream error of type STREAM_CLOSED. |
| * |
| * Note that old streams fall into this category |
| * and will lead to an RST being sent. |
| */ |
| h2s_error(h2s, H2_ERR_STREAM_CLOSED); |
| h2c->st0 = H2_CS_FRAME_E; |
| goto strm_err; |
| } |
| |
| /* RFC7540#5.1:closed: if this state is reached as a |
| * result of sending a RST_STREAM frame, the peer that |
| * receives the RST_STREAM might have already sent |
| * frames on the stream that cannot be withdrawn. An |
| * endpoint MUST ignore frames that it receives on |
| * closed streams after it has sent a RST_STREAM |
| * frame. An endpoint MAY choose to limit the period |
| * over which it ignores frames and treat frames that |
| * arrive after this time as being in error. |
| */ |
| if (!(h2s->flags & H2_SF_RST_SENT)) { |
| /* RFC7540#5.1:closed: any frame other than |
| * PRIO/WU/RST in this state MUST be treated as |
| * a connection error |
| */ |
| if (h2c->dft != H2_FT_RST_STREAM && |
| h2c->dft != H2_FT_PRIORITY && |
| h2c->dft != H2_FT_WINDOW_UPDATE) { |
| h2c_error(h2c, H2_ERR_STREAM_CLOSED); |
| goto strm_err; |
| } |
| } |
| } |
| |
| #if 0 |
| // problem below: it is not possible to completely ignore such |
| // streams as we need to maintain the compression state as well |
| // and for this we need to completely process these frames (eg: |
| // HEADERS frames) as well as counting DATA frames to emit |
| // proper WINDOW UPDATES and ensure the connection doesn't stall. |
| // This is a typical case of layer violation where the |
| // transported contents are critical to the connection's |
| // validity and must be ignored at the same time :-( |
| |
| /* graceful shutdown, ignore streams whose ID is higher than |
| * the one advertised in GOAWAY. RFC7540#6.8. |
| */ |
| if (unlikely(h2c->last_sid >= 0) && h2c->dsi > h2c->last_sid) { |
| ret = MIN(b_data(&h2c->dbuf), h2c->dfl); |
| b_del(&h2c->dbuf, ret); |
| h2c->dfl -= ret; |
| ret = h2c->dfl == 0; |
| goto strm_err; |
| } |
| #endif |
| |
| switch (h2c->dft) { |
| case H2_FT_SETTINGS: |
| if (h2c->st0 == H2_CS_FRAME_P) |
| ret = h2c_handle_settings(h2c); |
| |
| if (h2c->st0 == H2_CS_FRAME_A) |
| ret = h2c_ack_settings(h2c); |
| break; |
| |
| case H2_FT_PING: |
| if (h2c->st0 == H2_CS_FRAME_P) |
| ret = h2c_handle_ping(h2c); |
| |
| if (h2c->st0 == H2_CS_FRAME_A) |
| ret = h2c_ack_ping(h2c); |
| break; |
| |
| case H2_FT_WINDOW_UPDATE: |
| if (h2c->st0 == H2_CS_FRAME_P) |
| ret = h2c_handle_window_update(h2c, h2s); |
| break; |
| |
| case H2_FT_CONTINUATION: |
| /* we currently don't support CONTINUATION frames since |
| * we have nowhere to store the partial HEADERS frame. |
| * Let's abort the stream on an INTERNAL_ERROR here. |
| */ |
| if (h2c->st0 == H2_CS_FRAME_P) { |
| h2s_error(h2s, H2_ERR_INTERNAL_ERROR); |
| h2c->st0 = H2_CS_FRAME_E; |
| } |
| break; |
| |
| case H2_FT_HEADERS: |
| if (h2c->st0 == H2_CS_FRAME_P) { |
| tmp_h2s = h2c_frt_handle_headers(h2c, h2s); |
| if (tmp_h2s) { |
| h2s = tmp_h2s; |
| ret = 1; |
| } |
| } |
| break; |
| |
| case H2_FT_DATA: |
| if (h2c->st0 == H2_CS_FRAME_P) |
| ret = h2c_frt_handle_data(h2c, h2s); |
| |
| if (h2c->st0 == H2_CS_FRAME_A) |
| ret = h2c_send_strm_wu(h2c); |
| break; |
| |
| case H2_FT_PRIORITY: |
| if (h2c->st0 == H2_CS_FRAME_P) |
| ret = h2c_handle_priority(h2c); |
| break; |
| |
| case H2_FT_RST_STREAM: |
| if (h2c->st0 == H2_CS_FRAME_P) |
| ret = h2c_handle_rst_stream(h2c, h2s); |
| break; |
| |
| case H2_FT_GOAWAY: |
| if (h2c->st0 == H2_CS_FRAME_P) |
| ret = h2c_handle_goaway(h2c); |
| break; |
| |
| case H2_FT_PUSH_PROMISE: |
| /* not permitted here, RFC7540#5.1 */ |
| h2c_error(h2c, H2_ERR_PROTOCOL_ERROR); |
| if (!h2c->nb_streams) { |
| /* only log if no other stream can report the error */ |
| sess_log(h2c->conn->owner); |
| } |
| break; |
| |
| /* implement all extra frame types here */ |
| default: |
| /* drop frames that we ignore. They may be larger than |
| * the buffer so we drain all of their contents until |
| * we reach the end. |
| */ |
| ret = MIN(b_data(&h2c->dbuf), h2c->dfl); |
| b_del(&h2c->dbuf, ret); |
| h2c->dfl -= ret; |
| ret = h2c->dfl == 0; |
| } |
| |
| strm_err: |
| /* We may have to send an RST if not done yet */ |
| if (h2s->st == H2_SS_ERROR) |
| h2c->st0 = H2_CS_FRAME_E; |
| |
| if (h2c->st0 == H2_CS_FRAME_E) |
| ret = h2c_send_rst_stream(h2c, h2s); |
| |
| /* error or missing data condition met above ? */ |
| if (ret <= 0) |
| break; |
| |
| if (h2c->st0 != H2_CS_FRAME_H) { |
| b_del(&h2c->dbuf, h2c->dfl); |
| h2c->st0 = H2_CS_FRAME_H; |
| } |
| } |
| |
| if (h2c->rcvd_c > 0 && |
| !(h2c->flags & (H2_CF_MUX_MFULL | H2_CF_DEM_MBUSY | H2_CF_DEM_MROOM))) |
| h2c_send_conn_wu(h2c); |
| |
| fail: |
| /* we can go here on missing data, blocked response or error */ |
| if (h2s && h2s->cs && b_data(&h2s->rxbuf)) { |
| /* we may have to signal the upper layers */ |
| h2s->cs->flags |= CS_FL_RCV_MORE; |
| if (h2s->recv_wait) { |
| h2s->recv_wait->wait_reason &= ~SUB_CAN_RECV; |
| tasklet_wakeup(h2s->recv_wait->task); |
| h2s->recv_wait = NULL; |
| } |
| } |
| |
| if (h2_recv_allowed(h2c)) |
| tasklet_wakeup(h2c->wait_event.task); |
| } |
| |
| /* process Tx frames from streams to be multiplexed. Returns > 0 if it reached |
| * the end. |
| */ |
| static int h2_process_mux(struct h2c *h2c) |
| { |
| struct h2s *h2s, *h2s_back; |
| |
| /* start by sending possibly pending window updates */ |
| if (h2c->rcvd_c > 0 && |
| !(h2c->flags & (H2_CF_MUX_MFULL | H2_CF_MUX_MALLOC)) && |
| h2c_send_conn_wu(h2c) < 0) |
| goto fail; |
| |
| /* First we always process the flow control list because the streams |
| * waiting there were already elected for immediate emission but were |
| * blocked just on this. |
| */ |
| |
| list_for_each_entry_safe(h2s, h2s_back, &h2c->fctl_list, list) { |
| if (h2c->mws <= 0 || h2c->flags & H2_CF_MUX_BLOCK_ANY || |
| h2c->st0 >= H2_CS_ERROR) |
| break; |
| |
| h2s->flags &= ~H2_SF_BLK_ANY; |
| h2s->send_wait->wait_reason &= ~SUB_CAN_SEND; |
| h2s->send_wait->wait_reason |= SUB_CALL_UNSUBSCRIBE; |
| tasklet_wakeup(h2s->send_wait->task); |
| LIST_DEL(&h2s->list); |
| LIST_INIT(&h2s->list); |
| LIST_ADDQ(&h2c->sending_list, &h2s->list); |
| } |
| |
| list_for_each_entry_safe(h2s, h2s_back, &h2c->send_list, list) { |
| if (h2c->st0 >= H2_CS_ERROR || h2c->flags & H2_CF_MUX_BLOCK_ANY) |
| break; |
| |
| h2s->flags &= ~H2_SF_BLK_ANY; |
| h2s->send_wait->wait_reason &= ~SUB_CAN_SEND; |
| h2s->send_wait->wait_reason |= SUB_CALL_UNSUBSCRIBE; |
| tasklet_wakeup(h2s->send_wait->task); |
| LIST_DEL(&h2s->list); |
| LIST_INIT(&h2s->list); |
| LIST_ADDQ(&h2c->sending_list, &h2s->list); |
| } |
| |
| fail: |
| if (unlikely(h2c->st0 >= H2_CS_ERROR)) { |
| if (h2c->st0 == H2_CS_ERROR) { |
| if (h2c->max_id >= 0) { |
| h2c_send_goaway_error(h2c, NULL); |
| if (h2c->flags & H2_CF_MUX_BLOCK_ANY) |
| return 0; |
| } |
| |
| h2c->st0 = H2_CS_ERROR2; // sent (or failed hard) ! |
| } |
| return 1; |
| } |
| return (h2c->mws <= 0 || LIST_ISEMPTY(&h2c->fctl_list)) && LIST_ISEMPTY(&h2c->send_list); |
| } |
| |
| |
| /* Attempt to read data, and subscribe if none available. |
| * The function returns 1 if data has been received, otherwise zero. |
| */ |
| static int h2_recv(struct h2c *h2c) |
| { |
| struct connection *conn = h2c->conn; |
| struct buffer *buf; |
| int max; |
| size_t ret; |
| |
| if (h2c->wait_event.wait_reason & SUB_CAN_RECV) |
| return (b_data(&h2c->dbuf)); |
| |
| if (!h2_recv_allowed(h2c)) |
| return 1; |
| |
| buf = h2_get_buf(h2c, &h2c->dbuf); |
| if (!buf) { |
| h2c->flags |= H2_CF_DEM_DALLOC; |
| return 0; |
| } |
| |
| do { |
| max = buf->size - b_data(buf); |
| if (max) |
| ret = conn->xprt->rcv_buf(conn, buf, max, 0); |
| else |
| ret = 0; |
| } while (ret > 0); |
| |
| if (h2_recv_allowed(h2c) && (b_data(buf) < buf->size)) |
| conn->xprt->subscribe(conn, SUB_CAN_RECV, &h2c->wait_event); |
| |
| if (!b_data(buf)) { |
| h2_release_buf(h2c, &h2c->dbuf); |
| return conn_xprt_read0_pending(conn); |
| } |
| |
| if (b_data(buf) == buf->size) |
| h2c->flags |= H2_CF_DEM_DFULL; |
| return 1; |
| } |
| |
| /* Try to send data if possible. |
| * The function returns 1 if data have been sent, otherwise zero. |
| */ |
| static int h2_send(struct h2c *h2c) |
| { |
| struct connection *conn = h2c->conn; |
| int done; |
| int sent = 0; |
| |
| if (conn->flags & CO_FL_ERROR) |
| return 1; |
| |
| |
| if (conn->flags & (CO_FL_HANDSHAKE|CO_FL_WAIT_L4_CONN|CO_FL_WAIT_L6_CONN)) { |
| /* a handshake was requested */ |
| goto schedule; |
| } |
| |
| /* This loop is quite simple : it tries to fill as much as it can from |
| * pending streams into the existing buffer until it's reportedly full |
| * or the end of send requests is reached. Then it tries to send this |
| * buffer's contents out, marks it not full if at least one byte could |
| * be sent, and tries again. |
| * |
| * The snd_buf() function normally takes a "flags" argument which may |
| * be made of a combination of CO_SFL_MSG_MORE to indicate that more |
| * data immediately comes and CO_SFL_STREAMER to indicate that the |
| * connection is streaming lots of data (used to increase TLS record |
| * size at the expense of latency). The former can be sent any time |
| * there's a buffer full flag, as it indicates at least one stream |
| * attempted to send and failed so there are pending data. An |
| * alternative would be to set it as long as there's an active stream |
| * but that would be problematic for ACKs until we have an absolute |
| * guarantee that all waiters have at least one byte to send. The |
| * latter should possibly not be set for now. |
| */ |
| |
| done = 0; |
| while (!done) { |
| unsigned int flags = 0; |
| |
| /* fill as much as we can into the current buffer */ |
| while (((h2c->flags & (H2_CF_MUX_MFULL|H2_CF_MUX_MALLOC)) == 0) && !done) |
| done = h2_process_mux(h2c); |
| |
| if (conn->flags & CO_FL_ERROR) |
| break; |
| |
| if (h2c->flags & (H2_CF_MUX_MFULL | H2_CF_DEM_MBUSY | H2_CF_DEM_MROOM)) |
| flags |= CO_SFL_MSG_MORE; |
| |
| if (b_data(&h2c->mbuf)) { |
| int ret = conn->xprt->snd_buf(conn, &h2c->mbuf, b_data(&h2c->mbuf), flags); |
| if (!ret) |
| break; |
| sent = 1; |
| b_del(&h2c->mbuf, ret); |
| b_realign_if_empty(&h2c->mbuf); |
| } |
| |
| /* wrote at least one byte, the buffer is not full anymore */ |
| h2c->flags &= ~(H2_CF_MUX_MFULL | H2_CF_DEM_MROOM); |
| } |
| |
| if (conn->flags & CO_FL_SOCK_WR_SH) { |
| /* output closed, nothing to send, clear the buffer to release it */ |
| b_reset(&h2c->mbuf); |
| } |
| /* We're not full anymore, so we can wake any task that are waiting |
| * for us. |
| */ |
| if (!(h2c->flags & (H2_CF_MUX_MFULL | H2_CF_DEM_MROOM))) { |
| while (!LIST_ISEMPTY(&h2c->send_list)) { |
| struct h2s *h2s = LIST_ELEM(h2c->send_list.n, |
| struct h2s *, list); |
| LIST_DEL(&h2s->list); |
| LIST_INIT(&h2s->list); |
| LIST_ADDQ(&h2c->sending_list, &h2s->list); |
| h2s->send_wait->wait_reason &= ~SUB_CAN_SEND; |
| h2s->send_wait->wait_reason |= SUB_CALL_UNSUBSCRIBE; |
| tasklet_wakeup(h2s->send_wait->task); |
| } |
| } |
| /* We're done, no more to send */ |
| if (!b_data(&h2c->mbuf)) |
| return sent; |
| schedule: |
| if (!(h2c->wait_event.wait_reason & SUB_CAN_SEND)) |
| conn->xprt->subscribe(conn, SUB_CAN_SEND, &h2c->wait_event); |
| return sent; |
| } |
| |
| static struct task *h2_io_cb(struct task *t, void *ctx, unsigned short status) |
| { |
| struct h2c *h2c = ctx; |
| int ret = 0; |
| |
| if (!(h2c->wait_event.wait_reason & SUB_CAN_SEND)) |
| ret = h2_send(h2c); |
| if (!(h2c->wait_event.wait_reason & SUB_CAN_RECV)) |
| ret |= h2_recv(h2c); |
| if (ret) |
| h2_process(h2c); |
| return NULL; |
| } |
| |
| /* callback called on any event by the connection handler. |
| * It applies changes and returns zero, or < 0 if it wants immediate |
| * destruction of the connection (which normally doesn not happen in h2). |
| */ |
| static int h2_process(struct h2c *h2c) |
| { |
| struct connection *conn = h2c->conn; |
| |
| if (b_data(&h2c->dbuf) && !(h2c->flags & H2_CF_DEM_BLOCK_ANY)) { |
| h2_process_demux(h2c); |
| |
| if (h2c->st0 >= H2_CS_ERROR || conn->flags & CO_FL_ERROR) |
| b_reset(&h2c->dbuf); |
| |
| if (!b_full(&h2c->dbuf)) |
| h2c->flags &= ~H2_CF_DEM_DFULL; |
| } |
| h2_send(h2c); |
| |
| if (unlikely(h2c->proxy->state == PR_STSTOPPED)) { |
| /* frontend is stopping, reload likely in progress, let's try |
| * to announce a graceful shutdown if not yet done. We don't |
| * care if it fails, it will be tried again later. |
| */ |
| if (!(h2c->flags & (H2_CF_GOAWAY_SENT|H2_CF_GOAWAY_FAILED))) { |
| if (h2c->last_sid < 0) |
| h2c->last_sid = (1U << 31) - 1; |
| h2c_send_goaway_error(h2c, NULL); |
| } |
| } |
| |
| /* |
| * If we received early data, and the handshake is done, wake |
| * any stream that was waiting for it. |
| */ |
| if (!(h2c->flags & H2_CF_WAIT_FOR_HS) && |
| (conn->flags & (CO_FL_EARLY_SSL_HS | CO_FL_HANDSHAKE | CO_FL_EARLY_DATA)) == CO_FL_EARLY_DATA) { |
| struct eb32_node *node; |
| struct h2s *h2s; |
| |
| h2c->flags |= H2_CF_WAIT_FOR_HS; |
| node = eb32_lookup_ge(&h2c->streams_by_id, 1); |
| |
| while (node) { |
| h2s = container_of(node, struct h2s, by_id); |
| if ((h2s->cs->flags & CS_FL_WAIT_FOR_HS) && |
| h2s->recv_wait) { |
| struct wait_event *sw = h2s->recv_wait; |
| sw->wait_reason &= ~SUB_CAN_RECV; |
| tasklet_wakeup(sw->task); |
| h2s->recv_wait = NULL; |
| } |
| node = eb32_next(node); |
| } |
| } |
| |
| if (conn->flags & CO_FL_ERROR || conn_xprt_read0_pending(conn) || |
| h2c->st0 == H2_CS_ERROR2 || h2c->flags & H2_CF_GOAWAY_FAILED || |
| (eb_is_empty(&h2c->streams_by_id) && h2c->last_sid >= 0 && |
| h2c->max_id >= h2c->last_sid)) { |
| h2_wake_some_streams(h2c, 0, 0); |
| |
| if (eb_is_empty(&h2c->streams_by_id)) { |
| /* no more stream, kill the connection now */ |
| h2_release(conn); |
| return -1; |
| } |
| } |
| |
| if (!b_data(&h2c->dbuf)) |
| h2_release_buf(h2c, &h2c->dbuf); |
| |
| if ((conn->flags & CO_FL_SOCK_WR_SH) || |
| h2c->st0 == H2_CS_ERROR2 || (h2c->flags & H2_CF_GOAWAY_FAILED) || |
| (h2c->st0 != H2_CS_ERROR && |
| !b_data(&h2c->mbuf) && |
| (h2c->mws <= 0 || LIST_ISEMPTY(&h2c->fctl_list)) && |
| ((h2c->flags & H2_CF_MUX_BLOCK_ANY) || LIST_ISEMPTY(&h2c->send_list)))) |
| h2_release_buf(h2c, &h2c->mbuf); |
| |
| if (h2c->task) { |
| if (eb_is_empty(&h2c->streams_by_id) || b_data(&h2c->mbuf)) { |
| h2c->task->expire = tick_add(now_ms, h2c->last_sid < 0 ? h2c->timeout : h2c->shut_timeout); |
| task_queue(h2c->task); |
| } |
| else |
| h2c->task->expire = TICK_ETERNITY; |
| } |
| |
| h2_send(h2c); |
| return 0; |
| } |
| |
| static int h2_wake(struct connection *conn) |
| { |
| struct h2c *h2c = conn->mux_ctx; |
| |
| return (h2_process(h2c)); |
| } |
| |
| /* Connection timeout management. The principle is that if there's no receipt |
| * nor sending for a certain amount of time, the connection is closed. If the |
| * MUX buffer still has lying data or is not allocatable, the connection is |
| * immediately killed. If it's allocatable and empty, we attempt to send a |
| * GOAWAY frame. |
| */ |
| static struct task *h2_timeout_task(struct task *t, void *context, unsigned short state) |
| { |
| struct h2c *h2c = context; |
| int expired = tick_is_expired(t->expire, now_ms); |
| |
| if (!expired && h2c) |
| return t; |
| |
| task_delete(t); |
| task_free(t); |
| |
| if (!h2c) { |
| /* resources were already deleted */ |
| return NULL; |
| } |
| |
| h2c->task = NULL; |
| h2c_error(h2c, H2_ERR_NO_ERROR); |
| h2_wake_some_streams(h2c, 0, 0); |
| |
| if (b_data(&h2c->mbuf)) { |
| /* don't even try to send a GOAWAY, the buffer is stuck */ |
| h2c->flags |= H2_CF_GOAWAY_FAILED; |
| } |
| |
| /* try to send but no need to insist */ |
| h2c->last_sid = h2c->max_id; |
| if (h2c_send_goaway_error(h2c, NULL) <= 0) |
| h2c->flags |= H2_CF_GOAWAY_FAILED; |
| |
| if (b_data(&h2c->mbuf) && !(h2c->flags & H2_CF_GOAWAY_FAILED) && conn_xprt_ready(h2c->conn)) { |
| int ret = h2c->conn->xprt->snd_buf(h2c->conn, &h2c->mbuf, b_data(&h2c->mbuf), 0); |
| if (ret > 0) { |
| b_del(&h2c->mbuf, ret); |
| b_realign_if_empty(&h2c->mbuf); |
| } |
| } |
| |
| /* either we can release everything now or it will be done later once |
| * the last stream closes. |
| */ |
| if (eb_is_empty(&h2c->streams_by_id)) |
| h2_release(h2c->conn); |
| |
| return NULL; |
| } |
| |
| |
| /*******************************************/ |
| /* functions below are used by the streams */ |
| /*******************************************/ |
| |
| /* |
| * Attach a new stream to a connection |
| * (Used for outgoing connections) |
| */ |
| static struct conn_stream *h2_attach(struct connection *conn) |
| { |
| return NULL; |
| } |
| |
| /* Retrieves the first valid conn_stream from this connection, or returns NULL. |
| * We have to scan because we may have some orphan streams. It might be |
| * beneficial to scan backwards from the end to reduce the likeliness to find |
| * orphans. |
| */ |
| static const struct conn_stream *h2_get_first_cs(const struct connection *conn) |
| { |
| struct h2c *h2c = conn->mux_ctx; |
| struct h2s *h2s; |
| struct eb32_node *node; |
| |
| node = eb32_first(&h2c->streams_by_id); |
| while (node) { |
| h2s = container_of(node, struct h2s, by_id); |
| if (h2s->cs) |
| return h2s->cs; |
| node = eb32_next(node); |
| } |
| return NULL; |
| } |
| |
| /* |
| * Destroy the mux and the associated connection, if it is no longer used |
| */ |
| static void h2_destroy(struct connection *conn) |
| { |
| struct h2c *h2c = conn->mux_ctx; |
| |
| if (eb_is_empty(&h2c->streams_by_id)) |
| h2_release(h2c->conn); |
| } |
| |
| /* |
| * Detach the stream from the connection and possibly release the connection. |
| */ |
| static void h2_detach(struct conn_stream *cs) |
| { |
| struct h2s *h2s = cs->ctx; |
| struct h2c *h2c; |
| |
| cs->ctx = NULL; |
| if (!h2s) |
| return; |
| |
| h2c = h2s->h2c; |
| h2s->cs = NULL; |
| h2c->nb_cs--; |
| if (h2c->flags & H2_CF_DEM_TOOMANY && |
| !h2_has_too_many_cs(h2c)) { |
| h2c->flags &= ~H2_CF_DEM_TOOMANY; |
| if (h2_recv_allowed(h2c)) |
| tasklet_wakeup(h2c->wait_event.task); |
| } |
| |
| /* this stream may be blocked waiting for some data to leave (possibly |
| * an ES or RST frame), so orphan it in this case. |
| */ |
| if (!(cs->conn->flags & CO_FL_ERROR) && |
| (h2c->st0 < H2_CS_ERROR) && |
| (h2s->flags & (H2_SF_BLK_MBUSY | H2_SF_BLK_MROOM | H2_SF_BLK_MFCTL))) |
| return; |
| |
| if ((h2c->flags & H2_CF_DEM_BLOCK_ANY && h2s->id == h2c->dsi) || |
| (h2c->flags & H2_CF_MUX_BLOCK_ANY && h2s->id == h2c->msi)) { |
| /* unblock the connection if it was blocked on this |
| * stream. |
| */ |
| h2c->flags &= ~H2_CF_DEM_BLOCK_ANY; |
| h2c->flags &= ~H2_CF_MUX_BLOCK_ANY; |
| tasklet_wakeup(h2c->wait_event.task); |
| } |
| |
| h2s_destroy(h2s); |
| |
| /* We don't want to close right now unless we're removing the |
| * last stream, and either the connection is in error, or it |
| * reached the ID already specified in a GOAWAY frame received |
| * or sent (as seen by last_sid >= 0). |
| */ |
| if (eb_is_empty(&h2c->streams_by_id) && /* don't close if streams exist */ |
| ((h2c->conn->flags & CO_FL_ERROR) || /* errors close immediately */ |
| (h2c->st0 >= H2_CS_ERROR && !h2c->task) || /* a timeout stroke earlier */ |
| (h2c->flags & (H2_CF_GOAWAY_FAILED | H2_CF_GOAWAY_SENT)) || |
| (!b_data(&h2c->mbuf) && /* mux buffer empty, also process clean events below */ |
| (conn_xprt_read0_pending(h2c->conn) || |
| (h2c->last_sid >= 0 && h2c->max_id >= h2c->last_sid))))) { |
| /* no more stream will come, kill it now */ |
| h2_release(h2c->conn); |
| } |
| else if (h2c->task) { |
| if (eb_is_empty(&h2c->streams_by_id) || b_data(&h2c->mbuf)) { |
| h2c->task->expire = tick_add(now_ms, h2c->last_sid < 0 ? h2c->timeout : h2c->shut_timeout); |
| task_queue(h2c->task); |
| } |
| else |
| h2c->task->expire = TICK_ETERNITY; |
| } |
| } |
| |
| static void h2_do_shutr(struct h2s *h2s) |
| { |
| struct h2c *h2c = h2s->h2c; |
| struct wait_event *sw = &h2s->wait_event; |
| |
| if (h2s->st == H2_SS_HLOC || h2s->st == H2_SS_ERROR || h2s->st == H2_SS_CLOSED) |
| return; |
| |
| /* if no outgoing data was seen on this stream, it means it was |
| * closed with a "tcp-request content" rule that is normally |
| * used to kill the connection ASAP (eg: limit abuse). In this |
| * case we send a goaway to close the connection. |
| */ |
| if (!(h2s->flags & H2_SF_RST_SENT) && |
| h2s_send_rst_stream(h2c, h2s) <= 0) |
| goto add_to_list; |
| |
| if (!(h2s->flags & H2_SF_OUTGOING_DATA) && |
| !(h2s->h2c->flags & (H2_CF_GOAWAY_SENT|H2_CF_GOAWAY_FAILED)) && |
| h2c_send_goaway_error(h2c, h2s) <= 0) |
| return; |
| |
| h2s_close(h2s); |
| |
| return; |
| add_to_list: |
| if (LIST_ISEMPTY(&h2s->list)) { |
| sw->wait_reason |= SUB_CAN_SEND; |
| if (h2s->flags & H2_SF_BLK_MFCTL) { |
| LIST_ADDQ(&h2c->fctl_list, &h2s->list); |
| h2s->send_wait = sw; |
| } else if (h2s->flags & (H2_SF_BLK_MBUSY|H2_SF_BLK_MROOM)) { |
| h2s->send_wait = sw; |
| LIST_ADDQ(&h2c->send_list, &h2s->list); |
| } |
| } |
| /* Let the handler know we want shutr */ |
| sw->handle = (void *)((long)sw->handle | 1); |
| |
| } |
| |
| static void h2_do_shutw(struct h2s *h2s) |
| { |
| struct h2c *h2c = h2s->h2c; |
| struct wait_event *sw = &h2s->wait_event; |
| |
| if (h2s->st == H2_SS_HLOC || h2s->st == H2_SS_ERROR || h2s->st == H2_SS_CLOSED) |
| return; |
| |
| if (h2s->flags & H2_SF_HEADERS_SENT) { |
| /* we can cleanly close using an empty data frame only after headers */ |
| |
| if (!(h2s->flags & (H2_SF_ES_SENT|H2_SF_RST_SENT)) && |
| h2_send_empty_data_es(h2s) <= 0) |
| goto add_to_list; |
| |
| if (h2s->st == H2_SS_HREM) |
| h2s_close(h2s); |
| else |
| h2s->st = H2_SS_HLOC; |
| } else { |
| /* if no outgoing data was seen on this stream, it means it was |
| * closed with a "tcp-request content" rule that is normally |
| * used to kill the connection ASAP (eg: limit abuse). In this |
| * case we send a goaway to close the connection. |
| */ |
| if (!(h2s->flags & H2_SF_RST_SENT) && |
| h2s_send_rst_stream(h2c, h2s) <= 0) |
| goto add_to_list; |
| |
| if (!(h2s->flags & H2_SF_OUTGOING_DATA) && |
| !(h2s->h2c->flags & (H2_CF_GOAWAY_SENT|H2_CF_GOAWAY_FAILED)) && |
| h2c_send_goaway_error(h2c, h2s) <= 0) |
| goto add_to_list; |
| |
| h2s_close(h2s); |
| } |
| |
| |
| add_to_list: |
| if (LIST_ISEMPTY(&h2s->list)) { |
| sw->wait_reason |= SUB_CAN_SEND; |
| if (h2s->flags & H2_SF_BLK_MFCTL) { |
| LIST_ADDQ(&h2c->fctl_list, &h2s->list); |
| h2s->send_wait = sw; |
| } else if (h2s->flags & (H2_SF_BLK_MBUSY|H2_SF_BLK_MROOM)) { |
| h2s->send_wait = sw; |
| LIST_ADDQ(&h2c->send_list, &h2s->list); |
| } |
| } |
| /* let the handler know we want to shutw */ |
| sw->handle = (void *)((long)(sw->handle) | 2); |
| |
| } |
| |
| static struct task *h2_deferred_shut(struct task *t, void *ctx, unsigned short state) |
| { |
| struct h2s *h2s = ctx; |
| long reason = (long)h2s->wait_event.handle; |
| |
| if (reason & 1) |
| h2_do_shutr(h2s); |
| if (reason & 2) |
| h2_do_shutw(h2s); |
| |
| return NULL; |
| } |
| |
| static void h2_shutr(struct conn_stream *cs, enum cs_shr_mode mode) |
| { |
| struct h2s *h2s = cs->ctx; |
| |
| if (!mode) |
| return; |
| |
| h2_do_shutr(h2s); |
| } |
| |
| static void h2_shutw(struct conn_stream *cs, enum cs_shw_mode mode) |
| { |
| struct h2s *h2s = cs->ctx; |
| |
| h2_do_shutw(h2s); |
| } |
| |
| /* Decode the payload of a HEADERS frame and produce the equivalent HTTP/1 |
| * request. Returns the number of bytes emitted if > 0, or 0 if it couldn't |
| * proceed. Stream errors are reported in h2s->errcode and connection errors |
| * in h2c->errcode. |
| */ |
| static int h2_frt_decode_headers(struct h2s *h2s) |
| { |
| struct h2c *h2c = h2s->h2c; |
| const uint8_t *hdrs = (uint8_t *)b_head(&h2c->dbuf); |
| struct buffer *tmp = get_trash_chunk(); |
| struct http_hdr list[MAX_HTTP_HDR * 2]; |
| struct buffer *copy = NULL; |
| unsigned int msgf; |
| struct buffer *csbuf; |
| int flen = h2c->dfl; |
| int outlen = 0; |
| int wrap; |
| int try; |
| |
| if (!h2c->dfl) { |
| h2s_error(h2s, H2_ERR_PROTOCOL_ERROR); // empty headers frame! |
| h2c->st0 = H2_CS_FRAME_E; |
| return 0; |
| } |
| |
| if (b_data(&h2c->dbuf) < h2c->dfl && !b_full(&h2c->dbuf)) |
| return 0; // incomplete input frame |
| |
| /* if the input buffer wraps, take a temporary copy of it (rare) */ |
| wrap = b_wrap(&h2c->dbuf) - b_head(&h2c->dbuf); |
| if (wrap < h2c->dfl) { |
| copy = alloc_trash_chunk(); |
| if (!copy) { |
| h2c_error(h2c, H2_ERR_INTERNAL_ERROR); |
| goto fail; |
| } |
| memcpy(copy->area, b_head(&h2c->dbuf), wrap); |
| memcpy(copy->area + wrap, b_orig(&h2c->dbuf), h2c->dfl - wrap); |
| hdrs = (uint8_t *) copy->area; |
| } |
| |
| /* The padlen is the first byte before data, and the padding appears |
| * after data. padlen+data+padding are included in flen. |
| */ |
| if (h2c->dff & H2_F_HEADERS_PADDED) { |
| h2c->dpl = *hdrs; |
| if (h2c->dpl >= flen) { |
| /* RFC7540#6.2 : pad length = length of frame payload or greater */ |
| h2c_error(h2c, H2_ERR_PROTOCOL_ERROR); |
| goto fail; |
| } |
| flen -= h2c->dpl + 1; |
| hdrs += 1; // skip Pad Length |
| } |
| |
| /* Skip StreamDep and weight for now (we don't support PRIORITY) */ |
| if (h2c->dff & H2_F_HEADERS_PRIORITY) { |
| if (read_n32(hdrs) == h2s->id) { |
| /* RFC7540#5.3.1 : stream dep may not depend on itself */ |
| h2c_error(h2c, H2_ERR_PROTOCOL_ERROR); |
| goto fail; |
| } |
| |
| hdrs += 5; // stream dep = 4, weight = 1 |
| flen -= 5; |
| } |
| |
| /* FIXME: lack of END_HEADERS means there's a continuation frame, we |
| * don't support this for now and can't even decompress so we have to |
| * break the connection. |
| */ |
| if (!(h2c->dff & H2_F_HEADERS_END_HEADERS)) { |
| h2c_error(h2c, H2_ERR_INTERNAL_ERROR); |
| goto fail; |
| } |
| |
| csbuf = h2_get_buf(h2c, &h2s->rxbuf); |
| if (!csbuf) { |
| h2c->flags |= H2_CF_DEM_SALLOC; |
| goto fail; |
| } |
| |
| /* we can't retry a failed decompression operation so we must be very |
| * careful not to take any risks. In practice the output buffer is |
| * always empty except maybe for trailers, in which case we simply have |
| * to wait for the upper layer to finish consuming what is available. |
| */ |
| if (b_data(csbuf)) |
| goto fail; |
| |
| csbuf->head = 0; |
| try = b_size(csbuf); |
| |
| outlen = hpack_decode_frame(h2c->ddht, hdrs, flen, list, |
| sizeof(list)/sizeof(list[0]), tmp); |
| if (outlen < 0) { |
| h2c_error(h2c, H2_ERR_COMPRESSION_ERROR); |
| goto fail; |
| } |
| |
| /* OK now we have our header list in <list> */ |
| msgf = (h2c->dff & H2_F_DATA_END_STREAM) ? 0 : H2_MSGF_BODY; |
| outlen = h2_make_h1_request(list, b_tail(csbuf), try, &msgf); |
| |
| if (outlen < 0) { |
| h2c_error(h2c, H2_ERR_COMPRESSION_ERROR); |
| goto fail; |
| } |
| |
| if (msgf & H2_MSGF_BODY) { |
| /* a payload is present */ |
| if (msgf & H2_MSGF_BODY_CL) |
| h2s->flags |= H2_SF_DATA_CLEN; |
| else if (!(msgf & H2_MSGF_BODY_TUNNEL)) |
| h2s->flags |= H2_SF_DATA_CHNK; |
| } |
| |
| /* now consume the input data */ |
| b_del(&h2c->dbuf, h2c->dfl); |
| h2c->st0 = H2_CS_FRAME_H; |
| b_add(csbuf, outlen); |
| |
| if (h2c->dff & H2_F_HEADERS_END_STREAM) { |
| h2s->flags |= H2_SF_ES_RCVD; |
| h2s->cs->flags |= CS_FL_REOS; |
| } |
| |
| leave: |
| free_trash_chunk(copy); |
| return outlen; |
| fail: |
| outlen = 0; |
| goto leave; |
| } |
| |
| /* Transfer the payload of a DATA frame to the HTTP/1 side. When content-length |
| * or a tunnel is used, the contents are copied as-is. When chunked encoding is |
| * in use, a new chunk is emitted for each frame. This is supposed to fit |
| * because the smallest chunk takes 1 byte for the size, 2 for CRLF, X for the |
| * data, 2 for the extra CRLF, so that's 5+X, while on the H2 side the smallest |
| * frame will be 9+X bytes based on the same buffer size. The HTTP/2 frame |
| * parser state is automatically updated. Returns the number of bytes emitted |
| * if > 0, or 0 if it couldn't proceed, in which case CS_FL_RCV_MORE must be |
| * checked to know if some data remain pending (an empty DATA frame can return |
| * 0 as a valid result). Stream errors are reported in h2s->errcode and |
| * connection errors in h2c->errcode. The caller must already have checked the |
| * frame header and ensured that the frame was complete or the buffer full. It |
| * changes the frame state to FRAME_A once done. |
| */ |
| static int h2_frt_transfer_data(struct h2s *h2s) |
| { |
| struct h2c *h2c = h2s->h2c; |
| int block1, block2; |
| unsigned int flen = 0; |
| unsigned int chklen = 0; |
| struct buffer *csbuf; |
| |
| h2c->flags &= ~H2_CF_DEM_SFULL; |
| |
| /* The padlen is the first byte before data, and the padding appears |
| * after data. padlen+data+padding are included in flen. |
| */ |
| if (h2c->dff & H2_F_DATA_PADDED) { |
| if (b_data(&h2c->dbuf) < 1) |
| return 0; |
| |
| h2c->dpl = *(uint8_t *)b_head(&h2c->dbuf); |
| if (h2c->dpl >= h2c->dfl) { |
| /* RFC7540#6.1 : pad length = length of frame payload or greater */ |
| h2c_error(h2c, H2_ERR_PROTOCOL_ERROR); |
| return 0; |
| } |
| |
| /* skip the padlen byte */ |
| b_del(&h2c->dbuf, 1); |
| h2c->dfl--; |
| h2c->rcvd_c++; h2c->rcvd_s++; |
| h2c->dff &= ~H2_F_DATA_PADDED; |
| } |
| |
| csbuf = h2_get_buf(h2c, &h2s->rxbuf); |
| if (!csbuf) { |
| h2c->flags |= H2_CF_DEM_SALLOC; |
| goto fail; |
| } |
| |
| flen = h2c->dfl - h2c->dpl; |
| if (!flen) |
| goto end_transfer; |
| |
| if (flen > b_data(&h2c->dbuf)) { |
| flen = b_data(&h2c->dbuf); |
| if (!flen) |
| goto fail; |
| } |
| |
| if (unlikely(b_space_wraps(csbuf))) { |
| /* it doesn't fit and the buffer is fragmented, |
| * so let's defragment it and try again. |
| */ |
| b_slow_realign(csbuf, trash.area, 0); |
| } |
| |
| /* chunked-encoding requires more room */ |
| if (h2s->flags & H2_SF_DATA_CHNK) { |
| chklen = MIN(flen, b_room(csbuf)); |
| chklen = (chklen < 16) ? 1 : (chklen < 256) ? 2 : |
| (chklen < 4096) ? 3 : (chklen < 65536) ? 4 : |
| (chklen < 1048576) ? 4 : 8; |
| chklen += 4; // CRLF, CRLF |
| } |
| |
| /* does it fit in output buffer or should we wait ? */ |
| if (flen + chklen > b_room(csbuf)) { |
| if (chklen >= b_room(csbuf)) { |
| h2c->flags |= H2_CF_DEM_SFULL; |
| goto fail; |
| } |
| flen = b_room(csbuf) - chklen; |
| } |
| |
| if (h2s->flags & H2_SF_DATA_CHNK) { |
| /* emit the chunk size */ |
| unsigned int chksz = flen; |
| char str[10]; |
| char *beg; |
| |
| beg = str + sizeof(str); |
| *--beg = '\n'; |
| *--beg = '\r'; |
| do { |
| *--beg = hextab[chksz & 0xF]; |
| } while (chksz >>= 4); |
| b_putblk(csbuf, beg, str + sizeof(str) - beg); |
| } |
| |
| /* Block1 is the length of the first block before the buffer wraps, |
| * block2 is the optional second block to reach the end of the frame. |
| */ |
| block1 = b_contig_data(&h2c->dbuf, 0); |
| if (block1 > flen) |
| block1 = flen; |
| block2 = flen - block1; |
| |
| if (block1) |
| b_putblk(csbuf, b_head(&h2c->dbuf), block1); |
| |
| if (block2) |
| b_putblk(csbuf, b_peek(&h2c->dbuf, block1), block2); |
| |
| if (h2s->flags & H2_SF_DATA_CHNK) { |
| /* emit the CRLF */ |
| b_putblk(csbuf, "\r\n", 2); |
| } |
| |
| /* now mark the input data as consumed (will be deleted from the buffer |
| * by the caller when seeing FRAME_A after sending the window update). |
| */ |
| b_del(&h2c->dbuf, flen); |
| h2c->dfl -= flen; |
| h2c->rcvd_c += flen; |
| h2c->rcvd_s += flen; // warning, this can also affect the closed streams! |
| |
| if (h2c->dfl > h2c->dpl) { |
| /* more data available, transfer stalled on stream full */ |
| h2c->flags |= H2_CF_DEM_SFULL; |
| goto fail; |
| } |
| |
| end_transfer: |
| /* here we're done with the frame, all the payload (except padding) was |
| * transferred. |
| */ |
| |
| if (h2c->dff & H2_F_DATA_END_STREAM && h2s->flags & H2_SF_DATA_CHNK) { |
| /* emit the trailing 0 CRLF CRLF */ |
| if (b_room(csbuf) < 5) { |
| h2c->flags |= H2_CF_DEM_SFULL; |
| goto fail; |
| } |
| chklen += 5; |
| b_putblk(csbuf, "0\r\n\r\n", 5); |
| } |
| |
| h2c->rcvd_c += h2c->dpl; |
| h2c->rcvd_s += h2c->dpl; |
| h2c->dpl = 0; |
| h2c->st0 = H2_CS_FRAME_A; // send the corresponding window update |
| |
| if (h2c->dff & H2_F_DATA_END_STREAM) { |
| h2s->flags |= H2_SF_ES_RCVD; |
| h2s->cs->flags |= CS_FL_REOS; |
| } |
| |
| return flen + chklen; |
| fail: |
| return 0; |
| } |
| |
| /* Try to send a HEADERS frame matching HTTP/1 response present at offset <ofs> |
| * and for <max> bytes in buffer <buf> for the H2 stream <h2s>. Returns the |
| * number of bytes sent. The caller must check the stream's status to detect |
| * any error which might have happened subsequently to a successful send. |
| */ |
| static size_t h2s_frt_make_resp_headers(struct h2s *h2s, const struct buffer *buf, size_t ofs, size_t max) |
| { |
| struct http_hdr list[MAX_HTTP_HDR]; |
| struct h2c *h2c = h2s->h2c; |
| struct h1m *h1m = &h2s->h1m; |
| struct buffer outbuf; |
| union h1_sl sl; |
| int es_now = 0; |
| int ret = 0; |
| int hdr; |
| |
| if (h2c_mux_busy(h2c, h2s)) { |
| h2s->flags |= H2_SF_BLK_MBUSY; |
| return 0; |
| } |
| |
| if (!h2_get_buf(h2c, &h2c->mbuf)) { |
| h2c->flags |= H2_CF_MUX_MALLOC; |
| h2s->flags |= H2_SF_BLK_MROOM; |
| return 0; |
| } |
| |
| /* First, try to parse the H1 response and index it into <list>. |
| * NOTE! Since it comes from haproxy, we *know* that a response header |
| * block does not wrap and we can safely read it this way without |
| * having to realign the buffer. |
| */ |
| ret = h1_headers_to_hdr_list(b_peek(buf, ofs), b_peek(buf, ofs) + max, |
| list, sizeof(list)/sizeof(list[0]), h1m, &sl); |
| if (ret <= 0) { |
| /* incomplete or invalid response, this is abnormal coming from |
| * haproxy and may only result in a bad errorfile or bad Lua code |
| * so that won't be fixed, raise an error now. |
| * |
| * FIXME: we should instead add the ability to only return a |
| * 502 bad gateway. But in theory this is not supposed to |
| * happen. |
| */ |
| h2s_error(h2s, H2_ERR_INTERNAL_ERROR); |
| ret = 0; |
| goto end; |
| } |
| |
| h2s->status = sl.st.status; |
| |
| /* certain statuses have no body or an empty one, regardless of |
| * what the headers say. |
| */ |
| if (sl.st.status >= 100 && sl.st.status < 200) { |
| h1m->flags &= ~(H1_MF_CLEN | H1_MF_CHNK); |
| h1m->curr_len = h1m->body_len = 0; |
| } |
| else if (sl.st.status == 204 || sl.st.status == 304) { |
| /* no contents, claim c-len is present and set to zero */ |
| h1m->flags &= ~H1_MF_CHNK; |
| h1m->flags |= H1_MF_CLEN; |
| h1m->curr_len = h1m->body_len = 0; |
| } |
| |
| chunk_reset(&outbuf); |
| |
| while (1) { |
| outbuf.area = b_tail(&h2c->mbuf); |
| outbuf.size = b_contig_space(&h2c->mbuf); |
| outbuf.data = 0; |
| |
| if (outbuf.size >= 9 || !b_space_wraps(&h2c->mbuf)) |
| break; |
| realign_again: |
| b_slow_realign(&h2c->mbuf, trash.area, b_data(&h2c->mbuf)); |
| } |
| |
| if (outbuf.size < 9) |
| goto full; |
| |
| /* len: 0x000000 (fill later), type: 1(HEADERS), flags: ENDH=4 */ |
| memcpy(outbuf.area, "\x00\x00\x00\x01\x04", 5); |
| write_n32(outbuf.area + 5, h2s->id); // 4 bytes |
| outbuf.data = 9; |
| |
| /* encode status, which necessarily is the first one */ |
| if (outbuf.data < outbuf.size && h2s->status == 200) |
| outbuf.area[outbuf.data++] = 0x88; // indexed field : idx[08]=(":status", "200") |
| else if (outbuf.data < outbuf.size && h2s->status == 304) |
| outbuf.area[outbuf.data++] = 0x8b; // indexed field : idx[11]=(":status", "304") |
| else if (unlikely(list[0].v.len != 3)) { |
| /* this is an unparsable response */ |
| h2s_error(h2s, H2_ERR_INTERNAL_ERROR); |
| ret = 0; |
| goto end; |
| } |
| else if (unlikely(outbuf.data + 2 + 3 <= outbuf.size)) { |
| /* basic encoding of the status code */ |
| outbuf.area[outbuf.data++] = 0x48; // indexed name -- name=":status" (idx 8) |
| outbuf.area[outbuf.data++] = 0x03; // 3 bytes status |
| outbuf.area[outbuf.data++] = list[0].v.ptr[0]; |
| outbuf.area[outbuf.data++] = list[0].v.ptr[1]; |
| outbuf.area[outbuf.data++] = list[0].v.ptr[2]; |
| } |
| else { |
| if (b_space_wraps(&h2c->mbuf)) |
| goto realign_again; |
| goto full; |
| } |
| |
| /* encode all headers, stop at empty name */ |
| for (hdr = 1; hdr < sizeof(list)/sizeof(list[0]); hdr++) { |
| /* these ones do not exist in H2 and must be dropped. */ |
| if (isteq(list[hdr].n, ist("connection")) || |
| isteq(list[hdr].n, ist("proxy-connection")) || |
| isteq(list[hdr].n, ist("keep-alive")) || |
| isteq(list[hdr].n, ist("upgrade")) || |
| isteq(list[hdr].n, ist("transfer-encoding"))) |
| continue; |
| |
| if (isteq(list[hdr].n, ist(""))) |
| break; // end |
| |
| if (!hpack_encode_header(&outbuf, list[hdr].n, list[hdr].v)) { |
| /* output full */ |
| if (b_space_wraps(&h2c->mbuf)) |
| goto realign_again; |
| goto full; |
| } |
| } |
| |
| /* we may need to add END_STREAM */ |
| if (((h1m->flags & H1_MF_CLEN) && !h1m->body_len) || h2s->cs->flags & CS_FL_SHW) |
| es_now = 1; |
| |
| /* update the frame's size */ |
| h2_set_frame_size(outbuf.area, outbuf.data - 9); |
| |
| if (es_now) |
| outbuf.area[4] |= H2_F_HEADERS_END_STREAM; |
| |
| /* consume incoming H1 response */ |
| max -= ret; |
| |
| /* commit the H2 response */ |
| b_add(&h2c->mbuf, outbuf.data); |
| h2s->flags |= H2_SF_HEADERS_SENT; |
| |
| /* for now we don't implemented CONTINUATION, so we wait for a |
| * body or directly end in TRL2. |
| */ |
| if (es_now) { |
| // trim any possibly pending data (eg: inconsistent content-length) |
| ret += max; |
| |
| h1m->state = H1_MSG_DONE; |
| h2s->flags |= H2_SF_ES_SENT; |
| if (h2s->st == H2_SS_OPEN) |
| h2s->st = H2_SS_HLOC; |
| else |
| h2s_close(h2s); |
| } |
| else if (h2s->status >= 100 && h2s->status < 200) { |
| /* we'll let the caller check if it has more headers to send */ |
| h1m_init_res(h1m); |
| h1m->err_pos = -1; // don't care about errors on the response path |
| h2s->h1m.flags |= H1_MF_TOLOWER; |
| goto end; |
| } |
| |
| /* now the h1m state is either H1_MSG_CHUNK_SIZE or H1_MSG_DATA */ |
| |
| end: |
| //fprintf(stderr, "[%d] sent simple H2 response (sid=%d) = %d bytes (%d in, ep=%u, es=%s)\n", h2c->st0, h2s->id, outbuf.len, ret, h1m->err_pos, h1m_state_str(h1m->err_state)); |
| return ret; |
| full: |
| h1m_init_res(h1m); |
| h1m->err_pos = -1; // don't care about errors on the response path |
| h2c->flags |= H2_CF_MUX_MFULL; |
| h2s->flags |= H2_SF_BLK_MROOM; |
| ret = 0; |
| goto end; |
| } |
| |
| /* Try to send a DATA frame matching HTTP/1 response present at offset <ofs> |
| * for up to <max> bytes in response buffer <buf>, for stream <h2s>. Returns |
| * the number of bytes sent. The caller must check the stream's status to |
| * detect any error which might have happened subsequently to a successful send. |
| */ |
| static size_t h2s_frt_make_resp_data(struct h2s *h2s, const struct buffer *buf, size_t ofs, size_t max) |
| { |
| struct h2c *h2c = h2s->h2c; |
| struct h1m *h1m = &h2s->h1m; |
| struct buffer outbuf; |
| int ret = 0; |
| size_t total = 0; |
| int es_now = 0; |
| int size = 0; |
| const char *blk1, *blk2; |
| size_t len1, len2; |
| |
| if (h2c_mux_busy(h2c, h2s)) { |
| h2s->flags |= H2_SF_BLK_MBUSY; |
| goto end; |
| } |
| |
| if (!h2_get_buf(h2c, &h2c->mbuf)) { |
| h2c->flags |= H2_CF_MUX_MALLOC; |
| h2s->flags |= H2_SF_BLK_MROOM; |
| goto end; |
| } |
| |
| new_frame: |
| if (!max) |
| goto end; |
| |
| chunk_reset(&outbuf); |
| |
| while (1) { |
| outbuf.area = b_tail(&h2c->mbuf); |
| outbuf.size = b_contig_space(&h2c->mbuf); |
| outbuf.data = 0; |
| |
| if (outbuf.size >= 9 || !b_space_wraps(&h2c->mbuf)) |
| break; |
| realign_again: |
| b_slow_realign(&h2c->mbuf, trash.area, b_data(&h2c->mbuf)); |
| } |
| |
| if (outbuf.size < 9) { |
| h2c->flags |= H2_CF_MUX_MFULL; |
| h2s->flags |= H2_SF_BLK_MROOM; |
| goto end; |
| } |
| |
| /* len: 0x000000 (fill later), type: 0(DATA), flags: none=0 */ |
| memcpy(outbuf.area, "\x00\x00\x00\x00\x00", 5); |
| write_n32(outbuf.area + 5, h2s->id); // 4 bytes |
| outbuf.data = 9; |
| |
| switch (h1m->flags & (H1_MF_CLEN|H1_MF_CHNK)) { |
| case 0: /* no content length, read till SHUTW */ |
| size = max; |
| h1m->curr_len = size; |
| break; |
| case H1_MF_CLEN: /* content-length: read only h2m->body_len */ |
| size = max; |
| if ((long long)size > h1m->curr_len) |
| size = h1m->curr_len; |
| break; |
| default: /* te:chunked : parse chunks */ |
| if (h1m->state == H1_MSG_CHUNK_CRLF) { |
| ret = h1_skip_chunk_crlf(buf, ofs, ofs + max); |
| if (!ret) |
| goto end; |
| |
| if (ret < 0) { |
| /* FIXME: bad contents. how to proceed here when we're in H2 ? */ |
| h1m->err_pos = ofs + max + ret; |
| h2s_error(h2s, H2_ERR_INTERNAL_ERROR); |
| goto end; |
| } |
| max -= ret; |
| ofs += ret; |
| total += ret; |
| h1m->state = H1_MSG_CHUNK_SIZE; |
| } |
| |
| if (h1m->state == H1_MSG_CHUNK_SIZE) { |
| unsigned int chunk; |
| ret = h1_parse_chunk_size(buf, ofs, ofs + max, &chunk); |
| if (!ret) |
| goto end; |
| |
| if (ret < 0) { |
| /* FIXME: bad contents. how to proceed here when we're in H2 ? */ |
| h1m->err_pos = ofs + max + ret; |
| h2s_error(h2s, H2_ERR_INTERNAL_ERROR); |
| goto end; |
| } |
| |
| size = chunk; |
| h1m->curr_len = chunk; |
| h1m->body_len += chunk; |
| max -= ret; |
| ofs += ret; |
| total += ret; |
| h1m->state = size ? H1_MSG_DATA : H1_MSG_TRAILERS; |
| if (!size) |
| goto send_empty; |
| } |
| |
| /* in MSG_DATA state, continue below */ |
| size = h1m->curr_len; |
| break; |
| } |
| |
| /* we have in <size> the exact number of bytes we need to copy from |
| * the H1 buffer. We need to check this against the connection's and |
| * the stream's send windows, and to ensure that this fits in the max |
| * frame size and in the buffer's available space minus 9 bytes (for |
| * the frame header). The connection's flow control is applied last so |
| * that we can use a separate list of streams which are immediately |
| * unblocked on window opening. Note: we don't implement padding. |
| */ |
| |
| if (size > max) |
| size = max; |
| |
| if (size > h2s->mws) |
| size = h2s->mws; |
| |
| if (size <= 0) { |
| h2s->flags |= H2_SF_BLK_SFCTL; |
| if (h2s->send_wait) { |
| LIST_DEL(&h2s->list); |
| LIST_INIT(&h2s->list); |
| } |
| goto end; |
| } |
| |
| if (h2c->mfs && size > h2c->mfs) |
| size = h2c->mfs; |
| |
| if (size + 9 > outbuf.size) { |
| /* we have an opportunity for enlarging the too small |
| * available space, let's try. |
| */ |
| if (b_space_wraps(&h2c->mbuf)) |
| goto realign_again; |
| size = outbuf.size - 9; |
| } |
| |
| if (size <= 0) { |
| h2c->flags |= H2_CF_MUX_MFULL; |
| h2s->flags |= H2_SF_BLK_MROOM; |
| goto end; |
| } |
| |
| if (size > h2c->mws) |
| size = h2c->mws; |
| |
| if (size <= 0) { |
| h2s->flags |= H2_SF_BLK_MFCTL; |
| goto end; |
| } |
| |
| /* copy whatever we can */ |
| blk1 = blk2 = NULL; // silence a maybe-uninitialized warning |
| ret = b_getblk_nc(buf, &blk1, &len1, &blk2, &len2, ofs, max); |
| if (ret == 1) |
| len2 = 0; |
| |
| if (!ret || len1 + len2 < size) { |
| /* FIXME: must normally never happen */ |
| h2s_error(h2s, H2_ERR_INTERNAL_ERROR); |
| goto end; |
| } |
| |
| /* limit len1/len2 to size */ |
| if (len1 + len2 > size) { |
| int sub = len1 + len2 - size; |
| |
| if (len2 > sub) |
| len2 -= sub; |
| else { |
| sub -= len2; |
| len2 = 0; |
| len1 -= sub; |
| } |
| } |
| |
| /* now let's copy this this into the output buffer */ |
| memcpy(outbuf.area + 9, blk1, len1); |
| if (len2) |
| memcpy(outbuf.area + 9 + len1, blk2, len2); |
| |
| send_empty: |
| /* we may need to add END_STREAM */ |
| /* FIXME: we should also detect shutdown(w) below, but how ? Maybe we |
| * could rely on the MSG_MORE flag as a hint for this ? |
| * |
| * FIXME: what we do here is not correct because we send end_stream |
| * before knowing if we'll have to send a HEADERS frame for the |
| * trailers. More importantly we're not consuming the trailing CRLF |
| * after the end of trailers, so it will be left to the caller to |
| * eat it. The right way to do it would be to measure trailers here |
| * and to send ES only if there are no trailers. |
| * |
| */ |
| if (((h1m->flags & H1_MF_CLEN) && !(h1m->curr_len - size)) || |
| !h1m->curr_len || h1m->state >= H1_MSG_DONE) |
| es_now = 1; |
| |
| /* update the frame's size */ |
| h2_set_frame_size(outbuf.area, size); |
| |
| if (es_now) |
| outbuf.area[4] |= H2_F_DATA_END_STREAM; |
| |
| /* commit the H2 response */ |
| b_add(&h2c->mbuf, size + 9); |
| |
| /* consume incoming H1 response */ |
| if (size > 0) { |
| max -= size; |
| ofs += size; |
| total += size; |
| h1m->curr_len -= size; |
| h2s->mws -= size; |
| h2c->mws -= size; |
| |
| if (size && !h1m->curr_len && (h1m->flags & H1_MF_CHNK)) { |
| h1m->state = H1_MSG_CHUNK_CRLF; |
| goto new_frame; |
| } |
| } |
| |
| if (es_now) { |
| if (h2s->st == H2_SS_OPEN) |
| h2s->st = H2_SS_HLOC; |
| else |
| h2s_close(h2s); |
| |
| if (!(h1m->flags & H1_MF_CHNK)) { |
| // trim any possibly pending data (eg: inconsistent content-length) |
| total += max; |
| ofs += max; |
| max = 0; |
| |
| h1m->state = H1_MSG_DONE; |
| } |
| |
| h2s->flags |= H2_SF_ES_SENT; |
| } |
| |
| end: |
| trace("[%d] sent simple H2 DATA response (sid=%d) = %d bytes out (%u in, st=%s, ep=%u, es=%s, h2cws=%d h2sws=%d) data=%u", h2c->st0, h2s->id, size+9, (unsigned int)total, h1m_state_str(h1m->state), h1m->err_pos, h1m_state_str(h1m->err_state), h2c->mws, h2s->mws, (unsigned int)b_data(buf)); |
| return total; |
| } |
| |
| /* Called from the upper layer, to subscribe to events, such as being able to send */ |
| static int h2_subscribe(struct conn_stream *cs, int event_type, void *param) |
| { |
| struct wait_event *sw; |
| struct h2s *h2s = cs->ctx; |
| struct h2c *h2c = h2s->h2c; |
| |
| if (event_type & SUB_CAN_RECV) { |
| sw = param; |
| if (!(sw->wait_reason & SUB_CAN_RECV)) { |
| sw->wait_reason |= SUB_CAN_RECV; |
| sw->handle = h2s; |
| h2s->recv_wait = sw; |
| } |
| event_type &= ~SUB_CAN_RECV; |
| } |
| if (event_type & SUB_CAN_SEND) { |
| sw = param; |
| if (!(sw->wait_reason & SUB_CAN_SEND)) { |
| sw->wait_reason |= SUB_CAN_SEND; |
| sw->handle = h2s; |
| h2s->send_wait = sw; |
| if (!(h2s->flags & H2_SF_BLK_SFCTL)) { |
| if (h2s->flags & H2_SF_BLK_MFCTL) |
| LIST_ADDQ(&h2c->fctl_list, &h2s->list); |
| else |
| LIST_ADDQ(&h2c->send_list, &h2s->list); |
| } |
| } |
| event_type &= ~SUB_CAN_SEND; |
| } |
| if (event_type != 0) |
| return -1; |
| return 0; |
| |
| |
| } |
| |
| static int h2_unsubscribe(struct conn_stream *cs, int event_type, void *param) |
| { |
| struct wait_event *sw; |
| struct h2s *h2s = cs->ctx; |
| |
| if (event_type & SUB_CAN_RECV) { |
| sw = param; |
| if (h2s->recv_wait == sw) { |
| sw->wait_reason &= ~SUB_CAN_RECV; |
| h2s->recv_wait = NULL; |
| } |
| } |
| if (event_type & SUB_CAN_SEND) { |
| sw = param; |
| if (h2s->send_wait == sw) { |
| LIST_DEL(&h2s->list); |
| LIST_INIT(&h2s->list); |
| sw->wait_reason &= ~SUB_CAN_SEND; |
| h2s->send_wait = NULL; |
| } |
| } |
| if (event_type & SUB_CALL_UNSUBSCRIBE) { |
| sw = param; |
| if (h2s->send_wait == sw) { |
| sw->wait_reason &= ~SUB_CALL_UNSUBSCRIBE; |
| h2s->send_wait = NULL; |
| } |
| } |
| return 0; |
| } |
| |
| |
| /* Called from the upper layer, to receive data */ |
| static size_t h2_rcv_buf(struct conn_stream *cs, struct buffer *buf, size_t count, int flags) |
| { |
| struct h2s *h2s = cs->ctx; |
| struct h2c *h2c = h2s->h2c; |
| size_t ret = 0; |
| |
| /* transfer possibly pending data to the upper layer */ |
| ret = b_xfer(buf, &h2s->rxbuf, count); |
| |
| if (b_data(&h2s->rxbuf)) |
| cs->flags |= CS_FL_RCV_MORE; |
| else { |
| cs->flags &= ~CS_FL_RCV_MORE; |
| if (cs->flags & CS_FL_REOS) |
| cs->flags |= CS_FL_EOS; |
| if (b_size(&h2s->rxbuf)) { |
| b_free(&h2s->rxbuf); |
| offer_buffers(NULL, tasks_run_queue); |
| } |
| } |
| |
| if (ret && h2c->dsi == h2s->id) { |
| /* demux is blocking on this stream's buffer */ |
| h2c->flags &= ~H2_CF_DEM_SFULL; |
| if (!(h2c->wait_event.wait_reason & SUB_CAN_RECV)) { |
| if (h2_recv_allowed(h2c)) |
| tasklet_wakeup(h2c->wait_event.task); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void h2_stop_senders(struct h2c *h2c) |
| { |
| struct h2s *h2s, *h2s_back; |
| |
| list_for_each_entry_safe(h2s, h2s_back, &h2c->sending_list, list) { |
| /* Don't unschedule the stream if the mux is just busy waiting for more data fro mthat stream */ |
| if (h2c->msi == h2s_id(h2s)) |
| continue; |
| LIST_DEL(&h2s->list); |
| LIST_INIT(&h2s->list); |
| task_remove_from_task_list((struct task *)h2s->send_wait->task); |
| h2s->send_wait->wait_reason |= SUB_CAN_SEND; |
| h2s->send_wait->wait_reason &= ~SUB_CALL_UNSUBSCRIBE; |
| LIST_ADD(&h2c->send_list, &h2s->list); |
| } |
| } |
| |
| /* Called from the upper layer, to send data */ |
| static size_t h2_snd_buf(struct conn_stream *cs, struct buffer *buf, size_t count, int flags) |
| { |
| struct h2s *h2s = cs->ctx; |
| size_t total = 0; |
| size_t ret; |
| |
| if (h2s->send_wait) { |
| h2s->send_wait->wait_reason &= ~SUB_CALL_UNSUBSCRIBE; |
| h2s->send_wait = NULL; |
| LIST_DEL(&h2s->list); |
| LIST_INIT(&h2s->list); |
| } |
| if (h2s->h2c->st0 < H2_CS_FRAME_H) |
| return 0; |
| |
| if (!(h2s->flags & H2_SF_OUTGOING_DATA) && count) |
| h2s->flags |= H2_SF_OUTGOING_DATA; |
| |
| while (h2s->h1m.state < H1_MSG_DONE && count) { |
| if (h2s->h1m.state <= H1_MSG_LAST_LF) { |
| ret = h2s_frt_make_resp_headers(h2s, buf, total, count); |
| } |
| else if (h2s->h1m.state < H1_MSG_TRAILERS) { |
| ret = h2s_frt_make_resp_data(h2s, buf, total, count); |
| } |
| else if (h2s->h1m.state == H1_MSG_TRAILERS) { |
| /* consume the trailers if any (we don't forward them for now) */ |
| ret = h1_measure_trailers(buf, total, count); |
| |
| if (unlikely((int)ret <= 0)) { |
| if ((int)ret < 0) |
| h2s_error(h2s, H2_ERR_INTERNAL_ERROR); |
| break; |
| } |
| // trim any possibly pending data (eg: extra CR-LF, ...) |
| total += count; |
| count = 0; |
| h2s->h1m.state = H1_MSG_DONE; |
| break; |
| } |
| else { |
| cs->flags |= CS_FL_ERROR; |
| break; |
| } |
| |
| total += ret; |
| count -= ret; |
| |
| if (h2s->st >= H2_SS_ERROR) |
| break; |
| |
| if (h2s->flags & H2_SF_BLK_ANY) |
| break; |
| } |
| |
| if (h2s->st >= H2_SS_ERROR) { |
| /* trim any possibly pending data after we close (extra CR-LF, |
| * unprocessed trailers, abnormal extra data, ...) |
| */ |
| total += count; |
| count = 0; |
| } |
| |
| /* RST are sent similarly to frame acks */ |
| if (h2s->st == H2_SS_ERROR || h2s->flags & H2_SF_RST_RCVD) { |
| cs->flags |= CS_FL_ERROR; |
| if (h2s_send_rst_stream(h2s->h2c, h2s) > 0) |
| h2s_close(h2s); |
| } |
| |
| b_del(buf, total); |
| |
| /* The mux is full, cancel the pending tasks */ |
| if ((h2s->h2c->flags & H2_CF_MUX_BLOCK_ANY) || |
| (h2s->flags & H2_SF_BLK_MBUSY)) |
| h2_stop_senders(h2s->h2c); |
| if (total > 0) { |
| if (!(h2s->h2c->wait_event.wait_reason & SUB_CAN_SEND)) |
| tasklet_wakeup(h2s->h2c->wait_event.task); |
| |
| } |
| return total; |
| } |
| |
| /* for debugging with CLI's "show fd" command */ |
| static void h2_show_fd(struct buffer *msg, struct connection *conn) |
| { |
| struct h2c *h2c = conn->mux_ctx; |
| struct h2s *h2s; |
| struct eb32_node *node; |
| int fctl_cnt = 0; |
| int send_cnt = 0; |
| int tree_cnt = 0; |
| int orph_cnt = 0; |
| |
| if (!h2c) |
| return; |
| |
| list_for_each_entry(h2s, &h2c->fctl_list, list) |
| fctl_cnt++; |
| |
| list_for_each_entry(h2s, &h2c->send_list, list) |
| send_cnt++; |
| |
| node = eb32_first(&h2c->streams_by_id); |
| while (node) { |
| h2s = container_of(node, struct h2s, by_id); |
| tree_cnt++; |
| if (!h2s->cs) |
| orph_cnt++; |
| node = eb32_next(node); |
| } |
| |
| chunk_appendf(msg, " st0=%d err=%d maxid=%d lastid=%d flg=0x%08x nbst=%u nbcs=%u" |
| " fctl_cnt=%d send_cnt=%d tree_cnt=%d orph_cnt=%d dbuf=%u/%u mbuf=%u/%u", |
| h2c->st0, h2c->errcode, h2c->max_id, h2c->last_sid, h2c->flags, |
| h2c->nb_streams, h2c->nb_cs, fctl_cnt, send_cnt, tree_cnt, orph_cnt, |
| (unsigned int)b_data(&h2c->dbuf), (unsigned int)b_size(&h2c->dbuf), |
| (unsigned int)b_data(&h2c->mbuf), (unsigned int)b_size(&h2c->mbuf)); |
| } |
| |
| /*******************************************************/ |
| /* functions below are dedicated to the config parsers */ |
| /*******************************************************/ |
| |
| /* config parser for global "tune.h2.header-table-size" */ |
| static int h2_parse_header_table_size(char **args, int section_type, struct proxy *curpx, |
| struct proxy *defpx, const char *file, int line, |
| char **err) |
| { |
| if (too_many_args(1, args, err, NULL)) |
| return -1; |
| |
| h2_settings_header_table_size = atoi(args[1]); |
| if (h2_settings_header_table_size < 4096 || h2_settings_header_table_size > 65536) { |
| memprintf(err, "'%s' expects a numeric value between 4096 and 65536.", args[0]); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* config parser for global "tune.h2.initial-window-size" */ |
| static int h2_parse_initial_window_size(char **args, int section_type, struct proxy *curpx, |
| struct proxy *defpx, const char *file, int line, |
| char **err) |
| { |
| if (too_many_args(1, args, err, NULL)) |
| return -1; |
| |
| h2_settings_initial_window_size = atoi(args[1]); |
| if (h2_settings_initial_window_size < 0) { |
| memprintf(err, "'%s' expects a positive numeric value.", args[0]); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* config parser for global "tune.h2.max-concurrent-streams" */ |
| static int h2_parse_max_concurrent_streams(char **args, int section_type, struct proxy *curpx, |
| struct proxy *defpx, const char *file, int line, |
| char **err) |
| { |
| if (too_many_args(1, args, err, NULL)) |
| return -1; |
| |
| h2_settings_max_concurrent_streams = atoi(args[1]); |
| if (h2_settings_max_concurrent_streams < 0) { |
| memprintf(err, "'%s' expects a positive numeric value.", args[0]); |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| /****************************************/ |
| /* MUX initialization and instanciation */ |
| /***************************************/ |
| |
| /* The mux operations */ |
| static const struct mux_ops h2_ops = { |
| .init = h2_init, |
| .wake = h2_wake, |
| .snd_buf = h2_snd_buf, |
| .rcv_buf = h2_rcv_buf, |
| .subscribe = h2_subscribe, |
| .unsubscribe = h2_unsubscribe, |
| .attach = h2_attach, |
| .get_first_cs = h2_get_first_cs, |
| .detach = h2_detach, |
| .destroy = h2_destroy, |
| .avail_streams = h2_avail_streams, |
| .shutr = h2_shutr, |
| .shutw = h2_shutw, |
| .show_fd = h2_show_fd, |
| .flags = MX_FL_CLEAN_ABRT, |
| .name = "H2", |
| }; |
| |
| /* PROTO selection : this mux registers PROTO token "h2" */ |
| static struct mux_proto_list mux_proto_h2 = |
| { .token = IST("h2"), .mode = PROTO_MODE_HTTP, .side = PROTO_SIDE_FE, .mux = &h2_ops }; |
| |
| INITCALL1(STG_REGISTER, register_mux_proto, &mux_proto_h2); |
| |
| /* config keyword parsers */ |
| static struct cfg_kw_list cfg_kws = {ILH, { |
| { CFG_GLOBAL, "tune.h2.header-table-size", h2_parse_header_table_size }, |
| { CFG_GLOBAL, "tune.h2.initial-window-size", h2_parse_initial_window_size }, |
| { CFG_GLOBAL, "tune.h2.max-concurrent-streams", h2_parse_max_concurrent_streams }, |
| { 0, NULL, NULL } |
| }}; |
| |
| INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws); |