blob: f2abd44180f4284fec4a48f94321ced7240ca613 [file] [log] [blame]
/*
* ACL management functions.
*
* Copyright 2000-2013 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include <common/config.h>
#include <common/mini-clist.h>
#include <common/standard.h>
#include <common/uri_auth.h>
#include <types/global.h>
#include <proto/acl.h>
#include <proto/arg.h>
#include <proto/auth.h>
#include <proto/channel.h>
#include <proto/log.h>
#include <proto/proxy.h>
#include <proto/sample.h>
#include <proto/stick_table.h>
#include <ebsttree.h>
/* List head of all known ACL keywords */
static struct acl_kw_list acl_keywords = {
.list = LIST_HEAD_INIT(acl_keywords.list)
};
static char *acl_match_names[ACL_MATCH_NUM] = {
[ACL_MATCH_FOUND] = "found",
[ACL_MATCH_BOOL] = "bool",
[ACL_MATCH_INT] = "int",
[ACL_MATCH_IP] = "ip",
[ACL_MATCH_BIN] = "bin",
[ACL_MATCH_LEN] = "len",
[ACL_MATCH_STR] = "str",
[ACL_MATCH_BEG] = "beg",
[ACL_MATCH_SUB] = "sub",
[ACL_MATCH_DIR] = "dir",
[ACL_MATCH_DOM] = "dom",
[ACL_MATCH_END] = "end",
[ACL_MATCH_REG] = "reg",
};
static int (*acl_parse_fcts[ACL_MATCH_NUM])(const char **, struct acl_pattern *, int *, char **) = {
[ACL_MATCH_FOUND] = acl_parse_nothing,
[ACL_MATCH_BOOL] = acl_parse_nothing,
[ACL_MATCH_INT] = acl_parse_int,
[ACL_MATCH_IP] = acl_parse_ip,
[ACL_MATCH_BIN] = acl_parse_bin,
[ACL_MATCH_LEN] = acl_parse_int,
[ACL_MATCH_STR] = acl_parse_str,
[ACL_MATCH_BEG] = acl_parse_str,
[ACL_MATCH_SUB] = acl_parse_str,
[ACL_MATCH_DIR] = acl_parse_str,
[ACL_MATCH_DOM] = acl_parse_str,
[ACL_MATCH_END] = acl_parse_str,
[ACL_MATCH_REG] = acl_parse_reg,
};
static int (*acl_match_fcts[ACL_MATCH_NUM])(struct sample *, struct acl_pattern *) = {
[ACL_MATCH_FOUND] = NULL,
[ACL_MATCH_BOOL] = acl_match_nothing,
[ACL_MATCH_INT] = acl_match_int,
[ACL_MATCH_IP] = acl_match_ip,
[ACL_MATCH_BIN] = acl_match_bin,
[ACL_MATCH_LEN] = acl_match_len,
[ACL_MATCH_STR] = acl_match_str,
[ACL_MATCH_BEG] = acl_match_beg,
[ACL_MATCH_SUB] = acl_match_sub,
[ACL_MATCH_DIR] = acl_match_dir,
[ACL_MATCH_DOM] = acl_match_dom,
[ACL_MATCH_END] = acl_match_end,
[ACL_MATCH_REG] = acl_match_reg,
};
/* return the ACL_MATCH_* index for match name "name", or < 0 if not found */
static int acl_find_match_name(const char *name)
{
int i;
for (i = 0; i < ACL_MATCH_NUM; i++)
if (strcmp(name, acl_match_names[i]) == 0)
return i;
return -1;
}
/*
* These functions are exported and may be used by any other component.
*/
/* ignore the current line */
int acl_parse_nothing(const char **text, struct acl_pattern *pattern, int *opaque, char **err)
{
return 1;
}
/* always return false */
int acl_match_nothing(struct sample *smp, struct acl_pattern *pattern)
{
return ACL_PAT_FAIL;
}
/* NB: For two strings to be identical, it is required that their lengths match */
int acl_match_str(struct sample *smp, struct acl_pattern *pattern)
{
int icase;
if (pattern->len != smp->data.str.len)
return ACL_PAT_FAIL;
icase = pattern->flags & ACL_PAT_F_IGNORE_CASE;
if ((icase && strncasecmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) == 0) ||
(!icase && strncmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) == 0))
return ACL_PAT_PASS;
return ACL_PAT_FAIL;
}
/* NB: For two binaries buf to be identical, it is required that their lengths match */
int acl_match_bin(struct sample *smp, struct acl_pattern *pattern)
{
if (pattern->len != smp->data.str.len)
return ACL_PAT_FAIL;
if (memcmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) == 0)
return ACL_PAT_PASS;
return ACL_PAT_FAIL;
}
/* Lookup a string in the expression's pattern tree. The node is returned if it
* exists, otherwise NULL.
*/
static void *acl_lookup_str(struct sample *smp, struct acl_expr *expr)
{
/* data are stored in a tree */
struct ebmb_node *node;
char prev;
/* we may have to force a trailing zero on the test pattern */
prev = smp->data.str.str[smp->data.str.len];
if (prev)
smp->data.str.str[smp->data.str.len] = '\0';
node = ebst_lookup(&expr->pattern_tree, smp->data.str.str);
if (prev)
smp->data.str.str[smp->data.str.len] = prev;
return node;
}
/* Executes a regex. It temporarily changes the data to add a trailing zero,
* and restores the previous character when leaving.
*/
int acl_match_reg(struct sample *smp, struct acl_pattern *pattern)
{
char old_char;
int ret;
old_char = smp->data.str.str[smp->data.str.len];
smp->data.str.str[smp->data.str.len] = 0;
if (regex_exec(pattern->ptr.reg, smp->data.str.str, smp->data.str.len) == 0)
ret = ACL_PAT_PASS;
else
ret = ACL_PAT_FAIL;
smp->data.str.str[smp->data.str.len] = old_char;
return ret;
}
/* Checks that the pattern matches the beginning of the tested string. */
int acl_match_beg(struct sample *smp, struct acl_pattern *pattern)
{
int icase;
if (pattern->len > smp->data.str.len)
return ACL_PAT_FAIL;
icase = pattern->flags & ACL_PAT_F_IGNORE_CASE;
if ((icase && strncasecmp(pattern->ptr.str, smp->data.str.str, pattern->len) != 0) ||
(!icase && strncmp(pattern->ptr.str, smp->data.str.str, pattern->len) != 0))
return ACL_PAT_FAIL;
return ACL_PAT_PASS;
}
/* Checks that the pattern matches the end of the tested string. */
int acl_match_end(struct sample *smp, struct acl_pattern *pattern)
{
int icase;
if (pattern->len > smp->data.str.len)
return ACL_PAT_FAIL;
icase = pattern->flags & ACL_PAT_F_IGNORE_CASE;
if ((icase && strncasecmp(pattern->ptr.str, smp->data.str.str + smp->data.str.len - pattern->len, pattern->len) != 0) ||
(!icase && strncmp(pattern->ptr.str, smp->data.str.str + smp->data.str.len - pattern->len, pattern->len) != 0))
return ACL_PAT_FAIL;
return ACL_PAT_PASS;
}
/* Checks that the pattern is included inside the tested string.
* NB: Suboptimal, should be rewritten using a Boyer-Moore method.
*/
int acl_match_sub(struct sample *smp, struct acl_pattern *pattern)
{
int icase;
char *end;
char *c;
if (pattern->len > smp->data.str.len)
return ACL_PAT_FAIL;
end = smp->data.str.str + smp->data.str.len - pattern->len;
icase = pattern->flags & ACL_PAT_F_IGNORE_CASE;
if (icase) {
for (c = smp->data.str.str; c <= end; c++) {
if (tolower(*c) != tolower(*pattern->ptr.str))
continue;
if (strncasecmp(pattern->ptr.str, c, pattern->len) == 0)
return ACL_PAT_PASS;
}
} else {
for (c = smp->data.str.str; c <= end; c++) {
if (*c != *pattern->ptr.str)
continue;
if (strncmp(pattern->ptr.str, c, pattern->len) == 0)
return ACL_PAT_PASS;
}
}
return ACL_PAT_FAIL;
}
/* Background: Fast way to find a zero byte in a word
* http://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord
* hasZeroByte = (v - 0x01010101UL) & ~v & 0x80808080UL;
*
* To look for 4 different byte values, xor the word with those bytes and
* then check for zero bytes:
*
* v = (((unsigned char)c * 0x1010101U) ^ delimiter)
* where <delimiter> is the 4 byte values to look for (as an uint)
* and <c> is the character that is being tested
*/
static inline unsigned int is_delimiter(unsigned char c, unsigned int mask)
{
mask ^= (c * 0x01010101); /* propagate the char to all 4 bytes */
return (mask - 0x01010101) & ~mask & 0x80808080U;
}
static inline unsigned int make_4delim(unsigned char d1, unsigned char d2, unsigned char d3, unsigned char d4)
{
return d1 << 24 | d2 << 16 | d3 << 8 | d4;
}
/* This one is used by other real functions. It checks that the pattern is
* included inside the tested string, but enclosed between the specified
* delimiters or at the beginning or end of the string. The delimiters are
* provided as an unsigned int made by make_4delim() and match up to 4 different
* delimiters. Delimiters are stripped at the beginning and end of the pattern.
*/
static int match_word(struct sample *smp, struct acl_pattern *pattern, unsigned int delimiters)
{
int may_match, icase;
char *c, *end;
char *ps;
int pl;
pl = pattern->len;
ps = pattern->ptr.str;
while (pl > 0 && is_delimiter(*ps, delimiters)) {
pl--;
ps++;
}
while (pl > 0 && is_delimiter(ps[pl - 1], delimiters))
pl--;
if (pl > smp->data.str.len)
return ACL_PAT_FAIL;
may_match = 1;
icase = pattern->flags & ACL_PAT_F_IGNORE_CASE;
end = smp->data.str.str + smp->data.str.len - pl;
for (c = smp->data.str.str; c <= end; c++) {
if (is_delimiter(*c, delimiters)) {
may_match = 1;
continue;
}
if (!may_match)
continue;
if (icase) {
if ((tolower(*c) == tolower(*ps)) &&
(strncasecmp(ps, c, pl) == 0) &&
(c == end || is_delimiter(c[pl], delimiters)))
return ACL_PAT_PASS;
} else {
if ((*c == *ps) &&
(strncmp(ps, c, pl) == 0) &&
(c == end || is_delimiter(c[pl], delimiters)))
return ACL_PAT_PASS;
}
may_match = 0;
}
return ACL_PAT_FAIL;
}
/* Checks that the pattern is included inside the tested string, but enclosed
* between the delimiters '?' or '/' or at the beginning or end of the string.
* Delimiters at the beginning or end of the pattern are ignored.
*/
int acl_match_dir(struct sample *smp, struct acl_pattern *pattern)
{
return match_word(smp, pattern, make_4delim('/', '?', '?', '?'));
}
/* Checks that the pattern is included inside the tested string, but enclosed
* between the delmiters '/', '?', '.' or ":" or at the beginning or end of
* the string. Delimiters at the beginning or end of the pattern are ignored.
*/
int acl_match_dom(struct sample *smp, struct acl_pattern *pattern)
{
return match_word(smp, pattern, make_4delim('/', '?', '.', ':'));
}
/* Checks that the integer in <test> is included between min and max */
int acl_match_int(struct sample *smp, struct acl_pattern *pattern)
{
if ((!pattern->val.range.min_set || pattern->val.range.min <= smp->data.uint) &&
(!pattern->val.range.max_set || smp->data.uint <= pattern->val.range.max))
return ACL_PAT_PASS;
return ACL_PAT_FAIL;
}
/* Checks that the length of the pattern in <test> is included between min and max */
int acl_match_len(struct sample *smp, struct acl_pattern *pattern)
{
if ((!pattern->val.range.min_set || pattern->val.range.min <= smp->data.str.len) &&
(!pattern->val.range.max_set || smp->data.str.len <= pattern->val.range.max))
return ACL_PAT_PASS;
return ACL_PAT_FAIL;
}
int acl_match_ip(struct sample *smp, struct acl_pattern *pattern)
{
unsigned int v4; /* in network byte order */
struct in6_addr *v6;
int bits, pos;
struct in6_addr tmp6;
if (pattern->type == SMP_T_IPV4) {
if (smp->type == SMP_T_IPV4) {
v4 = smp->data.ipv4.s_addr;
}
else if (smp->type == SMP_T_IPV6) {
/* v4 match on a V6 sample. We want to check at least for
* the following forms :
* - ::ffff:ip:v4 (ipv4 mapped)
* - ::0000:ip:v4 (old ipv4 mapped)
* - 2002:ip:v4:: (6to4)
*/
if (*(uint32_t*)&smp->data.ipv6.s6_addr[0] == 0 &&
*(uint32_t*)&smp->data.ipv6.s6_addr[4] == 0 &&
(*(uint32_t*)&smp->data.ipv6.s6_addr[8] == 0 ||
*(uint32_t*)&smp->data.ipv6.s6_addr[8] == htonl(0xFFFF))) {
v4 = *(uint32_t*)&smp->data.ipv6.s6_addr[12];
}
else if (*(uint16_t*)&smp->data.ipv6.s6_addr[0] == htons(0x2002)) {
v4 = htonl((ntohs(*(uint16_t*)&smp->data.ipv6.s6_addr[2]) << 16) +
ntohs(*(uint16_t*)&smp->data.ipv6.s6_addr[4]));
}
else
return ACL_PAT_FAIL;
}
else
return ACL_PAT_FAIL;
if (((v4 ^ pattern->val.ipv4.addr.s_addr) & pattern->val.ipv4.mask.s_addr) == 0)
return ACL_PAT_PASS;
else
return ACL_PAT_FAIL;
}
else if (pattern->type == SMP_T_IPV6) {
if (smp->type == SMP_T_IPV4) {
/* Convert the IPv4 sample address to IPv4 with the
* mapping method using the ::ffff: prefix.
*/
memset(&tmp6, 0, 10);
*(uint16_t*)&tmp6.s6_addr[10] = htons(0xffff);
*(uint32_t*)&tmp6.s6_addr[12] = smp->data.ipv4.s_addr;
v6 = &tmp6;
}
else if (smp->type == SMP_T_IPV6) {
v6 = &smp->data.ipv6;
}
else {
return ACL_PAT_FAIL;
}
bits = pattern->val.ipv6.mask;
for (pos = 0; bits > 0; pos += 4, bits -= 32) {
v4 = *(uint32_t*)&v6->s6_addr[pos] ^ *(uint32_t*)&pattern->val.ipv6.addr.s6_addr[pos];
if (bits < 32)
v4 &= htonl((~0U) << (32-bits));
if (v4)
return ACL_PAT_FAIL;
}
return ACL_PAT_PASS;
}
return ACL_PAT_FAIL;
}
/* Lookup an IPv4 address in the expression's pattern tree using the longest
* match method. The node is returned if it exists, otherwise NULL.
*/
static void *acl_lookup_ip(struct sample *smp, struct acl_expr *expr)
{
struct in_addr *s;
if (smp->type != SMP_T_IPV4)
return ACL_PAT_FAIL;
s = &smp->data.ipv4;
return ebmb_lookup_longest(&expr->pattern_tree, &s->s_addr);
}
/* Parse a string. It is allocated and duplicated. */
int acl_parse_str(const char **text, struct acl_pattern *pattern, int *opaque, char **err)
{
int len;
len = strlen(*text);
pattern->type = SMP_T_CSTR;
if (pattern->flags & ACL_PAT_F_TREE_OK) {
/* we're allowed to put the data in a tree whose root is pointed
* to by val.tree.
*/
struct ebmb_node *node;
node = calloc(1, sizeof(*node) + len + 1);
if (!node) {
memprintf(err, "out of memory while loading string pattern");
return 0;
}
memcpy(node->key, *text, len + 1);
if (ebst_insert(pattern->val.tree, node) != node)
free(node); /* was a duplicate */
pattern->flags |= ACL_PAT_F_TREE; /* this pattern now contains a tree */
return 1;
}
pattern->ptr.str = strdup(*text);
if (!pattern->ptr.str) {
memprintf(err, "out of memory while loading string pattern");
return 0;
}
pattern->len = len;
return 1;
}
/* Parse a binary written in hexa. It is allocated. */
int acl_parse_bin(const char **text, struct acl_pattern *pattern, int *opaque, char **err)
{
int len;
const char *p = *text;
int i,j;
len = strlen(p);
if (len%2) {
memprintf(err, "an even number of hex digit is expected");
return 0;
}
pattern->type = SMP_T_CBIN;
pattern->len = len >> 1;
pattern->ptr.str = malloc(pattern->len);
if (!pattern->ptr.str) {
memprintf(err, "out of memory while loading string pattern");
return 0;
}
i = j = 0;
while (j < pattern->len) {
if (!ishex(p[i++]))
goto bad_input;
if (!ishex(p[i++]))
goto bad_input;
pattern->ptr.str[j++] = (hex2i(p[i-2]) << 4) + hex2i(p[i-1]);
}
return 1;
bad_input:
memprintf(err, "an hex digit is expected (found '%c')", p[i-1]);
free(pattern->ptr.str);
return 0;
}
/* Parse and concatenate all further strings into one. */
int
acl_parse_strcat(const char **text, struct acl_pattern *pattern, int *opaque, char **err)
{
int len = 0, i;
char *s;
for (i = 0; *text[i]; i++)
len += strlen(text[i])+1;
pattern->type = SMP_T_CSTR;
pattern->ptr.str = s = calloc(1, len);
if (!pattern->ptr.str) {
memprintf(err, "out of memory while loading pattern");
return 0;
}
for (i = 0; *text[i]; i++)
s += sprintf(s, i?" %s":"%s", text[i]);
pattern->len = len;
return i;
}
/* Free data allocated by acl_parse_reg */
static void acl_free_reg(void *ptr)
{
regex_free(ptr);
}
/* Parse a regex. It is allocated. */
int acl_parse_reg(const char **text, struct acl_pattern *pattern, int *opaque, char **err)
{
regex *preg;
int icase;
#ifdef USE_PCRE_JIT
const char *error;
int erroffset;
#endif
preg = calloc(1, sizeof(*preg));
if (!preg) {
memprintf(err, "out of memory while loading pattern");
return 0;
}
#ifdef USE_PCRE_JIT
icase = (pattern->flags & ACL_PAT_F_IGNORE_CASE) ? PCRE_CASELESS : 0;
preg->reg = pcre_compile(*text, PCRE_NO_AUTO_CAPTURE | icase, &error, &erroffset,
NULL);
if (!preg->reg) {
free(preg);
memprintf(err, "regex '%s' is invalid (error=%s, erroffset=%d)", *text, error, erroffset);
return 0;
}
preg->extra = pcre_study(preg->reg, PCRE_STUDY_JIT_COMPILE, &error);
if (!preg->extra) {
pcre_free(preg->reg);
free(preg);
memprintf(err, "failed to compile regex '%s' (error=%s)", *text, error);
return 0;
}
#else
icase = (pattern->flags & ACL_PAT_F_IGNORE_CASE) ? REG_ICASE : 0;
if (regcomp(preg, *text, REG_EXTENDED | REG_NOSUB | icase) != 0) {
free(preg);
memprintf(err, "regex '%s' is invalid", *text);
return 0;
}
#endif
pattern->ptr.reg = preg;
pattern->freeptrbuf = &acl_free_reg;
return 1;
}
/* Parse a range of positive integers delimited by either ':' or '-'. If only
* one integer is read, it is set as both min and max. An operator may be
* specified as the prefix, among this list of 5 :
*
* 0:eq, 1:gt, 2:ge, 3:lt, 4:le
*
* The default operator is "eq". It supports range matching. Ranges are
* rejected for other operators. The operator may be changed at any time.
* The operator is stored in the 'opaque' argument.
*
* If err is non-NULL, an error message will be returned there on errors and
* the caller will have to free it.
*
*/
int acl_parse_int(const char **text, struct acl_pattern *pattern, int *opaque, char **err)
{
signed long long i;
unsigned int j, last, skip = 0;
const char *ptr = *text;
pattern->type = SMP_T_UINT;
while (!isdigit((unsigned char)*ptr)) {
switch (get_std_op(ptr)) {
case STD_OP_EQ: *opaque = 0; break;
case STD_OP_GT: *opaque = 1; break;
case STD_OP_GE: *opaque = 2; break;
case STD_OP_LT: *opaque = 3; break;
case STD_OP_LE: *opaque = 4; break;
default:
memprintf(err, "'%s' is neither a number nor a supported operator", ptr);
return 0;
}
skip++;
ptr = text[skip];
}
last = i = 0;
while (1) {
j = *ptr++;
if ((j == '-' || j == ':') && !last) {
last++;
pattern->val.range.min = i;
i = 0;
continue;
}
j -= '0';
if (j > 9)
// also catches the terminating zero
break;
i *= 10;
i += j;
}
if (last && *opaque >= 1 && *opaque <= 4) {
/* having a range with a min or a max is absurd */
memprintf(err, "integer range '%s' specified with a comparison operator", text[skip]);
return 0;
}
if (!last)
pattern->val.range.min = i;
pattern->val.range.max = i;
switch (*opaque) {
case 0: /* eq */
pattern->val.range.min_set = 1;
pattern->val.range.max_set = 1;
break;
case 1: /* gt */
pattern->val.range.min++; /* gt = ge + 1 */
case 2: /* ge */
pattern->val.range.min_set = 1;
pattern->val.range.max_set = 0;
break;
case 3: /* lt */
pattern->val.range.max--; /* lt = le - 1 */
case 4: /* le */
pattern->val.range.min_set = 0;
pattern->val.range.max_set = 1;
break;
}
return skip + 1;
}
/* Parse a range of positive 2-component versions delimited by either ':' or
* '-'. The version consists in a major and a minor, both of which must be
* smaller than 65536, because internally they will be represented as a 32-bit
* integer.
* If only one version is read, it is set as both min and max. Just like for
* pure integers, an operator may be specified as the prefix, among this list
* of 5 :
*
* 0:eq, 1:gt, 2:ge, 3:lt, 4:le
*
* The default operator is "eq". It supports range matching. Ranges are
* rejected for other operators. The operator may be changed at any time.
* The operator is stored in the 'opaque' argument. This allows constructs
* such as the following one :
*
* acl obsolete_ssl ssl_req_proto lt 3
* acl unsupported_ssl ssl_req_proto gt 3.1
* acl valid_ssl ssl_req_proto 3.0-3.1
*
*/
int acl_parse_dotted_ver(const char **text, struct acl_pattern *pattern, int *opaque, char **err)
{
signed long long i;
unsigned int j, last, skip = 0;
const char *ptr = *text;
while (!isdigit((unsigned char)*ptr)) {
switch (get_std_op(ptr)) {
case STD_OP_EQ: *opaque = 0; break;
case STD_OP_GT: *opaque = 1; break;
case STD_OP_GE: *opaque = 2; break;
case STD_OP_LT: *opaque = 3; break;
case STD_OP_LE: *opaque = 4; break;
default:
memprintf(err, "'%s' is neither a number nor a supported operator", ptr);
return 0;
}
skip++;
ptr = text[skip];
}
last = i = 0;
while (1) {
j = *ptr++;
if (j == '.') {
/* minor part */
if (i >= 65536)
return 0;
i <<= 16;
continue;
}
if ((j == '-' || j == ':') && !last) {
last++;
if (i < 65536)
i <<= 16;
pattern->val.range.min = i;
i = 0;
continue;
}
j -= '0';
if (j > 9)
// also catches the terminating zero
break;
i = (i & 0xFFFF0000) + (i & 0xFFFF) * 10;
i += j;
}
/* if we only got a major version, let's shift it now */
if (i < 65536)
i <<= 16;
if (last && *opaque >= 1 && *opaque <= 4) {
/* having a range with a min or a max is absurd */
memprintf(err, "version range '%s' specified with a comparison operator", text[skip]);
return 0;
}
if (!last)
pattern->val.range.min = i;
pattern->val.range.max = i;
switch (*opaque) {
case 0: /* eq */
pattern->val.range.min_set = 1;
pattern->val.range.max_set = 1;
break;
case 1: /* gt */
pattern->val.range.min++; /* gt = ge + 1 */
case 2: /* ge */
pattern->val.range.min_set = 1;
pattern->val.range.max_set = 0;
break;
case 3: /* lt */
pattern->val.range.max--; /* lt = le - 1 */
case 4: /* le */
pattern->val.range.min_set = 0;
pattern->val.range.max_set = 1;
break;
}
return skip + 1;
}
/* Parse an IP address and an optional mask in the form addr[/mask].
* The addr may either be an IPv4 address or a hostname. The mask
* may either be a dotted mask or a number of bits. Returns 1 if OK,
* otherwise 0. NOTE: IP address patterns are typed (IPV4/IPV6).
*/
int acl_parse_ip(const char **text, struct acl_pattern *pattern, int *opaque, char **err)
{
struct eb_root *tree = NULL;
if (pattern->flags & ACL_PAT_F_TREE_OK)
tree = pattern->val.tree;
if (str2net(*text, &pattern->val.ipv4.addr, &pattern->val.ipv4.mask)) {
unsigned int mask = ntohl(pattern->val.ipv4.mask.s_addr);
struct ebmb_node *node;
/* check if the mask is contiguous so that we can insert the
* network into the tree. A continuous mask has only ones on
* the left. This means that this mask + its lower bit added
* once again is null.
*/
pattern->type = SMP_T_IPV4;
if (mask + (mask & -mask) == 0 && tree) {
mask = mask ? 33 - flsnz(mask & -mask) : 0; /* equals cidr value */
/* FIXME: insert <addr>/<mask> into the tree here */
node = calloc(1, sizeof(*node) + 4); /* reserve 4 bytes for IPv4 address */
if (!node) {
memprintf(err, "out of memory while loading IPv4 pattern");
return 0;
}
memcpy(node->key, &pattern->val.ipv4.addr, 4); /* network byte order */
node->node.pfx = mask;
if (ebmb_insert_prefix(tree, node, 4) != node)
free(node); /* was a duplicate */
pattern->flags |= ACL_PAT_F_TREE;
return 1;
}
return 1;
}
else if (str62net(*text, &pattern->val.ipv6.addr, &pattern->val.ipv6.mask)) {
/* no tree support right now */
pattern->type = SMP_T_IPV6;
return 1;
}
else {
memprintf(err, "'%s' is not a valid IPv4 or IPv6 address", *text);
return 0;
}
}
/*
* Registers the ACL keyword list <kwl> as a list of valid keywords for next
* parsing sessions.
*/
void acl_register_keywords(struct acl_kw_list *kwl)
{
LIST_ADDQ(&acl_keywords.list, &kwl->list);
}
/*
* Unregisters the ACL keyword list <kwl> from the list of valid keywords.
*/
void acl_unregister_keywords(struct acl_kw_list *kwl)
{
LIST_DEL(&kwl->list);
LIST_INIT(&kwl->list);
}
/* Return a pointer to the ACL <name> within the list starting at <head>, or
* NULL if not found.
*/
struct acl *find_acl_by_name(const char *name, struct list *head)
{
struct acl *acl;
list_for_each_entry(acl, head, list) {
if (strcmp(acl->name, name) == 0)
return acl;
}
return NULL;
}
/* Return a pointer to the ACL keyword <kw>, or NULL if not found. Note that if
* <kw> contains an opening parenthesis, only the left part of it is checked.
*/
struct acl_keyword *find_acl_kw(const char *kw)
{
int index;
const char *kwend;
struct acl_kw_list *kwl;
kwend = strchr(kw, '(');
if (!kwend)
kwend = kw + strlen(kw);
list_for_each_entry(kwl, &acl_keywords.list, list) {
for (index = 0; kwl->kw[index].kw != NULL; index++) {
if ((strncmp(kwl->kw[index].kw, kw, kwend - kw) == 0) &&
kwl->kw[index].kw[kwend-kw] == 0)
return &kwl->kw[index];
}
}
return NULL;
}
/* NB: does nothing if <pat> is NULL */
static void free_pattern(struct acl_pattern *pat)
{
if (!pat)
return;
if (pat->ptr.ptr) {
if (pat->freeptrbuf)
pat->freeptrbuf(pat->ptr.ptr);
free(pat->ptr.ptr);
}
free(pat);
}
static void free_pattern_list(struct list *head)
{
struct acl_pattern *pat, *tmp;
list_for_each_entry_safe(pat, tmp, head, list)
free_pattern(pat);
}
static void free_pattern_tree(struct eb_root *root)
{
struct eb_node *node, *next;
node = eb_first(root);
while (node) {
next = eb_next(node);
free(node);
node = next;
}
}
static struct acl_expr *prune_acl_expr(struct acl_expr *expr)
{
struct arg *arg;
free_pattern_list(&expr->patterns);
free_pattern_tree(&expr->pattern_tree);
LIST_INIT(&expr->patterns);
for (arg = expr->args; arg; arg++) {
if (arg->type == ARGT_STOP)
break;
if (arg->type == ARGT_STR || arg->unresolved) {
free(arg->data.str.str);
arg->data.str.str = NULL;
arg->unresolved = 0;
}
}
if (expr->args != empty_arg_list)
free(expr->args);
return expr;
}
/* Reads patterns from a file. If <err_msg> is non-NULL, an error message will
* be returned there on errors and the caller will have to free it.
*/
static int acl_read_patterns_from_file(struct acl_expr *expr,
const char *filename, int patflags,
char **err)
{
FILE *file;
char *c;
const char *args[2];
struct acl_pattern *pattern;
int opaque;
int ret = 0;
int line = 0;
file = fopen(filename, "r");
if (!file) {
memprintf(err, "failed to open pattern file <%s>", filename);
return 0;
}
/* now parse all patterns. The file may contain only one pattern per
* line. If the line contains spaces, they will be part of the pattern.
* The pattern stops at the first CR, LF or EOF encountered.
*/
opaque = 0;
pattern = NULL;
args[1] = "";
while (fgets(trash.str, trash.size, file) != NULL) {
line++;
c = trash.str;
/* ignore lines beginning with a dash */
if (*c == '#')
continue;
/* strip leading spaces and tabs */
while (*c == ' ' || *c == '\t')
c++;
args[0] = c;
while (*c && *c != '\n' && *c != '\r')
c++;
*c = 0;
/* empty lines are ignored too */
if (c == args[0])
continue;
/* we keep the previous pattern along iterations as long as it's not used */
if (!pattern)
pattern = (struct acl_pattern *)malloc(sizeof(*pattern));
if (!pattern) {
memprintf(err, "out of memory when loading patterns from file <%s>", filename);
goto out_close;
}
memset(pattern, 0, sizeof(*pattern));
pattern->flags = patflags;
if (!(pattern->flags & ACL_PAT_F_IGNORE_CASE) &&
(expr->match == acl_match_str || expr->match == acl_match_ip)) {
/* we pre-set the data pointer to the tree's head so that functions
* which are able to insert in a tree know where to do that.
*/
pattern->flags |= ACL_PAT_F_TREE_OK;
pattern->val.tree = &expr->pattern_tree;
}
pattern->type = SMP_TYPES; /* unspecified type by default */
if (!expr->parse(args, pattern, &opaque, err))
goto out_free_pattern;
/* if the parser did not feed the tree, let's chain the pattern to the list */
if (!(pattern->flags & ACL_PAT_F_TREE)) {
LIST_ADDQ(&expr->patterns, &pattern->list);
pattern = NULL; /* get a new one */
}
}
ret = 1; /* success */
out_free_pattern:
free_pattern(pattern);
out_close:
fclose(file);
return ret;
}
/* Parse an ACL expression starting at <args>[0], and return it. If <err> is
* not NULL, it will be filled with a pointer to an error message in case of
* error. This pointer must be freeable or NULL. <al> is an arg_list serving
* as a list head to report missing dependencies.
*
* Right now, the only accepted syntax is :
* <subject> [<value>...]
*/
struct acl_expr *parse_acl_expr(const char **args, char **err, struct arg_list *al)
{
__label__ out_return, out_free_expr, out_free_pattern;
struct acl_expr *expr;
struct acl_keyword *aclkw;
struct acl_pattern *pattern;
int opaque, patflags;
const char *arg;
struct sample_fetch *smp = NULL;
/* First, we lookd for an ACL keyword. And if we don't find one, then
* we look for a sample fetch keyword.
*/
aclkw = find_acl_kw(args[0]);
if (!aclkw || !aclkw->parse) {
const char *kwend;
kwend = strchr(args[0], '(');
if (!kwend)
kwend = args[0] + strlen(args[0]);
smp = find_sample_fetch(args[0], kwend - args[0]);
if (!smp) {
memprintf(err, "unknown ACL or sample keyword '%s'", *args);
goto out_return;
}
}
expr = (struct acl_expr *)calloc(1, sizeof(*expr));
if (!expr) {
memprintf(err, "out of memory when parsing ACL expression");
goto out_return;
}
expr->kw = aclkw ? aclkw->kw : smp->kw;
LIST_INIT(&expr->patterns);
expr->pattern_tree = EB_ROOT_UNIQUE;
expr->parse = aclkw ? aclkw->parse : NULL;
expr->match = aclkw ? aclkw->match : NULL;
expr->args = empty_arg_list;
expr->smp = aclkw ? aclkw->smp : smp;
if (!expr->parse) {
/* some types can be automatically converted */
switch (expr->smp->out_type) {
case SMP_T_BOOL:
expr->parse = acl_parse_fcts[ACL_MATCH_BOOL];
expr->match = acl_match_fcts[ACL_MATCH_BOOL];
break;
case SMP_T_SINT:
case SMP_T_UINT:
expr->parse = acl_parse_fcts[ACL_MATCH_INT];
expr->match = acl_match_fcts[ACL_MATCH_INT];
break;
case SMP_T_IPV4:
case SMP_T_IPV6:
expr->parse = acl_parse_fcts[ACL_MATCH_IP];
expr->match = acl_match_fcts[ACL_MATCH_IP];
break;
}
}
arg = strchr(args[0], '(');
if (expr->smp->arg_mask) {
int nbargs = 0;
char *end;
if (arg != NULL) {
/* there are 0 or more arguments in the form "subject(arg[,arg]*)" */
arg++;
end = strchr(arg, ')');
if (!end) {
memprintf(err, "missing closing ')' after arguments to ACL keyword '%s'", expr->kw);
goto out_free_expr;
}
/* Parse the arguments. Note that currently we have no way to
* report parsing errors, hence the NULL in the error pointers.
* An error is also reported if some mandatory arguments are
* missing. We prepare the args list to report unresolved
* dependencies.
*/
al->ctx = ARGC_ACL;
al->kw = expr->kw;
al->conv = NULL;
nbargs = make_arg_list(arg, end - arg, expr->smp->arg_mask, &expr->args,
err, NULL, NULL, al);
if (nbargs < 0) {
/* note that make_arg_list will have set <err> here */
memprintf(err, "in argument to '%s', %s", expr->kw, *err);
goto out_free_expr;
}
if (!expr->args)
expr->args = empty_arg_list;
if (expr->smp->val_args && !expr->smp->val_args(expr->args, err)) {
/* invalid keyword argument, error must have been
* set by val_args().
*/
memprintf(err, "in argument to '%s', %s", expr->kw, *err);
goto out_free_expr;
}
}
else if (ARGM(expr->smp->arg_mask) == 1) {
int type = (expr->smp->arg_mask >> 4) & 15;
/* If a proxy is noted as a mandatory argument, we'll fake
* an empty one so that acl_find_targets() resolves it as
* the current one later.
*/
if (type != ARGT_FE && type != ARGT_BE && type != ARGT_TAB) {
memprintf(err, "ACL keyword '%s' expects %d arguments", expr->kw, ARGM(expr->smp->arg_mask));
goto out_free_expr;
}
/* Build an arg list containing the type as an empty string
* and the usual STOP.
*/
expr->args = calloc(2, sizeof(*expr->args));
expr->args[0].type = type;
expr->args[0].unresolved = 1;
expr->args[0].data.str.str = strdup("");
expr->args[0].data.str.len = 1;
expr->args[0].data.str.len = 0;
arg_list_add(al, &expr->args[0], 0);
expr->args[1].type = ARGT_STOP;
}
else if (ARGM(expr->smp->arg_mask)) {
/* there were some mandatory arguments */
memprintf(err, "ACL keyword '%s' expects %d arguments", expr->kw, ARGM(expr->smp->arg_mask));
goto out_free_expr;
}
}
else {
if (arg) {
/* no argument expected */
memprintf(err, "ACL keyword '%s' takes no argument", expr->kw);
goto out_free_expr;
}
}
args++;
/* check for options before patterns. Supported options are :
* -i : ignore case for all patterns by default
* -f : read patterns from those files
* -m : force matching method (must be used before -f)
* -- : everything after this is not an option
*/
patflags = 0;
while (**args == '-') {
if ((*args)[1] == 'i')
patflags |= ACL_PAT_F_IGNORE_CASE;
else if ((*args)[1] == 'f') {
if (!expr->parse) {
memprintf(err, "matching method must be specified first (using '-m') when using a sample fetch of this type ('%s')", expr->kw);
goto out_free_expr;
}
if (!acl_read_patterns_from_file(expr, args[1], patflags | ACL_PAT_F_FROM_FILE, err))
goto out_free_expr;
args++;
}
else if ((*args)[1] == 'm') {
int idx;
if (!LIST_ISEMPTY(&expr->patterns) || !eb_is_empty(&expr->pattern_tree)) {
memprintf(err, "'-m' must only be specified before patterns and files in parsing ACL expression");
goto out_free_expr;
}
idx = acl_find_match_name(args[1]);
if (idx < 0) {
memprintf(err, "unknown matching method '%s' when parsing ACL expression", args[1]);
goto out_free_expr;
}
/* Note: -m found is always valid, bool/int are compatible, str/bin/reg/len are compatible */
if (idx == ACL_MATCH_FOUND || /* -m found */
((idx == ACL_MATCH_BOOL || idx == ACL_MATCH_INT) && /* -m bool/int */
(expr->smp->out_type == SMP_T_BOOL ||
expr->smp->out_type == SMP_T_UINT ||
expr->smp->out_type == SMP_T_SINT)) ||
(idx == ACL_MATCH_IP && /* -m ip */
(expr->smp->out_type == SMP_T_IPV4 ||
expr->smp->out_type == SMP_T_IPV6)) ||
((idx == ACL_MATCH_BIN || idx == ACL_MATCH_LEN || idx == ACL_MATCH_STR ||
idx == ACL_MATCH_BEG || idx == ACL_MATCH_SUB || idx == ACL_MATCH_DIR ||
idx == ACL_MATCH_DOM || idx == ACL_MATCH_END || idx == ACL_MATCH_REG) && /* strings */
(expr->smp->out_type == SMP_T_STR ||
expr->smp->out_type == SMP_T_BIN ||
expr->smp->out_type == SMP_T_CSTR ||
expr->smp->out_type == SMP_T_CBIN))) {
expr->parse = acl_parse_fcts[idx];
expr->match = acl_match_fcts[idx];
}
else {
memprintf(err, "matching method '%s' cannot be used with fetch keyword '%s'", args[1], expr->kw);
goto out_free_expr;
}
args++;
}
else if ((*args)[1] == '-') {
args++;
break;
}
else
break;
args++;
}
if (!expr->parse) {
memprintf(err, "matching method must be specified first (using '-m') when using a sample fetch of this type ('%s')", expr->kw);
goto out_free_expr;
}
/* now parse all patterns */
opaque = 0;
while (**args) {
int ret;
pattern = (struct acl_pattern *)calloc(1, sizeof(*pattern));
if (!pattern) {
memprintf(err, "out of memory when parsing ACL pattern");
goto out_free_expr;
}
pattern->flags = patflags;
pattern->type = SMP_TYPES; /* unspecified type */
ret = expr->parse(args, pattern, &opaque, err);
if (!ret)
goto out_free_pattern;
LIST_ADDQ(&expr->patterns, &pattern->list);
args += ret;
}
return expr;
out_free_pattern:
free_pattern(pattern);
out_free_expr:
prune_acl_expr(expr);
free(expr);
out_return:
return NULL;
}
/* Purge everything in the acl <acl>, then return <acl>. */
struct acl *prune_acl(struct acl *acl) {
struct acl_expr *expr, *exprb;
free(acl->name);
list_for_each_entry_safe(expr, exprb, &acl->expr, list) {
LIST_DEL(&expr->list);
prune_acl_expr(expr);
free(expr);
}
return acl;
}
/* Parse an ACL with the name starting at <args>[0], and with a list of already
* known ACLs in <acl>. If the ACL was not in the list, it will be added.
* A pointer to that ACL is returned. If the ACL has an empty name, then it's
* an anonymous one and it won't be merged with any other one. If <err> is not
* NULL, it will be filled with an appropriate error. This pointer must be
* freeable or NULL. <al> is the arg_list serving as a head for unresolved
* dependencies.
*
* args syntax: <aclname> <acl_expr>
*/
struct acl *parse_acl(const char **args, struct list *known_acl, char **err, struct arg_list *al)
{
__label__ out_return, out_free_acl_expr, out_free_name;
struct acl *cur_acl;
struct acl_expr *acl_expr;
char *name;
const char *pos;
if (**args && (pos = invalid_char(*args))) {
memprintf(err, "invalid character in ACL name : '%c'", *pos);
goto out_return;
}
acl_expr = parse_acl_expr(args + 1, err, al);
if (!acl_expr) {
/* parse_acl_expr will have filled <err> here */
goto out_return;
}
/* Check for args beginning with an opening parenthesis just after the
* subject, as this is almost certainly a typo. Right now we can only
* emit a warning, so let's do so.
*/
if (!strchr(args[1], '(') && *args[2] == '(')
Warning("parsing acl '%s' :\n"
" matching '%s' for pattern '%s' is likely a mistake and probably\n"
" not what you want. Maybe you need to remove the extraneous space before '('.\n"
" If you are really sure this is not an error, please insert '--' between the\n"
" match and the pattern to make this warning message disappear.\n",
args[0], args[1], args[2]);
if (*args[0])
cur_acl = find_acl_by_name(args[0], known_acl);
else
cur_acl = NULL;
if (!cur_acl) {
name = strdup(args[0]);
if (!name) {
memprintf(err, "out of memory when parsing ACL");
goto out_free_acl_expr;
}
cur_acl = (struct acl *)calloc(1, sizeof(*cur_acl));
if (cur_acl == NULL) {
memprintf(err, "out of memory when parsing ACL");
goto out_free_name;
}
LIST_INIT(&cur_acl->expr);
LIST_ADDQ(known_acl, &cur_acl->list);
cur_acl->name = name;
}
/* We want to know what features the ACL needs (typically HTTP parsing),
* and where it may be used. If an ACL relies on multiple matches, it is
* OK if at least one of them may match in the context where it is used.
*/
cur_acl->use |= acl_expr->smp->use;
cur_acl->val |= acl_expr->smp->val;
LIST_ADDQ(&cur_acl->expr, &acl_expr->list);
return cur_acl;
out_free_name:
free(name);
out_free_acl_expr:
prune_acl_expr(acl_expr);
free(acl_expr);
out_return:
return NULL;
}
/* Some useful ACLs provided by default. Only those used are allocated. */
const struct {
const char *name;
const char *expr[4]; /* put enough for longest expression */
} default_acl_list[] = {
{ .name = "TRUE", .expr = {"always_true",""}},
{ .name = "FALSE", .expr = {"always_false",""}},
{ .name = "LOCALHOST", .expr = {"src","127.0.0.1/8",""}},
{ .name = "HTTP", .expr = {"req_proto_http",""}},
{ .name = "HTTP_1.0", .expr = {"req_ver","1.0",""}},
{ .name = "HTTP_1.1", .expr = {"req_ver","1.1",""}},
{ .name = "METH_CONNECT", .expr = {"method","CONNECT",""}},
{ .name = "METH_GET", .expr = {"method","GET","HEAD",""}},
{ .name = "METH_HEAD", .expr = {"method","HEAD",""}},
{ .name = "METH_OPTIONS", .expr = {"method","OPTIONS",""}},
{ .name = "METH_POST", .expr = {"method","POST",""}},
{ .name = "METH_TRACE", .expr = {"method","TRACE",""}},
{ .name = "HTTP_URL_ABS", .expr = {"url_reg","^[^/:]*://",""}},
{ .name = "HTTP_URL_SLASH", .expr = {"url_beg","/",""}},
{ .name = "HTTP_URL_STAR", .expr = {"url","*",""}},
{ .name = "HTTP_CONTENT", .expr = {"hdr_val(content-length)","gt","0",""}},
{ .name = "RDP_COOKIE", .expr = {"req_rdp_cookie_cnt","gt","0",""}},
{ .name = "REQ_CONTENT", .expr = {"req_len","gt","0",""}},
{ .name = "WAIT_END", .expr = {"wait_end",""}},
{ .name = NULL, .expr = {""}}
};
/* Find a default ACL from the default_acl list, compile it and return it.
* If the ACL is not found, NULL is returned. In theory, it cannot fail,
* except when default ACLs are broken, in which case it will return NULL.
* If <known_acl> is not NULL, the ACL will be queued at its tail. If <err> is
* not NULL, it will be filled with an error message if an error occurs. This
* pointer must be freeable or NULL. <al> is an arg_list serving as a list head
* to report missing dependencies.
*/
static struct acl *find_acl_default(const char *acl_name, struct list *known_acl,
char **err, struct arg_list *al)
{
__label__ out_return, out_free_acl_expr, out_free_name;
struct acl *cur_acl;
struct acl_expr *acl_expr;
char *name;
int index;
for (index = 0; default_acl_list[index].name != NULL; index++) {
if (strcmp(acl_name, default_acl_list[index].name) == 0)
break;
}
if (default_acl_list[index].name == NULL) {
memprintf(err, "no such ACL : '%s'", acl_name);
return NULL;
}
acl_expr = parse_acl_expr((const char **)default_acl_list[index].expr, err, al);
if (!acl_expr) {
/* parse_acl_expr must have filled err here */
goto out_return;
}
name = strdup(acl_name);
if (!name) {
memprintf(err, "out of memory when building default ACL '%s'", acl_name);
goto out_free_acl_expr;
}
cur_acl = (struct acl *)calloc(1, sizeof(*cur_acl));
if (cur_acl == NULL) {
memprintf(err, "out of memory when building default ACL '%s'", acl_name);
goto out_free_name;
}
cur_acl->name = name;
cur_acl->use |= acl_expr->smp->use;
cur_acl->val |= acl_expr->smp->val;
LIST_INIT(&cur_acl->expr);
LIST_ADDQ(&cur_acl->expr, &acl_expr->list);
if (known_acl)
LIST_ADDQ(known_acl, &cur_acl->list);
return cur_acl;
out_free_name:
free(name);
out_free_acl_expr:
prune_acl_expr(acl_expr);
free(acl_expr);
out_return:
return NULL;
}
/* Purge everything in the acl_cond <cond>, then return <cond>. */
struct acl_cond *prune_acl_cond(struct acl_cond *cond)
{
struct acl_term_suite *suite, *tmp_suite;
struct acl_term *term, *tmp_term;
/* iterate through all term suites and free all terms and all suites */
list_for_each_entry_safe(suite, tmp_suite, &cond->suites, list) {
list_for_each_entry_safe(term, tmp_term, &suite->terms, list)
free(term);
free(suite);
}
return cond;
}
/* Parse an ACL condition starting at <args>[0], relying on a list of already
* known ACLs passed in <known_acl>. The new condition is returned (or NULL in
* case of low memory). Supports multiple conditions separated by "or". If
* <err> is not NULL, it will be filled with a pointer to an error message in
* case of error, that the caller is responsible for freeing. The initial
* location must either be freeable or NULL. The list <al> serves as a list head
* for unresolved dependencies.
*/
struct acl_cond *parse_acl_cond(const char **args, struct list *known_acl,
int pol, char **err, struct arg_list *al)
{
__label__ out_return, out_free_suite, out_free_term;
int arg, neg;
const char *word;
struct acl *cur_acl;
struct acl_term *cur_term;
struct acl_term_suite *cur_suite;
struct acl_cond *cond;
unsigned int suite_val;
cond = (struct acl_cond *)calloc(1, sizeof(*cond));
if (cond == NULL) {
memprintf(err, "out of memory when parsing condition");
goto out_return;
}
LIST_INIT(&cond->list);
LIST_INIT(&cond->suites);
cond->pol = pol;
cond->val = 0;
cur_suite = NULL;
suite_val = ~0U;
neg = 0;
for (arg = 0; *args[arg]; arg++) {
word = args[arg];
/* remove as many exclamation marks as we can */
while (*word == '!') {
neg = !neg;
word++;
}
/* an empty word is allowed because we cannot force the user to
* always think about not leaving exclamation marks alone.
*/
if (!*word)
continue;
if (strcasecmp(word, "or") == 0 || strcmp(word, "||") == 0) {
/* new term suite */
cond->val |= suite_val;
suite_val = ~0U;
cur_suite = NULL;
neg = 0;
continue;
}
if (strcmp(word, "{") == 0) {
/* we may have a complete ACL expression between two braces,
* find the last one.
*/
int arg_end = arg + 1;
const char **args_new;
while (*args[arg_end] && strcmp(args[arg_end], "}") != 0)
arg_end++;
if (!*args[arg_end]) {
memprintf(err, "missing closing '}' in condition");
goto out_free_suite;
}
args_new = calloc(1, (arg_end - arg + 1) * sizeof(*args_new));
if (!args_new) {
memprintf(err, "out of memory when parsing condition");
goto out_free_suite;
}
args_new[0] = "";
memcpy(args_new + 1, args + arg + 1, (arg_end - arg) * sizeof(*args_new));
args_new[arg_end - arg] = "";
cur_acl = parse_acl(args_new, known_acl, err, al);
free(args_new);
if (!cur_acl) {
/* note that parse_acl() must have filled <err> here */
goto out_free_suite;
}
word = args[arg + 1];
arg = arg_end;
}
else {
/* search for <word> in the known ACL names. If we do not find
* it, let's look for it in the default ACLs, and if found, add
* it to the list of ACLs of this proxy. This makes it possible
* to override them.
*/
cur_acl = find_acl_by_name(word, known_acl);
if (cur_acl == NULL) {
cur_acl = find_acl_default(word, known_acl, err, al);
if (cur_acl == NULL) {
/* note that find_acl_default() must have filled <err> here */
goto out_free_suite;
}
}
}
cur_term = (struct acl_term *)calloc(1, sizeof(*cur_term));
if (cur_term == NULL) {
memprintf(err, "out of memory when parsing condition");
goto out_free_suite;
}
cur_term->acl = cur_acl;
cur_term->neg = neg;
/* Here it is a bit complex. The acl_term_suite is a conjunction
* of many terms. It may only be used if all of its terms are
* usable at the same time. So the suite's validity domain is an
* AND between all ACL keywords' ones. But, the global condition
* is valid if at least one term suite is OK. So it's an OR between
* all of their validity domains. We could emit a warning as soon
* as suite_val is null because it means that the last ACL is not
* compatible with the previous ones. Let's remain simple for now.
*/
cond->use |= cur_acl->use;
suite_val &= cur_acl->val;
if (!cur_suite) {
cur_suite = (struct acl_term_suite *)calloc(1, sizeof(*cur_suite));
if (cur_suite == NULL) {
memprintf(err, "out of memory when parsing condition");
goto out_free_term;
}
LIST_INIT(&cur_suite->terms);
LIST_ADDQ(&cond->suites, &cur_suite->list);
}
LIST_ADDQ(&cur_suite->terms, &cur_term->list);
neg = 0;
}
cond->val |= suite_val;
return cond;
out_free_term:
free(cur_term);
out_free_suite:
prune_acl_cond(cond);
free(cond);
out_return:
return NULL;
}
/* Builds an ACL condition starting at the if/unless keyword. The complete
* condition is returned. NULL is returned in case of error or if the first
* word is neither "if" nor "unless". It automatically sets the file name and
* the line number in the condition for better error reporting, and sets the
* HTTP intiailization requirements in the proxy. If <err> is not NULL, it will
* be filled with a pointer to an error message in case of error, that the
* caller is responsible for freeing. The initial location must either be
* freeable or NULL.
*/
struct acl_cond *build_acl_cond(const char *file, int line, struct proxy *px, const char **args, char **err)
{
int pol = ACL_COND_NONE;
struct acl_cond *cond = NULL;
if (err)
*err = NULL;
if (!strcmp(*args, "if")) {
pol = ACL_COND_IF;
args++;
}
else if (!strcmp(*args, "unless")) {
pol = ACL_COND_UNLESS;
args++;
}
else {
memprintf(err, "conditions must start with either 'if' or 'unless'");
return NULL;
}
cond = parse_acl_cond(args, &px->acl, pol, err, &px->conf.args);
if (!cond) {
/* note that parse_acl_cond must have filled <err> here */
return NULL;
}
cond->file = file;
cond->line = line;
px->http_needed |= !!(cond->use & SMP_USE_HTTP_ANY);
return cond;
}
/* Execute condition <cond> and return either ACL_PAT_FAIL, ACL_PAT_MISS or
* ACL_PAT_PASS depending on the test results. ACL_PAT_MISS may only be
* returned if <opt> does not contain SMP_OPT_FINAL, indicating that incomplete
* data is being examined. The function automatically sets SMP_OPT_ITERATE.
* This function only computes the condition, it does not apply the polarity
* required by IF/UNLESS, it's up to the caller to do this using something like
* this :
*
* res = acl_pass(res);
* if (res == ACL_PAT_MISS)
* return 0;
* if (cond->pol == ACL_COND_UNLESS)
* res = !res;
*/
int acl_exec_cond(struct acl_cond *cond, struct proxy *px, struct session *l4, void *l7, unsigned int opt)
{
__label__ fetch_next;
struct acl_term_suite *suite;
struct acl_term *term;
struct acl_expr *expr;
struct acl *acl;
struct acl_pattern *pattern;
struct sample smp;
int acl_res, suite_res, cond_res;
/* ACLs are iterated over all values, so let's always set the flag to
* indicate this to the fetch functions.
*/
opt |= SMP_OPT_ITERATE;
/* We're doing a logical OR between conditions so we initialize to FAIL.
* The MISS status is propagated down from the suites.
*/
cond_res = ACL_PAT_FAIL;
list_for_each_entry(suite, &cond->suites, list) {
/* Evaluate condition suite <suite>. We stop at the first term
* which returns ACL_PAT_FAIL. The MISS status is still propagated
* in case of uncertainty in the result.
*/
/* we're doing a logical AND between terms, so we must set the
* initial value to PASS.
*/
suite_res = ACL_PAT_PASS;
list_for_each_entry(term, &suite->terms, list) {
acl = term->acl;
/* FIXME: use cache !
* check acl->cache_idx for this.
*/
/* ACL result not cached. Let's scan all the expressions
* and use the first one to match.
*/
acl_res = ACL_PAT_FAIL;
list_for_each_entry(expr, &acl->expr, list) {
/* we need to reset context and flags */
memset(&smp, 0, sizeof(smp));
fetch_next:
if (!expr->smp->process(px, l4, l7, opt, expr->args, &smp)) {
/* maybe we could not fetch because of missing data */
if (smp.flags & SMP_F_MAY_CHANGE && !(opt & SMP_OPT_FINAL))
acl_res |= ACL_PAT_MISS;
continue;
}
if (smp.type == SMP_T_BOOL) {
if (smp.data.uint)
acl_res |= ACL_PAT_PASS;
else
acl_res |= ACL_PAT_FAIL;
}
else if (!expr->match) {
/* just check for existence */
acl_res |= ACL_PAT_PASS;
}
else {
if (!eb_is_empty(&expr->pattern_tree)) {
/* a tree is present, let's check what type it is */
if (expr->match == acl_match_str)
acl_res |= acl_lookup_str(&smp, expr) ? ACL_PAT_PASS : ACL_PAT_FAIL;
else if (expr->match == acl_match_ip)
acl_res |= acl_lookup_ip(&smp, expr) ? ACL_PAT_PASS : ACL_PAT_FAIL;
}
/* call the match() function for all tests on this value */
list_for_each_entry(pattern, &expr->patterns, list) {
if (acl_res == ACL_PAT_PASS)
break;
acl_res |= expr->match(&smp, pattern);
}
}
/*
* OK now acl_res holds the result of this expression
* as one of ACL_PAT_FAIL, ACL_PAT_MISS or ACL_PAT_PASS.
*
* Then if (!MISS) we can cache the result, and put
* (smp.flags & SMP_F_VOLATILE) in the cache flags.
*
* FIXME: implement cache.
*
*/
/* we're ORing these terms, so a single PASS is enough */
if (acl_res == ACL_PAT_PASS)
break;
if (smp.flags & SMP_F_NOT_LAST)
goto fetch_next;
/* sometimes we know the fetched data is subject to change
* later and give another chance for a new match (eg: request
* size, time, ...)
*/
if (smp.flags & SMP_F_MAY_CHANGE && !(opt & SMP_OPT_FINAL))
acl_res |= ACL_PAT_MISS;
}
/*
* Here we have the result of an ACL (cached or not).
* ACLs are combined, negated or not, to form conditions.
*/
if (term->neg)
acl_res = acl_neg(acl_res);
suite_res &= acl_res;
/* we're ANDing these terms, so a single FAIL is enough */
if (suite_res == ACL_PAT_FAIL)
break;
}
cond_res |= suite_res;
/* we're ORing these terms, so a single PASS is enough */
if (cond_res == ACL_PAT_PASS)
break;
}
return cond_res;
}
/* Returns a pointer to the first ACL conflicting with usage at place <where>
* which is one of the SMP_VAL_* bits indicating a check place, or NULL if
* no conflict is found. Only full conflicts are detected (ACL is not usable).
* Use the next function to check for useless keywords.
*/
const struct acl *acl_cond_conflicts(const struct acl_cond *cond, unsigned int where)
{
struct acl_term_suite *suite;
struct acl_term *term;
struct acl *acl;
list_for_each_entry(suite, &cond->suites, list) {
list_for_each_entry(term, &suite->terms, list) {
acl = term->acl;
if (!(acl->val & where))
return acl;
}
}
return NULL;
}
/* Returns a pointer to the first ACL and its first keyword to conflict with
* usage at place <where> which is one of the SMP_VAL_* bits indicating a check
* place. Returns true if a conflict is found, with <acl> and <kw> set (if non
* null), or false if not conflict is found. The first useless keyword is
* returned.
*/
int acl_cond_kw_conflicts(const struct acl_cond *cond, unsigned int where, struct acl const **acl, char const **kw)
{
struct acl_term_suite *suite;
struct acl_term *term;
struct acl_expr *expr;
list_for_each_entry(suite, &cond->suites, list) {
list_for_each_entry(term, &suite->terms, list) {
list_for_each_entry(expr, &term->acl->expr, list) {
if (!(expr->smp->val & where)) {
if (acl)
*acl = term->acl;
if (kw)
*kw = expr->kw;
return 1;
}
}
}
}
return 0;
}
/*
* Find targets for userlist and groups in acl. Function returns the number
* of errors or OK if everything is fine. It must be called only once sample
* fetch arguments have been resolved (after smp_resolve_args()).
*/
int acl_find_targets(struct proxy *p)
{
struct acl *acl;
struct acl_expr *expr;
struct acl_pattern *pattern;
int cfgerr = 0;
list_for_each_entry(acl, &p->acl, list) {
list_for_each_entry(expr, &acl->expr, list) {
if (!strcmp(expr->kw, "http_auth_group")) {
/* Note: the ARGT_USR argument may only have been resolved earlier
* by smp_resolve_args().
*/
if (expr->args->unresolved) {
Alert("Internal bug in proxy %s: %sacl %s %s() makes use of unresolved userlist '%s'. Please report this.\n",
p->id, *acl->name ? "" : "anonymous ", acl->name, expr->kw, expr->args->data.str.str);
cfgerr++;
continue;
}
if (LIST_ISEMPTY(&expr->patterns)) {
Alert("proxy %s: acl %s %s(): no groups specified.\n",
p->id, acl->name, expr->kw);
cfgerr++;
continue;
}
list_for_each_entry(pattern, &expr->patterns, list) {
/* this keyword only has one argument */
pattern->val.group_mask = auth_resolve_groups(expr->args->data.usr, pattern->ptr.str);
if (!pattern->val.group_mask) {
Alert("proxy %s: acl %s %s(): invalid group '%s'.\n",
p->id, acl->name, expr->kw, pattern->ptr.str);
cfgerr++;
}
free(pattern->ptr.str);
pattern->ptr.str = NULL;
pattern->len = 0;
}
}
}
}
return cfgerr;
}
/* initializes ACLs by resolving the sample fetch names they rely upon.
* Returns 0 on success, otherwise an error.
*/
int init_acl()
{
int err = 0;
int index;
const char *name;
struct acl_kw_list *kwl;
struct sample_fetch *smp;
list_for_each_entry(kwl, &acl_keywords.list, list) {
for (index = 0; kwl->kw[index].kw != NULL; index++) {
name = kwl->kw[index].fetch_kw;
if (!name)
name = kwl->kw[index].kw;
smp = find_sample_fetch(name, strlen(name));
if (!smp) {
Alert("Critical internal error: ACL keyword '%s' relies on sample fetch '%s' which was not registered!\n",
kwl->kw[index].kw, name);
err++;
continue;
}
kwl->kw[index].smp = smp;
}
}
return err;
}
/************************************************************************/
/* All supported sample fetch functions must be declared here */
/************************************************************************/
/* force TRUE to be returned at the fetch level */
static int
smp_fetch_true(struct proxy *px, struct session *s, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
smp->type = SMP_T_BOOL;
smp->data.uint = 1;
return 1;
}
/* force FALSE to be returned at the fetch level */
static int
smp_fetch_false(struct proxy *px, struct session *s, void *l7, unsigned int opt,
const struct arg *args, struct sample *smp)
{
smp->type = SMP_T_BOOL;
smp->data.uint = 0;
return 1;
}
/************************************************************************/
/* All supported sample and ACL keywords must be declared here. */
/************************************************************************/
/* Note: must not be declared <const> as its list will be overwritten.
* Note: fetches that may return multiple types must be declared as the lowest
* common denominator, the type that can be casted into all other ones. For
* instance IPv4/IPv6 must be declared IPv4.
*/
static struct sample_fetch_kw_list smp_kws = {{ },{
{ "always_false", smp_fetch_false, 0, NULL, SMP_T_BOOL, SMP_USE_INTRN },
{ "always_true", smp_fetch_true, 0, NULL, SMP_T_BOOL, SMP_USE_INTRN },
{ /* END */ },
}};
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*/
static struct acl_kw_list acl_kws = {{ },{
{ /* END */ },
}};
__attribute__((constructor))
static void __acl_init(void)
{
sample_register_fetches(&smp_kws);
acl_register_keywords(&acl_kws);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/