blob: 1d4607ff0fc1e245e71460091da87fcd64fe1f9a [file] [log] [blame]
/*
* Functions managing stream_interface structures
*
* Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <haproxy/api.h>
#include <haproxy/applet.h>
#include <haproxy/channel.h>
#include <haproxy/connection.h>
#include <haproxy/dynbuf.h>
#include <haproxy/http_htx.h>
#include <haproxy/pipe-t.h>
#include <haproxy/pipe.h>
#include <haproxy/proxy.h>
#include <haproxy/stream-t.h>
#include <haproxy/stream_interface.h>
#include <haproxy/task.h>
#include <haproxy/ticks.h>
#include <haproxy/time.h>
#include <haproxy/tools.h>
/* functions used by default on a detached stream-interface */
static void stream_int_shutr(struct stream_interface *si);
static void stream_int_shutw(struct stream_interface *si);
static void stream_int_chk_rcv(struct stream_interface *si);
static void stream_int_chk_snd(struct stream_interface *si);
/* functions used on a conn_stream-based stream-interface */
static void stream_int_shutr_conn(struct stream_interface *si);
static void stream_int_shutw_conn(struct stream_interface *si);
static void stream_int_chk_rcv_conn(struct stream_interface *si);
static void stream_int_chk_snd_conn(struct stream_interface *si);
/* functions used on an applet-based stream-interface */
static void stream_int_shutr_applet(struct stream_interface *si);
static void stream_int_shutw_applet(struct stream_interface *si);
static void stream_int_chk_rcv_applet(struct stream_interface *si);
static void stream_int_chk_snd_applet(struct stream_interface *si);
/* last read notification */
static void stream_int_read0(struct stream_interface *si);
/* post-IO notification callback */
static void stream_int_notify(struct stream_interface *si);
/* stream-interface operations for embedded tasks */
struct si_ops si_embedded_ops = {
.chk_rcv = stream_int_chk_rcv,
.chk_snd = stream_int_chk_snd,
.shutr = stream_int_shutr,
.shutw = stream_int_shutw,
};
/* stream-interface operations for connections */
struct si_ops si_conn_ops = {
.chk_rcv = stream_int_chk_rcv_conn,
.chk_snd = stream_int_chk_snd_conn,
.shutr = stream_int_shutr_conn,
.shutw = stream_int_shutw_conn,
};
/* stream-interface operations for connections */
struct si_ops si_applet_ops = {
.chk_rcv = stream_int_chk_rcv_applet,
.chk_snd = stream_int_chk_snd_applet,
.shutr = stream_int_shutr_applet,
.shutw = stream_int_shutw_applet,
};
/* Functions used to communicate with a conn_stream. The first two may be used
* directly, the last one is mostly a wake callback.
*/
int si_cs_recv(struct conn_stream *cs);
int si_cs_send(struct conn_stream *cs);
static int si_cs_process(struct conn_stream *cs);
struct data_cb si_conn_cb = {
.wake = si_cs_process,
.name = "STRM",
};
/*
* This function only has to be called once after a wakeup event in case of
* suspected timeout. It controls the stream interface timeouts and sets
* si->flags accordingly. It does NOT close anything, as this timeout may
* be used for any purpose. It returns 1 if the timeout fired, otherwise
* zero.
*/
int si_check_timeouts(struct stream_interface *si)
{
if (tick_is_expired(si->exp, now_ms)) {
si->flags |= SI_FL_EXP;
return 1;
}
return 0;
}
/* to be called only when in SI_ST_DIS with SI_FL_ERR */
void si_report_error(struct stream_interface *si)
{
if (!si->err_type)
si->err_type = SI_ET_DATA_ERR;
si_oc(si)->flags |= CF_WRITE_ERROR;
si_ic(si)->flags |= CF_READ_ERROR;
}
/*
* Returns a message to the client ; the connection is shut down for read,
* and the request is cleared so that no server connection can be initiated.
* The buffer is marked for read shutdown on the other side to protect the
* message, and the buffer write is enabled. The message is contained in a
* "chunk". If it is null, then an empty message is used. The reply buffer does
* not need to be empty before this, and its contents will not be overwritten.
* The primary goal of this function is to return error messages to a client.
*/
void si_retnclose(struct stream_interface *si,
const struct buffer *msg)
{
struct channel *ic = si_ic(si);
struct channel *oc = si_oc(si);
channel_auto_read(ic);
channel_abort(ic);
channel_auto_close(ic);
channel_erase(ic);
channel_truncate(oc);
if (likely(msg && msg->data))
co_inject(oc, msg->area, msg->data);
oc->wex = tick_add_ifset(now_ms, oc->wto);
channel_auto_read(oc);
channel_auto_close(oc);
channel_shutr_now(oc);
}
/* Conditionnaly forward the close to the wirte side. It return 1 if it can be
* forwarded. It is the caller responsibility to forward the close to the write
* side. Otherwise, 0 is returned. In this case, CF_SHUTW_NOW flag may be set on
* the channel if we are only waiting for the outgoing data to be flushed.
*/
static inline int si_cond_forward_shutw(struct stream_interface *si)
{
/* Foward the shutdown if an write error occurred on the input channel */
if (si_ic(si)->flags & CF_WRITE_TIMEOUT)
return 1;
/* The close must not be forwarded */
if (!(si_ic(si)->flags & CF_SHUTR) || !(si->flags & SI_FL_NOHALF))
return 0;
if (!channel_is_empty(si_ic(si))) {
/* the close to the write side cannot be forwarded now because
* we should flush outgoing data first. But instruct the output
* channel it should be done ASAP.
*/
channel_shutw_now(si_oc(si));
return 0;
}
/* the close can be immediately forwarded to the write side */
return 1;
}
/*
* This function performs a shutdown-read on a detached stream interface in a
* connected or init state (it does nothing for other states). It either shuts
* the read side or marks itself as closed. The buffer flags are updated to
* reflect the new state. If the stream interface has SI_FL_NOHALF, we also
* forward the close to the write side. The owner task is woken up if it exists.
*/
static void stream_int_shutr(struct stream_interface *si)
{
struct channel *ic = si_ic(si);
si_rx_shut_blk(si);
if (ic->flags & CF_SHUTR)
return;
ic->flags |= CF_SHUTR;
ic->rex = TICK_ETERNITY;
if (!si_state_in(si->state, SI_SB_CON|SI_SB_RDY|SI_SB_EST))
return;
if (si_oc(si)->flags & CF_SHUTW) {
si->state = SI_ST_DIS;
si->exp = TICK_ETERNITY;
}
else if (si_cond_forward_shutw(si)) {
/* we want to immediately forward this close to the write side */
return stream_int_shutw(si);
}
/* note that if the task exists, it must unregister itself once it runs */
if (!(si->flags & SI_FL_DONT_WAKE))
task_wakeup(si_task(si), TASK_WOKEN_IO);
}
/*
* This function performs a shutdown-write on a detached stream interface in a
* connected or init state (it does nothing for other states). It either shuts
* the write side or marks itself as closed. The buffer flags are updated to
* reflect the new state. It does also close everything if the SI was marked as
* being in error state. The owner task is woken up if it exists.
*/
static void stream_int_shutw(struct stream_interface *si)
{
struct channel *ic = si_ic(si);
struct channel *oc = si_oc(si);
oc->flags &= ~CF_SHUTW_NOW;
if (oc->flags & CF_SHUTW)
return;
oc->flags |= CF_SHUTW;
oc->wex = TICK_ETERNITY;
si_done_get(si);
if (tick_isset(si->hcto)) {
ic->rto = si->hcto;
ic->rex = tick_add(now_ms, ic->rto);
}
switch (si->state) {
case SI_ST_RDY:
case SI_ST_EST:
/* we have to shut before closing, otherwise some short messages
* may never leave the system, especially when there are remaining
* unread data in the socket input buffer, or when nolinger is set.
* However, if SI_FL_NOLINGER is explicitly set, we know there is
* no risk so we close both sides immediately.
*/
if (!(si->flags & (SI_FL_ERR | SI_FL_NOLINGER)) &&
!(ic->flags & (CF_SHUTR|CF_DONT_READ)))
return;
/* fall through */
case SI_ST_CON:
case SI_ST_CER:
case SI_ST_QUE:
case SI_ST_TAR:
/* Note that none of these states may happen with applets */
si->state = SI_ST_DIS;
/* fall through */
default:
si->flags &= ~SI_FL_NOLINGER;
si_rx_shut_blk(si);
ic->flags |= CF_SHUTR;
ic->rex = TICK_ETERNITY;
si->exp = TICK_ETERNITY;
}
/* note that if the task exists, it must unregister itself once it runs */
if (!(si->flags & SI_FL_DONT_WAKE))
task_wakeup(si_task(si), TASK_WOKEN_IO);
}
/* default chk_rcv function for scheduled tasks */
static void stream_int_chk_rcv(struct stream_interface *si)
{
struct channel *ic = si_ic(si);
DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n",
__FUNCTION__,
si, si->state, ic->flags, si_oc(si)->flags);
if (ic->pipe) {
/* stop reading */
si_rx_room_blk(si);
}
else {
/* (re)start reading */
tasklet_wakeup(si->wait_event.tasklet);
if (!(si->flags & SI_FL_DONT_WAKE))
task_wakeup(si_task(si), TASK_WOKEN_IO);
}
}
/* default chk_snd function for scheduled tasks */
static void stream_int_chk_snd(struct stream_interface *si)
{
struct channel *oc = si_oc(si);
DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n",
__FUNCTION__,
si, si->state, si_ic(si)->flags, oc->flags);
if (unlikely(si->state != SI_ST_EST || (oc->flags & CF_SHUTW)))
return;
if (!(si->flags & SI_FL_WAIT_DATA) || /* not waiting for data */
channel_is_empty(oc)) /* called with nothing to send ! */
return;
/* Otherwise there are remaining data to be sent in the buffer,
* so we tell the handler.
*/
si->flags &= ~SI_FL_WAIT_DATA;
if (!tick_isset(oc->wex))
oc->wex = tick_add_ifset(now_ms, oc->wto);
if (!(si->flags & SI_FL_DONT_WAKE))
task_wakeup(si_task(si), TASK_WOKEN_IO);
}
/* Register an applet to handle a stream_interface as a new appctx. The SI will
* wake it up every time it is solicited. The appctx must be deleted by the task
* handler using si_release_endpoint(), possibly from within the function itself.
* It also pre-initializes the applet's context and returns it (or NULL in case
* it could not be allocated).
*/
struct appctx *si_register_handler(struct stream_interface *si, struct applet *app)
{
struct appctx *appctx;
DPRINTF(stderr, "registering handler %p for si %p (was %p)\n", app, si, si_task(si));
appctx = si_alloc_appctx(si, app);
if (!appctx)
return NULL;
si_cant_get(si);
appctx_wakeup(appctx);
return si_appctx(si);
}
/* This callback is used to send a valid PROXY protocol line to a socket being
* established. It returns 0 if it fails in a fatal way or needs to poll to go
* further, otherwise it returns non-zero and removes itself from the connection's
* flags (the bit is provided in <flag> by the caller). It is designed to be
* called by the connection handler and relies on it to commit polling changes.
* Note that it can emit a PROXY line by relying on the other end's address
* when the connection is attached to a stream interface, or by resolving the
* local address otherwise (also called a LOCAL line).
*/
int conn_si_send_proxy(struct connection *conn, unsigned int flag)
{
if (!conn_ctrl_ready(conn))
goto out_error;
/* If we have a PROXY line to send, we'll use this to validate the
* connection, in which case the connection is validated only once
* we've sent the whole proxy line. Otherwise we use connect().
*/
if (conn->send_proxy_ofs) {
const struct conn_stream *cs;
int ret;
/* If there is no mux attached to the connection, it means the
* connection context is a conn-stream.
*/
cs = (conn->mux ? cs_get_first(conn) : conn->ctx);
/* The target server expects a PROXY line to be sent first.
* If the send_proxy_ofs is negative, it corresponds to the
* offset to start sending from then end of the proxy string
* (which is recomputed every time since it's constant). If
* it is positive, it means we have to send from the start.
* We can only send a "normal" PROXY line when the connection
* is attached to a stream interface. Otherwise we can only
* send a LOCAL line (eg: for use with health checks).
*/
if (cs && cs->data_cb == &si_conn_cb) {
struct stream_interface *si = cs->data;
struct conn_stream *remote_cs = objt_cs(si_opposite(si)->end);
struct stream *strm = si_strm(si);
ret = make_proxy_line(trash.area, trash.size,
objt_server(conn->target),
remote_cs ? remote_cs->conn : NULL,
strm);
}
else {
/* The target server expects a LOCAL line to be sent first. Retrieving
* local or remote addresses may fail until the connection is established.
*/
if (!conn_get_src(conn) || !conn_get_dst(conn))
goto out_wait;
ret = make_proxy_line(trash.area, trash.size,
objt_server(conn->target), conn,
NULL);
}
if (!ret)
goto out_error;
if (conn->send_proxy_ofs > 0)
conn->send_proxy_ofs = -ret; /* first call */
/* we have to send trash from (ret+sp for -sp bytes). If the
* data layer has a pending write, we'll also set MSG_MORE.
*/
ret = conn_ctrl_send(conn,
trash.area + ret + conn->send_proxy_ofs,
-conn->send_proxy_ofs,
(conn->subs && conn->subs->events & SUB_RETRY_SEND) ? CO_SFL_MSG_MORE : 0);
if (ret < 0)
goto out_error;
conn->send_proxy_ofs += ret; /* becomes zero once complete */
if (conn->send_proxy_ofs != 0)
goto out_wait;
/* OK we've sent the whole line, we're connected */
}
/* The connection is ready now, simply return and let the connection
* handler notify upper layers if needed.
*/
conn->flags &= ~CO_FL_WAIT_L4_CONN;
conn->flags &= ~flag;
return 1;
out_error:
/* Write error on the file descriptor */
conn->flags |= CO_FL_ERROR;
return 0;
out_wait:
return 0;
}
/* This function is the equivalent to si_update() except that it's
* designed to be called from outside the stream handlers, typically the lower
* layers (applets, connections) after I/O completion. After updating the stream
* interface and timeouts, it will try to forward what can be forwarded, then to
* wake the associated task up if an important event requires special handling.
* It may update SI_FL_WAIT_DATA and/or SI_FL_RXBLK_ROOM, that the callers are
* encouraged to watch to take appropriate action.
* It should not be called from within the stream itself, si_update()
* is designed for this.
*/
static void stream_int_notify(struct stream_interface *si)
{
struct channel *ic = si_ic(si);
struct channel *oc = si_oc(si);
struct stream_interface *sio = si_opposite(si);
struct task *task = si_task(si);
/* process consumer side */
if (channel_is_empty(oc)) {
struct connection *conn = objt_cs(si->end) ? __objt_cs(si->end)->conn : NULL;
if (((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW) &&
(si->state == SI_ST_EST) && (!conn || !(conn->flags & (CO_FL_WAIT_XPRT | CO_FL_EARLY_SSL_HS))))
si_shutw(si);
oc->wex = TICK_ETERNITY;
}
/* indicate that we may be waiting for data from the output channel or
* we're about to close and can't expect more data if SHUTW_NOW is there.
*/
if (!(oc->flags & (CF_SHUTW|CF_SHUTW_NOW)))
si->flags |= SI_FL_WAIT_DATA;
else if ((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW)
si->flags &= ~SI_FL_WAIT_DATA;
/* update OC timeouts and wake the other side up if it's waiting for room */
if (oc->flags & CF_WRITE_ACTIVITY) {
if ((oc->flags & (CF_SHUTW|CF_WRITE_PARTIAL)) == CF_WRITE_PARTIAL &&
!channel_is_empty(oc))
if (tick_isset(oc->wex))
oc->wex = tick_add_ifset(now_ms, oc->wto);
if (!(si->flags & SI_FL_INDEP_STR))
if (tick_isset(ic->rex))
ic->rex = tick_add_ifset(now_ms, ic->rto);
}
if (oc->flags & CF_DONT_READ)
si_rx_chan_blk(sio);
else
si_rx_chan_rdy(sio);
/* Notify the other side when we've injected data into the IC that
* needs to be forwarded. We can do fast-forwarding as soon as there
* are output data, but we avoid doing this if some of the data are
* not yet scheduled for being forwarded, because it is very likely
* that it will be done again immediately afterwards once the following
* data are parsed (eg: HTTP chunking). We only SI_FL_RXBLK_ROOM once
* we've emptied *some* of the output buffer, and not just when there
* is available room, because applets are often forced to stop before
* the buffer is full. We must not stop based on input data alone because
* an HTTP parser might need more data to complete the parsing.
*/
if (!channel_is_empty(ic) &&
(sio->flags & SI_FL_WAIT_DATA) &&
(!(ic->flags & CF_EXPECT_MORE) || c_full(ic) || ci_data(ic) == 0 || ic->pipe)) {
int new_len, last_len;
last_len = co_data(ic);
if (ic->pipe)
last_len += ic->pipe->data;
si_chk_snd(sio);
new_len = co_data(ic);
if (ic->pipe)
new_len += ic->pipe->data;
/* check if the consumer has freed some space either in the
* buffer or in the pipe.
*/
if (new_len < last_len)
si_rx_room_rdy(si);
}
if (!(ic->flags & CF_DONT_READ))
si_rx_chan_rdy(si);
si_chk_rcv(si);
si_chk_rcv(sio);
if (si_rx_blocked(si)) {
ic->rex = TICK_ETERNITY;
}
else if ((ic->flags & (CF_SHUTR|CF_READ_PARTIAL)) == CF_READ_PARTIAL) {
/* we must re-enable reading if si_chk_snd() has freed some space */
if (!(ic->flags & CF_READ_NOEXP) && tick_isset(ic->rex))
ic->rex = tick_add_ifset(now_ms, ic->rto);
}
/* wake the task up only when needed */
if (/* changes on the production side */
(ic->flags & (CF_READ_NULL|CF_READ_ERROR)) ||
!si_state_in(si->state, SI_SB_CON|SI_SB_RDY|SI_SB_EST) ||
(si->flags & SI_FL_ERR) ||
((ic->flags & CF_READ_PARTIAL) &&
((ic->flags & CF_EOI) || !ic->to_forward || sio->state != SI_ST_EST)) ||
/* changes on the consumption side */
(oc->flags & (CF_WRITE_NULL|CF_WRITE_ERROR)) ||
((oc->flags & CF_WRITE_ACTIVITY) &&
((oc->flags & CF_SHUTW) ||
(((oc->flags & CF_WAKE_WRITE) ||
!(oc->flags & (CF_AUTO_CLOSE|CF_SHUTW_NOW|CF_SHUTW))) &&
(sio->state != SI_ST_EST ||
(channel_is_empty(oc) && !oc->to_forward)))))) {
task_wakeup(task, TASK_WOKEN_IO);
}
else {
/* Update expiration date for the task and requeue it */
task->expire = tick_first((tick_is_expired(task->expire, now_ms) ? 0 : task->expire),
tick_first(tick_first(ic->rex, ic->wex),
tick_first(oc->rex, oc->wex)));
task->expire = tick_first(task->expire, ic->analyse_exp);
task->expire = tick_first(task->expire, oc->analyse_exp);
if (si->exp)
task->expire = tick_first(task->expire, si->exp);
if (sio->exp)
task->expire = tick_first(task->expire, sio->exp);
task_queue(task);
}
if (ic->flags & CF_READ_ACTIVITY)
ic->flags &= ~CF_READ_DONTWAIT;
}
/* The stream interface is only responsible for the connection during the early
* states, before plugging a mux. Thus it should only care about CO_FL_ERROR
* before SI_ST_EST, and after that it must absolutely ignore it since the mux
* may hold pending data. This function returns true if such an error was
* reported. Both the CS and the CONN must be valid.
*/
static inline int si_is_conn_error(const struct stream_interface *si)
{
struct connection *conn;
if (si->state >= SI_ST_EST)
return 0;
conn = __objt_cs(si->end)->conn;
BUG_ON(!conn);
return !!(conn->flags & CO_FL_ERROR);
}
/* Called by I/O handlers after completion.. It propagates
* connection flags to the stream interface, updates the stream (which may or
* may not take this opportunity to try to forward data), then update the
* connection's polling based on the channels and stream interface's final
* states. The function always returns 0.
*/
static int si_cs_process(struct conn_stream *cs)
{
struct connection *conn = cs->conn;
struct stream_interface *si = cs->data;
struct channel *ic = si_ic(si);
struct channel *oc = si_oc(si);
/* If we have data to send, try it now */
if (!channel_is_empty(oc) && !(si->wait_event.events & SUB_RETRY_SEND))
si_cs_send(cs);
/* First step, report to the stream-int what was detected at the
* connection layer : errors and connection establishment.
* Only add SI_FL_ERR if we're connected, or we're attempting to
* connect, we may get there because we got woken up, but only run
* after process_stream() noticed there were an error, and decided
* to retry to connect, the connection may still have CO_FL_ERROR,
* and we don't want to add SI_FL_ERR back
*
* Note: This test is only required because si_cs_process is also the SI
* wake callback. Otherwise si_cs_recv()/si_cs_send() already take
* care of it.
*/
if (si->state >= SI_ST_CON) {
if ((cs->flags & CS_FL_ERROR) || si_is_conn_error(si))
si->flags |= SI_FL_ERR;
}
/* If we had early data, and the handshake ended, then
* we can remove the flag, and attempt to wake the task up,
* in the event there's an analyser waiting for the end of
* the handshake.
*/
if (!(conn->flags & (CO_FL_WAIT_XPRT | CO_FL_EARLY_SSL_HS)) &&
(cs->flags & CS_FL_WAIT_FOR_HS)) {
cs->flags &= ~CS_FL_WAIT_FOR_HS;
task_wakeup(si_task(si), TASK_WOKEN_MSG);
}
if (!si_state_in(si->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO) &&
(conn->flags & CO_FL_WAIT_XPRT) == 0) {
si->exp = TICK_ETERNITY;
oc->flags |= CF_WRITE_NULL;
if (si->state == SI_ST_CON)
si->state = SI_ST_RDY;
}
/* Report EOS on the channel if it was reached from the mux point of
* view.
*
* Note: This test is only required because si_cs_process is also the SI
* wake callback. Otherwise si_cs_recv()/si_cs_send() already take
* care of it.
*/
if (cs->flags & CS_FL_EOS && !(ic->flags & CF_SHUTR)) {
/* we received a shutdown */
ic->flags |= CF_READ_NULL;
if (ic->flags & CF_AUTO_CLOSE)
channel_shutw_now(ic);
stream_int_read0(si);
}
/* Report EOI on the channel if it was reached from the mux point of
* view.
*
* Note: This test is only required because si_cs_process is also the SI
* wake callback. Otherwise si_cs_recv()/si_cs_send() already take
* care of it.
*/
if ((cs->flags & CS_FL_EOI) && !(ic->flags & CF_EOI))
ic->flags |= (CF_EOI|CF_READ_PARTIAL);
/* Second step : update the stream-int and channels, try to forward any
* pending data, then possibly wake the stream up based on the new
* stream-int status.
*/
stream_int_notify(si);
stream_release_buffers(si_strm(si));
return 0;
}
/*
* This function is called to send buffer data to a stream socket.
* It calls the mux layer's snd_buf function. It relies on the
* caller to commit polling changes. The caller should check conn->flags
* for errors.
*/
int si_cs_send(struct conn_stream *cs)
{
struct connection *conn = cs->conn;
struct stream_interface *si = cs->data;
struct channel *oc = si_oc(si);
int ret;
int did_send = 0;
if (cs->flags & (CS_FL_ERROR|CS_FL_ERR_PENDING) || si_is_conn_error(si)) {
/* We're probably there because the tasklet was woken up,
* but process_stream() ran before, detected there were an
* error and put the si back to SI_ST_TAR. There's still
* CO_FL_ERROR on the connection but we don't want to add
* SI_FL_ERR back, so give up
*/
if (si->state < SI_ST_CON)
return 0;
si->flags |= SI_FL_ERR;
return 1;
}
/* We're already waiting to be able to send, give up */
if (si->wait_event.events & SUB_RETRY_SEND)
return 0;
/* we might have been called just after an asynchronous shutw */
if (oc->flags & CF_SHUTW)
return 1;
/* we must wait because the mux is not installed yet */
if (!conn->mux)
return 0;
if (oc->pipe && conn->xprt->snd_pipe && conn->mux->snd_pipe) {
ret = conn->mux->snd_pipe(cs, oc->pipe);
if (ret > 0)
did_send = 1;
if (!oc->pipe->data) {
put_pipe(oc->pipe);
oc->pipe = NULL;
}
if (oc->pipe)
goto end;
}
/* At this point, the pipe is empty, but we may still have data pending
* in the normal buffer.
*/
if (co_data(oc)) {
/* when we're here, we already know that there is no spliced
* data left, and that there are sendable buffered data.
*/
/* check if we want to inform the kernel that we're interested in
* sending more data after this call. We want this if :
* - we're about to close after this last send and want to merge
* the ongoing FIN with the last segment.
* - we know we can't send everything at once and must get back
* here because of unaligned data
* - there is still a finite amount of data to forward
* The test is arranged so that the most common case does only 2
* tests.
*/
unsigned int send_flag = 0;
if ((!(oc->flags & (CF_NEVER_WAIT|CF_SEND_DONTWAIT)) &&
((oc->to_forward && oc->to_forward != CHN_INFINITE_FORWARD) ||
(oc->flags & CF_EXPECT_MORE) ||
(IS_HTX_STRM(si_strm(si)) &&
(!(oc->flags & (CF_EOI|CF_SHUTR)) && htx_expect_more(htxbuf(&oc->buf)))))) ||
((oc->flags & CF_ISRESP) &&
((oc->flags & (CF_AUTO_CLOSE|CF_SHUTW_NOW)) == (CF_AUTO_CLOSE|CF_SHUTW_NOW))))
send_flag |= CO_SFL_MSG_MORE;
if (oc->flags & CF_STREAMER)
send_flag |= CO_SFL_STREAMER;
if ((si->flags & SI_FL_L7_RETRY) && !b_data(&si->l7_buffer)) {
struct stream *s = si_strm(si);
/* If we want to be able to do L7 retries, copy
* the data we're about to send, so that we are able
* to resend them if needed
*/
/* Try to allocate a buffer if we had none.
* If it fails, the next test will just
* disable the l7 retries by setting
* l7_conn_retries to 0.
*/
if (!s->txn || (s->txn->req.msg_state != HTTP_MSG_DONE))
si->flags &= ~SI_FL_L7_RETRY;
else {
if (b_alloc(&si->l7_buffer) == NULL)
si->flags &= ~SI_FL_L7_RETRY;
else {
memcpy(b_orig(&si->l7_buffer),
b_orig(&oc->buf),
b_size(&oc->buf));
si->l7_buffer.head = co_data(oc);
b_add(&si->l7_buffer, co_data(oc));
}
}
}
ret = cs->conn->mux->snd_buf(cs, &oc->buf, co_data(oc), send_flag);
if (ret > 0) {
did_send = 1;
co_set_data(oc, co_data(oc) - ret);
c_realign_if_empty(oc);
if (!co_data(oc)) {
/* Always clear both flags once everything has been sent, they're one-shot */
oc->flags &= ~(CF_EXPECT_MORE | CF_SEND_DONTWAIT);
}
/* if some data remain in the buffer, it's only because the
* system buffers are full, we will try next time.
*/
}
}
end:
if (did_send) {
oc->flags |= CF_WRITE_PARTIAL | CF_WROTE_DATA;
if (si->state == SI_ST_CON)
si->state = SI_ST_RDY;
si_rx_room_rdy(si_opposite(si));
}
if (cs->flags & (CS_FL_ERROR|CS_FL_ERR_PENDING)) {
si->flags |= SI_FL_ERR;
return 1;
}
/* We couldn't send all of our data, let the mux know we'd like to send more */
if (!channel_is_empty(oc))
conn->mux->subscribe(cs, SUB_RETRY_SEND, &si->wait_event);
return did_send;
}
/* This is the ->process() function for any stream-interface's wait_event task.
* It's assigned during the stream-interface's initialization, for any type of
* stream interface. Thus it is always safe to perform a tasklet_wakeup() on a
* stream interface, as the presence of the CS is checked there.
*/
struct task *si_cs_io_cb(struct task *t, void *ctx, unsigned int state)
{
struct stream_interface *si = ctx;
struct conn_stream *cs = objt_cs(si->end);
int ret = 0;
if (!cs)
return t;
if (!(si->wait_event.events & SUB_RETRY_SEND) && !channel_is_empty(si_oc(si)))
ret = si_cs_send(cs);
if (!(si->wait_event.events & SUB_RETRY_RECV))
ret |= si_cs_recv(cs);
if (ret != 0)
si_cs_process(cs);
stream_release_buffers(si_strm(si));
return t;
}
/* This function is designed to be called from within the stream handler to
* update the input channel's expiration timer and the stream interface's
* Rx flags based on the channel's flags. It needs to be called only once
* after the channel's flags have settled down, and before they are cleared,
* though it doesn't harm to call it as often as desired (it just slightly
* hurts performance). It must not be called from outside of the stream
* handler, as what it does will be used to compute the stream task's
* expiration.
*/
void si_update_rx(struct stream_interface *si)
{
struct channel *ic = si_ic(si);
if (ic->flags & CF_SHUTR) {
si_rx_shut_blk(si);
return;
}
/* Read not closed, update FD status and timeout for reads */
if (ic->flags & CF_DONT_READ)
si_rx_chan_blk(si);
else
si_rx_chan_rdy(si);
if (!channel_is_empty(ic) || !channel_may_recv(ic)) {
/* stop reading, imposed by channel's policy or contents */
si_rx_room_blk(si);
}
else {
/* (re)start reading and update timeout. Note: we don't recompute the timeout
* every time we get here, otherwise it would risk never to expire. We only
* update it if is was not yet set. The stream socket handler will already
* have updated it if there has been a completed I/O.
*/
si_rx_room_rdy(si);
}
if (si->flags & SI_FL_RXBLK_ANY & ~SI_FL_RX_WAIT_EP)
ic->rex = TICK_ETERNITY;
else if (!(ic->flags & CF_READ_NOEXP) && !tick_isset(ic->rex))
ic->rex = tick_add_ifset(now_ms, ic->rto);
si_chk_rcv(si);
}
/* This function is designed to be called from within the stream handler to
* update the output channel's expiration timer and the stream interface's
* Tx flags based on the channel's flags. It needs to be called only once
* after the channel's flags have settled down, and before they are cleared,
* though it doesn't harm to call it as often as desired (it just slightly
* hurts performance). It must not be called from outside of the stream
* handler, as what it does will be used to compute the stream task's
* expiration.
*/
void si_update_tx(struct stream_interface *si)
{
struct channel *oc = si_oc(si);
struct channel *ic = si_ic(si);
if (oc->flags & CF_SHUTW)
return;
/* Write not closed, update FD status and timeout for writes */
if (channel_is_empty(oc)) {
/* stop writing */
if (!(si->flags & SI_FL_WAIT_DATA)) {
if ((oc->flags & CF_SHUTW_NOW) == 0)
si->flags |= SI_FL_WAIT_DATA;
oc->wex = TICK_ETERNITY;
}
return;
}
/* (re)start writing and update timeout. Note: we don't recompute the timeout
* every time we get here, otherwise it would risk never to expire. We only
* update it if is was not yet set. The stream socket handler will already
* have updated it if there has been a completed I/O.
*/
si->flags &= ~SI_FL_WAIT_DATA;
if (!tick_isset(oc->wex)) {
oc->wex = tick_add_ifset(now_ms, oc->wto);
if (tick_isset(ic->rex) && !(si->flags & SI_FL_INDEP_STR)) {
/* Note: depending on the protocol, we don't know if we're waiting
* for incoming data or not. So in order to prevent the socket from
* expiring read timeouts during writes, we refresh the read timeout,
* except if it was already infinite or if we have explicitly setup
* independent streams.
*/
ic->rex = tick_add_ifset(now_ms, ic->rto);
}
}
}
/* perform a synchronous send() for the stream interface. The CF_WRITE_NULL and
* CF_WRITE_PARTIAL flags are cleared prior to the attempt, and will possibly
* be updated in case of success.
*/
void si_sync_send(struct stream_interface *si)
{
struct channel *oc = si_oc(si);
struct conn_stream *cs;
oc->flags &= ~(CF_WRITE_NULL|CF_WRITE_PARTIAL);
if (oc->flags & CF_SHUTW)
return;
if (channel_is_empty(oc))
return;
if (!si_state_in(si->state, SI_SB_CON|SI_SB_RDY|SI_SB_EST))
return;
cs = objt_cs(si->end);
if (!cs || !cs->conn->mux)
return;
si_cs_send(cs);
if (likely(oc->flags & CF_WRITE_ACTIVITY)) {
struct channel *ic = si_ic(si);
if (tick_isset(ic->rex) && !(si->flags & SI_FL_INDEP_STR)) {
/* Note: to prevent the client from expiring read timeouts
* during writes, we refresh it. We only do this if the
* interface is not configured for "independent streams",
* because for some applications it's better not to do this,
* for instance when continuously exchanging small amounts
* of data which can full the socket buffers long before a
* write timeout is detected.
*/
ic->rex = tick_add_ifset(now_ms, ic->rto);
}
}
}
/* Updates at once the channel flags, and timers of both stream interfaces of a
* same stream, to complete the work after the analysers, then updates the data
* layer below. This will ensure that any synchronous update performed at the
* data layer will be reflected in the channel flags and/or stream-interface.
* Note that this does not change the stream interface's current state, though
* it updates the previous state to the current one.
*/
void si_update_both(struct stream_interface *si_f, struct stream_interface *si_b)
{
struct channel *req = si_ic(si_f);
struct channel *res = si_oc(si_f);
req->flags &= ~(CF_READ_NULL|CF_READ_PARTIAL|CF_READ_ATTACHED|CF_WRITE_NULL|CF_WRITE_PARTIAL);
res->flags &= ~(CF_READ_NULL|CF_READ_PARTIAL|CF_READ_ATTACHED|CF_WRITE_NULL|CF_WRITE_PARTIAL);
si_f->prev_state = si_f->state;
si_b->prev_state = si_b->state;
/* let's recompute both sides states */
if (si_state_in(si_f->state, SI_SB_RDY|SI_SB_EST))
si_update(si_f);
if (si_state_in(si_b->state, SI_SB_RDY|SI_SB_EST))
si_update(si_b);
/* stream ints are processed outside of process_stream() and must be
* handled at the latest moment.
*/
if (obj_type(si_f->end) == OBJ_TYPE_APPCTX &&
((si_rx_endp_ready(si_f) && !si_rx_blocked(si_f)) ||
(si_tx_endp_ready(si_f) && !si_tx_blocked(si_f))))
appctx_wakeup(si_appctx(si_f));
if (obj_type(si_b->end) == OBJ_TYPE_APPCTX &&
((si_rx_endp_ready(si_b) && !si_rx_blocked(si_b)) ||
(si_tx_endp_ready(si_b) && !si_tx_blocked(si_b))))
appctx_wakeup(si_appctx(si_b));
}
/*
* This function performs a shutdown-read on a stream interface attached to
* a connection in a connected or init state (it does nothing for other
* states). It either shuts the read side or marks itself as closed. The buffer
* flags are updated to reflect the new state. If the stream interface has
* SI_FL_NOHALF, we also forward the close to the write side. If a control
* layer is defined, then it is supposed to be a socket layer and file
* descriptors are then shutdown or closed accordingly. The function
* automatically disables polling if needed.
*/
static void stream_int_shutr_conn(struct stream_interface *si)
{
struct conn_stream *cs = __objt_cs(si->end);
struct channel *ic = si_ic(si);
si_rx_shut_blk(si);
if (ic->flags & CF_SHUTR)
return;
ic->flags |= CF_SHUTR;
ic->rex = TICK_ETERNITY;
if (!si_state_in(si->state, SI_SB_CON|SI_SB_RDY|SI_SB_EST))
return;
if (si->flags & SI_FL_KILL_CONN)
cs->flags |= CS_FL_KILL_CONN;
if (si_oc(si)->flags & CF_SHUTW) {
cs_close(cs);
si->state = SI_ST_DIS;
si->exp = TICK_ETERNITY;
}
else if (si_cond_forward_shutw(si)) {
/* we want to immediately forward this close to the write side */
return stream_int_shutw_conn(si);
}
}
/*
* This function performs a shutdown-write on a stream interface attached to
* a connection in a connected or init state (it does nothing for other
* states). It either shuts the write side or marks itself as closed. The
* buffer flags are updated to reflect the new state. It does also close
* everything if the SI was marked as being in error state. If there is a
* data-layer shutdown, it is called.
*/
static void stream_int_shutw_conn(struct stream_interface *si)
{
struct conn_stream *cs = __objt_cs(si->end);
struct channel *ic = si_ic(si);
struct channel *oc = si_oc(si);
oc->flags &= ~CF_SHUTW_NOW;
if (oc->flags & CF_SHUTW)
return;
oc->flags |= CF_SHUTW;
oc->wex = TICK_ETERNITY;
si_done_get(si);
if (tick_isset(si->hcto)) {
ic->rto = si->hcto;
ic->rex = tick_add(now_ms, ic->rto);
}
switch (si->state) {
case SI_ST_RDY:
case SI_ST_EST:
/* we have to shut before closing, otherwise some short messages
* may never leave the system, especially when there are remaining
* unread data in the socket input buffer, or when nolinger is set.
* However, if SI_FL_NOLINGER is explicitly set, we know there is
* no risk so we close both sides immediately.
*/
if (si->flags & SI_FL_KILL_CONN)
cs->flags |= CS_FL_KILL_CONN;
if (si->flags & SI_FL_ERR) {
/* quick close, the socket is already shut anyway */
}
else if (si->flags & SI_FL_NOLINGER) {
/* unclean data-layer shutdown, typically an aborted request
* or a forwarded shutdown from a client to a server due to
* option abortonclose. No need for the TLS layer to try to
* emit a shutdown message.
*/
cs_shutw(cs, CS_SHW_SILENT);
}
else {
/* clean data-layer shutdown. This only happens on the
* frontend side, or on the backend side when forwarding
* a client close in TCP mode or in HTTP TUNNEL mode
* while option abortonclose is set. We want the TLS
* layer to try to signal it to the peer before we close.
*/
cs_shutw(cs, CS_SHW_NORMAL);
if (!(ic->flags & (CF_SHUTR|CF_DONT_READ)))
return;
}
/* fall through */
case SI_ST_CON:
/* we may have to close a pending connection, and mark the
* response buffer as shutr
*/
if (si->flags & SI_FL_KILL_CONN)
cs->flags |= CS_FL_KILL_CONN;
cs_close(cs);
/* fall through */
case SI_ST_CER:
case SI_ST_QUE:
case SI_ST_TAR:
si->state = SI_ST_DIS;
/* fall through */
default:
si->flags &= ~SI_FL_NOLINGER;
si_rx_shut_blk(si);
ic->flags |= CF_SHUTR;
ic->rex = TICK_ETERNITY;
si->exp = TICK_ETERNITY;
}
}
/* This function is used for inter-stream-interface calls. It is called by the
* consumer to inform the producer side that it may be interested in checking
* for free space in the buffer. Note that it intentionally does not update
* timeouts, so that we can still check them later at wake-up. This function is
* dedicated to connection-based stream interfaces.
*/
static void stream_int_chk_rcv_conn(struct stream_interface *si)
{
/* (re)start reading */
if (si_state_in(si->state, SI_SB_CON|SI_SB_RDY|SI_SB_EST))
tasklet_wakeup(si->wait_event.tasklet);
}
/* This function is used for inter-stream-interface calls. It is called by the
* producer to inform the consumer side that it may be interested in checking
* for data in the buffer. Note that it intentionally does not update timeouts,
* so that we can still check them later at wake-up.
*/
static void stream_int_chk_snd_conn(struct stream_interface *si)
{
struct channel *oc = si_oc(si);
struct conn_stream *cs = __objt_cs(si->end);
if (unlikely(!si_state_in(si->state, SI_SB_RDY|SI_SB_EST) ||
(oc->flags & CF_SHUTW)))
return;
if (unlikely(channel_is_empty(oc))) /* called with nothing to send ! */
return;
if (!oc->pipe && /* spliced data wants to be forwarded ASAP */
!(si->flags & SI_FL_WAIT_DATA)) /* not waiting for data */
return;
if (!(si->wait_event.events & SUB_RETRY_SEND) && !channel_is_empty(si_oc(si)))
si_cs_send(cs);
if (cs->flags & (CS_FL_ERROR|CS_FL_ERR_PENDING) || si_is_conn_error(si)) {
/* Write error on the file descriptor */
if (si->state >= SI_ST_CON)
si->flags |= SI_FL_ERR;
goto out_wakeup;
}
/* OK, so now we know that some data might have been sent, and that we may
* have to poll first. We have to do that too if the buffer is not empty.
*/
if (channel_is_empty(oc)) {
/* the connection is established but we can't write. Either the
* buffer is empty, or we just refrain from sending because the
* ->o limit was reached. Maybe we just wrote the last
* chunk and need to close.
*/
if (((oc->flags & (CF_SHUTW|CF_AUTO_CLOSE|CF_SHUTW_NOW)) ==
(CF_AUTO_CLOSE|CF_SHUTW_NOW)) &&
si_state_in(si->state, SI_SB_RDY|SI_SB_EST)) {
si_shutw(si);
goto out_wakeup;
}
if ((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == 0)
si->flags |= SI_FL_WAIT_DATA;
oc->wex = TICK_ETERNITY;
}
else {
/* Otherwise there are remaining data to be sent in the buffer,
* which means we have to poll before doing so.
*/
si->flags &= ~SI_FL_WAIT_DATA;
if (!tick_isset(oc->wex))
oc->wex = tick_add_ifset(now_ms, oc->wto);
}
if (likely(oc->flags & CF_WRITE_ACTIVITY)) {
struct channel *ic = si_ic(si);
/* update timeout if we have written something */
if ((oc->flags & (CF_SHUTW|CF_WRITE_PARTIAL)) == CF_WRITE_PARTIAL &&
!channel_is_empty(oc))
oc->wex = tick_add_ifset(now_ms, oc->wto);
if (tick_isset(ic->rex) && !(si->flags & SI_FL_INDEP_STR)) {
/* Note: to prevent the client from expiring read timeouts
* during writes, we refresh it. We only do this if the
* interface is not configured for "independent streams",
* because for some applications it's better not to do this,
* for instance when continuously exchanging small amounts
* of data which can full the socket buffers long before a
* write timeout is detected.
*/
ic->rex = tick_add_ifset(now_ms, ic->rto);
}
}
/* in case of special condition (error, shutdown, end of write...), we
* have to notify the task.
*/
if (likely((oc->flags & (CF_WRITE_NULL|CF_WRITE_ERROR|CF_SHUTW)) ||
((oc->flags & CF_WAKE_WRITE) &&
((channel_is_empty(oc) && !oc->to_forward) ||
!si_state_in(si->state, SI_SB_EST))))) {
out_wakeup:
if (!(si->flags & SI_FL_DONT_WAKE))
task_wakeup(si_task(si), TASK_WOKEN_IO);
}
}
/*
* This is the callback which is called by the connection layer to receive data
* into the buffer from the connection. It iterates over the mux layer's
* rcv_buf function.
*/
int si_cs_recv(struct conn_stream *cs)
{
struct connection *conn = cs->conn;
struct stream_interface *si = cs->data;
struct channel *ic = si_ic(si);
int ret, max, cur_read = 0;
int read_poll = MAX_READ_POLL_LOOPS;
int flags = 0;
/* If not established yet, do nothing. */
if (si->state != SI_ST_EST)
return 0;
/* If another call to si_cs_recv() failed, and we subscribed to
* recv events already, give up now.
*/
if (si->wait_event.events & SUB_RETRY_RECV)
return 0;
/* maybe we were called immediately after an asynchronous shutr */
if (ic->flags & CF_SHUTR)
return 1;
/* we must wait because the mux is not installed yet */
if (!conn->mux)
return 0;
/* stop here if we reached the end of data */
if (cs->flags & CS_FL_EOS)
goto end_recv;
/* stop immediately on errors. Note that we DON'T want to stop on
* POLL_ERR, as the poller might report a write error while there
* are still data available in the recv buffer. This typically
* happens when we send too large a request to a backend server
* which rejects it before reading it all.
*/
if (!(cs->flags & CS_FL_RCV_MORE)) {
if (!conn_xprt_ready(conn))
return 0;
if (cs->flags & CS_FL_ERROR)
goto end_recv;
}
/* prepare to detect if the mux needs more room */
cs->flags &= ~CS_FL_WANT_ROOM;
if ((ic->flags & (CF_STREAMER | CF_STREAMER_FAST)) && !co_data(ic) &&
global.tune.idle_timer &&
(unsigned short)(now_ms - ic->last_read) >= global.tune.idle_timer) {
/* The buffer was empty and nothing was transferred for more
* than one second. This was caused by a pause and not by
* congestion. Reset any streaming mode to reduce latency.
*/
ic->xfer_small = 0;
ic->xfer_large = 0;
ic->flags &= ~(CF_STREAMER | CF_STREAMER_FAST);
}
/* First, let's see if we may splice data across the channel without
* using a buffer.
*/
if (cs->flags & CS_FL_MAY_SPLICE &&
(ic->pipe || ic->to_forward >= MIN_SPLICE_FORWARD) &&
ic->flags & CF_KERN_SPLICING) {
if (c_data(ic)) {
/* We're embarrassed, there are already data pending in
* the buffer and we don't want to have them at two
* locations at a time. Let's indicate we need some
* place and ask the consumer to hurry.
*/
flags |= CO_RFL_BUF_FLUSH;
goto abort_splice;
}
if (unlikely(ic->pipe == NULL)) {
if (pipes_used >= global.maxpipes || !(ic->pipe = get_pipe())) {
ic->flags &= ~CF_KERN_SPLICING;
goto abort_splice;
}
}
ret = conn->mux->rcv_pipe(cs, ic->pipe, ic->to_forward);
if (ret < 0) {
/* splice not supported on this end, let's disable it */
ic->flags &= ~CF_KERN_SPLICING;
goto abort_splice;
}
if (ret > 0) {
if (ic->to_forward != CHN_INFINITE_FORWARD)
ic->to_forward -= ret;
ic->total += ret;
cur_read += ret;
ic->flags |= CF_READ_PARTIAL;
}
if (cs->flags & (CS_FL_EOS|CS_FL_ERROR))
goto end_recv;
if (conn->flags & CO_FL_WAIT_ROOM) {
/* the pipe is full or we have read enough data that it
* could soon be full. Let's stop before needing to poll.
*/
si_rx_room_blk(si);
goto done_recv;
}
/* splice not possible (anymore), let's go on on standard copy */
}
abort_splice:
if (ic->pipe && unlikely(!ic->pipe->data)) {
put_pipe(ic->pipe);
ic->pipe = NULL;
}
if (ic->pipe && ic->to_forward && !(flags & CO_RFL_BUF_FLUSH) && cs->flags & CS_FL_MAY_SPLICE) {
/* don't break splicing by reading, but still call rcv_buf()
* to pass the flag.
*/
goto done_recv;
}
/* now we'll need a input buffer for the stream */
if (!si_alloc_ibuf(si, &(si_strm(si)->buffer_wait)))
goto end_recv;
/* For an HTX stream, if the buffer is stuck (no output data with some
* input data) and if the HTX message is fragmented or if its free space
* wraps, we force an HTX deframentation. It is a way to have a
* contiguous free space nad to let the mux to copy as much data as
* possible.
*
* NOTE: A possible optim may be to let the mux decides if defrag is
* required or not, depending on amount of data to be xferred.
*/
if (IS_HTX_STRM(si_strm(si)) && !co_data(ic)) {
struct htx *htx = htxbuf(&ic->buf);
if (htx_is_not_empty(htx) && ((htx->flags & HTX_FL_FRAGMENTED) || htx_space_wraps(htx)))
htx_defrag(htxbuf(&ic->buf), NULL, 0);
}
/* Instruct the mux it must subscribed for read events */
if (!conn_is_back(conn) && /* for frontend conns only */
(si_opposite(si)->state != SI_ST_INI) && /* before backend connection setup */
(si_strm(si)->be->options & PR_O_ABRT_CLOSE)) /* if abortonclose option is set for the current backend */
flags |= CO_RFL_KEEP_RECV;
/* Important note : if we're called with POLL_IN|POLL_HUP, it means the read polling
* was enabled, which implies that the recv buffer was not full. So we have a guarantee
* that if such an event is not handled above in splice, it will be handled here by
* recv().
*/
while ((cs->flags & CS_FL_RCV_MORE) ||
(!(conn->flags & CO_FL_HANDSHAKE) &&
(!(cs->flags & (CS_FL_ERROR|CS_FL_EOS))) && !(ic->flags & CF_SHUTR))) {
int cur_flags = flags;
/* Compute transient CO_RFL_* flags */
if (co_data(ic)) {
cur_flags |= (CO_RFL_BUF_WET | CO_RFL_BUF_NOT_STUCK);
}
/* <max> may be null. This is the mux responsibility to set
* CS_FL_RCV_MORE on the CS if more space is needed.
*/
max = channel_recv_max(ic);
ret = cs->conn->mux->rcv_buf(cs, &ic->buf, max, cur_flags);
if (cs->flags & CS_FL_WANT_ROOM) {
si_rx_room_blk(si);
/* Add READ_PARTIAL because some data are pending but
* cannot be xferred to the channel
*/
ic->flags |= CF_READ_PARTIAL;
}
if (ret <= 0) {
/* if we refrained from reading because we asked for a
* flush to satisfy rcv_pipe(), we must not subscribe
* and instead report that there's not enough room
* here to proceed.
*/
if (flags & CO_RFL_BUF_FLUSH)
si_rx_room_blk(si);
break;
}
cur_read += ret;
/* if we're allowed to directly forward data, we must update ->o */
if (ic->to_forward && !(ic->flags & (CF_SHUTW|CF_SHUTW_NOW))) {
unsigned long fwd = ret;
if (ic->to_forward != CHN_INFINITE_FORWARD) {
if (fwd > ic->to_forward)
fwd = ic->to_forward;
ic->to_forward -= fwd;
}
c_adv(ic, fwd);
}
ic->flags |= CF_READ_PARTIAL;
ic->total += ret;
/* End-of-input reached, we can leave. In this case, it is
* important to break the loop to not block the SI because of
* the channel's policies.This way, we are still able to receive
* shutdowns.
*/
if (cs->flags & CS_FL_EOI)
break;
if ((ic->flags & CF_READ_DONTWAIT) || --read_poll <= 0) {
/* we're stopped by the channel's policy */
si_rx_chan_blk(si);
break;
}
/* if too many bytes were missing from last read, it means that
* it's pointless trying to read again because the system does
* not have them in buffers.
*/
if (ret < max) {
/* if a streamer has read few data, it may be because we
* have exhausted system buffers. It's not worth trying
* again.
*/
if (ic->flags & CF_STREAMER) {
/* we're stopped by the channel's policy */
si_rx_chan_blk(si);
break;
}
/* if we read a large block smaller than what we requested,
* it's almost certain we'll never get anything more.
*/
if (ret >= global.tune.recv_enough) {
/* we're stopped by the channel's policy */
si_rx_chan_blk(si);
break;
}
}
/* if we are waiting for more space, don't try to read more data
* right now.
*/
if (si_rx_blocked(si))
break;
} /* while !flags */
done_recv:
if (cur_read) {
if ((ic->flags & (CF_STREAMER | CF_STREAMER_FAST)) &&
(cur_read <= ic->buf.size / 2)) {
ic->xfer_large = 0;
ic->xfer_small++;
if (ic->xfer_small >= 3) {
/* we have read less than half of the buffer in
* one pass, and this happened at least 3 times.
* This is definitely not a streamer.
*/
ic->flags &= ~(CF_STREAMER | CF_STREAMER_FAST);
}
else if (ic->xfer_small >= 2) {
/* if the buffer has been at least half full twice,
* we receive faster than we send, so at least it
* is not a "fast streamer".
*/
ic->flags &= ~CF_STREAMER_FAST;
}
}
else if (!(ic->flags & CF_STREAMER_FAST) && (cur_read >= channel_data_limit(ic))) {
/* we read a full buffer at once */
ic->xfer_small = 0;
ic->xfer_large++;
if (ic->xfer_large >= 3) {
/* we call this buffer a fast streamer if it manages
* to be filled in one call 3 consecutive times.
*/
ic->flags |= (CF_STREAMER | CF_STREAMER_FAST);
}
}
else {
ic->xfer_small = 0;
ic->xfer_large = 0;
}
ic->last_read = now_ms;
}
end_recv:
ret = (cur_read != 0);
/* Report EOI on the channel if it was reached from the mux point of
* view. */
if ((cs->flags & CS_FL_EOI) && !(ic->flags & CF_EOI)) {
ic->flags |= (CF_EOI|CF_READ_PARTIAL);
ret = 1;
}
if (cs->flags & CS_FL_ERROR) {
si->flags |= SI_FL_ERR;
ret = 1;
}
else if (cs->flags & CS_FL_EOS) {
/* we received a shutdown */
ic->flags |= CF_READ_NULL;
if (ic->flags & CF_AUTO_CLOSE)
channel_shutw_now(ic);
stream_int_read0(si);
ret = 1;
}
else if (!si_rx_blocked(si)) {
/* Subscribe to receive events if we're blocking on I/O */
conn->mux->subscribe(cs, SUB_RETRY_RECV, &si->wait_event);
si_rx_endp_done(si);
} else {
si_rx_endp_more(si);
ret = 1;
}
return ret;
}
/*
* This function propagates a null read received on a socket-based connection.
* It updates the stream interface. If the stream interface has SI_FL_NOHALF,
* the close is also forwarded to the write side as an abort.
*/
static void stream_int_read0(struct stream_interface *si)
{
struct conn_stream *cs = __objt_cs(si->end);
struct channel *ic = si_ic(si);
struct channel *oc = si_oc(si);
si_rx_shut_blk(si);
if (ic->flags & CF_SHUTR)
return;
ic->flags |= CF_SHUTR;
ic->rex = TICK_ETERNITY;
if (!si_state_in(si->state, SI_SB_CON|SI_SB_RDY|SI_SB_EST))
return;
if (oc->flags & CF_SHUTW)
goto do_close;
if (si_cond_forward_shutw(si)) {
/* we want to immediately forward this close to the write side */
/* force flag on ssl to keep stream in cache */
cs_shutw(cs, CS_SHW_SILENT);
goto do_close;
}
/* otherwise that's just a normal read shutdown */
return;
do_close:
/* OK we completely close the socket here just as if we went through si_shut[rw]() */
cs_close(cs);
oc->flags &= ~CF_SHUTW_NOW;
oc->flags |= CF_SHUTW;
oc->wex = TICK_ETERNITY;
si_done_get(si);
si->state = SI_ST_DIS;
si->exp = TICK_ETERNITY;
return;
}
/* Callback to be used by applet handlers upon completion. It updates the stream
* (which may or may not take this opportunity to try to forward data), then
* may re-enable the applet's based on the channels and stream interface's final
* states.
*/
void si_applet_wake_cb(struct stream_interface *si)
{
struct channel *ic = si_ic(si);
/* If the applet wants to write and the channel is closed, it's a
* broken pipe and it must be reported.
*/
if (!(si->flags & SI_FL_RX_WAIT_EP) && (ic->flags & CF_SHUTR))
si->flags |= SI_FL_ERR;
/* automatically mark the applet having data available if it reported
* begin blocked by the channel.
*/
if (si_rx_blocked(si))
si_rx_endp_more(si);
/* update the stream-int, channels, and possibly wake the stream up */
stream_int_notify(si);
stream_release_buffers(si_strm(si));
/* stream_int_notify may have passed through chk_snd and released some
* RXBLK flags. Process_stream will consider those flags to wake up the
* appctx but in the case the task is not in runqueue we may have to
* wakeup the appctx immediately.
*/
if ((si_rx_endp_ready(si) && !si_rx_blocked(si)) ||
(si_tx_endp_ready(si) && !si_tx_blocked(si)))
appctx_wakeup(si_appctx(si));
}
/*
* This function performs a shutdown-read on a stream interface attached to an
* applet in a connected or init state (it does nothing for other states). It
* either shuts the read side or marks itself as closed. The buffer flags are
* updated to reflect the new state. If the stream interface has SI_FL_NOHALF,
* we also forward the close to the write side. The owner task is woken up if
* it exists.
*/
static void stream_int_shutr_applet(struct stream_interface *si)
{
struct channel *ic = si_ic(si);
si_rx_shut_blk(si);
if (ic->flags & CF_SHUTR)
return;
ic->flags |= CF_SHUTR;
ic->rex = TICK_ETERNITY;
/* Note: on shutr, we don't call the applet */
if (!si_state_in(si->state, SI_SB_CON|SI_SB_RDY|SI_SB_EST))
return;
if (si_oc(si)->flags & CF_SHUTW) {
si_applet_release(si);
si->state = SI_ST_DIS;
si->exp = TICK_ETERNITY;
}
else if (si_cond_forward_shutw(si)) {
/* we want to immediately forward this close to the write side */
return stream_int_shutw_applet(si);
}
}
/*
* This function performs a shutdown-write on a stream interface attached to an
* applet in a connected or init state (it does nothing for other states). It
* either shuts the write side or marks itself as closed. The buffer flags are
* updated to reflect the new state. It does also close everything if the SI
* was marked as being in error state. The owner task is woken up if it exists.
*/
static void stream_int_shutw_applet(struct stream_interface *si)
{
struct channel *ic = si_ic(si);
struct channel *oc = si_oc(si);
oc->flags &= ~CF_SHUTW_NOW;
if (oc->flags & CF_SHUTW)
return;
oc->flags |= CF_SHUTW;
oc->wex = TICK_ETERNITY;
si_done_get(si);
if (tick_isset(si->hcto)) {
ic->rto = si->hcto;
ic->rex = tick_add(now_ms, ic->rto);
}
/* on shutw we always wake the applet up */
appctx_wakeup(si_appctx(si));
switch (si->state) {
case SI_ST_RDY:
case SI_ST_EST:
/* we have to shut before closing, otherwise some short messages
* may never leave the system, especially when there are remaining
* unread data in the socket input buffer, or when nolinger is set.
* However, if SI_FL_NOLINGER is explicitly set, we know there is
* no risk so we close both sides immediately.
*/
if (!(si->flags & (SI_FL_ERR | SI_FL_NOLINGER)) &&
!(ic->flags & (CF_SHUTR|CF_DONT_READ)))
return;
/* fall through */
case SI_ST_CON:
case SI_ST_CER:
case SI_ST_QUE:
case SI_ST_TAR:
/* Note that none of these states may happen with applets */
si_applet_release(si);
si->state = SI_ST_DIS;
/* fall through */
default:
si->flags &= ~SI_FL_NOLINGER;
si_rx_shut_blk(si);
ic->flags |= CF_SHUTR;
ic->rex = TICK_ETERNITY;
si->exp = TICK_ETERNITY;
}
}
/* chk_rcv function for applets */
static void stream_int_chk_rcv_applet(struct stream_interface *si)
{
struct channel *ic = si_ic(si);
DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n",
__FUNCTION__,
si, si->state, ic->flags, si_oc(si)->flags);
if (!ic->pipe) {
/* (re)start reading */
appctx_wakeup(si_appctx(si));
}
}
/* chk_snd function for applets */
static void stream_int_chk_snd_applet(struct stream_interface *si)
{
struct channel *oc = si_oc(si);
DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n",
__FUNCTION__,
si, si->state, si_ic(si)->flags, oc->flags);
if (unlikely(si->state != SI_ST_EST || (oc->flags & CF_SHUTW)))
return;
/* we only wake the applet up if it was waiting for some data */
if (!(si->flags & SI_FL_WAIT_DATA) && !(oc->flags & CF_SHUTW_NOW))
return;
if (!tick_isset(oc->wex))
oc->wex = tick_add_ifset(now_ms, oc->wto);
if (!channel_is_empty(oc)) {
/* (re)start sending */
appctx_wakeup(si_appctx(si));
}
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/