| /* |
| * include/proto/task.h |
| * Functions for task management. |
| * |
| * Copyright (C) 2000-2010 Willy Tarreau - w@1wt.eu |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation, version 2.1 |
| * exclusively. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #ifndef _PROTO_TASK_H |
| #define _PROTO_TASK_H |
| |
| |
| #include <sys/time.h> |
| |
| #include <common/config.h> |
| #include <common/memory.h> |
| #include <common/mini-clist.h> |
| #include <common/standard.h> |
| #include <common/ticks.h> |
| #include <eb32tree.h> |
| |
| #include <types/global.h> |
| #include <types/task.h> |
| |
| /* Principle of the wait queue. |
| * |
| * We want to be able to tell whether an expiration date is before of after the |
| * current time <now>. We KNOW that expiration dates are never too far apart, |
| * because they are measured in ticks (milliseconds). We also know that almost |
| * all dates will be in the future, and that a very small part of them will be |
| * in the past, they are the ones which have expired since last time we checked |
| * them. Using ticks, we know if a date is in the future or in the past, but we |
| * cannot use that to store sorted information because that reference changes |
| * all the time. |
| * |
| * We'll use the fact that the time wraps to sort timers. Timers above <now> |
| * are in the future, timers below <now> are in the past. Here, "above" and |
| * "below" are to be considered modulo 2^31. |
| * |
| * Timers are stored sorted in an ebtree. We use the new ability for ebtrees to |
| * lookup values starting from X to only expire tasks between <now> - 2^31 and |
| * <now>. If the end of the tree is reached while walking over it, we simply |
| * loop back to the beginning. That way, we have no problem keeping sorted |
| * wrapping timers in a tree, between (now - 24 days) and (now + 24 days). The |
| * keys in the tree always reflect their real position, none can be infinite. |
| * This reduces the number of checks to be performed. |
| * |
| * Another nice optimisation is to allow a timer to stay at an old place in the |
| * queue as long as it's not further than the real expiration date. That way, |
| * we use the tree as a place holder for a minorant of the real expiration |
| * date. Since we have a very low chance of hitting a timeout anyway, we can |
| * bounce the nodes to their right place when we scan the tree if we encounter |
| * a misplaced node once in a while. This even allows us not to remove the |
| * infinite timers from the wait queue. |
| * |
| * So, to summarize, we have : |
| * - node->key always defines current position in the wait queue |
| * - timer is the real expiration date (possibly infinite) |
| * - node->key is always before or equal to timer |
| * |
| * The run queue works similarly to the wait queue except that the current date |
| * is replaced by an insertion counter which can also wrap without any problem. |
| */ |
| |
| /* The farthest we can look back in a timer tree */ |
| #define TIMER_LOOK_BACK (1U << 31) |
| |
| /* a few exported variables */ |
| extern unsigned int nb_tasks; /* total number of tasks */ |
| extern unsigned int tasks_run_queue; /* run queue size */ |
| extern unsigned int tasks_run_queue_cur; |
| extern unsigned int nb_tasks_cur; |
| extern unsigned int niced_tasks; /* number of niced tasks in the run queue */ |
| extern struct pool_head *pool2_task; |
| |
| /* return 0 if task is in run queue, otherwise non-zero */ |
| static inline int task_in_rq(struct task *t) |
| { |
| return t->rq.node.leaf_p != NULL; |
| } |
| |
| /* return 0 if task is in wait queue, otherwise non-zero */ |
| static inline int task_in_wq(struct task *t) |
| { |
| return t->wq.node.leaf_p != NULL; |
| } |
| |
| /* puts the task <t> in run queue with reason flags <f>, and returns <t> */ |
| struct task *__task_wakeup(struct task *t); |
| static inline struct task *task_wakeup(struct task *t, unsigned int f) |
| { |
| /* If task is running, we postpone the call |
| * and backup the state. |
| */ |
| if (unlikely(t->state & TASK_RUNNING)) { |
| t->pending_state |= f; |
| return t; |
| } |
| if (likely(!task_in_rq(t))) |
| __task_wakeup(t); |
| t->state |= f; |
| return t; |
| } |
| |
| /* |
| * Unlink the task from the wait queue, and possibly update the last_timer |
| * pointer. A pointer to the task itself is returned. The task *must* already |
| * be in the wait queue before calling this function. If unsure, use the safer |
| * task_unlink_wq() function. |
| */ |
| static inline struct task *__task_unlink_wq(struct task *t) |
| { |
| eb32_delete(&t->wq); |
| return t; |
| } |
| |
| static inline struct task *task_unlink_wq(struct task *t) |
| { |
| if (likely(task_in_wq(t))) |
| __task_unlink_wq(t); |
| return t; |
| } |
| |
| /* |
| * Unlink the task from the run queue. The tasks_run_queue size and number of |
| * niced tasks are updated too. A pointer to the task itself is returned. The |
| * task *must* already be in the run queue before calling this function. If |
| * unsure, use the safer task_unlink_rq() function. Note that the pointer to the |
| * next run queue entry is neither checked nor updated. |
| */ |
| static inline struct task *__task_unlink_rq(struct task *t) |
| { |
| eb32_delete(&t->rq); |
| tasks_run_queue--; |
| if (likely(t->nice)) |
| niced_tasks--; |
| return t; |
| } |
| |
| /* This function unlinks task <t> from the run queue if it is in it. It also |
| * takes care of updating the next run queue task if it was this task. |
| */ |
| static inline struct task *task_unlink_rq(struct task *t) |
| { |
| if (likely(task_in_rq(t))) { |
| __task_unlink_rq(t); |
| } |
| return t; |
| } |
| |
| /* |
| * Unlinks the task and adjusts run queue stats. |
| * A pointer to the task itself is returned. |
| */ |
| static inline struct task *task_delete(struct task *t) |
| { |
| task_unlink_wq(t); |
| task_unlink_rq(t); |
| return t; |
| } |
| |
| /* |
| * Initialize a new task. The bare minimum is performed (queue pointers and |
| * state). The task is returned. This function should not be used outside of |
| * task_new(). |
| */ |
| static inline struct task *task_init(struct task *t) |
| { |
| t->wq.node.leaf_p = NULL; |
| t->rq.node.leaf_p = NULL; |
| t->pending_state = t->state = TASK_SLEEPING; |
| t->nice = 0; |
| t->calls = 0; |
| return t; |
| } |
| |
| /* |
| * Allocate and initialise a new task. The new task is returned, or NULL in |
| * case of lack of memory. The task count is incremented. Tasks should only |
| * be allocated this way, and must be freed using task_free(). |
| */ |
| static inline struct task *task_new(void) |
| { |
| struct task *t = pool_alloc2(pool2_task); |
| if (t) { |
| nb_tasks++; |
| task_init(t); |
| } |
| return t; |
| } |
| |
| /* |
| * Free a task. Its context must have been freed since it will be lost. |
| * The task count is decremented. |
| */ |
| static inline void task_free(struct task *t) |
| { |
| pool_free2(pool2_task, t); |
| if (unlikely(stopping)) |
| pool_flush2(pool2_task); |
| nb_tasks--; |
| } |
| |
| /* Place <task> into the wait queue, where it may already be. If the expiration |
| * timer is infinite, do nothing and rely on wake_expired_task to clean up. |
| */ |
| void __task_queue(struct task *task); |
| static inline void task_queue(struct task *task) |
| { |
| /* If we already have a place in the wait queue no later than the |
| * timeout we're trying to set, we'll stay there, because it is very |
| * unlikely that we will reach the timeout anyway. If the timeout |
| * has been disabled, it's useless to leave the queue as well. We'll |
| * rely on wake_expired_tasks() to catch the node and move it to the |
| * proper place should it ever happen. Finally we only add the task |
| * to the queue if it was not there or if it was further than what |
| * we want. |
| */ |
| if (!tick_isset(task->expire)) |
| return; |
| |
| if (!task_in_wq(task) || tick_is_lt(task->expire, task->wq.key)) |
| __task_queue(task); |
| } |
| |
| /* Ensure <task> will be woken up at most at <when>. If the task is already in |
| * the run queue (but not running), nothing is done. It may be used that way |
| * with a delay : task_schedule(task, tick_add(now_ms, delay)); |
| */ |
| static inline void task_schedule(struct task *task, int when) |
| { |
| if (task_in_rq(task)) |
| return; |
| |
| if (task_in_wq(task)) |
| when = tick_first(when, task->expire); |
| |
| task->expire = when; |
| if (!task_in_wq(task) || tick_is_lt(task->expire, task->wq.key)) |
| __task_queue(task); |
| } |
| |
| /* |
| * This does 3 things : |
| * - wake up all expired tasks |
| * - call all runnable tasks |
| * - return the date of next event in <next> or eternity. |
| */ |
| |
| void process_runnable_tasks(); |
| |
| /* |
| * Extract all expired timers from the timer queue, and wakes up all |
| * associated tasks. Returns the date of next event (or eternity). |
| */ |
| int wake_expired_tasks(); |
| |
| /* Perform minimal initializations, report 0 in case of error, 1 if OK. */ |
| int init_task(); |
| |
| #endif /* _PROTO_TASK_H */ |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |