| /* |
| * ACL management functions. |
| * |
| * Copyright 2000-2013 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <ctype.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <common/config.h> |
| #include <common/mini-clist.h> |
| #include <common/standard.h> |
| #include <common/uri_auth.h> |
| |
| #include <types/global.h> |
| |
| #include <proto/acl.h> |
| #include <proto/arg.h> |
| #include <proto/auth.h> |
| #include <proto/channel.h> |
| #include <proto/log.h> |
| #include <proto/proxy.h> |
| #include <proto/sample.h> |
| #include <proto/stick_table.h> |
| |
| #include <ebsttree.h> |
| |
| /* List head of all known ACL keywords */ |
| static struct acl_kw_list acl_keywords = { |
| .list = LIST_HEAD_INIT(acl_keywords.list) |
| }; |
| |
| static char *acl_match_names[ACL_MATCH_NUM] = { |
| [ACL_MATCH_FOUND] = "found", |
| [ACL_MATCH_BOOL] = "bool", |
| [ACL_MATCH_INT] = "int", |
| [ACL_MATCH_IP] = "ip", |
| [ACL_MATCH_BIN] = "bin", |
| [ACL_MATCH_LEN] = "len", |
| [ACL_MATCH_STR] = "str", |
| [ACL_MATCH_BEG] = "beg", |
| [ACL_MATCH_SUB] = "sub", |
| [ACL_MATCH_DIR] = "dir", |
| [ACL_MATCH_DOM] = "dom", |
| [ACL_MATCH_END] = "end", |
| [ACL_MATCH_REG] = "reg", |
| }; |
| |
| static int (*acl_parse_fcts[ACL_MATCH_NUM])(const char **, struct acl_pattern *, int *, char **) = { |
| [ACL_MATCH_FOUND] = acl_parse_nothing, |
| [ACL_MATCH_BOOL] = acl_parse_nothing, |
| [ACL_MATCH_INT] = acl_parse_int, |
| [ACL_MATCH_IP] = acl_parse_ip, |
| [ACL_MATCH_BIN] = acl_parse_bin, |
| [ACL_MATCH_LEN] = acl_parse_int, |
| [ACL_MATCH_STR] = acl_parse_str, |
| [ACL_MATCH_BEG] = acl_parse_str, |
| [ACL_MATCH_SUB] = acl_parse_str, |
| [ACL_MATCH_DIR] = acl_parse_str, |
| [ACL_MATCH_DOM] = acl_parse_str, |
| [ACL_MATCH_END] = acl_parse_str, |
| [ACL_MATCH_REG] = acl_parse_reg, |
| }; |
| |
| static int (*acl_match_fcts[ACL_MATCH_NUM])(struct sample *, struct acl_pattern *) = { |
| [ACL_MATCH_FOUND] = NULL, |
| [ACL_MATCH_BOOL] = acl_match_nothing, |
| [ACL_MATCH_INT] = acl_match_int, |
| [ACL_MATCH_IP] = acl_match_ip, |
| [ACL_MATCH_BIN] = acl_match_bin, |
| [ACL_MATCH_LEN] = acl_match_len, |
| [ACL_MATCH_STR] = acl_match_str, |
| [ACL_MATCH_BEG] = acl_match_beg, |
| [ACL_MATCH_SUB] = acl_match_sub, |
| [ACL_MATCH_DIR] = acl_match_dir, |
| [ACL_MATCH_DOM] = acl_match_dom, |
| [ACL_MATCH_END] = acl_match_end, |
| [ACL_MATCH_REG] = acl_match_reg, |
| }; |
| |
| /* return the ACL_MATCH_* index for match name "name", or < 0 if not found */ |
| static int acl_find_match_name(const char *name) |
| { |
| int i; |
| |
| for (i = 0; i < ACL_MATCH_NUM; i++) |
| if (strcmp(name, acl_match_names[i]) == 0) |
| return i; |
| return -1; |
| } |
| |
| /* |
| * These functions are exported and may be used by any other component. |
| */ |
| |
| /* ignore the current line */ |
| int acl_parse_nothing(const char **text, struct acl_pattern *pattern, int *opaque, char **err) |
| { |
| return 1; |
| } |
| |
| /* always return false */ |
| int acl_match_nothing(struct sample *smp, struct acl_pattern *pattern) |
| { |
| return ACL_PAT_FAIL; |
| } |
| |
| |
| /* NB: For two strings to be identical, it is required that their lengths match */ |
| int acl_match_str(struct sample *smp, struct acl_pattern *pattern) |
| { |
| int icase; |
| |
| if (pattern->len != smp->data.str.len) |
| return ACL_PAT_FAIL; |
| |
| icase = pattern->flags & ACL_PAT_F_IGNORE_CASE; |
| if ((icase && strncasecmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) == 0) || |
| (!icase && strncmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) == 0)) |
| return ACL_PAT_PASS; |
| return ACL_PAT_FAIL; |
| } |
| |
| /* NB: For two binaries buf to be identical, it is required that their lengths match */ |
| int acl_match_bin(struct sample *smp, struct acl_pattern *pattern) |
| { |
| if (pattern->len != smp->data.str.len) |
| return ACL_PAT_FAIL; |
| |
| if (memcmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) == 0) |
| return ACL_PAT_PASS; |
| return ACL_PAT_FAIL; |
| } |
| |
| /* Lookup a string in the expression's pattern tree. The node is returned if it |
| * exists, otherwise NULL. |
| */ |
| static void *acl_lookup_str(struct sample *smp, struct acl_expr *expr) |
| { |
| /* data are stored in a tree */ |
| struct ebmb_node *node; |
| char prev; |
| |
| /* we may have to force a trailing zero on the test pattern */ |
| prev = smp->data.str.str[smp->data.str.len]; |
| if (prev) |
| smp->data.str.str[smp->data.str.len] = '\0'; |
| node = ebst_lookup(&expr->pattern_tree, smp->data.str.str); |
| if (prev) |
| smp->data.str.str[smp->data.str.len] = prev; |
| return node; |
| } |
| |
| /* Executes a regex. It temporarily changes the data to add a trailing zero, |
| * and restores the previous character when leaving. |
| */ |
| int acl_match_reg(struct sample *smp, struct acl_pattern *pattern) |
| { |
| char old_char; |
| int ret; |
| |
| old_char = smp->data.str.str[smp->data.str.len]; |
| smp->data.str.str[smp->data.str.len] = 0; |
| |
| if (regex_exec(pattern->ptr.reg, smp->data.str.str, smp->data.str.len) == 0) |
| ret = ACL_PAT_PASS; |
| else |
| ret = ACL_PAT_FAIL; |
| |
| smp->data.str.str[smp->data.str.len] = old_char; |
| return ret; |
| } |
| |
| /* Checks that the pattern matches the beginning of the tested string. */ |
| int acl_match_beg(struct sample *smp, struct acl_pattern *pattern) |
| { |
| int icase; |
| |
| if (pattern->len > smp->data.str.len) |
| return ACL_PAT_FAIL; |
| |
| icase = pattern->flags & ACL_PAT_F_IGNORE_CASE; |
| if ((icase && strncasecmp(pattern->ptr.str, smp->data.str.str, pattern->len) != 0) || |
| (!icase && strncmp(pattern->ptr.str, smp->data.str.str, pattern->len) != 0)) |
| return ACL_PAT_FAIL; |
| return ACL_PAT_PASS; |
| } |
| |
| /* Checks that the pattern matches the end of the tested string. */ |
| int acl_match_end(struct sample *smp, struct acl_pattern *pattern) |
| { |
| int icase; |
| |
| if (pattern->len > smp->data.str.len) |
| return ACL_PAT_FAIL; |
| icase = pattern->flags & ACL_PAT_F_IGNORE_CASE; |
| if ((icase && strncasecmp(pattern->ptr.str, smp->data.str.str + smp->data.str.len - pattern->len, pattern->len) != 0) || |
| (!icase && strncmp(pattern->ptr.str, smp->data.str.str + smp->data.str.len - pattern->len, pattern->len) != 0)) |
| return ACL_PAT_FAIL; |
| return ACL_PAT_PASS; |
| } |
| |
| /* Checks that the pattern is included inside the tested string. |
| * NB: Suboptimal, should be rewritten using a Boyer-Moore method. |
| */ |
| int acl_match_sub(struct sample *smp, struct acl_pattern *pattern) |
| { |
| int icase; |
| char *end; |
| char *c; |
| |
| if (pattern->len > smp->data.str.len) |
| return ACL_PAT_FAIL; |
| |
| end = smp->data.str.str + smp->data.str.len - pattern->len; |
| icase = pattern->flags & ACL_PAT_F_IGNORE_CASE; |
| if (icase) { |
| for (c = smp->data.str.str; c <= end; c++) { |
| if (tolower(*c) != tolower(*pattern->ptr.str)) |
| continue; |
| if (strncasecmp(pattern->ptr.str, c, pattern->len) == 0) |
| return ACL_PAT_PASS; |
| } |
| } else { |
| for (c = smp->data.str.str; c <= end; c++) { |
| if (*c != *pattern->ptr.str) |
| continue; |
| if (strncmp(pattern->ptr.str, c, pattern->len) == 0) |
| return ACL_PAT_PASS; |
| } |
| } |
| return ACL_PAT_FAIL; |
| } |
| |
| /* Background: Fast way to find a zero byte in a word |
| * http://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord |
| * hasZeroByte = (v - 0x01010101UL) & ~v & 0x80808080UL; |
| * |
| * To look for 4 different byte values, xor the word with those bytes and |
| * then check for zero bytes: |
| * |
| * v = (((unsigned char)c * 0x1010101U) ^ delimiter) |
| * where <delimiter> is the 4 byte values to look for (as an uint) |
| * and <c> is the character that is being tested |
| */ |
| static inline unsigned int is_delimiter(unsigned char c, unsigned int mask) |
| { |
| mask ^= (c * 0x01010101); /* propagate the char to all 4 bytes */ |
| return (mask - 0x01010101) & ~mask & 0x80808080U; |
| } |
| |
| static inline unsigned int make_4delim(unsigned char d1, unsigned char d2, unsigned char d3, unsigned char d4) |
| { |
| return d1 << 24 | d2 << 16 | d3 << 8 | d4; |
| } |
| |
| /* This one is used by other real functions. It checks that the pattern is |
| * included inside the tested string, but enclosed between the specified |
| * delimiters or at the beginning or end of the string. The delimiters are |
| * provided as an unsigned int made by make_4delim() and match up to 4 different |
| * delimiters. Delimiters are stripped at the beginning and end of the pattern. |
| */ |
| static int match_word(struct sample *smp, struct acl_pattern *pattern, unsigned int delimiters) |
| { |
| int may_match, icase; |
| char *c, *end; |
| char *ps; |
| int pl; |
| |
| pl = pattern->len; |
| ps = pattern->ptr.str; |
| |
| while (pl > 0 && is_delimiter(*ps, delimiters)) { |
| pl--; |
| ps++; |
| } |
| |
| while (pl > 0 && is_delimiter(ps[pl - 1], delimiters)) |
| pl--; |
| |
| if (pl > smp->data.str.len) |
| return ACL_PAT_FAIL; |
| |
| may_match = 1; |
| icase = pattern->flags & ACL_PAT_F_IGNORE_CASE; |
| end = smp->data.str.str + smp->data.str.len - pl; |
| for (c = smp->data.str.str; c <= end; c++) { |
| if (is_delimiter(*c, delimiters)) { |
| may_match = 1; |
| continue; |
| } |
| |
| if (!may_match) |
| continue; |
| |
| if (icase) { |
| if ((tolower(*c) == tolower(*ps)) && |
| (strncasecmp(ps, c, pl) == 0) && |
| (c == end || is_delimiter(c[pl], delimiters))) |
| return ACL_PAT_PASS; |
| } else { |
| if ((*c == *ps) && |
| (strncmp(ps, c, pl) == 0) && |
| (c == end || is_delimiter(c[pl], delimiters))) |
| return ACL_PAT_PASS; |
| } |
| may_match = 0; |
| } |
| return ACL_PAT_FAIL; |
| } |
| |
| /* Checks that the pattern is included inside the tested string, but enclosed |
| * between the delimiters '?' or '/' or at the beginning or end of the string. |
| * Delimiters at the beginning or end of the pattern are ignored. |
| */ |
| int acl_match_dir(struct sample *smp, struct acl_pattern *pattern) |
| { |
| return match_word(smp, pattern, make_4delim('/', '?', '?', '?')); |
| } |
| |
| /* Checks that the pattern is included inside the tested string, but enclosed |
| * between the delmiters '/', '?', '.' or ":" or at the beginning or end of |
| * the string. Delimiters at the beginning or end of the pattern are ignored. |
| */ |
| int acl_match_dom(struct sample *smp, struct acl_pattern *pattern) |
| { |
| return match_word(smp, pattern, make_4delim('/', '?', '.', ':')); |
| } |
| |
| /* Checks that the integer in <test> is included between min and max */ |
| int acl_match_int(struct sample *smp, struct acl_pattern *pattern) |
| { |
| if ((!pattern->val.range.min_set || pattern->val.range.min <= smp->data.uint) && |
| (!pattern->val.range.max_set || smp->data.uint <= pattern->val.range.max)) |
| return ACL_PAT_PASS; |
| return ACL_PAT_FAIL; |
| } |
| |
| /* Checks that the length of the pattern in <test> is included between min and max */ |
| int acl_match_len(struct sample *smp, struct acl_pattern *pattern) |
| { |
| if ((!pattern->val.range.min_set || pattern->val.range.min <= smp->data.str.len) && |
| (!pattern->val.range.max_set || smp->data.str.len <= pattern->val.range.max)) |
| return ACL_PAT_PASS; |
| return ACL_PAT_FAIL; |
| } |
| |
| int acl_match_ip(struct sample *smp, struct acl_pattern *pattern) |
| { |
| unsigned int v4; /* in network byte order */ |
| struct in6_addr *v6; |
| int bits, pos; |
| struct in6_addr tmp6; |
| |
| if (pattern->type == SMP_T_IPV4) { |
| if (smp->type == SMP_T_IPV4) { |
| v4 = smp->data.ipv4.s_addr; |
| } |
| else if (smp->type == SMP_T_IPV6) { |
| /* v4 match on a V6 sample. We want to check at least for |
| * the following forms : |
| * - ::ffff:ip:v4 (ipv4 mapped) |
| * - ::0000:ip:v4 (old ipv4 mapped) |
| * - 2002:ip:v4:: (6to4) |
| */ |
| if (*(uint32_t*)&smp->data.ipv6.s6_addr[0] == 0 && |
| *(uint32_t*)&smp->data.ipv6.s6_addr[4] == 0 && |
| (*(uint32_t*)&smp->data.ipv6.s6_addr[8] == 0 || |
| *(uint32_t*)&smp->data.ipv6.s6_addr[8] == htonl(0xFFFF))) { |
| v4 = *(uint32_t*)&smp->data.ipv6.s6_addr[12]; |
| } |
| else if (*(uint16_t*)&smp->data.ipv6.s6_addr[0] == htons(0x2002)) { |
| v4 = htonl((ntohs(*(uint16_t*)&smp->data.ipv6.s6_addr[2]) << 16) + |
| ntohs(*(uint16_t*)&smp->data.ipv6.s6_addr[4])); |
| } |
| else |
| return ACL_PAT_FAIL; |
| } |
| else |
| return ACL_PAT_FAIL; |
| |
| if (((v4 ^ pattern->val.ipv4.addr.s_addr) & pattern->val.ipv4.mask.s_addr) == 0) |
| return ACL_PAT_PASS; |
| else |
| return ACL_PAT_FAIL; |
| } |
| else if (pattern->type == SMP_T_IPV6) { |
| if (smp->type == SMP_T_IPV4) { |
| /* Convert the IPv4 sample address to IPv4 with the |
| * mapping method using the ::ffff: prefix. |
| */ |
| memset(&tmp6, 0, 10); |
| *(uint16_t*)&tmp6.s6_addr[10] = htons(0xffff); |
| *(uint32_t*)&tmp6.s6_addr[12] = smp->data.ipv4.s_addr; |
| v6 = &tmp6; |
| } |
| else if (smp->type == SMP_T_IPV6) { |
| v6 = &smp->data.ipv6; |
| } |
| else { |
| return ACL_PAT_FAIL; |
| } |
| |
| bits = pattern->val.ipv6.mask; |
| for (pos = 0; bits > 0; pos += 4, bits -= 32) { |
| v4 = *(uint32_t*)&v6->s6_addr[pos] ^ *(uint32_t*)&pattern->val.ipv6.addr.s6_addr[pos]; |
| if (bits < 32) |
| v4 &= htonl((~0U) << (32-bits)); |
| if (v4) |
| return ACL_PAT_FAIL; |
| } |
| return ACL_PAT_PASS; |
| } |
| return ACL_PAT_FAIL; |
| } |
| |
| /* Lookup an IPv4 address in the expression's pattern tree using the longest |
| * match method. The node is returned if it exists, otherwise NULL. |
| */ |
| static void *acl_lookup_ip(struct sample *smp, struct acl_expr *expr) |
| { |
| struct in_addr *s; |
| |
| if (smp->type != SMP_T_IPV4) |
| return ACL_PAT_FAIL; |
| |
| s = &smp->data.ipv4; |
| return ebmb_lookup_longest(&expr->pattern_tree, &s->s_addr); |
| } |
| |
| /* Parse a string. It is allocated and duplicated. */ |
| int acl_parse_str(const char **text, struct acl_pattern *pattern, int *opaque, char **err) |
| { |
| int len; |
| |
| len = strlen(*text); |
| pattern->type = SMP_T_CSTR; |
| |
| if (pattern->flags & ACL_PAT_F_TREE_OK) { |
| /* we're allowed to put the data in a tree whose root is pointed |
| * to by val.tree. |
| */ |
| struct ebmb_node *node; |
| |
| node = calloc(1, sizeof(*node) + len + 1); |
| if (!node) { |
| memprintf(err, "out of memory while loading string pattern"); |
| return 0; |
| } |
| memcpy(node->key, *text, len + 1); |
| if (ebst_insert(pattern->val.tree, node) != node) |
| free(node); /* was a duplicate */ |
| pattern->flags |= ACL_PAT_F_TREE; /* this pattern now contains a tree */ |
| return 1; |
| } |
| |
| pattern->ptr.str = strdup(*text); |
| if (!pattern->ptr.str) { |
| memprintf(err, "out of memory while loading string pattern"); |
| return 0; |
| } |
| pattern->len = len; |
| return 1; |
| } |
| |
| /* Parse a binary written in hexa. It is allocated. */ |
| int acl_parse_bin(const char **text, struct acl_pattern *pattern, int *opaque, char **err) |
| { |
| int len; |
| const char *p = *text; |
| int i,j; |
| |
| len = strlen(p); |
| if (len%2) { |
| memprintf(err, "an even number of hex digit is expected"); |
| return 0; |
| } |
| |
| pattern->type = SMP_T_CBIN; |
| pattern->len = len >> 1; |
| pattern->ptr.str = malloc(pattern->len); |
| if (!pattern->ptr.str) { |
| memprintf(err, "out of memory while loading string pattern"); |
| return 0; |
| } |
| |
| i = j = 0; |
| while (j < pattern->len) { |
| if (!ishex(p[i++])) |
| goto bad_input; |
| if (!ishex(p[i++])) |
| goto bad_input; |
| pattern->ptr.str[j++] = (hex2i(p[i-2]) << 4) + hex2i(p[i-1]); |
| } |
| return 1; |
| |
| bad_input: |
| memprintf(err, "an hex digit is expected (found '%c')", p[i-1]); |
| free(pattern->ptr.str); |
| return 0; |
| } |
| |
| /* Parse and concatenate all further strings into one. */ |
| int |
| acl_parse_strcat(const char **text, struct acl_pattern *pattern, int *opaque, char **err) |
| { |
| |
| int len = 0, i; |
| char *s; |
| |
| for (i = 0; *text[i]; i++) |
| len += strlen(text[i])+1; |
| |
| pattern->type = SMP_T_CSTR; |
| pattern->ptr.str = s = calloc(1, len); |
| if (!pattern->ptr.str) { |
| memprintf(err, "out of memory while loading pattern"); |
| return 0; |
| } |
| |
| for (i = 0; *text[i]; i++) |
| s += sprintf(s, i?" %s":"%s", text[i]); |
| |
| pattern->len = len; |
| |
| return i; |
| } |
| |
| /* Free data allocated by acl_parse_reg */ |
| static void acl_free_reg(void *ptr) |
| { |
| regex_free(ptr); |
| } |
| |
| /* Parse a regex. It is allocated. */ |
| int acl_parse_reg(const char **text, struct acl_pattern *pattern, int *opaque, char **err) |
| { |
| regex *preg; |
| int icase; |
| #ifdef USE_PCRE_JIT |
| const char *error; |
| int erroffset; |
| #endif |
| |
| preg = calloc(1, sizeof(*preg)); |
| |
| if (!preg) { |
| memprintf(err, "out of memory while loading pattern"); |
| return 0; |
| } |
| |
| #ifdef USE_PCRE_JIT |
| icase = (pattern->flags & ACL_PAT_F_IGNORE_CASE) ? PCRE_CASELESS : 0; |
| preg->reg = pcre_compile(*text, PCRE_NO_AUTO_CAPTURE | icase, &error, &erroffset, |
| NULL); |
| if (!preg->reg) { |
| free(preg); |
| memprintf(err, "regex '%s' is invalid (error=%s, erroffset=%d)", *text, error, erroffset); |
| return 0; |
| } |
| |
| preg->extra = pcre_study(preg->reg, PCRE_STUDY_JIT_COMPILE, &error); |
| if (!preg->extra) { |
| pcre_free(preg->reg); |
| free(preg); |
| memprintf(err, "failed to compile regex '%s' (error=%s)", *text, error); |
| return 0; |
| } |
| #else |
| icase = (pattern->flags & ACL_PAT_F_IGNORE_CASE) ? REG_ICASE : 0; |
| if (regcomp(preg, *text, REG_EXTENDED | REG_NOSUB | icase) != 0) { |
| free(preg); |
| memprintf(err, "regex '%s' is invalid", *text); |
| return 0; |
| } |
| #endif |
| |
| pattern->ptr.reg = preg; |
| pattern->freeptrbuf = &acl_free_reg; |
| return 1; |
| } |
| |
| /* Parse a range of positive integers delimited by either ':' or '-'. If only |
| * one integer is read, it is set as both min and max. An operator may be |
| * specified as the prefix, among this list of 5 : |
| * |
| * 0:eq, 1:gt, 2:ge, 3:lt, 4:le |
| * |
| * The default operator is "eq". It supports range matching. Ranges are |
| * rejected for other operators. The operator may be changed at any time. |
| * The operator is stored in the 'opaque' argument. |
| * |
| * If err is non-NULL, an error message will be returned there on errors and |
| * the caller will have to free it. |
| * |
| */ |
| int acl_parse_int(const char **text, struct acl_pattern *pattern, int *opaque, char **err) |
| { |
| signed long long i; |
| unsigned int j, last, skip = 0; |
| const char *ptr = *text; |
| |
| pattern->type = SMP_T_UINT; |
| while (!isdigit((unsigned char)*ptr)) { |
| switch (get_std_op(ptr)) { |
| case STD_OP_EQ: *opaque = 0; break; |
| case STD_OP_GT: *opaque = 1; break; |
| case STD_OP_GE: *opaque = 2; break; |
| case STD_OP_LT: *opaque = 3; break; |
| case STD_OP_LE: *opaque = 4; break; |
| default: |
| memprintf(err, "'%s' is neither a number nor a supported operator", ptr); |
| return 0; |
| } |
| |
| skip++; |
| ptr = text[skip]; |
| } |
| |
| last = i = 0; |
| while (1) { |
| j = *ptr++; |
| if ((j == '-' || j == ':') && !last) { |
| last++; |
| pattern->val.range.min = i; |
| i = 0; |
| continue; |
| } |
| j -= '0'; |
| if (j > 9) |
| // also catches the terminating zero |
| break; |
| i *= 10; |
| i += j; |
| } |
| |
| if (last && *opaque >= 1 && *opaque <= 4) { |
| /* having a range with a min or a max is absurd */ |
| memprintf(err, "integer range '%s' specified with a comparison operator", text[skip]); |
| return 0; |
| } |
| |
| if (!last) |
| pattern->val.range.min = i; |
| pattern->val.range.max = i; |
| |
| switch (*opaque) { |
| case 0: /* eq */ |
| pattern->val.range.min_set = 1; |
| pattern->val.range.max_set = 1; |
| break; |
| case 1: /* gt */ |
| pattern->val.range.min++; /* gt = ge + 1 */ |
| case 2: /* ge */ |
| pattern->val.range.min_set = 1; |
| pattern->val.range.max_set = 0; |
| break; |
| case 3: /* lt */ |
| pattern->val.range.max--; /* lt = le - 1 */ |
| case 4: /* le */ |
| pattern->val.range.min_set = 0; |
| pattern->val.range.max_set = 1; |
| break; |
| } |
| return skip + 1; |
| } |
| |
| /* Parse a range of positive 2-component versions delimited by either ':' or |
| * '-'. The version consists in a major and a minor, both of which must be |
| * smaller than 65536, because internally they will be represented as a 32-bit |
| * integer. |
| * If only one version is read, it is set as both min and max. Just like for |
| * pure integers, an operator may be specified as the prefix, among this list |
| * of 5 : |
| * |
| * 0:eq, 1:gt, 2:ge, 3:lt, 4:le |
| * |
| * The default operator is "eq". It supports range matching. Ranges are |
| * rejected for other operators. The operator may be changed at any time. |
| * The operator is stored in the 'opaque' argument. This allows constructs |
| * such as the following one : |
| * |
| * acl obsolete_ssl ssl_req_proto lt 3 |
| * acl unsupported_ssl ssl_req_proto gt 3.1 |
| * acl valid_ssl ssl_req_proto 3.0-3.1 |
| * |
| */ |
| int acl_parse_dotted_ver(const char **text, struct acl_pattern *pattern, int *opaque, char **err) |
| { |
| signed long long i; |
| unsigned int j, last, skip = 0; |
| const char *ptr = *text; |
| |
| |
| while (!isdigit((unsigned char)*ptr)) { |
| switch (get_std_op(ptr)) { |
| case STD_OP_EQ: *opaque = 0; break; |
| case STD_OP_GT: *opaque = 1; break; |
| case STD_OP_GE: *opaque = 2; break; |
| case STD_OP_LT: *opaque = 3; break; |
| case STD_OP_LE: *opaque = 4; break; |
| default: |
| memprintf(err, "'%s' is neither a number nor a supported operator", ptr); |
| return 0; |
| } |
| |
| skip++; |
| ptr = text[skip]; |
| } |
| |
| last = i = 0; |
| while (1) { |
| j = *ptr++; |
| if (j == '.') { |
| /* minor part */ |
| if (i >= 65536) |
| return 0; |
| i <<= 16; |
| continue; |
| } |
| if ((j == '-' || j == ':') && !last) { |
| last++; |
| if (i < 65536) |
| i <<= 16; |
| pattern->val.range.min = i; |
| i = 0; |
| continue; |
| } |
| j -= '0'; |
| if (j > 9) |
| // also catches the terminating zero |
| break; |
| i = (i & 0xFFFF0000) + (i & 0xFFFF) * 10; |
| i += j; |
| } |
| |
| /* if we only got a major version, let's shift it now */ |
| if (i < 65536) |
| i <<= 16; |
| |
| if (last && *opaque >= 1 && *opaque <= 4) { |
| /* having a range with a min or a max is absurd */ |
| memprintf(err, "version range '%s' specified with a comparison operator", text[skip]); |
| return 0; |
| } |
| |
| if (!last) |
| pattern->val.range.min = i; |
| pattern->val.range.max = i; |
| |
| switch (*opaque) { |
| case 0: /* eq */ |
| pattern->val.range.min_set = 1; |
| pattern->val.range.max_set = 1; |
| break; |
| case 1: /* gt */ |
| pattern->val.range.min++; /* gt = ge + 1 */ |
| case 2: /* ge */ |
| pattern->val.range.min_set = 1; |
| pattern->val.range.max_set = 0; |
| break; |
| case 3: /* lt */ |
| pattern->val.range.max--; /* lt = le - 1 */ |
| case 4: /* le */ |
| pattern->val.range.min_set = 0; |
| pattern->val.range.max_set = 1; |
| break; |
| } |
| return skip + 1; |
| } |
| |
| /* Parse an IP address and an optional mask in the form addr[/mask]. |
| * The addr may either be an IPv4 address or a hostname. The mask |
| * may either be a dotted mask or a number of bits. Returns 1 if OK, |
| * otherwise 0. NOTE: IP address patterns are typed (IPV4/IPV6). |
| */ |
| int acl_parse_ip(const char **text, struct acl_pattern *pattern, int *opaque, char **err) |
| { |
| struct eb_root *tree = NULL; |
| if (pattern->flags & ACL_PAT_F_TREE_OK) |
| tree = pattern->val.tree; |
| |
| if (str2net(*text, &pattern->val.ipv4.addr, &pattern->val.ipv4.mask)) { |
| unsigned int mask = ntohl(pattern->val.ipv4.mask.s_addr); |
| struct ebmb_node *node; |
| /* check if the mask is contiguous so that we can insert the |
| * network into the tree. A continuous mask has only ones on |
| * the left. This means that this mask + its lower bit added |
| * once again is null. |
| */ |
| pattern->type = SMP_T_IPV4; |
| if (mask + (mask & -mask) == 0 && tree) { |
| mask = mask ? 33 - flsnz(mask & -mask) : 0; /* equals cidr value */ |
| /* FIXME: insert <addr>/<mask> into the tree here */ |
| node = calloc(1, sizeof(*node) + 4); /* reserve 4 bytes for IPv4 address */ |
| if (!node) { |
| memprintf(err, "out of memory while loading IPv4 pattern"); |
| return 0; |
| } |
| memcpy(node->key, &pattern->val.ipv4.addr, 4); /* network byte order */ |
| node->node.pfx = mask; |
| if (ebmb_insert_prefix(tree, node, 4) != node) |
| free(node); /* was a duplicate */ |
| pattern->flags |= ACL_PAT_F_TREE; |
| return 1; |
| } |
| return 1; |
| } |
| else if (str62net(*text, &pattern->val.ipv6.addr, &pattern->val.ipv6.mask)) { |
| /* no tree support right now */ |
| pattern->type = SMP_T_IPV6; |
| return 1; |
| } |
| else { |
| memprintf(err, "'%s' is not a valid IPv4 or IPv6 address", *text); |
| return 0; |
| } |
| } |
| |
| /* |
| * Registers the ACL keyword list <kwl> as a list of valid keywords for next |
| * parsing sessions. |
| */ |
| void acl_register_keywords(struct acl_kw_list *kwl) |
| { |
| LIST_ADDQ(&acl_keywords.list, &kwl->list); |
| } |
| |
| /* |
| * Unregisters the ACL keyword list <kwl> from the list of valid keywords. |
| */ |
| void acl_unregister_keywords(struct acl_kw_list *kwl) |
| { |
| LIST_DEL(&kwl->list); |
| LIST_INIT(&kwl->list); |
| } |
| |
| /* Return a pointer to the ACL <name> within the list starting at <head>, or |
| * NULL if not found. |
| */ |
| struct acl *find_acl_by_name(const char *name, struct list *head) |
| { |
| struct acl *acl; |
| list_for_each_entry(acl, head, list) { |
| if (strcmp(acl->name, name) == 0) |
| return acl; |
| } |
| return NULL; |
| } |
| |
| /* Return a pointer to the ACL keyword <kw>, or NULL if not found. Note that if |
| * <kw> contains an opening parenthesis, only the left part of it is checked. |
| */ |
| struct acl_keyword *find_acl_kw(const char *kw) |
| { |
| int index; |
| const char *kwend; |
| struct acl_kw_list *kwl; |
| |
| kwend = strchr(kw, '('); |
| if (!kwend) |
| kwend = kw + strlen(kw); |
| |
| list_for_each_entry(kwl, &acl_keywords.list, list) { |
| for (index = 0; kwl->kw[index].kw != NULL; index++) { |
| if ((strncmp(kwl->kw[index].kw, kw, kwend - kw) == 0) && |
| kwl->kw[index].kw[kwend-kw] == 0) |
| return &kwl->kw[index]; |
| } |
| } |
| return NULL; |
| } |
| |
| /* NB: does nothing if <pat> is NULL */ |
| static void free_pattern(struct acl_pattern *pat) |
| { |
| if (!pat) |
| return; |
| |
| if (pat->ptr.ptr) { |
| if (pat->freeptrbuf) |
| pat->freeptrbuf(pat->ptr.ptr); |
| |
| free(pat->ptr.ptr); |
| } |
| |
| free(pat); |
| } |
| |
| static void free_pattern_list(struct list *head) |
| { |
| struct acl_pattern *pat, *tmp; |
| list_for_each_entry_safe(pat, tmp, head, list) |
| free_pattern(pat); |
| } |
| |
| static void free_pattern_tree(struct eb_root *root) |
| { |
| struct eb_node *node, *next; |
| node = eb_first(root); |
| while (node) { |
| next = eb_next(node); |
| free(node); |
| node = next; |
| } |
| } |
| |
| static struct acl_expr *prune_acl_expr(struct acl_expr *expr) |
| { |
| struct arg *arg; |
| |
| free_pattern_list(&expr->patterns); |
| free_pattern_tree(&expr->pattern_tree); |
| LIST_INIT(&expr->patterns); |
| |
| for (arg = expr->args; arg; arg++) { |
| if (arg->type == ARGT_STOP) |
| break; |
| if (arg->type == ARGT_STR || arg->unresolved) { |
| free(arg->data.str.str); |
| arg->data.str.str = NULL; |
| arg->unresolved = 0; |
| } |
| } |
| |
| if (expr->args != empty_arg_list) |
| free(expr->args); |
| return expr; |
| } |
| |
| |
| /* Reads patterns from a file. If <err_msg> is non-NULL, an error message will |
| * be returned there on errors and the caller will have to free it. |
| */ |
| static int acl_read_patterns_from_file(struct acl_expr *expr, |
| const char *filename, int patflags, |
| char **err) |
| { |
| FILE *file; |
| char *c; |
| const char *args[2]; |
| struct acl_pattern *pattern; |
| int opaque; |
| int ret = 0; |
| int line = 0; |
| |
| file = fopen(filename, "r"); |
| if (!file) { |
| memprintf(err, "failed to open pattern file <%s>", filename); |
| return 0; |
| } |
| |
| /* now parse all patterns. The file may contain only one pattern per |
| * line. If the line contains spaces, they will be part of the pattern. |
| * The pattern stops at the first CR, LF or EOF encountered. |
| */ |
| opaque = 0; |
| pattern = NULL; |
| args[1] = ""; |
| while (fgets(trash.str, trash.size, file) != NULL) { |
| line++; |
| c = trash.str; |
| |
| /* ignore lines beginning with a dash */ |
| if (*c == '#') |
| continue; |
| |
| /* strip leading spaces and tabs */ |
| while (*c == ' ' || *c == '\t') |
| c++; |
| |
| |
| args[0] = c; |
| while (*c && *c != '\n' && *c != '\r') |
| c++; |
| *c = 0; |
| |
| /* empty lines are ignored too */ |
| if (c == args[0]) |
| continue; |
| |
| /* we keep the previous pattern along iterations as long as it's not used */ |
| if (!pattern) |
| pattern = (struct acl_pattern *)malloc(sizeof(*pattern)); |
| if (!pattern) { |
| memprintf(err, "out of memory when loading patterns from file <%s>", filename); |
| goto out_close; |
| } |
| |
| memset(pattern, 0, sizeof(*pattern)); |
| pattern->flags = patflags; |
| |
| if (!(pattern->flags & ACL_PAT_F_IGNORE_CASE) && |
| (expr->match == acl_match_str || expr->match == acl_match_ip)) { |
| /* we pre-set the data pointer to the tree's head so that functions |
| * which are able to insert in a tree know where to do that. |
| */ |
| pattern->flags |= ACL_PAT_F_TREE_OK; |
| pattern->val.tree = &expr->pattern_tree; |
| } |
| |
| pattern->type = SMP_TYPES; /* unspecified type by default */ |
| if (!expr->parse(args, pattern, &opaque, err)) |
| goto out_free_pattern; |
| |
| /* if the parser did not feed the tree, let's chain the pattern to the list */ |
| if (!(pattern->flags & ACL_PAT_F_TREE)) { |
| LIST_ADDQ(&expr->patterns, &pattern->list); |
| pattern = NULL; /* get a new one */ |
| } |
| } |
| |
| ret = 1; /* success */ |
| |
| out_free_pattern: |
| free_pattern(pattern); |
| out_close: |
| fclose(file); |
| return ret; |
| } |
| |
| /* Parse an ACL expression starting at <args>[0], and return it. If <err> is |
| * not NULL, it will be filled with a pointer to an error message in case of |
| * error. This pointer must be freeable or NULL. <al> is an arg_list serving |
| * as a list head to report missing dependencies. |
| * |
| * Right now, the only accepted syntax is : |
| * <subject> [<value>...] |
| */ |
| struct acl_expr *parse_acl_expr(const char **args, char **err, struct arg_list *al) |
| { |
| __label__ out_return, out_free_expr, out_free_pattern; |
| struct acl_expr *expr; |
| struct acl_keyword *aclkw; |
| struct acl_pattern *pattern; |
| int opaque, patflags; |
| const char *arg; |
| struct sample_fetch *smp = NULL; |
| |
| /* First, we lookd for an ACL keyword. And if we don't find one, then |
| * we look for a sample fetch keyword. |
| */ |
| aclkw = find_acl_kw(args[0]); |
| if (!aclkw || !aclkw->parse) { |
| const char *kwend; |
| |
| kwend = strchr(args[0], '('); |
| if (!kwend) |
| kwend = args[0] + strlen(args[0]); |
| smp = find_sample_fetch(args[0], kwend - args[0]); |
| |
| if (!smp) { |
| memprintf(err, "unknown ACL or sample keyword '%s'", *args); |
| goto out_return; |
| } |
| } |
| |
| expr = (struct acl_expr *)calloc(1, sizeof(*expr)); |
| if (!expr) { |
| memprintf(err, "out of memory when parsing ACL expression"); |
| goto out_return; |
| } |
| |
| expr->kw = aclkw ? aclkw->kw : smp->kw; |
| LIST_INIT(&expr->patterns); |
| expr->pattern_tree = EB_ROOT_UNIQUE; |
| expr->parse = aclkw ? aclkw->parse : NULL; |
| expr->match = aclkw ? aclkw->match : NULL; |
| expr->args = empty_arg_list; |
| expr->smp = aclkw ? aclkw->smp : smp; |
| |
| if (!expr->parse) { |
| /* some types can be automatically converted */ |
| |
| switch (expr->smp->out_type) { |
| case SMP_T_BOOL: |
| expr->parse = acl_parse_fcts[ACL_MATCH_BOOL]; |
| expr->match = acl_match_fcts[ACL_MATCH_BOOL]; |
| break; |
| case SMP_T_SINT: |
| case SMP_T_UINT: |
| expr->parse = acl_parse_fcts[ACL_MATCH_INT]; |
| expr->match = acl_match_fcts[ACL_MATCH_INT]; |
| break; |
| case SMP_T_IPV4: |
| case SMP_T_IPV6: |
| expr->parse = acl_parse_fcts[ACL_MATCH_IP]; |
| expr->match = acl_match_fcts[ACL_MATCH_IP]; |
| break; |
| } |
| } |
| |
| arg = strchr(args[0], '('); |
| if (expr->smp->arg_mask) { |
| int nbargs = 0; |
| char *end; |
| |
| if (arg != NULL) { |
| /* there are 0 or more arguments in the form "subject(arg[,arg]*)" */ |
| arg++; |
| end = strchr(arg, ')'); |
| if (!end) { |
| memprintf(err, "missing closing ')' after arguments to ACL keyword '%s'", expr->kw); |
| goto out_free_expr; |
| } |
| |
| /* Parse the arguments. Note that currently we have no way to |
| * report parsing errors, hence the NULL in the error pointers. |
| * An error is also reported if some mandatory arguments are |
| * missing. We prepare the args list to report unresolved |
| * dependencies. |
| */ |
| al->ctx = ARGC_ACL; |
| al->kw = expr->kw; |
| al->conv = NULL; |
| nbargs = make_arg_list(arg, end - arg, expr->smp->arg_mask, &expr->args, |
| err, NULL, NULL, al); |
| if (nbargs < 0) { |
| /* note that make_arg_list will have set <err> here */ |
| memprintf(err, "in argument to '%s', %s", expr->kw, *err); |
| goto out_free_expr; |
| } |
| |
| if (!expr->args) |
| expr->args = empty_arg_list; |
| |
| if (expr->smp->val_args && !expr->smp->val_args(expr->args, err)) { |
| /* invalid keyword argument, error must have been |
| * set by val_args(). |
| */ |
| memprintf(err, "in argument to '%s', %s", expr->kw, *err); |
| goto out_free_expr; |
| } |
| } |
| else if (ARGM(expr->smp->arg_mask) == 1) { |
| int type = (expr->smp->arg_mask >> 4) & 15; |
| |
| /* If a proxy is noted as a mandatory argument, we'll fake |
| * an empty one so that acl_find_targets() resolves it as |
| * the current one later. |
| */ |
| if (type != ARGT_FE && type != ARGT_BE && type != ARGT_TAB) { |
| memprintf(err, "ACL keyword '%s' expects %d arguments", expr->kw, ARGM(expr->smp->arg_mask)); |
| goto out_free_expr; |
| } |
| |
| /* Build an arg list containing the type as an empty string |
| * and the usual STOP. |
| */ |
| expr->args = calloc(2, sizeof(*expr->args)); |
| expr->args[0].type = type; |
| expr->args[0].unresolved = 1; |
| expr->args[0].data.str.str = strdup(""); |
| expr->args[0].data.str.len = 1; |
| expr->args[0].data.str.len = 0; |
| arg_list_add(al, &expr->args[0], 0); |
| |
| expr->args[1].type = ARGT_STOP; |
| } |
| else if (ARGM(expr->smp->arg_mask)) { |
| /* there were some mandatory arguments */ |
| memprintf(err, "ACL keyword '%s' expects %d arguments", expr->kw, ARGM(expr->smp->arg_mask)); |
| goto out_free_expr; |
| } |
| } |
| else { |
| if (arg) { |
| /* no argument expected */ |
| memprintf(err, "ACL keyword '%s' takes no argument", expr->kw); |
| goto out_free_expr; |
| } |
| } |
| |
| args++; |
| |
| /* check for options before patterns. Supported options are : |
| * -i : ignore case for all patterns by default |
| * -f : read patterns from those files |
| * -m : force matching method (must be used before -f) |
| * -- : everything after this is not an option |
| */ |
| patflags = 0; |
| while (**args == '-') { |
| if ((*args)[1] == 'i') |
| patflags |= ACL_PAT_F_IGNORE_CASE; |
| else if ((*args)[1] == 'f') { |
| if (!expr->parse) { |
| memprintf(err, "matching method must be specified first (using '-m') when using a sample fetch of this type ('%s')", expr->kw); |
| goto out_free_expr; |
| } |
| |
| if (!acl_read_patterns_from_file(expr, args[1], patflags | ACL_PAT_F_FROM_FILE, err)) |
| goto out_free_expr; |
| args++; |
| } |
| else if ((*args)[1] == 'm') { |
| int idx; |
| |
| if (!LIST_ISEMPTY(&expr->patterns) || !eb_is_empty(&expr->pattern_tree)) { |
| memprintf(err, "'-m' must only be specified before patterns and files in parsing ACL expression"); |
| goto out_free_expr; |
| } |
| |
| idx = acl_find_match_name(args[1]); |
| if (idx < 0) { |
| memprintf(err, "unknown matching method '%s' when parsing ACL expression", args[1]); |
| goto out_free_expr; |
| } |
| |
| /* Note: -m found is always valid, bool/int are compatible, str/bin/reg/len are compatible */ |
| if (idx == ACL_MATCH_FOUND || /* -m found */ |
| ((idx == ACL_MATCH_BOOL || idx == ACL_MATCH_INT) && /* -m bool/int */ |
| (expr->smp->out_type == SMP_T_BOOL || |
| expr->smp->out_type == SMP_T_UINT || |
| expr->smp->out_type == SMP_T_SINT)) || |
| (idx == ACL_MATCH_IP && /* -m ip */ |
| (expr->smp->out_type == SMP_T_IPV4 || |
| expr->smp->out_type == SMP_T_IPV6)) || |
| ((idx == ACL_MATCH_BIN || idx == ACL_MATCH_LEN || idx == ACL_MATCH_STR || |
| idx == ACL_MATCH_BEG || idx == ACL_MATCH_SUB || idx == ACL_MATCH_DIR || |
| idx == ACL_MATCH_DOM || idx == ACL_MATCH_END || idx == ACL_MATCH_REG) && /* strings */ |
| (expr->smp->out_type == SMP_T_STR || |
| expr->smp->out_type == SMP_T_BIN || |
| expr->smp->out_type == SMP_T_CSTR || |
| expr->smp->out_type == SMP_T_CBIN))) { |
| expr->parse = acl_parse_fcts[idx]; |
| expr->match = acl_match_fcts[idx]; |
| } |
| else { |
| memprintf(err, "matching method '%s' cannot be used with fetch keyword '%s'", args[1], expr->kw); |
| goto out_free_expr; |
| } |
| args++; |
| } |
| else if ((*args)[1] == '-') { |
| args++; |
| break; |
| } |
| else |
| break; |
| args++; |
| } |
| |
| if (!expr->parse) { |
| memprintf(err, "matching method must be specified first (using '-m') when using a sample fetch of this type ('%s')", expr->kw); |
| goto out_free_expr; |
| } |
| |
| /* now parse all patterns */ |
| opaque = 0; |
| while (**args) { |
| int ret; |
| pattern = (struct acl_pattern *)calloc(1, sizeof(*pattern)); |
| if (!pattern) { |
| memprintf(err, "out of memory when parsing ACL pattern"); |
| goto out_free_expr; |
| } |
| pattern->flags = patflags; |
| |
| pattern->type = SMP_TYPES; /* unspecified type */ |
| ret = expr->parse(args, pattern, &opaque, err); |
| if (!ret) |
| goto out_free_pattern; |
| |
| LIST_ADDQ(&expr->patterns, &pattern->list); |
| args += ret; |
| } |
| |
| return expr; |
| |
| out_free_pattern: |
| free_pattern(pattern); |
| out_free_expr: |
| prune_acl_expr(expr); |
| free(expr); |
| out_return: |
| return NULL; |
| } |
| |
| /* Purge everything in the acl <acl>, then return <acl>. */ |
| struct acl *prune_acl(struct acl *acl) { |
| |
| struct acl_expr *expr, *exprb; |
| |
| free(acl->name); |
| |
| list_for_each_entry_safe(expr, exprb, &acl->expr, list) { |
| LIST_DEL(&expr->list); |
| prune_acl_expr(expr); |
| free(expr); |
| } |
| |
| return acl; |
| } |
| |
| /* Parse an ACL with the name starting at <args>[0], and with a list of already |
| * known ACLs in <acl>. If the ACL was not in the list, it will be added. |
| * A pointer to that ACL is returned. If the ACL has an empty name, then it's |
| * an anonymous one and it won't be merged with any other one. If <err> is not |
| * NULL, it will be filled with an appropriate error. This pointer must be |
| * freeable or NULL. <al> is the arg_list serving as a head for unresolved |
| * dependencies. |
| * |
| * args syntax: <aclname> <acl_expr> |
| */ |
| struct acl *parse_acl(const char **args, struct list *known_acl, char **err, struct arg_list *al) |
| { |
| __label__ out_return, out_free_acl_expr, out_free_name; |
| struct acl *cur_acl; |
| struct acl_expr *acl_expr; |
| char *name; |
| const char *pos; |
| |
| if (**args && (pos = invalid_char(*args))) { |
| memprintf(err, "invalid character in ACL name : '%c'", *pos); |
| goto out_return; |
| } |
| |
| acl_expr = parse_acl_expr(args + 1, err, al); |
| if (!acl_expr) { |
| /* parse_acl_expr will have filled <err> here */ |
| goto out_return; |
| } |
| |
| /* Check for args beginning with an opening parenthesis just after the |
| * subject, as this is almost certainly a typo. Right now we can only |
| * emit a warning, so let's do so. |
| */ |
| if (!strchr(args[1], '(') && *args[2] == '(') |
| Warning("parsing acl '%s' :\n" |
| " matching '%s' for pattern '%s' is likely a mistake and probably\n" |
| " not what you want. Maybe you need to remove the extraneous space before '('.\n" |
| " If you are really sure this is not an error, please insert '--' between the\n" |
| " match and the pattern to make this warning message disappear.\n", |
| args[0], args[1], args[2]); |
| |
| if (*args[0]) |
| cur_acl = find_acl_by_name(args[0], known_acl); |
| else |
| cur_acl = NULL; |
| |
| if (!cur_acl) { |
| name = strdup(args[0]); |
| if (!name) { |
| memprintf(err, "out of memory when parsing ACL"); |
| goto out_free_acl_expr; |
| } |
| cur_acl = (struct acl *)calloc(1, sizeof(*cur_acl)); |
| if (cur_acl == NULL) { |
| memprintf(err, "out of memory when parsing ACL"); |
| goto out_free_name; |
| } |
| |
| LIST_INIT(&cur_acl->expr); |
| LIST_ADDQ(known_acl, &cur_acl->list); |
| cur_acl->name = name; |
| } |
| |
| /* We want to know what features the ACL needs (typically HTTP parsing), |
| * and where it may be used. If an ACL relies on multiple matches, it is |
| * OK if at least one of them may match in the context where it is used. |
| */ |
| cur_acl->use |= acl_expr->smp->use; |
| cur_acl->val |= acl_expr->smp->val; |
| LIST_ADDQ(&cur_acl->expr, &acl_expr->list); |
| return cur_acl; |
| |
| out_free_name: |
| free(name); |
| out_free_acl_expr: |
| prune_acl_expr(acl_expr); |
| free(acl_expr); |
| out_return: |
| return NULL; |
| } |
| |
| /* Some useful ACLs provided by default. Only those used are allocated. */ |
| |
| const struct { |
| const char *name; |
| const char *expr[4]; /* put enough for longest expression */ |
| } default_acl_list[] = { |
| { .name = "TRUE", .expr = {"always_true",""}}, |
| { .name = "FALSE", .expr = {"always_false",""}}, |
| { .name = "LOCALHOST", .expr = {"src","127.0.0.1/8",""}}, |
| { .name = "HTTP", .expr = {"req_proto_http",""}}, |
| { .name = "HTTP_1.0", .expr = {"req_ver","1.0",""}}, |
| { .name = "HTTP_1.1", .expr = {"req_ver","1.1",""}}, |
| { .name = "METH_CONNECT", .expr = {"method","CONNECT",""}}, |
| { .name = "METH_GET", .expr = {"method","GET","HEAD",""}}, |
| { .name = "METH_HEAD", .expr = {"method","HEAD",""}}, |
| { .name = "METH_OPTIONS", .expr = {"method","OPTIONS",""}}, |
| { .name = "METH_POST", .expr = {"method","POST",""}}, |
| { .name = "METH_TRACE", .expr = {"method","TRACE",""}}, |
| { .name = "HTTP_URL_ABS", .expr = {"url_reg","^[^/:]*://",""}}, |
| { .name = "HTTP_URL_SLASH", .expr = {"url_beg","/",""}}, |
| { .name = "HTTP_URL_STAR", .expr = {"url","*",""}}, |
| { .name = "HTTP_CONTENT", .expr = {"hdr_val(content-length)","gt","0",""}}, |
| { .name = "RDP_COOKIE", .expr = {"req_rdp_cookie_cnt","gt","0",""}}, |
| { .name = "REQ_CONTENT", .expr = {"req_len","gt","0",""}}, |
| { .name = "WAIT_END", .expr = {"wait_end",""}}, |
| { .name = NULL, .expr = {""}} |
| }; |
| |
| /* Find a default ACL from the default_acl list, compile it and return it. |
| * If the ACL is not found, NULL is returned. In theory, it cannot fail, |
| * except when default ACLs are broken, in which case it will return NULL. |
| * If <known_acl> is not NULL, the ACL will be queued at its tail. If <err> is |
| * not NULL, it will be filled with an error message if an error occurs. This |
| * pointer must be freeable or NULL. <al> is an arg_list serving as a list head |
| * to report missing dependencies. |
| */ |
| static struct acl *find_acl_default(const char *acl_name, struct list *known_acl, |
| char **err, struct arg_list *al) |
| { |
| __label__ out_return, out_free_acl_expr, out_free_name; |
| struct acl *cur_acl; |
| struct acl_expr *acl_expr; |
| char *name; |
| int index; |
| |
| for (index = 0; default_acl_list[index].name != NULL; index++) { |
| if (strcmp(acl_name, default_acl_list[index].name) == 0) |
| break; |
| } |
| |
| if (default_acl_list[index].name == NULL) { |
| memprintf(err, "no such ACL : '%s'", acl_name); |
| return NULL; |
| } |
| |
| acl_expr = parse_acl_expr((const char **)default_acl_list[index].expr, err, al); |
| if (!acl_expr) { |
| /* parse_acl_expr must have filled err here */ |
| goto out_return; |
| } |
| |
| name = strdup(acl_name); |
| if (!name) { |
| memprintf(err, "out of memory when building default ACL '%s'", acl_name); |
| goto out_free_acl_expr; |
| } |
| |
| cur_acl = (struct acl *)calloc(1, sizeof(*cur_acl)); |
| if (cur_acl == NULL) { |
| memprintf(err, "out of memory when building default ACL '%s'", acl_name); |
| goto out_free_name; |
| } |
| |
| cur_acl->name = name; |
| cur_acl->use |= acl_expr->smp->use; |
| cur_acl->val |= acl_expr->smp->val; |
| LIST_INIT(&cur_acl->expr); |
| LIST_ADDQ(&cur_acl->expr, &acl_expr->list); |
| if (known_acl) |
| LIST_ADDQ(known_acl, &cur_acl->list); |
| |
| return cur_acl; |
| |
| out_free_name: |
| free(name); |
| out_free_acl_expr: |
| prune_acl_expr(acl_expr); |
| free(acl_expr); |
| out_return: |
| return NULL; |
| } |
| |
| /* Purge everything in the acl_cond <cond>, then return <cond>. */ |
| struct acl_cond *prune_acl_cond(struct acl_cond *cond) |
| { |
| struct acl_term_suite *suite, *tmp_suite; |
| struct acl_term *term, *tmp_term; |
| |
| /* iterate through all term suites and free all terms and all suites */ |
| list_for_each_entry_safe(suite, tmp_suite, &cond->suites, list) { |
| list_for_each_entry_safe(term, tmp_term, &suite->terms, list) |
| free(term); |
| free(suite); |
| } |
| return cond; |
| } |
| |
| /* Parse an ACL condition starting at <args>[0], relying on a list of already |
| * known ACLs passed in <known_acl>. The new condition is returned (or NULL in |
| * case of low memory). Supports multiple conditions separated by "or". If |
| * <err> is not NULL, it will be filled with a pointer to an error message in |
| * case of error, that the caller is responsible for freeing. The initial |
| * location must either be freeable or NULL. The list <al> serves as a list head |
| * for unresolved dependencies. |
| */ |
| struct acl_cond *parse_acl_cond(const char **args, struct list *known_acl, |
| int pol, char **err, struct arg_list *al) |
| { |
| __label__ out_return, out_free_suite, out_free_term; |
| int arg, neg; |
| const char *word; |
| struct acl *cur_acl; |
| struct acl_term *cur_term; |
| struct acl_term_suite *cur_suite; |
| struct acl_cond *cond; |
| unsigned int suite_val; |
| |
| cond = (struct acl_cond *)calloc(1, sizeof(*cond)); |
| if (cond == NULL) { |
| memprintf(err, "out of memory when parsing condition"); |
| goto out_return; |
| } |
| |
| LIST_INIT(&cond->list); |
| LIST_INIT(&cond->suites); |
| cond->pol = pol; |
| cond->val = 0; |
| |
| cur_suite = NULL; |
| suite_val = ~0U; |
| neg = 0; |
| for (arg = 0; *args[arg]; arg++) { |
| word = args[arg]; |
| |
| /* remove as many exclamation marks as we can */ |
| while (*word == '!') { |
| neg = !neg; |
| word++; |
| } |
| |
| /* an empty word is allowed because we cannot force the user to |
| * always think about not leaving exclamation marks alone. |
| */ |
| if (!*word) |
| continue; |
| |
| if (strcasecmp(word, "or") == 0 || strcmp(word, "||") == 0) { |
| /* new term suite */ |
| cond->val |= suite_val; |
| suite_val = ~0U; |
| cur_suite = NULL; |
| neg = 0; |
| continue; |
| } |
| |
| if (strcmp(word, "{") == 0) { |
| /* we may have a complete ACL expression between two braces, |
| * find the last one. |
| */ |
| int arg_end = arg + 1; |
| const char **args_new; |
| |
| while (*args[arg_end] && strcmp(args[arg_end], "}") != 0) |
| arg_end++; |
| |
| if (!*args[arg_end]) { |
| memprintf(err, "missing closing '}' in condition"); |
| goto out_free_suite; |
| } |
| |
| args_new = calloc(1, (arg_end - arg + 1) * sizeof(*args_new)); |
| if (!args_new) { |
| memprintf(err, "out of memory when parsing condition"); |
| goto out_free_suite; |
| } |
| |
| args_new[0] = ""; |
| memcpy(args_new + 1, args + arg + 1, (arg_end - arg) * sizeof(*args_new)); |
| args_new[arg_end - arg] = ""; |
| cur_acl = parse_acl(args_new, known_acl, err, al); |
| free(args_new); |
| |
| if (!cur_acl) { |
| /* note that parse_acl() must have filled <err> here */ |
| goto out_free_suite; |
| } |
| word = args[arg + 1]; |
| arg = arg_end; |
| } |
| else { |
| /* search for <word> in the known ACL names. If we do not find |
| * it, let's look for it in the default ACLs, and if found, add |
| * it to the list of ACLs of this proxy. This makes it possible |
| * to override them. |
| */ |
| cur_acl = find_acl_by_name(word, known_acl); |
| if (cur_acl == NULL) { |
| cur_acl = find_acl_default(word, known_acl, err, al); |
| if (cur_acl == NULL) { |
| /* note that find_acl_default() must have filled <err> here */ |
| goto out_free_suite; |
| } |
| } |
| } |
| |
| cur_term = (struct acl_term *)calloc(1, sizeof(*cur_term)); |
| if (cur_term == NULL) { |
| memprintf(err, "out of memory when parsing condition"); |
| goto out_free_suite; |
| } |
| |
| cur_term->acl = cur_acl; |
| cur_term->neg = neg; |
| |
| /* Here it is a bit complex. The acl_term_suite is a conjunction |
| * of many terms. It may only be used if all of its terms are |
| * usable at the same time. So the suite's validity domain is an |
| * AND between all ACL keywords' ones. But, the global condition |
| * is valid if at least one term suite is OK. So it's an OR between |
| * all of their validity domains. We could emit a warning as soon |
| * as suite_val is null because it means that the last ACL is not |
| * compatible with the previous ones. Let's remain simple for now. |
| */ |
| cond->use |= cur_acl->use; |
| suite_val &= cur_acl->val; |
| |
| if (!cur_suite) { |
| cur_suite = (struct acl_term_suite *)calloc(1, sizeof(*cur_suite)); |
| if (cur_suite == NULL) { |
| memprintf(err, "out of memory when parsing condition"); |
| goto out_free_term; |
| } |
| LIST_INIT(&cur_suite->terms); |
| LIST_ADDQ(&cond->suites, &cur_suite->list); |
| } |
| LIST_ADDQ(&cur_suite->terms, &cur_term->list); |
| neg = 0; |
| } |
| |
| cond->val |= suite_val; |
| return cond; |
| |
| out_free_term: |
| free(cur_term); |
| out_free_suite: |
| prune_acl_cond(cond); |
| free(cond); |
| out_return: |
| return NULL; |
| } |
| |
| /* Builds an ACL condition starting at the if/unless keyword. The complete |
| * condition is returned. NULL is returned in case of error or if the first |
| * word is neither "if" nor "unless". It automatically sets the file name and |
| * the line number in the condition for better error reporting, and sets the |
| * HTTP intiailization requirements in the proxy. If <err> is not NULL, it will |
| * be filled with a pointer to an error message in case of error, that the |
| * caller is responsible for freeing. The initial location must either be |
| * freeable or NULL. |
| */ |
| struct acl_cond *build_acl_cond(const char *file, int line, struct proxy *px, const char **args, char **err) |
| { |
| int pol = ACL_COND_NONE; |
| struct acl_cond *cond = NULL; |
| |
| if (err) |
| *err = NULL; |
| |
| if (!strcmp(*args, "if")) { |
| pol = ACL_COND_IF; |
| args++; |
| } |
| else if (!strcmp(*args, "unless")) { |
| pol = ACL_COND_UNLESS; |
| args++; |
| } |
| else { |
| memprintf(err, "conditions must start with either 'if' or 'unless'"); |
| return NULL; |
| } |
| |
| cond = parse_acl_cond(args, &px->acl, pol, err, &px->conf.args); |
| if (!cond) { |
| /* note that parse_acl_cond must have filled <err> here */ |
| return NULL; |
| } |
| |
| cond->file = file; |
| cond->line = line; |
| px->http_needed |= !!(cond->use & SMP_USE_HTTP_ANY); |
| return cond; |
| } |
| |
| /* Execute condition <cond> and return either ACL_PAT_FAIL, ACL_PAT_MISS or |
| * ACL_PAT_PASS depending on the test results. ACL_PAT_MISS may only be |
| * returned if <opt> does not contain SMP_OPT_FINAL, indicating that incomplete |
| * data is being examined. The function automatically sets SMP_OPT_ITERATE. |
| * This function only computes the condition, it does not apply the polarity |
| * required by IF/UNLESS, it's up to the caller to do this using something like |
| * this : |
| * |
| * res = acl_pass(res); |
| * if (res == ACL_PAT_MISS) |
| * return 0; |
| * if (cond->pol == ACL_COND_UNLESS) |
| * res = !res; |
| */ |
| int acl_exec_cond(struct acl_cond *cond, struct proxy *px, struct session *l4, void *l7, unsigned int opt) |
| { |
| __label__ fetch_next; |
| struct acl_term_suite *suite; |
| struct acl_term *term; |
| struct acl_expr *expr; |
| struct acl *acl; |
| struct acl_pattern *pattern; |
| struct sample smp; |
| int acl_res, suite_res, cond_res; |
| |
| /* ACLs are iterated over all values, so let's always set the flag to |
| * indicate this to the fetch functions. |
| */ |
| opt |= SMP_OPT_ITERATE; |
| |
| /* We're doing a logical OR between conditions so we initialize to FAIL. |
| * The MISS status is propagated down from the suites. |
| */ |
| cond_res = ACL_PAT_FAIL; |
| list_for_each_entry(suite, &cond->suites, list) { |
| /* Evaluate condition suite <suite>. We stop at the first term |
| * which returns ACL_PAT_FAIL. The MISS status is still propagated |
| * in case of uncertainty in the result. |
| */ |
| |
| /* we're doing a logical AND between terms, so we must set the |
| * initial value to PASS. |
| */ |
| suite_res = ACL_PAT_PASS; |
| list_for_each_entry(term, &suite->terms, list) { |
| acl = term->acl; |
| |
| /* FIXME: use cache ! |
| * check acl->cache_idx for this. |
| */ |
| |
| /* ACL result not cached. Let's scan all the expressions |
| * and use the first one to match. |
| */ |
| acl_res = ACL_PAT_FAIL; |
| list_for_each_entry(expr, &acl->expr, list) { |
| /* we need to reset context and flags */ |
| memset(&smp, 0, sizeof(smp)); |
| fetch_next: |
| if (!expr->smp->process(px, l4, l7, opt, expr->args, &smp, expr->smp->kw)) { |
| /* maybe we could not fetch because of missing data */ |
| if (smp.flags & SMP_F_MAY_CHANGE && !(opt & SMP_OPT_FINAL)) |
| acl_res |= ACL_PAT_MISS; |
| continue; |
| } |
| |
| if (expr->match == acl_match_nothing) { |
| if (smp.data.uint) |
| acl_res |= ACL_PAT_PASS; |
| else |
| acl_res |= ACL_PAT_FAIL; |
| } |
| else if (!expr->match) { |
| /* just check for existence */ |
| acl_res |= ACL_PAT_PASS; |
| } |
| else { |
| if (!eb_is_empty(&expr->pattern_tree)) { |
| /* a tree is present, let's check what type it is */ |
| if (expr->match == acl_match_str) |
| acl_res |= acl_lookup_str(&smp, expr) ? ACL_PAT_PASS : ACL_PAT_FAIL; |
| else if (expr->match == acl_match_ip) |
| acl_res |= acl_lookup_ip(&smp, expr) ? ACL_PAT_PASS : ACL_PAT_FAIL; |
| } |
| |
| /* call the match() function for all tests on this value */ |
| list_for_each_entry(pattern, &expr->patterns, list) { |
| if (acl_res == ACL_PAT_PASS) |
| break; |
| acl_res |= expr->match(&smp, pattern); |
| } |
| } |
| /* |
| * OK now acl_res holds the result of this expression |
| * as one of ACL_PAT_FAIL, ACL_PAT_MISS or ACL_PAT_PASS. |
| * |
| * Then if (!MISS) we can cache the result, and put |
| * (smp.flags & SMP_F_VOLATILE) in the cache flags. |
| * |
| * FIXME: implement cache. |
| * |
| */ |
| |
| /* we're ORing these terms, so a single PASS is enough */ |
| if (acl_res == ACL_PAT_PASS) |
| break; |
| |
| if (smp.flags & SMP_F_NOT_LAST) |
| goto fetch_next; |
| |
| /* sometimes we know the fetched data is subject to change |
| * later and give another chance for a new match (eg: request |
| * size, time, ...) |
| */ |
| if (smp.flags & SMP_F_MAY_CHANGE && !(opt & SMP_OPT_FINAL)) |
| acl_res |= ACL_PAT_MISS; |
| } |
| /* |
| * Here we have the result of an ACL (cached or not). |
| * ACLs are combined, negated or not, to form conditions. |
| */ |
| |
| if (term->neg) |
| acl_res = acl_neg(acl_res); |
| |
| suite_res &= acl_res; |
| |
| /* we're ANDing these terms, so a single FAIL is enough */ |
| if (suite_res == ACL_PAT_FAIL) |
| break; |
| } |
| cond_res |= suite_res; |
| |
| /* we're ORing these terms, so a single PASS is enough */ |
| if (cond_res == ACL_PAT_PASS) |
| break; |
| } |
| return cond_res; |
| } |
| |
| /* Returns a pointer to the first ACL conflicting with usage at place <where> |
| * which is one of the SMP_VAL_* bits indicating a check place, or NULL if |
| * no conflict is found. Only full conflicts are detected (ACL is not usable). |
| * Use the next function to check for useless keywords. |
| */ |
| const struct acl *acl_cond_conflicts(const struct acl_cond *cond, unsigned int where) |
| { |
| struct acl_term_suite *suite; |
| struct acl_term *term; |
| struct acl *acl; |
| |
| list_for_each_entry(suite, &cond->suites, list) { |
| list_for_each_entry(term, &suite->terms, list) { |
| acl = term->acl; |
| if (!(acl->val & where)) |
| return acl; |
| } |
| } |
| return NULL; |
| } |
| |
| /* Returns a pointer to the first ACL and its first keyword to conflict with |
| * usage at place <where> which is one of the SMP_VAL_* bits indicating a check |
| * place. Returns true if a conflict is found, with <acl> and <kw> set (if non |
| * null), or false if not conflict is found. The first useless keyword is |
| * returned. |
| */ |
| int acl_cond_kw_conflicts(const struct acl_cond *cond, unsigned int where, struct acl const **acl, char const **kw) |
| { |
| struct acl_term_suite *suite; |
| struct acl_term *term; |
| struct acl_expr *expr; |
| |
| list_for_each_entry(suite, &cond->suites, list) { |
| list_for_each_entry(term, &suite->terms, list) { |
| list_for_each_entry(expr, &term->acl->expr, list) { |
| if (!(expr->smp->val & where)) { |
| if (acl) |
| *acl = term->acl; |
| if (kw) |
| *kw = expr->kw; |
| return 1; |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Find targets for userlist and groups in acl. Function returns the number |
| * of errors or OK if everything is fine. It must be called only once sample |
| * fetch arguments have been resolved (after smp_resolve_args()). |
| */ |
| int acl_find_targets(struct proxy *p) |
| { |
| |
| struct acl *acl; |
| struct acl_expr *expr; |
| struct acl_pattern *pattern; |
| int cfgerr = 0; |
| |
| list_for_each_entry(acl, &p->acl, list) { |
| list_for_each_entry(expr, &acl->expr, list) { |
| if (!strcmp(expr->kw, "http_auth_group")) { |
| /* Note: the ARGT_USR argument may only have been resolved earlier |
| * by smp_resolve_args(). |
| */ |
| if (expr->args->unresolved) { |
| Alert("Internal bug in proxy %s: %sacl %s %s() makes use of unresolved userlist '%s'. Please report this.\n", |
| p->id, *acl->name ? "" : "anonymous ", acl->name, expr->kw, expr->args->data.str.str); |
| cfgerr++; |
| continue; |
| } |
| |
| if (LIST_ISEMPTY(&expr->patterns)) { |
| Alert("proxy %s: acl %s %s(): no groups specified.\n", |
| p->id, acl->name, expr->kw); |
| cfgerr++; |
| continue; |
| } |
| |
| list_for_each_entry(pattern, &expr->patterns, list) { |
| /* this keyword only has one argument */ |
| pattern->val.group_mask = auth_resolve_groups(expr->args->data.usr, pattern->ptr.str); |
| |
| if (!pattern->val.group_mask) { |
| Alert("proxy %s: acl %s %s(): invalid group '%s'.\n", |
| p->id, acl->name, expr->kw, pattern->ptr.str); |
| cfgerr++; |
| } |
| free(pattern->ptr.str); |
| pattern->ptr.str = NULL; |
| pattern->len = 0; |
| } |
| } |
| } |
| } |
| |
| return cfgerr; |
| } |
| |
| /* initializes ACLs by resolving the sample fetch names they rely upon. |
| * Returns 0 on success, otherwise an error. |
| */ |
| int init_acl() |
| { |
| int err = 0; |
| int index; |
| const char *name; |
| struct acl_kw_list *kwl; |
| struct sample_fetch *smp; |
| |
| list_for_each_entry(kwl, &acl_keywords.list, list) { |
| for (index = 0; kwl->kw[index].kw != NULL; index++) { |
| name = kwl->kw[index].fetch_kw; |
| if (!name) |
| name = kwl->kw[index].kw; |
| |
| smp = find_sample_fetch(name, strlen(name)); |
| if (!smp) { |
| Alert("Critical internal error: ACL keyword '%s' relies on sample fetch '%s' which was not registered!\n", |
| kwl->kw[index].kw, name); |
| err++; |
| continue; |
| } |
| kwl->kw[index].smp = smp; |
| } |
| } |
| return err; |
| } |
| |
| /************************************************************************/ |
| /* All supported sample and ACL keywords must be declared here. */ |
| /************************************************************************/ |
| |
| /* Note: must not be declared <const> as its list will be overwritten. |
| * Please take care of keeping this list alphabetically sorted. |
| */ |
| static struct acl_kw_list acl_kws = {ILH, { |
| { /* END */ }, |
| }}; |
| |
| __attribute__((constructor)) |
| static void __acl_init(void) |
| { |
| acl_register_keywords(&acl_kws); |
| } |
| |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |