| /* |
| * AF_INET/AF_INET6 SOCK_STREAM protocol layer (tcp) |
| * |
| * Copyright 2000-2013 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <ctype.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <time.h> |
| |
| #include <sys/param.h> |
| #include <sys/socket.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <sys/un.h> |
| |
| #include <netinet/tcp.h> |
| |
| #include <common/cfgparse.h> |
| #include <common/compat.h> |
| #include <common/config.h> |
| #include <common/debug.h> |
| #include <common/errors.h> |
| #include <common/mini-clist.h> |
| #include <common/standard.h> |
| |
| #include <types/global.h> |
| #include <types/server.h> |
| |
| #include <proto/acl.h> |
| #include <proto/arg.h> |
| #include <proto/channel.h> |
| #include <proto/connection.h> |
| #include <proto/fd.h> |
| #include <proto/listener.h> |
| #include <proto/log.h> |
| #include <proto/port_range.h> |
| #include <proto/protocol.h> |
| #include <proto/proto_tcp.h> |
| #include <proto/proxy.h> |
| #include <proto/sample.h> |
| #include <proto/session.h> |
| #include <proto/stick_table.h> |
| #include <proto/stream_interface.h> |
| #include <proto/task.h> |
| |
| #ifdef CONFIG_HAP_CTTPROXY |
| #include <import/ip_tproxy.h> |
| #endif |
| |
| static int tcp_bind_listeners(struct protocol *proto, char *errmsg, int errlen); |
| static int tcp_bind_listener(struct listener *listener, char *errmsg, int errlen); |
| |
| /* Note: must not be declared <const> as its list will be overwritten */ |
| static struct protocol proto_tcpv4 = { |
| .name = "tcpv4", |
| .sock_domain = AF_INET, |
| .sock_type = SOCK_STREAM, |
| .sock_prot = IPPROTO_TCP, |
| .sock_family = AF_INET, |
| .sock_addrlen = sizeof(struct sockaddr_in), |
| .l3_addrlen = 32/8, |
| .accept = &listener_accept, |
| .connect = tcp_connect_server, |
| .bind = tcp_bind_listener, |
| .bind_all = tcp_bind_listeners, |
| .unbind_all = unbind_all_listeners, |
| .enable_all = enable_all_listeners, |
| .get_src = tcp_get_src, |
| .get_dst = tcp_get_dst, |
| .drain = tcp_drain, |
| .listeners = LIST_HEAD_INIT(proto_tcpv4.listeners), |
| .nb_listeners = 0, |
| }; |
| |
| /* Note: must not be declared <const> as its list will be overwritten */ |
| static struct protocol proto_tcpv6 = { |
| .name = "tcpv6", |
| .sock_domain = AF_INET6, |
| .sock_type = SOCK_STREAM, |
| .sock_prot = IPPROTO_TCP, |
| .sock_family = AF_INET6, |
| .sock_addrlen = sizeof(struct sockaddr_in6), |
| .l3_addrlen = 128/8, |
| .accept = &listener_accept, |
| .connect = tcp_connect_server, |
| .bind = tcp_bind_listener, |
| .bind_all = tcp_bind_listeners, |
| .unbind_all = unbind_all_listeners, |
| .enable_all = enable_all_listeners, |
| .get_src = tcp_get_src, |
| .get_dst = tcp_get_dst, |
| .drain = tcp_drain, |
| .listeners = LIST_HEAD_INIT(proto_tcpv6.listeners), |
| .nb_listeners = 0, |
| }; |
| |
| |
| /* Binds ipv4/ipv6 address <local> to socket <fd>, unless <flags> is set, in which |
| * case we try to bind <remote>. <flags> is a 2-bit field consisting of : |
| * - 0 : ignore remote address (may even be a NULL pointer) |
| * - 1 : use provided address |
| * - 2 : use provided port |
| * - 3 : use both |
| * |
| * The function supports multiple foreign binding methods : |
| * - linux_tproxy: we directly bind to the foreign address |
| * - cttproxy: we bind to a local address then nat. |
| * The second one can be used as a fallback for the first one. |
| * This function returns 0 when everything's OK, 1 if it could not bind, to the |
| * local address, 2 if it could not bind to the foreign address. |
| */ |
| int tcp_bind_socket(int fd, int flags, struct sockaddr_storage *local, struct sockaddr_storage *remote) |
| { |
| struct sockaddr_storage bind_addr; |
| int foreign_ok = 0; |
| int ret; |
| static int ip_transp_working = 1; |
| static int ip6_transp_working = 1; |
| |
| switch (local->ss_family) { |
| case AF_INET: |
| if (flags && ip_transp_working) { |
| /* This deserves some explanation. Some platforms will support |
| * multiple combinations of certain methods, so we try the |
| * supported ones until one succeeds. |
| */ |
| if (0 |
| #if defined(IP_TRANSPARENT) |
| || (setsockopt(fd, SOL_IP, IP_TRANSPARENT, &one, sizeof(one)) == 0) |
| #endif |
| #if defined(IP_FREEBIND) |
| || (setsockopt(fd, SOL_IP, IP_FREEBIND, &one, sizeof(one)) == 0) |
| #endif |
| #if defined(IP_BINDANY) |
| || (setsockopt(fd, IPPROTO_IP, IP_BINDANY, &one, sizeof(one)) == 0) |
| #endif |
| #if defined(SO_BINDANY) |
| || (setsockopt(fd, SOL_SOCKET, SO_BINDANY, &one, sizeof(one)) == 0) |
| #endif |
| ) |
| foreign_ok = 1; |
| else |
| ip_transp_working = 0; |
| } |
| break; |
| case AF_INET6: |
| if (flags && ip6_transp_working) { |
| if (0 |
| #if defined(IPV6_TRANSPARENT) |
| || (setsockopt(fd, SOL_IPV6, IPV6_TRANSPARENT, &one, sizeof(one)) == 0) |
| #endif |
| #if defined(IPV6_BINDANY) |
| || (setsockopt(fd, IPPROTO_IPV6, IPV6_BINDANY, &one, sizeof(one)) == 0) |
| #endif |
| #if defined(SO_BINDANY) |
| || (setsockopt(fd, SOL_SOCKET, SO_BINDANY, &one, sizeof(one)) == 0) |
| #endif |
| ) |
| foreign_ok = 1; |
| else |
| ip6_transp_working = 0; |
| } |
| break; |
| } |
| |
| if (flags) { |
| memset(&bind_addr, 0, sizeof(bind_addr)); |
| bind_addr.ss_family = remote->ss_family; |
| switch (remote->ss_family) { |
| case AF_INET: |
| if (flags & 1) |
| ((struct sockaddr_in *)&bind_addr)->sin_addr = ((struct sockaddr_in *)remote)->sin_addr; |
| if (flags & 2) |
| ((struct sockaddr_in *)&bind_addr)->sin_port = ((struct sockaddr_in *)remote)->sin_port; |
| break; |
| case AF_INET6: |
| if (flags & 1) |
| ((struct sockaddr_in6 *)&bind_addr)->sin6_addr = ((struct sockaddr_in6 *)remote)->sin6_addr; |
| if (flags & 2) |
| ((struct sockaddr_in6 *)&bind_addr)->sin6_port = ((struct sockaddr_in6 *)remote)->sin6_port; |
| break; |
| default: |
| /* we don't want to try to bind to an unknown address family */ |
| foreign_ok = 0; |
| } |
| } |
| |
| setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)); |
| if (foreign_ok) { |
| if (is_addr(&bind_addr)) { |
| ret = bind(fd, (struct sockaddr *)&bind_addr, get_addr_len(&bind_addr)); |
| if (ret < 0) |
| return 2; |
| } |
| } |
| else { |
| if (is_addr(local)) { |
| ret = bind(fd, (struct sockaddr *)local, get_addr_len(local)); |
| if (ret < 0) |
| return 1; |
| } |
| } |
| |
| if (!flags) |
| return 0; |
| |
| #ifdef CONFIG_HAP_CTTPROXY |
| if (!foreign_ok && remote->ss_family == AF_INET) { |
| struct in_tproxy itp1, itp2; |
| memset(&itp1, 0, sizeof(itp1)); |
| |
| itp1.op = TPROXY_ASSIGN; |
| itp1.v.addr.faddr = ((struct sockaddr_in *)&bind_addr)->sin_addr; |
| itp1.v.addr.fport = ((struct sockaddr_in *)&bind_addr)->sin_port; |
| |
| /* set connect flag on socket */ |
| itp2.op = TPROXY_FLAGS; |
| itp2.v.flags = ITP_CONNECT | ITP_ONCE; |
| |
| if (setsockopt(fd, SOL_IP, IP_TPROXY, &itp1, sizeof(itp1)) != -1 && |
| setsockopt(fd, SOL_IP, IP_TPROXY, &itp2, sizeof(itp2)) != -1) { |
| foreign_ok = 1; |
| } |
| } |
| #endif |
| if (!foreign_ok) |
| /* we could not bind to a foreign address */ |
| return 2; |
| |
| return 0; |
| } |
| |
| |
| /* |
| * This function initiates a TCP connection establishment to the target assigned |
| * to connection <conn> using (si->{target,addr.to}). A source address may be |
| * pointed to by conn->addr.from in case of transparent proxying. Normal source |
| * bind addresses are still determined locally (due to the possible need of a |
| * source port). conn->target may point either to a valid server or to a backend, |
| * depending on conn->target. Only OBJ_TYPE_PROXY and OBJ_TYPE_SERVER are |
| * supported. The <data> parameter is a boolean indicating whether there are data |
| * waiting for being sent or not, in order to adjust data write polling and on |
| * some platforms, the ability to avoid an empty initial ACK. The <delack> argument |
| * allows the caller to force using a delayed ACK when establishing the connection : |
| * - 0 = no delayed ACK unless data are advertised and backend has tcp-smart-connect |
| * - 1 = delayed ACK if backend has tcp-smart-connect, regardless of data |
| * - 2 = delayed ACK regardless of backend options |
| * |
| * It can return one of : |
| * - SN_ERR_NONE if everything's OK |
| * - SN_ERR_SRVTO if there are no more servers |
| * - SN_ERR_SRVCL if the connection was refused by the server |
| * - SN_ERR_PRXCOND if the connection has been limited by the proxy (maxconn) |
| * - SN_ERR_RESOURCE if a system resource is lacking (eg: fd limits, ports, ...) |
| * - SN_ERR_INTERNAL for any other purely internal errors |
| * Additionnally, in the case of SN_ERR_RESOURCE, an emergency log will be emitted. |
| * |
| * The connection's fd is inserted only when SN_ERR_NONE is returned, otherwise |
| * it's invalid and the caller has nothing to do. |
| */ |
| |
| int tcp_connect_server(struct connection *conn, int data, int delack) |
| { |
| int fd; |
| struct server *srv; |
| struct proxy *be; |
| struct conn_src *src; |
| |
| switch (obj_type(conn->target)) { |
| case OBJ_TYPE_PROXY: |
| be = objt_proxy(conn->target); |
| srv = NULL; |
| break; |
| case OBJ_TYPE_SERVER: |
| srv = objt_server(conn->target); |
| be = srv->proxy; |
| break; |
| default: |
| return SN_ERR_INTERNAL; |
| } |
| |
| if ((fd = conn->t.sock.fd = socket(conn->addr.to.ss_family, SOCK_STREAM, IPPROTO_TCP)) == -1) { |
| qfprintf(stderr, "Cannot get a server socket.\n"); |
| |
| if (errno == ENFILE) |
| send_log(be, LOG_EMERG, |
| "Proxy %s reached system FD limit at %d. Please check system tunables.\n", |
| be->id, maxfd); |
| else if (errno == EMFILE) |
| send_log(be, LOG_EMERG, |
| "Proxy %s reached process FD limit at %d. Please check 'ulimit-n' and restart.\n", |
| be->id, maxfd); |
| else if (errno == ENOBUFS || errno == ENOMEM) |
| send_log(be, LOG_EMERG, |
| "Proxy %s reached system memory limit at %d sockets. Please check system tunables.\n", |
| be->id, maxfd); |
| /* this is a resource error */ |
| return SN_ERR_RESOURCE; |
| } |
| |
| if (fd >= global.maxsock) { |
| /* do not log anything there, it's a normal condition when this option |
| * is used to serialize connections to a server ! |
| */ |
| Alert("socket(): not enough free sockets. Raise -n argument. Giving up.\n"); |
| close(fd); |
| return SN_ERR_PRXCOND; /* it is a configuration limit */ |
| } |
| |
| if ((fcntl(fd, F_SETFL, O_NONBLOCK)==-1) || |
| (setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one)) == -1)) { |
| qfprintf(stderr,"Cannot set client socket to non blocking mode.\n"); |
| close(fd); |
| return SN_ERR_INTERNAL; |
| } |
| |
| if (be->options & PR_O_TCP_SRV_KA) |
| setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, &one, sizeof(one)); |
| |
| /* allow specific binding : |
| * - server-specific at first |
| * - proxy-specific next |
| */ |
| if (srv && srv->conn_src.opts & CO_SRC_BIND) |
| src = &srv->conn_src; |
| else if (be->conn_src.opts & CO_SRC_BIND) |
| src = &be->conn_src; |
| else |
| src = NULL; |
| |
| if (src) { |
| int ret, flags = 0; |
| |
| if (is_addr(&conn->addr.from)) { |
| switch (src->opts & CO_SRC_TPROXY_MASK) { |
| case CO_SRC_TPROXY_ADDR: |
| case CO_SRC_TPROXY_CLI: |
| flags = 3; |
| break; |
| case CO_SRC_TPROXY_CIP: |
| case CO_SRC_TPROXY_DYN: |
| flags = 1; |
| break; |
| } |
| } |
| |
| #ifdef SO_BINDTODEVICE |
| /* Note: this might fail if not CAP_NET_RAW */ |
| if (src->iface_name) |
| setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, src->iface_name, src->iface_len + 1); |
| #endif |
| |
| if (src->sport_range) { |
| int attempts = 10; /* should be more than enough to find a spare port */ |
| struct sockaddr_storage sa; |
| |
| ret = 1; |
| sa = src->source_addr; |
| |
| do { |
| /* note: in case of retry, we may have to release a previously |
| * allocated port, hence this loop's construct. |
| */ |
| port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port); |
| fdinfo[fd].port_range = NULL; |
| |
| if (!attempts) |
| break; |
| attempts--; |
| |
| fdinfo[fd].local_port = port_range_alloc_port(src->sport_range); |
| if (!fdinfo[fd].local_port) |
| break; |
| |
| fdinfo[fd].port_range = src->sport_range; |
| set_host_port(&sa, fdinfo[fd].local_port); |
| |
| ret = tcp_bind_socket(fd, flags, &sa, &conn->addr.from); |
| } while (ret != 0); /* binding NOK */ |
| } |
| else { |
| ret = tcp_bind_socket(fd, flags, &src->source_addr, &conn->addr.from); |
| } |
| |
| if (unlikely(ret != 0)) { |
| port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port); |
| fdinfo[fd].port_range = NULL; |
| close(fd); |
| |
| if (ret == 1) { |
| Alert("Cannot bind to source address before connect() for backend %s. Aborting.\n", |
| be->id); |
| send_log(be, LOG_EMERG, |
| "Cannot bind to source address before connect() for backend %s.\n", |
| be->id); |
| } else { |
| Alert("Cannot bind to tproxy source address before connect() for backend %s. Aborting.\n", |
| be->id); |
| send_log(be, LOG_EMERG, |
| "Cannot bind to tproxy source address before connect() for backend %s.\n", |
| be->id); |
| } |
| return SN_ERR_RESOURCE; |
| } |
| } |
| |
| #if defined(TCP_QUICKACK) |
| /* disabling tcp quick ack now allows the first request to leave the |
| * machine with the first ACK. We only do this if there are pending |
| * data in the buffer. |
| */ |
| if (delack == 2 || ((delack || data) && (be->options2 & PR_O2_SMARTCON))) |
| setsockopt(fd, IPPROTO_TCP, TCP_QUICKACK, &zero, sizeof(zero)); |
| #endif |
| |
| if (global.tune.server_sndbuf) |
| setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &global.tune.server_sndbuf, sizeof(global.tune.server_sndbuf)); |
| |
| if (global.tune.server_rcvbuf) |
| setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &global.tune.server_rcvbuf, sizeof(global.tune.server_rcvbuf)); |
| |
| if ((connect(fd, (struct sockaddr *)&conn->addr.to, get_addr_len(&conn->addr.to)) == -1) && |
| (errno != EINPROGRESS) && (errno != EALREADY) && (errno != EISCONN)) { |
| |
| if (errno == EAGAIN || errno == EADDRINUSE || errno == EADDRNOTAVAIL) { |
| char *msg; |
| if (errno == EAGAIN || errno == EADDRNOTAVAIL) |
| msg = "no free ports"; |
| else |
| msg = "local address already in use"; |
| |
| qfprintf(stderr,"Connect() failed for backend %s: %s.\n", be->id, msg); |
| port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port); |
| fdinfo[fd].port_range = NULL; |
| close(fd); |
| send_log(be, LOG_ERR, "Connect() failed for backend %s: %s.\n", be->id, msg); |
| return SN_ERR_RESOURCE; |
| } else if (errno == ETIMEDOUT) { |
| //qfprintf(stderr,"Connect(): ETIMEDOUT"); |
| port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port); |
| fdinfo[fd].port_range = NULL; |
| close(fd); |
| return SN_ERR_SRVTO; |
| } else { |
| // (errno == ECONNREFUSED || errno == ENETUNREACH || errno == EACCES || errno == EPERM) |
| //qfprintf(stderr,"Connect(): %d", errno); |
| port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port); |
| fdinfo[fd].port_range = NULL; |
| close(fd); |
| return SN_ERR_SRVCL; |
| } |
| } |
| |
| fdtab[fd].owner = conn; |
| conn->flags = CO_FL_WAIT_L4_CONN; /* connection in progress */ |
| conn->flags |= CO_FL_ADDR_TO_SET; |
| |
| fdtab[fd].iocb = conn_fd_handler; |
| fd_insert(fd); |
| conn_sock_want_send(conn); /* for connect status */ |
| |
| if (conn_xprt_init(conn) < 0) { |
| fd_delete(fd); |
| return SN_ERR_RESOURCE; |
| } |
| |
| if (data) |
| conn_data_want_send(conn); /* prepare to send data if any */ |
| |
| return SN_ERR_NONE; /* connection is OK */ |
| } |
| |
| |
| /* |
| * Retrieves the source address for the socket <fd>, with <dir> indicating |
| * if we're a listener (=0) or an initiator (!=0). It returns 0 in case of |
| * success, -1 in case of error. The socket's source address is stored in |
| * <sa> for <salen> bytes. |
| */ |
| int tcp_get_src(int fd, struct sockaddr *sa, socklen_t salen, int dir) |
| { |
| if (dir) |
| return getsockname(fd, sa, &salen); |
| else |
| return getpeername(fd, sa, &salen); |
| } |
| |
| |
| /* |
| * Retrieves the original destination address for the socket <fd>, with <dir> |
| * indicating if we're a listener (=0) or an initiator (!=0). In the case of a |
| * listener, if the original destination address was translated, the original |
| * address is retrieved. It returns 0 in case of success, -1 in case of error. |
| * The socket's source address is stored in <sa> for <salen> bytes. |
| */ |
| int tcp_get_dst(int fd, struct sockaddr *sa, socklen_t salen, int dir) |
| { |
| if (dir) |
| return getpeername(fd, sa, &salen); |
| #if defined(TPROXY) && defined(SO_ORIGINAL_DST) |
| else if (getsockopt(fd, SOL_IP, SO_ORIGINAL_DST, sa, &salen) == 0) |
| return 0; |
| #endif |
| else |
| return getsockname(fd, sa, &salen); |
| } |
| |
| /* Tries to drain any pending incoming data from the socket to reach the |
| * receive shutdown. Returns non-zero if the shutdown was found, otherwise |
| * zero. This is useful to decide whether we can close a connection cleanly |
| * are we must kill it hard. |
| */ |
| int tcp_drain(int fd) |
| { |
| int turns = 2; |
| int len; |
| |
| while (turns) { |
| #ifdef MSG_TRUNC_CLEARS_INPUT |
| len = recv(fd, NULL, INT_MAX, MSG_DONTWAIT | MSG_NOSIGNAL | MSG_TRUNC); |
| if (len == -1 && errno == EFAULT) |
| #endif |
| len = recv(fd, trash.str, trash.size, MSG_DONTWAIT | MSG_NOSIGNAL); |
| |
| if (len == 0) /* cool, shutdown received */ |
| return 1; |
| |
| if (len < 0) { |
| if (errno == EAGAIN) /* connection not closed yet */ |
| return 0; |
| if (errno == EINTR) /* oops, try again */ |
| continue; |
| /* other errors indicate a dead connection, fine. */ |
| return 1; |
| } |
| /* OK we read some data, let's try again once */ |
| turns--; |
| } |
| /* some data are still present, give up */ |
| return 0; |
| } |
| |
| /* This is the callback which is set when a connection establishment is pending |
| * and we have nothing to send, or if we have an init function we want to call |
| * once the connection is established. It updates the FD polling status. It |
| * returns 0 if it fails in a fatal way or needs to poll to go further, otherwise |
| * it returns non-zero and removes itself from the connection's flags (the bit is |
| * provided in <flag> by the caller). |
| */ |
| int tcp_connect_probe(struct connection *conn) |
| { |
| int fd = conn->t.sock.fd; |
| |
| if (conn->flags & CO_FL_ERROR) |
| return 0; |
| |
| if (!(conn->flags & CO_FL_WAIT_L4_CONN)) |
| return 1; /* strange we were called while ready */ |
| |
| /* stop here if we reached the end of data */ |
| if ((fdtab[fd].ev & (FD_POLL_IN|FD_POLL_HUP)) == FD_POLL_HUP) |
| goto out_error; |
| |
| /* We have no data to send to check the connection, and |
| * getsockopt() will not inform us whether the connection |
| * is still pending. So we'll reuse connect() to check the |
| * state of the socket. This has the advantage of giving us |
| * the following info : |
| * - error |
| * - connecting (EALREADY, EINPROGRESS) |
| * - connected (EISCONN, 0) |
| */ |
| if (connect(fd, (struct sockaddr *)&conn->addr.to, get_addr_len(&conn->addr.to)) < 0) { |
| if (errno == EALREADY || errno == EINPROGRESS) { |
| __conn_sock_stop_recv(conn); |
| __conn_sock_poll_send(conn); |
| return 0; |
| } |
| |
| if (errno && errno != EISCONN) |
| goto out_error; |
| |
| /* otherwise we're connected */ |
| } |
| |
| /* The FD is ready now, we'll mark the connection as complete and |
| * forward the event to the transport layer which will notify the |
| * data layer. |
| */ |
| conn->flags &= ~CO_FL_WAIT_L4_CONN; |
| return 1; |
| |
| out_error: |
| /* Write error on the file descriptor. Report it to the connection |
| * and disable polling on this FD. |
| */ |
| |
| conn->flags |= CO_FL_ERROR; |
| __conn_sock_stop_both(conn); |
| return 0; |
| } |
| |
| |
| /* This function tries to bind a TCPv4/v6 listener. It may return a warning or |
| * an error message in <errmsg> if the message is at most <errlen> bytes long |
| * (including '\0'). Note that <errmsg> may be NULL if <errlen> is also zero. |
| * The return value is composed from ERR_ABORT, ERR_WARN, |
| * ERR_ALERT, ERR_RETRYABLE and ERR_FATAL. ERR_NONE indicates that everything |
| * was alright and that no message was returned. ERR_RETRYABLE means that an |
| * error occurred but that it may vanish after a retry (eg: port in use), and |
| * ERR_FATAL indicates a non-fixable error. ERR_WARN and ERR_ALERT do not alter |
| * the meaning of the error, but just indicate that a message is present which |
| * should be displayed with the respective level. Last, ERR_ABORT indicates |
| * that it's pointless to try to start other listeners. No error message is |
| * returned if errlen is NULL. |
| */ |
| int tcp_bind_listener(struct listener *listener, char *errmsg, int errlen) |
| { |
| __label__ tcp_return, tcp_close_return; |
| int fd, err; |
| int ext, ready; |
| socklen_t ready_len; |
| const char *msg = NULL; |
| |
| /* ensure we never return garbage */ |
| if (errlen) |
| *errmsg = 0; |
| |
| if (listener->state != LI_ASSIGNED) |
| return ERR_NONE; /* already bound */ |
| |
| err = ERR_NONE; |
| |
| /* if the listener already has an fd assigned, then we were offered the |
| * fd by an external process (most likely the parent), and we don't want |
| * to create a new socket. However we still want to set a few flags on |
| * the socket. |
| */ |
| fd = listener->fd; |
| ext = (fd >= 0); |
| |
| if (!ext && (fd = socket(listener->addr.ss_family, SOCK_STREAM, IPPROTO_TCP)) == -1) { |
| err |= ERR_RETRYABLE | ERR_ALERT; |
| msg = "cannot create listening socket"; |
| goto tcp_return; |
| } |
| |
| if (fd >= global.maxsock) { |
| err |= ERR_FATAL | ERR_ABORT | ERR_ALERT; |
| msg = "not enough free sockets (raise '-n' parameter)"; |
| goto tcp_close_return; |
| } |
| |
| if (fcntl(fd, F_SETFL, O_NONBLOCK) == -1) { |
| err |= ERR_FATAL | ERR_ALERT; |
| msg = "cannot make socket non-blocking"; |
| goto tcp_close_return; |
| } |
| |
| if (!ext && setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) == -1) { |
| /* not fatal but should be reported */ |
| msg = "cannot do so_reuseaddr"; |
| err |= ERR_ALERT; |
| } |
| |
| if (listener->options & LI_O_NOLINGER) |
| setsockopt(fd, SOL_SOCKET, SO_LINGER, &nolinger, sizeof(struct linger)); |
| |
| #ifdef SO_REUSEPORT |
| /* OpenBSD supports this. As it's present in old libc versions of Linux, |
| * it might return an error that we will silently ignore. |
| */ |
| if (!ext) |
| setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, &one, sizeof(one)); |
| #endif |
| |
| if (!ext && (listener->options & LI_O_FOREIGN)) { |
| switch (listener->addr.ss_family) { |
| case AF_INET: |
| if (1 |
| #if defined(IP_TRANSPARENT) |
| && (setsockopt(fd, SOL_IP, IP_TRANSPARENT, &one, sizeof(one)) == -1) |
| #endif |
| #if defined(IP_FREEBIND) |
| && (setsockopt(fd, SOL_IP, IP_FREEBIND, &one, sizeof(one)) == -1) |
| #endif |
| #if defined(IP_BINDANY) |
| && (setsockopt(fd, IPPROTO_IP, IP_BINDANY, &one, sizeof(one)) == -1) |
| #endif |
| #if defined(SO_BINDANY) |
| && (setsockopt(fd, SOL_SOCKET, SO_BINDANY, &one, sizeof(one)) == -1) |
| #endif |
| ) { |
| msg = "cannot make listening socket transparent"; |
| err |= ERR_ALERT; |
| } |
| break; |
| case AF_INET6: |
| if (1 |
| #if defined(IPV6_TRANSPARENT) |
| && (setsockopt(fd, SOL_IPV6, IPV6_TRANSPARENT, &one, sizeof(one)) == -1) |
| #endif |
| #if defined(IPV6_BINDANY) |
| && (setsockopt(fd, IPPROTO_IPV6, IPV6_BINDANY, &one, sizeof(one)) == -1) |
| #endif |
| #if defined(SO_BINDANY) |
| && (setsockopt(fd, SOL_SOCKET, SO_BINDANY, &one, sizeof(one)) == -1) |
| #endif |
| ) { |
| msg = "cannot make listening socket transparent"; |
| err |= ERR_ALERT; |
| } |
| break; |
| } |
| } |
| |
| #ifdef SO_BINDTODEVICE |
| /* Note: this might fail if not CAP_NET_RAW */ |
| if (!ext && listener->interface) { |
| if (setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, |
| listener->interface, strlen(listener->interface) + 1) == -1) { |
| msg = "cannot bind listener to device"; |
| err |= ERR_WARN; |
| } |
| } |
| #endif |
| #if defined(TCP_MAXSEG) |
| if (listener->maxseg > 0) { |
| if (setsockopt(fd, IPPROTO_TCP, TCP_MAXSEG, |
| &listener->maxseg, sizeof(listener->maxseg)) == -1) { |
| msg = "cannot set MSS"; |
| err |= ERR_WARN; |
| } |
| } |
| #endif |
| #if defined(TCP_DEFER_ACCEPT) |
| if (listener->options & LI_O_DEF_ACCEPT) { |
| /* defer accept by up to one second */ |
| int accept_delay = 1; |
| if (setsockopt(fd, IPPROTO_TCP, TCP_DEFER_ACCEPT, &accept_delay, sizeof(accept_delay)) == -1) { |
| msg = "cannot enable DEFER_ACCEPT"; |
| err |= ERR_WARN; |
| } |
| } |
| #endif |
| #if defined(TCP_FASTOPEN) |
| if (listener->options & LI_O_TCP_FO) { |
| /* TFO needs a queue length, let's use the configured backlog */ |
| int qlen = listener->backlog ? listener->backlog : listener->maxconn; |
| if (setsockopt(fd, IPPROTO_TCP, TCP_FASTOPEN, &qlen, sizeof(qlen)) == -1) { |
| msg = "cannot enable TCP_FASTOPEN"; |
| err |= ERR_WARN; |
| } |
| } |
| #endif |
| #if defined(IPV6_V6ONLY) |
| if (listener->options & LI_O_V6ONLY) |
| setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &one, sizeof(one)); |
| else if (listener->options & LI_O_V4V6) |
| setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &zero, sizeof(zero)); |
| #endif |
| |
| if (!ext && bind(fd, (struct sockaddr *)&listener->addr, listener->proto->sock_addrlen) == -1) { |
| err |= ERR_RETRYABLE | ERR_ALERT; |
| msg = "cannot bind socket"; |
| goto tcp_close_return; |
| } |
| |
| ready = 0; |
| ready_len = sizeof(ready); |
| if (getsockopt(fd, SOL_SOCKET, SO_ACCEPTCONN, &ready, &ready_len) == -1) |
| ready = 0; |
| |
| if (!(ext && ready) && /* only listen if not already done by external process */ |
| listen(fd, listener->backlog ? listener->backlog : listener->maxconn) == -1) { |
| err |= ERR_RETRYABLE | ERR_ALERT; |
| msg = "cannot listen to socket"; |
| goto tcp_close_return; |
| } |
| |
| #if defined(TCP_QUICKACK) |
| if (listener->options & LI_O_NOQUICKACK) |
| setsockopt(fd, IPPROTO_TCP, TCP_QUICKACK, &zero, sizeof(zero)); |
| #endif |
| |
| /* the socket is ready */ |
| listener->fd = fd; |
| listener->state = LI_LISTEN; |
| |
| fdtab[fd].owner = listener; /* reference the listener instead of a task */ |
| fdtab[fd].iocb = listener->proto->accept; |
| fd_insert(fd); |
| |
| tcp_return: |
| if (msg && errlen) { |
| char pn[INET6_ADDRSTRLEN]; |
| |
| addr_to_str(&listener->addr, pn, sizeof(pn)); |
| snprintf(errmsg, errlen, "%s [%s:%d]", msg, pn, get_host_port(&listener->addr)); |
| } |
| return err; |
| |
| tcp_close_return: |
| close(fd); |
| goto tcp_return; |
| } |
| |
| /* This function creates all TCP sockets bound to the protocol entry <proto>. |
| * It is intended to be used as the protocol's bind_all() function. |
| * The sockets will be registered but not added to any fd_set, in order not to |
| * loose them across the fork(). A call to enable_all_listeners() is needed |
| * to complete initialization. The return value is composed from ERR_*. |
| */ |
| static int tcp_bind_listeners(struct protocol *proto, char *errmsg, int errlen) |
| { |
| struct listener *listener; |
| int err = ERR_NONE; |
| |
| list_for_each_entry(listener, &proto->listeners, proto_list) { |
| err |= tcp_bind_listener(listener, errmsg, errlen); |
| if (err & ERR_ABORT) |
| break; |
| } |
| |
| return err; |
| } |
| |
| /* Add listener to the list of tcpv4 listeners. The listener's state |
| * is automatically updated from LI_INIT to LI_ASSIGNED. The number of |
| * listeners is updated. This is the function to use to add a new listener. |
| */ |
| void tcpv4_add_listener(struct listener *listener) |
| { |
| if (listener->state != LI_INIT) |
| return; |
| listener->state = LI_ASSIGNED; |
| listener->proto = &proto_tcpv4; |
| LIST_ADDQ(&proto_tcpv4.listeners, &listener->proto_list); |
| proto_tcpv4.nb_listeners++; |
| } |
| |
| /* Add listener to the list of tcpv4 listeners. The listener's state |
| * is automatically updated from LI_INIT to LI_ASSIGNED. The number of |
| * listeners is updated. This is the function to use to add a new listener. |
| */ |
| void tcpv6_add_listener(struct listener *listener) |
| { |
| if (listener->state != LI_INIT) |
| return; |
| listener->state = LI_ASSIGNED; |
| listener->proto = &proto_tcpv6; |
| LIST_ADDQ(&proto_tcpv6.listeners, &listener->proto_list); |
| proto_tcpv6.nb_listeners++; |
| } |
| |
| /* This function performs the TCP request analysis on the current request. It |
| * returns 1 if the processing can continue on next analysers, or zero if it |
| * needs more data, encounters an error, or wants to immediately abort the |
| * request. It relies on buffers flags, and updates s->req->analysers. The |
| * function may be called for frontend rules and backend rules. It only relies |
| * on the backend pointer so this works for both cases. |
| */ |
| int tcp_inspect_request(struct session *s, struct channel *req, int an_bit) |
| { |
| struct tcp_rule *rule; |
| struct stksess *ts; |
| struct stktable *t; |
| int partial; |
| |
| DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| req, |
| req->rex, req->wex, |
| req->flags, |
| req->buf->i, |
| req->analysers); |
| |
| /* We don't know whether we have enough data, so must proceed |
| * this way : |
| * - iterate through all rules in their declaration order |
| * - if one rule returns MISS, it means the inspect delay is |
| * not over yet, then return immediately, otherwise consider |
| * it as a non-match. |
| * - if one rule returns OK, then return OK |
| * - if one rule returns KO, then return KO |
| */ |
| |
| if ((req->flags & CF_SHUTR) || buffer_full(req->buf, global.tune.maxrewrite) || |
| !s->be->tcp_req.inspect_delay || tick_is_expired(req->analyse_exp, now_ms)) |
| partial = SMP_OPT_FINAL; |
| else |
| partial = 0; |
| |
| list_for_each_entry(rule, &s->be->tcp_req.inspect_rules, list) { |
| int ret = ACL_PAT_PASS; |
| |
| if (rule->cond) { |
| ret = acl_exec_cond(rule->cond, s->be, s, &s->txn, SMP_OPT_DIR_REQ | partial); |
| if (ret == ACL_PAT_MISS) { |
| channel_dont_connect(req); |
| /* just set the request timeout once at the beginning of the request */ |
| if (!tick_isset(req->analyse_exp) && s->be->tcp_req.inspect_delay) |
| req->analyse_exp = tick_add(now_ms, s->be->tcp_req.inspect_delay); |
| return 0; |
| } |
| |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| /* we have a matching rule. */ |
| if (rule->action == TCP_ACT_REJECT) { |
| channel_abort(req); |
| channel_abort(s->rep); |
| req->analysers = 0; |
| |
| s->be->be_counters.denied_req++; |
| s->fe->fe_counters.denied_req++; |
| if (s->listener->counters) |
| s->listener->counters->denied_req++; |
| |
| if (!(s->flags & SN_ERR_MASK)) |
| s->flags |= SN_ERR_PRXCOND; |
| if (!(s->flags & SN_FINST_MASK)) |
| s->flags |= SN_FINST_R; |
| return 0; |
| } |
| else if (rule->action >= TCP_ACT_TRK_SC0 && rule->action <= TCP_ACT_TRK_SCMAX) { |
| /* Note: only the first valid tracking parameter of each |
| * applies. |
| */ |
| struct stktable_key *key; |
| |
| if (s->stkctr[tcp_trk_idx(rule->action)].entry) |
| continue; |
| |
| t = rule->act_prm.trk_ctr.table.t; |
| key = stktable_fetch_key(t, s->be, s, &s->txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->act_prm.trk_ctr.expr); |
| |
| if (key && (ts = stktable_get_entry(t, key))) { |
| session_track_stkctr(&s->stkctr[tcp_trk_idx(rule->action)], t, ts); |
| if (s->fe != s->be) |
| s->flags |= SN_BE_TRACK_SC0 << tcp_trk_idx(rule->action); |
| } |
| } |
| else { |
| /* otherwise accept */ |
| break; |
| } |
| } |
| } |
| |
| /* if we get there, it means we have no rule which matches, or |
| * we have an explicit accept, so we apply the default accept. |
| */ |
| req->analysers &= ~an_bit; |
| req->analyse_exp = TICK_ETERNITY; |
| return 1; |
| } |
| |
| /* This function performs the TCP response analysis on the current response. It |
| * returns 1 if the processing can continue on next analysers, or zero if it |
| * needs more data, encounters an error, or wants to immediately abort the |
| * response. It relies on buffers flags, and updates s->rep->analysers. The |
| * function may be called for backend rules. |
| */ |
| int tcp_inspect_response(struct session *s, struct channel *rep, int an_bit) |
| { |
| struct tcp_rule *rule; |
| int partial; |
| |
| DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| rep, |
| rep->rex, rep->wex, |
| rep->flags, |
| rep->buf->i, |
| rep->analysers); |
| |
| /* We don't know whether we have enough data, so must proceed |
| * this way : |
| * - iterate through all rules in their declaration order |
| * - if one rule returns MISS, it means the inspect delay is |
| * not over yet, then return immediately, otherwise consider |
| * it as a non-match. |
| * - if one rule returns OK, then return OK |
| * - if one rule returns KO, then return KO |
| */ |
| |
| if (rep->flags & CF_SHUTR || tick_is_expired(rep->analyse_exp, now_ms)) |
| partial = SMP_OPT_FINAL; |
| else |
| partial = 0; |
| |
| list_for_each_entry(rule, &s->be->tcp_rep.inspect_rules, list) { |
| int ret = ACL_PAT_PASS; |
| |
| if (rule->cond) { |
| ret = acl_exec_cond(rule->cond, s->be, s, &s->txn, SMP_OPT_DIR_RES | partial); |
| if (ret == ACL_PAT_MISS) { |
| /* just set the analyser timeout once at the beginning of the response */ |
| if (!tick_isset(rep->analyse_exp) && s->be->tcp_rep.inspect_delay) |
| rep->analyse_exp = tick_add(now_ms, s->be->tcp_rep.inspect_delay); |
| return 0; |
| } |
| |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| /* we have a matching rule. */ |
| if (rule->action == TCP_ACT_REJECT) { |
| channel_abort(rep); |
| channel_abort(s->req); |
| rep->analysers = 0; |
| |
| s->be->be_counters.denied_resp++; |
| s->fe->fe_counters.denied_resp++; |
| if (s->listener->counters) |
| s->listener->counters->denied_resp++; |
| |
| if (!(s->flags & SN_ERR_MASK)) |
| s->flags |= SN_ERR_PRXCOND; |
| if (!(s->flags & SN_FINST_MASK)) |
| s->flags |= SN_FINST_D; |
| return 0; |
| } |
| else if (rule->action == TCP_ACT_CLOSE) { |
| rep->prod->flags |= SI_FL_NOLINGER | SI_FL_NOHALF; |
| si_shutr(rep->prod); |
| si_shutw(rep->prod); |
| break; |
| } |
| else { |
| /* otherwise accept */ |
| break; |
| } |
| } |
| } |
| |
| /* if we get there, it means we have no rule which matches, or |
| * we have an explicit accept, so we apply the default accept. |
| */ |
| rep->analysers &= ~an_bit; |
| rep->analyse_exp = TICK_ETERNITY; |
| return 1; |
| } |
| |
| |
| /* This function performs the TCP layer4 analysis on the current request. It |
| * returns 0 if a reject rule matches, otherwise 1 if either an accept rule |
| * matches or if no more rule matches. It can only use rules which don't need |
| * any data. |
| */ |
| int tcp_exec_req_rules(struct session *s) |
| { |
| struct tcp_rule *rule; |
| struct stksess *ts; |
| struct stktable *t = NULL; |
| int result = 1; |
| int ret; |
| |
| list_for_each_entry(rule, &s->fe->tcp_req.l4_rules, list) { |
| ret = ACL_PAT_PASS; |
| |
| if (rule->cond) { |
| ret = acl_exec_cond(rule->cond, s->fe, s, NULL, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| /* we have a matching rule. */ |
| if (rule->action == TCP_ACT_REJECT) { |
| s->fe->fe_counters.denied_conn++; |
| if (s->listener->counters) |
| s->listener->counters->denied_conn++; |
| |
| if (!(s->flags & SN_ERR_MASK)) |
| s->flags |= SN_ERR_PRXCOND; |
| if (!(s->flags & SN_FINST_MASK)) |
| s->flags |= SN_FINST_R; |
| result = 0; |
| break; |
| } |
| else if (rule->action >= TCP_ACT_TRK_SC0 && rule->action <= TCP_ACT_TRK_SCMAX) { |
| /* Note: only the first valid tracking parameter of each |
| * applies. |
| */ |
| struct stktable_key *key; |
| |
| if (s->stkctr[tcp_trk_idx(rule->action)].entry) |
| continue; |
| |
| t = rule->act_prm.trk_ctr.table.t; |
| key = stktable_fetch_key(t, s->be, s, &s->txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->act_prm.trk_ctr.expr); |
| |
| if (key && (ts = stktable_get_entry(t, key))) |
| session_track_stkctr(&s->stkctr[tcp_trk_idx(rule->action)], t, ts); |
| } |
| else if (rule->action == TCP_ACT_EXPECT_PX) { |
| s->si[0].conn->flags |= CO_FL_ACCEPT_PROXY; |
| conn_sock_want_recv(s->si[0].conn); |
| } |
| else { |
| /* otherwise it's an accept */ |
| break; |
| } |
| } |
| } |
| return result; |
| } |
| |
| /* Parse a tcp-response rule. Return a negative value in case of failure */ |
| static int tcp_parse_response_rule(char **args, int arg, int section_type, |
| struct proxy *curpx, struct proxy *defpx, |
| struct tcp_rule *rule, char **err, |
| unsigned int where) |
| { |
| if (curpx == defpx || !(curpx->cap & PR_CAP_BE)) { |
| memprintf(err, "%s %s is only allowed in 'backend' sections", |
| args[0], args[1]); |
| return -1; |
| } |
| |
| if (strcmp(args[arg], "accept") == 0) { |
| arg++; |
| rule->action = TCP_ACT_ACCEPT; |
| } |
| else if (strcmp(args[arg], "reject") == 0) { |
| arg++; |
| rule->action = TCP_ACT_REJECT; |
| } |
| else if (strcmp(args[arg], "close") == 0) { |
| arg++; |
| rule->action = TCP_ACT_CLOSE; |
| } |
| else { |
| memprintf(err, |
| "'%s %s' expects 'accept', 'close' or 'reject' in %s '%s' (got '%s')", |
| args[0], args[1], proxy_type_str(curpx), curpx->id, args[arg]); |
| return -1; |
| } |
| |
| if (strcmp(args[arg], "if") == 0 || strcmp(args[arg], "unless") == 0) { |
| if ((rule->cond = build_acl_cond(NULL, 0, curpx, (const char **)args+arg, err)) == NULL) { |
| memprintf(err, |
| "'%s %s %s' : error detected in %s '%s' while parsing '%s' condition : %s", |
| args[0], args[1], args[2], proxy_type_str(curpx), curpx->id, args[arg], *err); |
| return -1; |
| } |
| } |
| else if (*args[arg]) { |
| memprintf(err, |
| "'%s %s %s' only accepts 'if' or 'unless', in %s '%s' (got '%s')", |
| args[0], args[1], args[2], proxy_type_str(curpx), curpx->id, args[arg]); |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| |
| /* Parse a tcp-request rule. Return a negative value in case of failure */ |
| static int tcp_parse_request_rule(char **args, int arg, int section_type, |
| struct proxy *curpx, struct proxy *defpx, |
| struct tcp_rule *rule, char **err, |
| unsigned int where) |
| { |
| if (curpx == defpx) { |
| memprintf(err, "%s %s is not allowed in 'defaults' sections", |
| args[0], args[1]); |
| return -1; |
| } |
| |
| if (!strcmp(args[arg], "accept")) { |
| arg++; |
| rule->action = TCP_ACT_ACCEPT; |
| } |
| else if (!strcmp(args[arg], "reject")) { |
| arg++; |
| rule->action = TCP_ACT_REJECT; |
| } |
| else if (strncmp(args[arg], "track-sc", 8) == 0 && |
| args[arg][9] == '\0' && args[arg][8] >= '0' && |
| args[arg][8] <= '0' + MAX_SESS_STKCTR) { /* track-sc 0..9 */ |
| struct sample_expr *expr; |
| int kw = arg; |
| |
| arg++; |
| |
| curpx->conf.args.ctx = ARGC_TRK; |
| expr = sample_parse_expr(args, &arg, trash.str, trash.size, &curpx->conf.args); |
| if (!expr) { |
| memprintf(err, |
| "'%s %s %s' : %s", |
| args[0], args[1], args[kw], trash.str); |
| return -1; |
| } |
| |
| if (!(expr->fetch->val & where)) { |
| memprintf(err, |
| "'%s %s %s' : fetch method '%s' extracts information from '%s', none of which is available here", |
| args[0], args[1], args[kw], args[arg-1], sample_src_names(expr->fetch->use)); |
| free(expr); |
| return -1; |
| } |
| |
| /* check if we need to allocate an hdr_idx struct for HTTP parsing */ |
| curpx->http_needed |= !!(expr->fetch->use & SMP_USE_HTTP_ANY); |
| |
| if (strcmp(args[arg], "table") == 0) { |
| arg++; |
| if (!args[arg]) { |
| memprintf(err, |
| "'%s %s %s' : missing table name", |
| args[0], args[1], args[kw]); |
| free(expr); |
| return -1; |
| } |
| /* we copy the table name for now, it will be resolved later */ |
| rule->act_prm.trk_ctr.table.n = strdup(args[arg]); |
| arg++; |
| } |
| rule->act_prm.trk_ctr.expr = expr; |
| rule->action = TCP_ACT_TRK_SC0 + args[kw][8] - '0'; |
| } |
| else if (strcmp(args[arg], "expect-proxy") == 0) { |
| if (strcmp(args[arg+1], "layer4") != 0) { |
| memprintf(err, |
| "'%s %s %s' only supports 'layer4' in %s '%s' (got '%s')", |
| args[0], args[1], args[arg], proxy_type_str(curpx), curpx->id, args[arg+1]); |
| return -1; |
| } |
| |
| if (!(where & SMP_VAL_FE_CON_ACC)) { |
| memprintf(err, |
| "'%s %s' is not allowed in '%s %s' rules in %s '%s'", |
| args[arg], args[arg+1], args[0], args[1], proxy_type_str(curpx), curpx->id); |
| return -1; |
| } |
| |
| arg += 2; |
| rule->action = TCP_ACT_EXPECT_PX; |
| } |
| else { |
| memprintf(err, |
| "'%s %s' expects 'accept', 'reject', 'track-sc0' ... 'track-sc%d' " |
| " in %s '%s' (got '%s')", |
| args[0], args[1], MAX_SESS_STKCTR, proxy_type_str(curpx), curpx->id, args[arg]); |
| return -1; |
| } |
| |
| if (strcmp(args[arg], "if") == 0 || strcmp(args[arg], "unless") == 0) { |
| if ((rule->cond = build_acl_cond(NULL, 0, curpx, (const char **)args+arg, err)) == NULL) { |
| memprintf(err, |
| "'%s %s %s' : error detected in %s '%s' while parsing '%s' condition : %s", |
| args[0], args[1], args[2], proxy_type_str(curpx), curpx->id, args[arg], *err); |
| return -1; |
| } |
| } |
| else if (*args[arg]) { |
| memprintf(err, |
| "'%s %s %s' only accepts 'if' or 'unless', in %s '%s' (got '%s')", |
| args[0], args[1], args[2], proxy_type_str(curpx), curpx->id, args[arg]); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* This function should be called to parse a line starting with the "tcp-response" |
| * keyword. |
| */ |
| static int tcp_parse_tcp_rep(char **args, int section_type, struct proxy *curpx, |
| struct proxy *defpx, const char *file, int line, |
| char **err) |
| { |
| const char *ptr = NULL; |
| unsigned int val; |
| int warn = 0; |
| int arg; |
| struct tcp_rule *rule; |
| unsigned int where; |
| const struct acl *acl; |
| const char *kw; |
| |
| if (!*args[1]) { |
| memprintf(err, "missing argument for '%s' in %s '%s'", |
| args[0], proxy_type_str(curpx), curpx->id); |
| return -1; |
| } |
| |
| if (strcmp(args[1], "inspect-delay") == 0) { |
| if (curpx == defpx || !(curpx->cap & PR_CAP_BE)) { |
| memprintf(err, "%s %s is only allowed in 'backend' sections", |
| args[0], args[1]); |
| return -1; |
| } |
| |
| if (!*args[2] || (ptr = parse_time_err(args[2], &val, TIME_UNIT_MS))) { |
| memprintf(err, |
| "'%s %s' expects a positive delay in milliseconds, in %s '%s'", |
| args[0], args[1], proxy_type_str(curpx), curpx->id); |
| if (ptr) |
| memprintf(err, "%s (unexpected character '%c')", *err, *ptr); |
| return -1; |
| } |
| |
| if (curpx->tcp_rep.inspect_delay) { |
| memprintf(err, "ignoring %s %s (was already defined) in %s '%s'", |
| args[0], args[1], proxy_type_str(curpx), curpx->id); |
| return 1; |
| } |
| curpx->tcp_rep.inspect_delay = val; |
| return 0; |
| } |
| |
| rule = calloc(1, sizeof(*rule)); |
| LIST_INIT(&rule->list); |
| arg = 1; |
| where = 0; |
| |
| if (strcmp(args[1], "content") == 0) { |
| arg++; |
| |
| if (curpx->cap & PR_CAP_FE) |
| where |= SMP_VAL_FE_RES_CNT; |
| if (curpx->cap & PR_CAP_BE) |
| where |= SMP_VAL_BE_RES_CNT; |
| |
| if (tcp_parse_response_rule(args, arg, section_type, curpx, defpx, rule, err, where) < 0) |
| goto error; |
| |
| acl = rule->cond ? acl_cond_conflicts(rule->cond, where) : NULL; |
| if (acl) { |
| if (acl->name && *acl->name) |
| memprintf(err, |
| "acl '%s' will never match in '%s %s' because it only involves keywords that are incompatible with '%s'", |
| acl->name, args[0], args[1], sample_ckp_names(where)); |
| else |
| memprintf(err, |
| "anonymous acl will never match in '%s %s' because it uses keyword '%s' which is incompatible with '%s'", |
| args[0], args[1], |
| LIST_ELEM(acl->expr.n, struct acl_expr *, list)->kw, |
| sample_ckp_names(where)); |
| |
| warn++; |
| } |
| else if (rule->cond && acl_cond_kw_conflicts(rule->cond, where, &acl, &kw)) { |
| if (acl->name && *acl->name) |
| memprintf(err, |
| "acl '%s' involves keyword '%s' which is incompatible with '%s'", |
| acl->name, kw, sample_ckp_names(where)); |
| else |
| memprintf(err, |
| "anonymous acl involves keyword '%s' which is incompatible with '%s'", |
| kw, sample_ckp_names(where)); |
| warn++; |
| } |
| |
| LIST_ADDQ(&curpx->tcp_rep.inspect_rules, &rule->list); |
| } |
| else { |
| memprintf(err, |
| "'%s' expects 'inspect-delay' or 'content' in %s '%s' (got '%s')", |
| args[0], proxy_type_str(curpx), curpx->id, args[1]); |
| goto error; |
| } |
| |
| return warn; |
| error: |
| free(rule); |
| return -1; |
| } |
| |
| |
| /* This function should be called to parse a line starting with the "tcp-request" |
| * keyword. |
| */ |
| static int tcp_parse_tcp_req(char **args, int section_type, struct proxy *curpx, |
| struct proxy *defpx, const char *file, int line, |
| char **err) |
| { |
| const char *ptr = NULL; |
| unsigned int val; |
| int warn = 0; |
| int arg; |
| struct tcp_rule *rule; |
| unsigned int where; |
| const struct acl *acl; |
| const char *kw; |
| |
| if (!*args[1]) { |
| if (curpx == defpx) |
| memprintf(err, "missing argument for '%s' in defaults section", args[0]); |
| else |
| memprintf(err, "missing argument for '%s' in %s '%s'", |
| args[0], proxy_type_str(curpx), curpx->id); |
| return -1; |
| } |
| |
| if (!strcmp(args[1], "inspect-delay")) { |
| if (curpx == defpx) { |
| memprintf(err, "%s %s is not allowed in 'defaults' sections", |
| args[0], args[1]); |
| return -1; |
| } |
| |
| if (!*args[2] || (ptr = parse_time_err(args[2], &val, TIME_UNIT_MS))) { |
| memprintf(err, |
| "'%s %s' expects a positive delay in milliseconds, in %s '%s'", |
| args[0], args[1], proxy_type_str(curpx), curpx->id); |
| if (ptr) |
| memprintf(err, "%s (unexpected character '%c')", *err, *ptr); |
| return -1; |
| } |
| |
| if (curpx->tcp_req.inspect_delay) { |
| memprintf(err, "ignoring %s %s (was already defined) in %s '%s'", |
| args[0], args[1], proxy_type_str(curpx), curpx->id); |
| return 1; |
| } |
| curpx->tcp_req.inspect_delay = val; |
| return 0; |
| } |
| |
| rule = calloc(1, sizeof(*rule)); |
| LIST_INIT(&rule->list); |
| arg = 1; |
| where = 0; |
| |
| if (strcmp(args[1], "content") == 0) { |
| arg++; |
| |
| if (curpx->cap & PR_CAP_FE) |
| where |= SMP_VAL_FE_REQ_CNT; |
| if (curpx->cap & PR_CAP_BE) |
| where |= SMP_VAL_BE_REQ_CNT; |
| |
| if (tcp_parse_request_rule(args, arg, section_type, curpx, defpx, rule, err, where) < 0) |
| goto error; |
| |
| acl = rule->cond ? acl_cond_conflicts(rule->cond, where) : NULL; |
| if (acl) { |
| if (acl->name && *acl->name) |
| memprintf(err, |
| "acl '%s' will never match in '%s %s' because it only involves keywords that are incompatible with '%s'", |
| acl->name, args[0], args[1], sample_ckp_names(where)); |
| else |
| memprintf(err, |
| "anonymous acl will never match in '%s %s' because it uses keyword '%s' which is incompatible with '%s'", |
| args[0], args[1], |
| LIST_ELEM(acl->expr.n, struct acl_expr *, list)->kw, |
| sample_ckp_names(where)); |
| |
| warn++; |
| } |
| else if (rule->cond && acl_cond_kw_conflicts(rule->cond, where, &acl, &kw)) { |
| if (acl->name && *acl->name) |
| memprintf(err, |
| "acl '%s' involves keyword '%s' which is incompatible with '%s'", |
| acl->name, kw, sample_ckp_names(where)); |
| else |
| memprintf(err, |
| "anonymous acl involves keyword '%s' which is incompatible with '%s'", |
| kw, sample_ckp_names(where)); |
| warn++; |
| } |
| |
| LIST_ADDQ(&curpx->tcp_req.inspect_rules, &rule->list); |
| } |
| else if (strcmp(args[1], "connection") == 0) { |
| arg++; |
| |
| if (!(curpx->cap & PR_CAP_FE)) { |
| memprintf(err, "%s %s is not allowed because %s %s is not a frontend", |
| args[0], args[1], proxy_type_str(curpx), curpx->id); |
| goto error; |
| } |
| |
| where |= SMP_VAL_FE_CON_ACC; |
| |
| if (tcp_parse_request_rule(args, arg, section_type, curpx, defpx, rule, err, where) < 0) |
| goto error; |
| |
| acl = rule->cond ? acl_cond_conflicts(rule->cond, where) : NULL; |
| if (acl) { |
| if (acl->name && *acl->name) |
| memprintf(err, |
| "acl '%s' will never match in '%s %s' because it only involves keywords that are incompatible with '%s'", |
| acl->name, args[0], args[1], sample_ckp_names(where)); |
| else |
| memprintf(err, |
| "anonymous acl will never match in '%s %s' because it uses keyword '%s' which is incompatible with '%s'", |
| args[0], args[1], |
| LIST_ELEM(acl->expr.n, struct acl_expr *, list)->kw, |
| sample_ckp_names(where)); |
| |
| warn++; |
| } |
| else if (rule->cond && acl_cond_kw_conflicts(rule->cond, where, &acl, &kw)) { |
| if (acl->name && *acl->name) |
| memprintf(err, |
| "acl '%s' involves keyword '%s' which is incompatible with '%s'", |
| acl->name, kw, sample_ckp_names(where)); |
| else |
| memprintf(err, |
| "anonymous acl involves keyword '%s' which is incompatible with '%s'", |
| kw, sample_ckp_names(where)); |
| warn++; |
| } |
| |
| LIST_ADDQ(&curpx->tcp_req.l4_rules, &rule->list); |
| } |
| else { |
| if (curpx == defpx) |
| memprintf(err, |
| "'%s' expects 'inspect-delay', 'connection', or 'content' in defaults section (got '%s')", |
| args[0], args[1]); |
| else |
| memprintf(err, |
| "'%s' expects 'inspect-delay', 'connection', or 'content' in %s '%s' (got '%s')", |
| args[0], proxy_type_str(curpx), curpx->id, args[1]); |
| goto error; |
| } |
| |
| return warn; |
| error: |
| free(rule); |
| return -1; |
| } |
| |
| |
| /************************************************************************/ |
| /* All supported sample fetch functions must be declared here */ |
| /************************************************************************/ |
| |
| /* fetch the connection's source IPv4/IPv6 address */ |
| static int |
| smp_fetch_src(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp, const char *kw) |
| { |
| switch (l4->si[0].conn->addr.from.ss_family) { |
| case AF_INET: |
| smp->data.ipv4 = ((struct sockaddr_in *)&l4->si[0].conn->addr.from)->sin_addr; |
| smp->type = SMP_T_IPV4; |
| break; |
| case AF_INET6: |
| smp->data.ipv6 = ((struct sockaddr_in6 *)(&l4->si[0].conn->addr.from))->sin6_addr; |
| smp->type = SMP_T_IPV6; |
| break; |
| default: |
| return 0; |
| } |
| |
| smp->flags = 0; |
| return 1; |
| } |
| |
| /* set temp integer to the connection's source port */ |
| static int |
| smp_fetch_sport(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp, const char *kw) |
| { |
| smp->type = SMP_T_UINT; |
| if (!(smp->data.uint = get_host_port(&l4->si[0].conn->addr.from))) |
| return 0; |
| |
| smp->flags = 0; |
| return 1; |
| } |
| |
| /* fetch the connection's destination IPv4/IPv6 address */ |
| static int |
| smp_fetch_dst(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp, const char *kw) |
| { |
| conn_get_to_addr(l4->si[0].conn); |
| |
| switch (l4->si[0].conn->addr.to.ss_family) { |
| case AF_INET: |
| smp->data.ipv4 = ((struct sockaddr_in *)&l4->si[0].conn->addr.to)->sin_addr; |
| smp->type = SMP_T_IPV4; |
| break; |
| case AF_INET6: |
| smp->data.ipv6 = ((struct sockaddr_in6 *)(&l4->si[0].conn->addr.to))->sin6_addr; |
| smp->type = SMP_T_IPV6; |
| break; |
| default: |
| return 0; |
| } |
| |
| smp->flags = 0; |
| return 1; |
| } |
| |
| /* set temp integer to the frontend connexion's destination port */ |
| static int |
| smp_fetch_dport(struct proxy *px, struct session *l4, void *l7, unsigned int opt, |
| const struct arg *args, struct sample *smp, const char *kw) |
| { |
| conn_get_to_addr(l4->si[0].conn); |
| |
| smp->type = SMP_T_UINT; |
| if (!(smp->data.uint = get_host_port(&l4->si[0].conn->addr.to))) |
| return 0; |
| |
| smp->flags = 0; |
| return 1; |
| } |
| |
| #ifdef IPV6_V6ONLY |
| /* parse the "v4v6" bind keyword */ |
| static int bind_parse_v4v6(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) |
| { |
| struct listener *l; |
| |
| list_for_each_entry(l, &conf->listeners, by_bind) { |
| if (l->addr.ss_family == AF_INET6) |
| l->options |= LI_O_V4V6; |
| } |
| |
| return 0; |
| } |
| |
| /* parse the "v6only" bind keyword */ |
| static int bind_parse_v6only(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) |
| { |
| struct listener *l; |
| |
| list_for_each_entry(l, &conf->listeners, by_bind) { |
| if (l->addr.ss_family == AF_INET6) |
| l->options |= LI_O_V6ONLY; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_HAP_TRANSPARENT |
| /* parse the "transparent" bind keyword */ |
| static int bind_parse_transparent(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) |
| { |
| struct listener *l; |
| |
| list_for_each_entry(l, &conf->listeners, by_bind) { |
| if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6) |
| l->options |= LI_O_FOREIGN; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| #ifdef TCP_DEFER_ACCEPT |
| /* parse the "defer-accept" bind keyword */ |
| static int bind_parse_defer_accept(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) |
| { |
| struct listener *l; |
| |
| list_for_each_entry(l, &conf->listeners, by_bind) { |
| if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6) |
| l->options |= LI_O_DEF_ACCEPT; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| #ifdef TCP_FASTOPEN |
| /* parse the "tfo" bind keyword */ |
| static int bind_parse_tfo(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) |
| { |
| struct listener *l; |
| |
| list_for_each_entry(l, &conf->listeners, by_bind) { |
| if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6) |
| l->options |= LI_O_TCP_FO; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| #ifdef TCP_MAXSEG |
| /* parse the "mss" bind keyword */ |
| static int bind_parse_mss(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) |
| { |
| struct listener *l; |
| int mss; |
| |
| if (!*args[cur_arg + 1]) { |
| memprintf(err, "'%s' : missing MSS value", args[cur_arg]); |
| return ERR_ALERT | ERR_FATAL; |
| } |
| |
| mss = atoi(args[cur_arg + 1]); |
| if (!mss || abs(mss) > 65535) { |
| memprintf(err, "'%s' : expects an MSS with and absolute value between 1 and 65535", args[cur_arg]); |
| return ERR_ALERT | ERR_FATAL; |
| } |
| |
| list_for_each_entry(l, &conf->listeners, by_bind) { |
| if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6) |
| l->maxseg = mss; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| #ifdef SO_BINDTODEVICE |
| /* parse the "mss" bind keyword */ |
| static int bind_parse_interface(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) |
| { |
| struct listener *l; |
| |
| if (!*args[cur_arg + 1]) { |
| memprintf(err, "'%s' : missing interface name", args[cur_arg]); |
| return ERR_ALERT | ERR_FATAL; |
| } |
| |
| list_for_each_entry(l, &conf->listeners, by_bind) { |
| if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6) |
| l->interface = strdup(args[cur_arg + 1]); |
| } |
| |
| global.last_checks |= LSTCHK_NETADM; |
| return 0; |
| } |
| #endif |
| |
| static struct cfg_kw_list cfg_kws = {ILH, { |
| { CFG_LISTEN, "tcp-request", tcp_parse_tcp_req }, |
| { CFG_LISTEN, "tcp-response", tcp_parse_tcp_rep }, |
| { 0, NULL, NULL }, |
| }}; |
| |
| |
| /* Note: must not be declared <const> as its list will be overwritten. |
| * Please take care of keeping this list alphabetically sorted. |
| */ |
| static struct acl_kw_list acl_kws = {ILH, { |
| { /* END */ }, |
| }}; |
| |
| |
| /* Note: must not be declared <const> as its list will be overwritten. |
| * Note: fetches that may return multiple types must be declared as the lowest |
| * common denominator, the type that can be casted into all other ones. For |
| * instance v4/v6 must be declared v4. |
| */ |
| static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, { |
| { "dst", smp_fetch_dst, 0, NULL, SMP_T_IPV4, SMP_USE_L4CLI }, |
| { "dst_port", smp_fetch_dport, 0, NULL, SMP_T_UINT, SMP_USE_L4CLI }, |
| { "src", smp_fetch_src, 0, NULL, SMP_T_IPV4, SMP_USE_L4CLI }, |
| { "src_port", smp_fetch_sport, 0, NULL, SMP_T_UINT, SMP_USE_L4CLI }, |
| { /* END */ }, |
| }}; |
| |
| /************************************************************************/ |
| /* All supported bind keywords must be declared here. */ |
| /************************************************************************/ |
| |
| /* Note: must not be declared <const> as its list will be overwritten. |
| * Please take care of keeping this list alphabetically sorted, doing so helps |
| * all code contributors. |
| * Optional keywords are also declared with a NULL ->parse() function so that |
| * the config parser can report an appropriate error when a known keyword was |
| * not enabled. |
| */ |
| static struct bind_kw_list bind_kws = { "TCP", { }, { |
| #ifdef TCP_DEFER_ACCEPT |
| { "defer-accept", bind_parse_defer_accept, 0 }, /* wait for some data for 1 second max before doing accept */ |
| #endif |
| #ifdef SO_BINDTODEVICE |
| { "interface", bind_parse_interface, 1 }, /* specifically bind to this interface */ |
| #endif |
| #ifdef TCP_MAXSEG |
| { "mss", bind_parse_mss, 1 }, /* set MSS of listening socket */ |
| #endif |
| #ifdef TCP_FASTOPEN |
| { "tfo", bind_parse_tfo, 0 }, /* enable TCP_FASTOPEN of listening socket */ |
| #endif |
| #ifdef CONFIG_HAP_TRANSPARENT |
| { "transparent", bind_parse_transparent, 0 }, /* transparently bind to the specified addresses */ |
| #endif |
| #ifdef IPV6_V6ONLY |
| { "v4v6", bind_parse_v4v6, 0 }, /* force socket to bind to IPv4+IPv6 */ |
| { "v6only", bind_parse_v6only, 0 }, /* force socket to bind to IPv6 only */ |
| #endif |
| /* the versions with the NULL parse function*/ |
| { "defer-accept", NULL, 0 }, |
| { "interface", NULL, 1 }, |
| { "mss", NULL, 1 }, |
| { "transparent", NULL, 0 }, |
| { "v4v6", NULL, 0 }, |
| { "v6only", NULL, 0 }, |
| { NULL, NULL, 0 }, |
| }}; |
| |
| __attribute__((constructor)) |
| static void __tcp_protocol_init(void) |
| { |
| protocol_register(&proto_tcpv4); |
| protocol_register(&proto_tcpv6); |
| sample_register_fetches(&sample_fetch_keywords); |
| cfg_register_keywords(&cfg_kws); |
| acl_register_keywords(&acl_kws); |
| bind_register_keywords(&bind_kws); |
| } |
| |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |