blob: a2eb87aea21ac2870630530d64fbafd62726525c [file] [log] [blame]
/*
* Functions dedicated to statistics output and the stats socket
*
* Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
* Copyright 2007-2009 Krzysztof Piotr Oledzki <ole@ans.pl>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pwd.h>
#include <grp.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <net/if.h>
#include <haproxy/activity.h>
#include <haproxy/api.h>
#include <haproxy/applet.h>
#include <haproxy/base64.h>
#include <haproxy/cfgparse.h>
#include <haproxy/channel.h>
#include <haproxy/check.h>
#include <haproxy/cli.h>
#include <haproxy/compression.h>
#include <haproxy/dns-t.h>
#include <haproxy/errors.h>
#include <haproxy/fd.h>
#include <haproxy/freq_ctr.h>
#include <haproxy/frontend.h>
#include <haproxy/global.h>
#include <haproxy/list.h>
#include <haproxy/listener.h>
#include <haproxy/log.h>
#include <haproxy/mworker.h>
#include <haproxy/mworker-t.h>
#include <haproxy/pattern-t.h>
#include <haproxy/peers.h>
#include <haproxy/pipe.h>
#include <haproxy/protocol.h>
#include <haproxy/proxy.h>
#include <haproxy/sample-t.h>
#include <haproxy/sc_strm.h>
#include <haproxy/server.h>
#include <haproxy/session.h>
#include <haproxy/sock.h>
#include <haproxy/stats-t.h>
#include <haproxy/stconn.h>
#include <haproxy/stream.h>
#include <haproxy/task.h>
#include <haproxy/ticks.h>
#include <haproxy/time.h>
#include <haproxy/tools.h>
#include <haproxy/version.h>
#define PAYLOAD_PATTERN "<<"
static struct applet cli_applet;
static struct applet mcli_applet;
static const char cli_permission_denied_msg[] =
"Permission denied\n"
"";
static THREAD_LOCAL char *dynamic_usage_msg = NULL;
/* List head of cli keywords */
static struct cli_kw_list cli_keywords = {
.list = LIST_HEAD_INIT(cli_keywords.list)
};
extern const char *stat_status_codes[];
struct proxy *mworker_proxy; /* CLI proxy of the master */
struct bind_conf *mcli_reload_bind_conf;
/* CLI context for the "show activity" command */
struct show_activity_ctx {
int thr; /* thread ID to show or -1 for all */
};
/* CLI context for the "show env" command */
struct show_env_ctx {
char **var; /* first variable to show */
int show_one; /* stop after showing the first one */
};
/* CLI context for the "show fd" command */
struct show_fd_ctx {
int fd; /* first FD to show */
int show_one; /* stop after showing one FD */
};
/* CLI context for the "show cli sockets" command */
struct show_sock_ctx {
struct bind_conf *bind_conf;
struct listener *listener;
};
static int cmp_kw_entries(const void *a, const void *b)
{
const struct cli_kw *l = *(const struct cli_kw **)a;
const struct cli_kw *r = *(const struct cli_kw **)b;
return strcmp(l->usage ? l->usage : "", r->usage ? r->usage : "");
}
/* This will show the help message and list the commands supported at the
* current level that match all of the first words of <args> if args is not
* NULL, or all args if none matches or if args is null.
*/
static char *cli_gen_usage_msg(struct appctx *appctx, char * const *args)
{
struct cli_kw *entries[CLI_MAX_HELP_ENTRIES];
struct cli_kw_list *kw_list;
struct cli_kw *kw;
struct buffer *tmp = get_trash_chunk();
struct buffer out;
struct { struct cli_kw *kw; int dist; } matches[CLI_MAX_MATCHES], swp;
int idx;
int ishelp = 0;
int length = 0;
int help_entries = 0;
ha_free(&dynamic_usage_msg);
if (args && *args && strcmp(*args, "help") == 0) {
args++;
ishelp = 1;
}
/* first, let's measure the longest match */
list_for_each_entry(kw_list, &cli_keywords.list, list) {
for (kw = &kw_list->kw[0]; kw->str_kw[0]; kw++) {
if (kw->level & ~appctx->cli_level & (ACCESS_MASTER_ONLY|ACCESS_EXPERT|ACCESS_EXPERIMENTAL))
continue;
if (!(appctx->cli_level & ACCESS_MCLI_DEBUG) &&
(appctx->cli_level & ~kw->level & (ACCESS_MASTER_ONLY|ACCESS_MASTER)) ==
(ACCESS_MASTER_ONLY|ACCESS_MASTER))
continue;
/* OK this command is visible */
for (idx = 0; idx < CLI_PREFIX_KW_NB; idx++) {
if (!kw->str_kw[idx])
break; // end of keyword
if (!args || !args[idx] || !*args[idx])
break; // end of command line
if (strcmp(kw->str_kw[idx], args[idx]) != 0)
break;
if (idx + 1 > length)
length = idx + 1;
}
}
}
/* now <length> equals the number of exactly matching words */
chunk_reset(tmp);
if (ishelp) // this is the help message.
chunk_strcat(tmp, "The following commands are valid at this level:\n");
else if (!length && (!args || !*args || !**args)) // no match
chunk_strcat(tmp, "Unknown command. Please enter one of the following commands only:\n");
else // partial match
chunk_strcat(tmp, "Unknown command, but maybe one of the following ones is a better match:\n");
for (idx = 0; idx < CLI_MAX_MATCHES; idx++) {
matches[idx].kw = NULL;
matches[idx].dist = INT_MAX;
}
/* In case of partial match we'll look for the best matching entries
* starting from position <length>
*/
if (args && args[length] && *args[length]) {
list_for_each_entry(kw_list, &cli_keywords.list, list) {
for (kw = &kw_list->kw[0]; kw->str_kw[0]; kw++) {
if (kw->level & ~appctx->cli_level & (ACCESS_MASTER_ONLY|ACCESS_EXPERT|ACCESS_EXPERIMENTAL))
continue;
if (!(appctx->cli_level & ACCESS_MCLI_DEBUG) &&
((appctx->cli_level & ~kw->level & (ACCESS_MASTER_ONLY|ACCESS_MASTER)) ==
(ACCESS_MASTER_ONLY|ACCESS_MASTER)))
continue;
for (idx = 0; idx < length; idx++) {
if (!kw->str_kw[idx])
break; // end of keyword
if (!args || !args[idx] || !*args[idx])
break; // end of command line
if (strcmp(kw->str_kw[idx], args[idx]) != 0)
break;
}
/* extra non-matching words are fuzzy-matched */
if (kw->usage && idx == length && args[idx] && *args[idx]) {
uint8_t word_sig[1024];
uint8_t list_sig[1024];
int dist = 0;
int totlen = 0;
int i;
/* this one matches, let's compute the distance between the two
* on the remaining words. For this we're computing the signature
* of everything that remains and the cumulated length of the
* strings.
*/
memset(word_sig, 0, sizeof(word_sig));
for (i = idx; i < CLI_PREFIX_KW_NB && args[i] && *args[i]; i++) {
update_word_fingerprint(word_sig, args[i]);
totlen += strlen(args[i]);
}
memset(list_sig, 0, sizeof(list_sig));
for (i = idx; i < CLI_PREFIX_KW_NB && kw->str_kw[i]; i++) {
update_word_fingerprint(list_sig, kw->str_kw[i]);
totlen += strlen(kw->str_kw[i]);
}
dist = word_fingerprint_distance(word_sig, list_sig);
/* insert this one at its place if relevant, in order to keep only
* the best matches.
*/
swp.kw = kw; swp.dist = dist;
if (dist < 5*totlen/2 && dist < matches[CLI_MAX_MATCHES-1].dist) {
matches[CLI_MAX_MATCHES-1] = swp;
for (idx = CLI_MAX_MATCHES - 1; --idx >= 0;) {
if (matches[idx+1].dist >= matches[idx].dist)
break;
matches[idx+1] = matches[idx];
matches[idx] = swp;
}
}
}
}
}
}
if (matches[0].kw) {
/* we have fuzzy matches, let's propose them */
for (idx = 0; idx < CLI_MAX_MATCHES; idx++) {
kw = matches[idx].kw;
if (!kw)
break;
/* stop the dump if some words look very unlikely candidates */
if (matches[idx].dist > 5*matches[0].dist/2)
break;
if (help_entries < CLI_MAX_HELP_ENTRIES)
entries[help_entries++] = kw;
}
}
list_for_each_entry(kw_list, &cli_keywords.list, list) {
/* no full dump if we've already found nice candidates */
if (matches[0].kw)
break;
for (kw = &kw_list->kw[0]; kw->str_kw[0]; kw++) {
/* in a worker or normal process, don't display master-only commands
* nor expert/experimental mode commands if not in this mode.
*/
if (kw->level & ~appctx->cli_level & (ACCESS_MASTER_ONLY|ACCESS_EXPERT|ACCESS_EXPERIMENTAL))
continue;
/* in master, if the CLI don't have the
* ACCESS_MCLI_DEBUG don't display commands that have
* neither the master bit nor the master-only bit.
*/
if (!(appctx->cli_level & ACCESS_MCLI_DEBUG) &&
((appctx->cli_level & ~kw->level & (ACCESS_MASTER_ONLY|ACCESS_MASTER)) ==
(ACCESS_MASTER_ONLY|ACCESS_MASTER)))
continue;
for (idx = 0; idx < length; idx++) {
if (!kw->str_kw[idx])
break; // end of keyword
if (!args || !args[idx] || !*args[idx])
break; // end of command line
if (strcmp(kw->str_kw[idx], args[idx]) != 0)
break;
}
if (kw->usage && idx == length && help_entries < CLI_MAX_HELP_ENTRIES)
entries[help_entries++] = kw;
}
}
qsort(entries, help_entries, sizeof(*entries), cmp_kw_entries);
for (idx = 0; idx < help_entries; idx++)
chunk_appendf(tmp, " %s\n", entries[idx]->usage);
/* always show the prompt/help/quit commands */
chunk_strcat(tmp,
" help [<command>] : list matching or all commands\n"
" prompt : toggle interactive mode with prompt\n"
" quit : disconnect\n");
chunk_init(&out, NULL, 0);
chunk_dup(&out, tmp);
dynamic_usage_msg = out.area;
cli_msg(appctx, LOG_INFO, dynamic_usage_msg);
return dynamic_usage_msg;
}
struct cli_kw* cli_find_kw(char **args)
{
struct cli_kw_list *kw_list;
struct cli_kw *kw;/* current cli_kw */
char **tmp_args;
const char **tmp_str_kw;
int found = 0;
if (LIST_ISEMPTY(&cli_keywords.list))
return NULL;
list_for_each_entry(kw_list, &cli_keywords.list, list) {
kw = &kw_list->kw[0];
while (*kw->str_kw) {
tmp_args = args;
tmp_str_kw = kw->str_kw;
while (*tmp_str_kw) {
if (strcmp(*tmp_str_kw, *tmp_args) == 0) {
found = 1;
} else {
found = 0;
break;
}
tmp_args++;
tmp_str_kw++;
}
if (found)
return (kw);
kw++;
}
}
return NULL;
}
struct cli_kw* cli_find_kw_exact(char **args)
{
struct cli_kw_list *kw_list;
int found = 0;
int i;
int j;
if (LIST_ISEMPTY(&cli_keywords.list))
return NULL;
list_for_each_entry(kw_list, &cli_keywords.list, list) {
for (i = 0; kw_list->kw[i].str_kw[0]; i++) {
found = 1;
for (j = 0; j < CLI_PREFIX_KW_NB; j++) {
if (args[j] == NULL && kw_list->kw[i].str_kw[j] == NULL) {
break;
}
if (args[j] == NULL || kw_list->kw[i].str_kw[j] == NULL) {
found = 0;
break;
}
if (strcmp(args[j], kw_list->kw[i].str_kw[j]) != 0) {
found = 0;
break;
}
}
if (found)
return &kw_list->kw[i];
}
}
return NULL;
}
void cli_register_kw(struct cli_kw_list *kw_list)
{
LIST_APPEND(&cli_keywords.list, &kw_list->list);
}
/* list all known keywords on stdout, one per line */
void cli_list_keywords(void)
{
struct cli_kw_list *kw_list;
struct cli_kw *kwp, *kwn, *kw;
int idx;
for (kwn = kwp = NULL;; kwp = kwn) {
list_for_each_entry(kw_list, &cli_keywords.list, list) {
/* note: we sort based on the usage message when available,
* otherwise we fall back to the first keyword.
*/
for (kw = &kw_list->kw[0]; kw->str_kw[0]; kw++) {
if (strordered(kwp ? kwp->usage ? kwp->usage : kwp->str_kw[0] : NULL,
kw->usage ? kw->usage : kw->str_kw[0],
kwn != kwp ? kwn->usage ? kwn->usage : kwn->str_kw[0] : NULL))
kwn = kw;
}
}
if (kwn == kwp)
break;
for (idx = 0; kwn->str_kw[idx]; idx++) {
printf("%s ", kwn->str_kw[idx]);
}
if (kwn->level & (ACCESS_MASTER_ONLY|ACCESS_MASTER))
printf("[MASTER] ");
if (!(kwn->level & ACCESS_MASTER_ONLY))
printf("[WORKER] ");
if (kwn->level & ACCESS_EXPERT)
printf("[EXPERT] ");
if (kwn->level & ACCESS_EXPERIMENTAL)
printf("[EXPERIM] ");
printf("\n");
}
}
/* allocate a new stats frontend named <name>, and return it
* (or NULL in case of lack of memory).
*/
static struct proxy *cli_alloc_fe(const char *name, const char *file, int line)
{
struct proxy *fe;
fe = calloc(1, sizeof(*fe));
if (!fe)
return NULL;
init_new_proxy(fe);
fe->next = proxies_list;
proxies_list = fe;
fe->last_change = now.tv_sec;
fe->id = strdup("GLOBAL");
fe->cap = PR_CAP_FE|PR_CAP_INT;
fe->maxconn = 10; /* default to 10 concurrent connections */
fe->timeout.client = MS_TO_TICKS(10000); /* default timeout of 10 seconds */
fe->conf.file = strdup(file);
fe->conf.line = line;
fe->accept = frontend_accept;
fe->default_target = &cli_applet.obj_type;
/* the stats frontend is the only one able to assign ID #0 */
fe->conf.id.key = fe->uuid = 0;
eb32_insert(&used_proxy_id, &fe->conf.id);
return fe;
}
/* This function parses a "stats" statement in the "global" section. It returns
* -1 if there is any error, otherwise zero. If it returns -1, it will write an
* error message into the <err> buffer which will be preallocated. The trailing
* '\n' must not be written. The function must be called with <args> pointing to
* the first word after "stats".
*/
static int cli_parse_global(char **args, int section_type, struct proxy *curpx,
const struct proxy *defpx, const char *file, int line,
char **err)
{
struct bind_conf *bind_conf;
struct listener *l;
if (strcmp(args[1], "socket") == 0) {
int cur_arg;
if (*args[2] == 0) {
memprintf(err, "'%s %s' in global section expects an address or a path to a UNIX socket", args[0], args[1]);
return -1;
}
if (!global.cli_fe) {
if ((global.cli_fe = cli_alloc_fe("GLOBAL", file, line)) == NULL) {
memprintf(err, "'%s %s' : out of memory trying to allocate a frontend", args[0], args[1]);
return -1;
}
}
bind_conf = bind_conf_alloc(global.cli_fe, file, line, args[2], xprt_get(XPRT_RAW));
if (!bind_conf) {
memprintf(err, "'%s %s' : out of memory trying to allocate a bind_conf", args[0], args[1]);
return -1;
}
bind_conf->level &= ~ACCESS_LVL_MASK;
bind_conf->level |= ACCESS_LVL_OPER; /* default access level */
bind_conf->bind_tgroup = 1; // bind to a single group in any case
if (!str2listener(args[2], global.cli_fe, bind_conf, file, line, err)) {
memprintf(err, "parsing [%s:%d] : '%s %s' : %s\n",
file, line, args[0], args[1], err && *err ? *err : "error");
return -1;
}
cur_arg = 3;
while (*args[cur_arg]) {
struct bind_kw *kw;
const char *best;
int code;
kw = bind_find_kw(args[cur_arg]);
if (kw) {
if (!kw->parse) {
memprintf(err, "'%s %s' : '%s' option is not implemented in this version (check build options).",
args[0], args[1], args[cur_arg]);
return -1;
}
code = kw->parse(args, cur_arg, global.cli_fe, bind_conf, err);
/* FIXME: this is ugly, we don't have a way to collect warnings,
* yet some important bind keywords may report warnings that we
* must display.
*/
if (((code & (ERR_WARN|ERR_FATAL|ERR_ALERT)) == ERR_WARN) && err && *err) {
indent_msg(err, 2);
ha_warning("parsing [%s:%d] : '%s %s' : %s\n", file, line, args[0], args[1], *err);
ha_free(err);
}
if (code & ~ERR_WARN) {
if (err && *err)
memprintf(err, "'%s %s' : '%s'", args[0], args[1], *err);
else
memprintf(err, "'%s %s' : error encountered while processing '%s'",
args[0], args[1], args[cur_arg]);
return -1;
}
cur_arg += 1 + kw->skip;
continue;
}
best = bind_find_best_kw(args[cur_arg]);
if (best)
memprintf(err, "'%s %s' : unknown keyword '%s'. Did you mean '%s' maybe ?",
args[0], args[1], args[cur_arg], best);
else
memprintf(err, "'%s %s' : unknown keyword '%s'.",
args[0], args[1], args[cur_arg]);
return -1;
}
list_for_each_entry(l, &bind_conf->listeners, by_bind) {
l->accept = session_accept_fd;
l->default_target = global.cli_fe->default_target;
l->options |= LI_O_UNLIMITED; /* don't make the peers subject to global limits */
l->nice = -64; /* we want to boost priority for local stats */
global.maxsock++; /* for the listening socket */
}
}
else if (strcmp(args[1], "timeout") == 0) {
unsigned timeout;
const char *res = parse_time_err(args[2], &timeout, TIME_UNIT_MS);
if (res == PARSE_TIME_OVER) {
memprintf(err, "timer overflow in argument '%s' to '%s %s' (maximum value is 2147483647 ms or ~24.8 days)",
args[2], args[0], args[1]);
return -1;
}
else if (res == PARSE_TIME_UNDER) {
memprintf(err, "timer underflow in argument '%s' to '%s %s' (minimum non-null value is 1 ms)",
args[2], args[0], args[1]);
return -1;
}
else if (res) {
memprintf(err, "'%s %s' : unexpected character '%c'", args[0], args[1], *res);
return -1;
}
if (!timeout) {
memprintf(err, "'%s %s' expects a positive value", args[0], args[1]);
return -1;
}
if (!global.cli_fe) {
if ((global.cli_fe = cli_alloc_fe("GLOBAL", file, line)) == NULL) {
memprintf(err, "'%s %s' : out of memory trying to allocate a frontend", args[0], args[1]);
return -1;
}
}
global.cli_fe->timeout.client = MS_TO_TICKS(timeout);
}
else if (strcmp(args[1], "maxconn") == 0) {
int maxconn = atol(args[2]);
if (maxconn <= 0) {
memprintf(err, "'%s %s' expects a positive value", args[0], args[1]);
return -1;
}
if (!global.cli_fe) {
if ((global.cli_fe = cli_alloc_fe("GLOBAL", file, line)) == NULL) {
memprintf(err, "'%s %s' : out of memory trying to allocate a frontend", args[0], args[1]);
return -1;
}
}
global.cli_fe->maxconn = maxconn;
}
else if (strcmp(args[1], "bind-process") == 0) {
memprintf(err, "'%s' is not supported anymore.", args[0]);
return -1;
}
else {
memprintf(err, "'%s' only supports 'socket', 'maxconn', 'bind-process' and 'timeout' (got '%s')", args[0], args[1]);
return -1;
}
return 0;
}
/*
* This function exports the bound addresses of a <frontend> in the environment
* variable <varname>. Those addresses are separated by semicolons and prefixed
* with their type (abns@, unix@, sockpair@ etc)
* Return -1 upon error, 0 otherwise
*/
int listeners_setenv(struct proxy *frontend, const char *varname)
{
struct buffer *trash = get_trash_chunk();
struct bind_conf *bind_conf;
if (frontend) {
list_for_each_entry(bind_conf, &frontend->conf.bind, by_fe) {
struct listener *l;
list_for_each_entry(l, &bind_conf->listeners, by_bind) {
char addr[46];
char port[6];
/* separate listener by semicolons */
if (trash->data)
chunk_appendf(trash, ";");
if (l->rx.addr.ss_family == AF_UNIX) {
const struct sockaddr_un *un;
un = (struct sockaddr_un *)&l->rx.addr;
if (un->sun_path[0] == '\0') {
chunk_appendf(trash, "abns@%s", un->sun_path+1);
} else {
chunk_appendf(trash, "unix@%s", un->sun_path);
}
} else if (l->rx.addr.ss_family == AF_INET) {
addr_to_str(&l->rx.addr, addr, sizeof(addr));
port_to_str(&l->rx.addr, port, sizeof(port));
chunk_appendf(trash, "ipv4@%s:%s", addr, port);
} else if (l->rx.addr.ss_family == AF_INET6) {
addr_to_str(&l->rx.addr, addr, sizeof(addr));
port_to_str(&l->rx.addr, port, sizeof(port));
chunk_appendf(trash, "ipv6@[%s]:%s", addr, port);
} else if (l->rx.addr.ss_family == AF_CUST_SOCKPAIR) {
chunk_appendf(trash, "sockpair@%d", ((struct sockaddr_in *)&l->rx.addr)->sin_addr.s_addr);
}
}
}
trash->area[trash->data++] = '\0';
if (setenv(varname, trash->area, 1) < 0)
return -1;
}
return 0;
}
int cli_socket_setenv()
{
if (listeners_setenv(global.cli_fe, "HAPROXY_CLI") < 0)
return -1;
if (listeners_setenv(mworker_proxy, "HAPROXY_MASTER_CLI") < 0)
return -1;
return 0;
}
REGISTER_CONFIG_POSTPARSER("cli", cli_socket_setenv);
/* Verifies that the CLI at least has a level at least as high as <level>
* (typically ACCESS_LVL_ADMIN). Returns 1 if OK, otherwise 0. In case of
* failure, an error message is prepared and the appctx's state is adjusted
* to print it so that a return 1 is enough to abort any processing.
*/
int cli_has_level(struct appctx *appctx, int level)
{
if ((appctx->cli_level & ACCESS_LVL_MASK) < level) {
cli_err(appctx, cli_permission_denied_msg);
return 0;
}
return 1;
}
/* same as cli_has_level but for the CLI proxy and without error message */
int pcli_has_level(struct stream *s, int level)
{
if ((s->pcli_flags & ACCESS_LVL_MASK) < level) {
return 0;
}
return 1;
}
/* Returns severity_output for the current session if set, or default for the socket */
static int cli_get_severity_output(struct appctx *appctx)
{
if (appctx->cli_severity_output)
return appctx->cli_severity_output;
return strm_li(appctx_strm(appctx))->bind_conf->severity_output;
}
/* Processes the CLI interpreter on the stats socket. This function is called
* from the CLI's IO handler running in an appctx context. The function returns
* 1 if the request was understood, otherwise zero (in which case an error
* message will be displayed). It is called with appctx->st0
* set to CLI_ST_GETREQ and presets ->st2 to 0 so that parsers don't have to do
* it. It will possilbly leave st0 to CLI_ST_CALLBACK if the keyword needs to
* have its own I/O handler called again. Most of the time, parsers will only
* set st0 to CLI_ST_PRINT and put their message to be displayed into cli.msg.
* If a keyword parser is NULL and an I/O handler is declared, the I/O handler
* will automatically be used.
*/
static int cli_parse_request(struct appctx *appctx)
{
char *args[MAX_CLI_ARGS + 1], *p, *end, *payload = NULL;
int i = 0;
struct cli_kw *kw;
p = appctx->chunk->area;
end = p + appctx->chunk->data;
/*
* Get pointers on words.
* One extra slot is reserved to store a pointer on a null byte.
*/
while (i < MAX_CLI_ARGS && p < end) {
int j, k;
/* skip leading spaces/tabs */
p += strspn(p, " \t");
if (!*p)
break;
if (strcmp(p, PAYLOAD_PATTERN) == 0) {
/* payload pattern recognized here, this is not an arg anymore,
* the payload starts at the first byte that follows the zero
* after the pattern.
*/
payload = p + strlen(PAYLOAD_PATTERN) + 1;
break;
}
args[i] = p;
while (1) {
p += strcspn(p, " \t\\");
/* escaped chars using backlashes (\) */
if (*p == '\\') {
if (!*++p)
break;
if (!*++p)
break;
} else {
break;
}
}
*p++ = 0;
/* unescape backslashes (\) */
for (j = 0, k = 0; args[i][k]; k++) {
if (args[i][k] == '\\') {
if (args[i][k + 1] == '\\')
k++;
else
continue;
}
args[i][j] = args[i][k];
j++;
}
args[i][j] = 0;
i++;
}
/* fill unused slots */
p = appctx->chunk->area + appctx->chunk->data;
for (; i < MAX_CLI_ARGS + 1; i++)
args[i] = p;
kw = cli_find_kw(args);
if (!kw ||
(kw->level & ~appctx->cli_level & ACCESS_MASTER_ONLY) ||
(!(appctx->cli_level & ACCESS_MCLI_DEBUG) &&
(appctx->cli_level & ~kw->level & (ACCESS_MASTER_ONLY|ACCESS_MASTER)) == (ACCESS_MASTER_ONLY|ACCESS_MASTER))) {
/* keyword not found in this mode */
cli_gen_usage_msg(appctx, args);
return 0;
}
/* don't handle expert mode commands if not in this mode. */
if (kw->level & ~appctx->cli_level & ACCESS_EXPERT) {
cli_err(appctx, "This command is restricted to expert mode only.\n");
return 0;
}
if (kw->level & ~appctx->cli_level & ACCESS_EXPERIMENTAL) {
cli_err(appctx, "This command is restricted to experimental mode only.\n");
return 0;
}
if (kw->level == ACCESS_EXPERT)
mark_tainted(TAINTED_CLI_EXPERT_MODE);
else if (kw->level == ACCESS_EXPERIMENTAL)
mark_tainted(TAINTED_CLI_EXPERIMENTAL_MODE);
appctx->io_handler = kw->io_handler;
appctx->io_release = kw->io_release;
if (kw->parse && kw->parse(args, payload, appctx, kw->private) != 0)
goto fail;
/* kw->parse could set its own io_handler or io_release handler */
if (!appctx->io_handler)
goto fail;
appctx->st0 = CLI_ST_CALLBACK;
return 1;
fail:
appctx->io_handler = NULL;
appctx->io_release = NULL;
return 1;
}
/* prepends then outputs the argument msg with a syslog-type severity depending on severity_output value */
static int cli_output_msg(struct channel *chn, const char *msg, int severity, int severity_output)
{
struct buffer *tmp;
if (likely(severity_output == CLI_SEVERITY_NONE))
return ci_putblk(chn, msg, strlen(msg));
tmp = get_trash_chunk();
chunk_reset(tmp);
if (severity < 0 || severity > 7) {
ha_warning("socket command feedback with invalid severity %d", severity);
chunk_printf(tmp, "[%d]: ", severity);
}
else {
switch (severity_output) {
case CLI_SEVERITY_NUMBER:
chunk_printf(tmp, "[%d]: ", severity);
break;
case CLI_SEVERITY_STRING:
chunk_printf(tmp, "[%s]: ", log_levels[severity]);
break;
default:
ha_warning("Unrecognized severity output %d", severity_output);
}
}
chunk_appendf(tmp, "%s", msg);
return ci_putblk(chn, tmp->area, strlen(tmp->area));
}
/* This I/O handler runs as an applet embedded in a stream connector. It is
* used to processes I/O from/to the stats unix socket. The system relies on a
* state machine handling requests and various responses. We read a request,
* then we process it and send the response, and we possibly display a prompt.
* Then we can read again. The state is stored in appctx->st0 and is one of the
* CLI_ST_* constants. appctx->st1 is used to indicate whether prompt is enabled
* or not.
*/
static void cli_io_handler(struct appctx *appctx)
{
struct stconn *sc = appctx_sc(appctx);
struct channel *req = sc_oc(sc);
struct channel *res = sc_ic(sc);
struct bind_conf *bind_conf = strm_li(__sc_strm(sc))->bind_conf;
int reql;
int len;
if (unlikely(sc->state == SC_ST_DIS || sc->state == SC_ST_CLO))
goto out;
/* Check if the input buffer is available. */
if (res->buf.size == 0) {
/* buf.size==0 means we failed to get a buffer and were
* already subscribed to a wait list to get a buffer.
*/
goto out;
}
while (1) {
if (appctx->st0 == CLI_ST_INIT) {
/* reset severity to default at init */
appctx->cli_severity_output = bind_conf->severity_output;
applet_reset_svcctx(appctx);
appctx->st0 = CLI_ST_GETREQ;
appctx->cli_level = bind_conf->level;
}
else if (appctx->st0 == CLI_ST_END) {
/* Let's close for real now. We just close the request
* side, the conditions below will complete if needed.
*/
sc_shutw(sc);
free_trash_chunk(appctx->chunk);
appctx->chunk = NULL;
break;
}
else if (appctx->st0 == CLI_ST_GETREQ) {
char *str;
/* use a trash chunk to store received data */
if (!appctx->chunk) {
appctx->chunk = alloc_trash_chunk();
if (!appctx->chunk) {
appctx->st0 = CLI_ST_END;
continue;
}
}
str = appctx->chunk->area + appctx->chunk->data;
/* ensure we have some output room left in the event we
* would want to return some info right after parsing.
*/
if (buffer_almost_full(sc_ib(sc))) {
sc_need_room(sc);
break;
}
/* payload doesn't take escapes nor does it end on semi-colons, so
* we use the regular getline. Normal mode however must stop on
* LFs and semi-colons that are not prefixed by a backslash. Note
* that we reserve one byte at the end to insert a trailing nul byte.
*/
if (appctx->st1 & APPCTX_CLI_ST1_PAYLOAD)
reql = co_getline(sc_oc(sc), str,
appctx->chunk->size - appctx->chunk->data - 1);
else
reql = co_getdelim(sc_oc(sc), str,
appctx->chunk->size - appctx->chunk->data - 1,
"\n;", '\\');
if (reql <= 0) { /* closed or EOL not found */
if (reql == 0)
break;
appctx->st0 = CLI_ST_END;
continue;
}
if (!(appctx->st1 & APPCTX_CLI_ST1_PAYLOAD)) {
/* seek for a possible unescaped semi-colon. If we find
* one, we replace it with an LF and skip only this part.
*/
for (len = 0; len < reql; len++) {
if (str[len] == '\\') {
len++;
continue;
}
if (str[len] == ';') {
str[len] = '\n';
reql = len + 1;
break;
}
}
}
/* now it is time to check that we have a full line,
* remove the trailing \n and possibly \r, then cut the
* line.
*/
len = reql - 1;
if (str[len] != '\n') {
appctx->st0 = CLI_ST_END;
continue;
}
if (len && str[len-1] == '\r')
len--;
str[len] = '\0';
appctx->chunk->data += len;
if (appctx->st1 & APPCTX_CLI_ST1_PAYLOAD) {
appctx->chunk->area[appctx->chunk->data] = '\n';
appctx->chunk->area[appctx->chunk->data + 1] = 0;
appctx->chunk->data++;
}
appctx->st0 = CLI_ST_PROMPT;
if (appctx->st1 & APPCTX_CLI_ST1_PAYLOAD) {
/* empty line */
if (!len) {
/* remove the last two \n */
appctx->chunk->data -= 2;
appctx->chunk->area[appctx->chunk->data] = 0;
cli_parse_request(appctx);
chunk_reset(appctx->chunk);
/* NB: cli_sock_parse_request() may have put
* another CLI_ST_O_* into appctx->st0.
*/
appctx->st1 &= ~APPCTX_CLI_ST1_PAYLOAD;
}
}
else {
/*
* Look for the "payload start" pattern at the end of a line
* Its location is not remembered here, this is just to switch
* to a gathering mode.
*/
if (strcmp(appctx->chunk->area + appctx->chunk->data - strlen(PAYLOAD_PATTERN), PAYLOAD_PATTERN) == 0) {
appctx->st1 |= APPCTX_CLI_ST1_PAYLOAD;
appctx->chunk->data++; // keep the trailing \0 after '<<'
}
else {
/* no payload, the command is complete: parse the request */
cli_parse_request(appctx);
chunk_reset(appctx->chunk);
}
}
/* re-adjust req buffer */
co_skip(sc_oc(sc), reql);
req->flags |= CF_READ_DONTWAIT; /* we plan to read small requests */
}
else { /* output functions */
struct cli_print_ctx *ctx;
const char *msg;
int sev;
switch (appctx->st0) {
case CLI_ST_PROMPT:
break;
case CLI_ST_PRINT: /* print const message in msg */
case CLI_ST_PRINT_ERR: /* print const error in msg */
case CLI_ST_PRINT_DYN: /* print dyn message in msg, free */
case CLI_ST_PRINT_FREE: /* print dyn error in err, free */
/* the message is in the svcctx */
ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
if (appctx->st0 == CLI_ST_PRINT || appctx->st0 == CLI_ST_PRINT_ERR) {
sev = appctx->st0 == CLI_ST_PRINT_ERR ?
LOG_ERR : ctx->severity;
msg = ctx->msg;
}
else if (appctx->st0 == CLI_ST_PRINT_DYN || appctx->st0 == CLI_ST_PRINT_FREE) {
sev = appctx->st0 == CLI_ST_PRINT_FREE ?
LOG_ERR : ctx->severity;
msg = ctx->err;
if (!msg) {
sev = LOG_ERR;
msg = "Out of memory.\n";
}
}
else {
sev = LOG_ERR;
msg = "Internal error.\n";
}
if (cli_output_msg(res, msg, sev, cli_get_severity_output(appctx)) != -1) {
if (appctx->st0 == CLI_ST_PRINT_FREE ||
appctx->st0 == CLI_ST_PRINT_DYN) {
ha_free(&ctx->err);
}
appctx->st0 = CLI_ST_PROMPT;
}
else
sc_need_room(sc);
break;
case CLI_ST_CALLBACK: /* use custom pointer */
if (appctx->io_handler)
if (appctx->io_handler(appctx)) {
appctx->st0 = CLI_ST_PROMPT;
if (appctx->io_release) {
appctx->io_release(appctx);
appctx->io_release = NULL;
}
}
break;
default: /* abnormal state */
se_fl_set(appctx->sedesc, SE_FL_ERROR);
break;
}
/* The post-command prompt is either LF alone or LF + '> ' in interactive mode */
if (appctx->st0 == CLI_ST_PROMPT) {
const char *prompt = "";
if (appctx->st1 & APPCTX_CLI_ST1_PROMPT) {
/*
* when entering a payload with interactive mode, change the prompt
* to emphasize that more data can still be sent
*/
if (appctx->chunk->data && appctx->st1 & APPCTX_CLI_ST1_PAYLOAD)
prompt = "+ ";
else
prompt = "\n> ";
}
else {
if (!(appctx->st1 & (APPCTX_CLI_ST1_PAYLOAD|APPCTX_CLI_ST1_NOLF)))
prompt = "\n";
}
if (applet_putstr(appctx, prompt) != -1) {
applet_reset_svcctx(appctx);
appctx->st0 = CLI_ST_GETREQ;
}
}
/* If the output functions are still there, it means they require more room. */
if (appctx->st0 >= CLI_ST_OUTPUT) {
applet_wont_consume(appctx);
break;
}
/* Now we close the output if one of the writers did so,
* or if we're not in interactive mode and the request
* buffer is empty. This still allows pipelined requests
* to be sent in non-interactive mode.
*/
if (((res->flags & (CF_SHUTW|CF_SHUTW_NOW))) ||
(!(appctx->st1 & APPCTX_CLI_ST1_PROMPT) && !co_data(req) && (!(appctx->st1 & APPCTX_CLI_ST1_PAYLOAD)))) {
appctx->st0 = CLI_ST_END;
continue;
}
/* switch state back to GETREQ to read next requests */
applet_reset_svcctx(appctx);
appctx->st0 = CLI_ST_GETREQ;
applet_will_consume(appctx);
/* reactivate the \n at the end of the response for the next command */
appctx->st1 &= ~APPCTX_CLI_ST1_NOLF;
/* this forces us to yield between pipelined commands and
* avoid extremely long latencies (e.g. "del map" etc). In
* addition this increases the likelihood that the stream
* refills the buffer with new bytes in non-interactive
* mode, avoiding to close on apparently empty commands.
*/
if (co_data(sc_oc(sc))) {
appctx_wakeup(appctx);
goto out;
}
}
}
if ((res->flags & CF_SHUTR) && (sc->state == SC_ST_EST)) {
DPRINTF(stderr, "%s@%d: sc to buf closed. req=%08x, res=%08x, st=%d\n",
__FUNCTION__, __LINE__, req->flags, res->flags, sc->state);
/* Other side has closed, let's abort if we have no more processing to do
* and nothing more to consume. This is comparable to a broken pipe, so
* we forward the close to the request side so that it flows upstream to
* the client.
*/
sc_shutw(sc);
}
if ((req->flags & CF_SHUTW) && (sc->state == SC_ST_EST) && (appctx->st0 < CLI_ST_OUTPUT)) {
DPRINTF(stderr, "%s@%d: buf to sc closed. req=%08x, res=%08x, st=%d\n",
__FUNCTION__, __LINE__, req->flags, res->flags, sc->state);
/* We have no more processing to do, and nothing more to send, and
* the client side has closed. So we'll forward this state downstream
* on the response buffer.
*/
sc_shutr(sc);
res->flags |= CF_READ_NULL;
}
out:
DPRINTF(stderr, "%s@%d: st=%d, rqf=%x, rpf=%x, rqh=%lu, rqs=%lu, rh=%lu, rs=%lu\n",
__FUNCTION__, __LINE__,
sc->state, req->flags, res->flags, ci_data(req), co_data(req), ci_data(res), co_data(res));
}
/* This is called when the stream connector is closed. For instance, upon an
* external abort, we won't call the i/o handler anymore so we may need to
* remove back references to the stream currently being dumped.
*/
static void cli_release_handler(struct appctx *appctx)
{
free_trash_chunk(appctx->chunk);
appctx->chunk = NULL;
if (appctx->io_release) {
appctx->io_release(appctx);
appctx->io_release = NULL;
}
else if (appctx->st0 == CLI_ST_PRINT_FREE || appctx->st0 == CLI_ST_PRINT_DYN) {
struct cli_print_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
ha_free(&ctx->err);
}
}
/* This function dumps all environmnent variables to the buffer. It returns 0
* if the output buffer is full and it needs to be called again, otherwise
* non-zero. It takes its context from the show_env_ctx in svcctx, and will
* start from ->var and dump only one variable if ->show_one is set.
*/
static int cli_io_handler_show_env(struct appctx *appctx)
{
struct show_env_ctx *ctx = appctx->svcctx;
struct stconn *sc = appctx_sc(appctx);
char **var = ctx->var;
if (unlikely(sc_ic(sc)->flags & (CF_WRITE_ERROR|CF_SHUTW)))
return 1;
chunk_reset(&trash);
/* we have two inner loops here, one for the proxy, the other one for
* the buffer.
*/
while (*var) {
chunk_printf(&trash, "%s\n", *var);
if (applet_putchk(appctx, &trash) == -1)
return 0;
if (ctx->show_one)
break;
var++;
ctx->var = var;
}
/* dump complete */
return 1;
}
/* This function dumps all file descriptors states (or the requested one) to
* the buffer. It returns 0 if the output buffer is full and it needs to be
* called again, otherwise non-zero. It takes its context from the show_fd_ctx
* in svcctx, only dumps one entry if ->show_one is non-zero, and (re)starts
* from ->fd.
*/
static int cli_io_handler_show_fd(struct appctx *appctx)
{
struct stconn *sc = appctx_sc(appctx);
struct show_fd_ctx *fdctx = appctx->svcctx;
int fd = fdctx->fd;
int ret = 1;
if (unlikely(sc_ic(sc)->flags & (CF_WRITE_ERROR|CF_SHUTW)))
goto end;
chunk_reset(&trash);
/* isolate the threads once per round. We're limited to a buffer worth
* of output anyway, it cannot last very long.
*/
thread_isolate();
/* we have two inner loops here, one for the proxy, the other one for
* the buffer.
*/
while (fd >= 0 && fd < global.maxsock) {
struct fdtab fdt;
const struct listener *li = NULL;
const struct server *sv = NULL;
const struct proxy *px = NULL;
const struct connection *conn = NULL;
const struct mux_ops *mux = NULL;
const struct xprt_ops *xprt = NULL;
const void *ctx = NULL;
const void *xprt_ctx = NULL;
uint32_t conn_flags = 0;
int is_back = 0;
int suspicious = 0;
fdt = fdtab[fd];
/* When DEBUG_FD is set, we also report closed FDs that have a
* non-null event count to detect stuck ones.
*/
if (!fdt.owner) {
#ifdef DEBUG_FD
if (!fdt.event_count)
#endif
goto skip; // closed
}
else if (fdt.iocb == sock_conn_iocb) {
conn = (const struct connection *)fdt.owner;
conn_flags = conn->flags;
mux = conn->mux;
ctx = conn->ctx;
xprt = conn->xprt;
xprt_ctx = conn->xprt_ctx;
li = objt_listener(conn->target);
sv = objt_server(conn->target);
px = objt_proxy(conn->target);
is_back = conn_is_back(conn);
if (atleast2(fdt.thread_mask))
suspicious = 1;
if (conn->handle.fd != fd)
suspicious = 1;
}
else if (fdt.iocb == sock_accept_iocb)
li = fdt.owner;
if (!fdt.thread_mask)
suspicious = 1;
chunk_printf(&trash,
" %5d : st=0x%06x(%c%c %c%c%c%c%c W:%c%c%c R:%c%c%c) ref=%#x gid=%d tmask=0x%lx umask=0x%lx owner=%p iocb=%p(",
fd,
fdt.state,
(fdt.state & FD_CLONED) ? 'C' : 'c',
(fdt.state & FD_LINGER_RISK) ? 'L' : 'l',
(fdt.state & FD_POLL_HUP) ? 'H' : 'h',
(fdt.state & FD_POLL_ERR) ? 'E' : 'e',
(fdt.state & FD_POLL_OUT) ? 'O' : 'o',
(fdt.state & FD_POLL_PRI) ? 'P' : 'p',
(fdt.state & FD_POLL_IN) ? 'I' : 'i',
(fdt.state & FD_EV_SHUT_W) ? 'S' : 's',
(fdt.state & FD_EV_READY_W) ? 'R' : 'r',
(fdt.state & FD_EV_ACTIVE_W) ? 'A' : 'a',
(fdt.state & FD_EV_SHUT_R) ? 'S' : 's',
(fdt.state & FD_EV_READY_R) ? 'R' : 'r',
(fdt.state & FD_EV_ACTIVE_R) ? 'A' : 'a',
(fdt.refc_tgid >> 4) & 0xffff,
(fdt.refc_tgid) & 0xffff,
fdt.thread_mask, fdt.update_mask,
fdt.owner,
fdt.iocb);
resolve_sym_name(&trash, NULL, fdt.iocb);
if (!fdt.owner) {
chunk_appendf(&trash, ")");
}
else if (fdt.iocb == sock_conn_iocb) {
chunk_appendf(&trash, ") back=%d cflg=0x%08x", is_back, conn_flags);
if (conn->handle.fd != fd) {
chunk_appendf(&trash, " fd=%d(BOGUS)", conn->handle.fd);
suspicious = 1;
} else {
struct sockaddr_storage sa;
socklen_t salen;
salen = sizeof(sa);
if (getsockname(fd, (struct sockaddr *)&sa, &salen) != -1) {
if (sa.ss_family == AF_INET)
chunk_appendf(&trash, " fam=ipv4 lport=%d", ntohs(((const struct sockaddr_in *)&sa)->sin_port));
else if (sa.ss_family == AF_INET6)
chunk_appendf(&trash, " fam=ipv6 lport=%d", ntohs(((const struct sockaddr_in6 *)&sa)->sin6_port));
else if (sa.ss_family == AF_UNIX)
chunk_appendf(&trash, " fam=unix");
}
salen = sizeof(sa);
if (getpeername(fd, (struct sockaddr *)&sa, &salen) != -1) {
if (sa.ss_family == AF_INET)
chunk_appendf(&trash, " rport=%d", ntohs(((const struct sockaddr_in *)&sa)->sin_port));
else if (sa.ss_family == AF_INET6)
chunk_appendf(&trash, " rport=%d", ntohs(((const struct sockaddr_in6 *)&sa)->sin6_port));
}
}
if (px)
chunk_appendf(&trash, " px=%s", px->id);
else if (sv)
chunk_appendf(&trash, " sv=%s/%s", sv->proxy->id, sv->id);
else if (li)
chunk_appendf(&trash, " fe=%s", li->bind_conf->frontend->id);
if (mux) {
chunk_appendf(&trash, " mux=%s ctx=%p", mux->name, ctx);
if (!ctx)
suspicious = 1;
if (mux->show_fd)
suspicious |= mux->show_fd(&trash, fdt.owner);
}
else
chunk_appendf(&trash, " nomux");
chunk_appendf(&trash, " xprt=%s", xprt ? xprt->name : "");
if (xprt) {
if (xprt_ctx || xprt->show_fd)
chunk_appendf(&trash, " xprt_ctx=%p", xprt_ctx);
if (xprt->show_fd)
suspicious |= xprt->show_fd(&trash, conn, xprt_ctx);
}
}
else if (fdt.iocb == sock_accept_iocb) {
struct sockaddr_storage sa;
socklen_t salen;
chunk_appendf(&trash, ") l.st=%s fe=%s",
listener_state_str(li),
li->bind_conf->frontend->id);
salen = sizeof(sa);
if (getsockname(fd, (struct sockaddr *)&sa, &salen) != -1) {
if (sa.ss_family == AF_INET)
chunk_appendf(&trash, " fam=ipv4 lport=%d", ntohs(((const struct sockaddr_in *)&sa)->sin_port));
else if (sa.ss_family == AF_INET6)
chunk_appendf(&trash, " fam=ipv6 lport=%d", ntohs(((const struct sockaddr_in6 *)&sa)->sin6_port));
else if (sa.ss_family == AF_UNIX)
chunk_appendf(&trash, " fam=unix");
}
}
else
chunk_appendf(&trash, ")");
#ifdef DEBUG_FD
chunk_appendf(&trash, " evcnt=%u", fdtab[fd].event_count);
if (fdtab[fd].event_count >= 1000000)
suspicious = 1;
#endif
chunk_appendf(&trash, "%s\n", suspicious ? " !" : "");
if (applet_putchk(appctx, &trash) == -1) {
fdctx->fd = fd;
ret = 0;
break;
}
skip:
if (fdctx->show_one)
break;
fd++;
}
end:
/* dump complete */
thread_release();
return ret;
}
/* This function dumps some activity counters used by developers and support to
* rule out some hypothesis during bug reports. It returns 0 if the output
* buffer is full and it needs to be called again, otherwise non-zero. It dumps
* everything at once in the buffer and is not designed to do it in multiple
* passes.
*/
static int cli_io_handler_show_activity(struct appctx *appctx)
{
struct stconn *sc = appctx_sc(appctx);
struct show_activity_ctx *actctx = appctx->svcctx;
int tgt = actctx->thr; // target thread, -1 for all, 0 for total only
int thr;
if (unlikely(sc_ic(sc)->flags & (CF_WRITE_ERROR|CF_SHUTW)))
return 1;
chunk_reset(&trash);
#undef SHOW_TOT
#define SHOW_TOT(t, x) \
do { \
unsigned int _v[MAX_THREADS]; \
unsigned int _tot; \
const unsigned int _nbt = global.nbthread; \
_tot = t = 0; \
do { \
_tot += _v[t] = (x); \
} while (++t < _nbt); \
if (_nbt == 1) { \
chunk_appendf(&trash, " %u\n", _tot); \
break; \
} \
if (tgt == -1) { \
chunk_appendf(&trash, " %u [", _tot); \
for (t = 0; t < _nbt; t++) \
chunk_appendf(&trash, " %u", _v[t]); \
chunk_appendf(&trash, " ]\n"); \
} else if (tgt == 0) \
chunk_appendf(&trash, " %u\n", _tot); \
else \
chunk_appendf(&trash, " %u\n", _v[tgt-1]);\
} while (0)
#undef SHOW_AVG
#define SHOW_AVG(t, x) \
do { \
unsigned int _v[MAX_THREADS]; \
unsigned int _tot; \
const unsigned int _nbt = global.nbthread; \
_tot = t = 0; \
do { \
_tot += _v[t] = (x); \
} while (++t < _nbt); \
if (_nbt == 1) { \
chunk_appendf(&trash, " %u\n", _tot); \
break; \
} \
if (tgt == -1) { \
chunk_appendf(&trash, " %u [", (_tot + _nbt/2) / _nbt); \
for (t = 0; t < _nbt; t++) \
chunk_appendf(&trash, " %u", _v[t]); \
chunk_appendf(&trash, " ]\n"); \
} else if (tgt == 0) \
chunk_appendf(&trash, " %u\n", (_tot + _nbt/2) / _nbt); \
else \
chunk_appendf(&trash, " %u\n", _v[tgt-1]);\
} while (0)
chunk_appendf(&trash, "thread_id: %u (%u..%u)\n", tid + 1, 1, global.nbthread);
chunk_appendf(&trash, "date_now: %lu.%06lu\n", (long)now.tv_sec, (long)now.tv_usec);
chunk_appendf(&trash, "ctxsw:"); SHOW_TOT(thr, activity[thr].ctxsw);
chunk_appendf(&trash, "tasksw:"); SHOW_TOT(thr, activity[thr].tasksw);
chunk_appendf(&trash, "empty_rq:"); SHOW_TOT(thr, activity[thr].empty_rq);
chunk_appendf(&trash, "long_rq:"); SHOW_TOT(thr, activity[thr].long_rq);
chunk_appendf(&trash, "loops:"); SHOW_TOT(thr, activity[thr].loops);
chunk_appendf(&trash, "wake_tasks:"); SHOW_TOT(thr, activity[thr].wake_tasks);
chunk_appendf(&trash, "wake_signal:"); SHOW_TOT(thr, activity[thr].wake_signal);
chunk_appendf(&trash, "poll_io:"); SHOW_TOT(thr, activity[thr].poll_io);
chunk_appendf(&trash, "poll_exp:"); SHOW_TOT(thr, activity[thr].poll_exp);
chunk_appendf(&trash, "poll_drop_fd:"); SHOW_TOT(thr, activity[thr].poll_drop_fd);
chunk_appendf(&trash, "poll_skip_fd:"); SHOW_TOT(thr, activity[thr].poll_skip_fd);
chunk_appendf(&trash, "conn_dead:"); SHOW_TOT(thr, activity[thr].conn_dead);
chunk_appendf(&trash, "stream_calls:"); SHOW_TOT(thr, activity[thr].stream_calls);
chunk_appendf(&trash, "pool_fail:"); SHOW_TOT(thr, activity[thr].pool_fail);
chunk_appendf(&trash, "buf_wait:"); SHOW_TOT(thr, activity[thr].buf_wait);
chunk_appendf(&trash, "cpust_ms_tot:"); SHOW_TOT(thr, activity[thr].cpust_total / 2);
chunk_appendf(&trash, "cpust_ms_1s:"); SHOW_TOT(thr, read_freq_ctr(&activity[thr].cpust_1s) / 2);
chunk_appendf(&trash, "cpust_ms_15s:"); SHOW_TOT(thr, read_freq_ctr_period(&activity[thr].cpust_15s, 15000) / 2);
chunk_appendf(&trash, "avg_loop_us:"); SHOW_AVG(thr, swrate_avg(activity[thr].avg_loop_us, TIME_STATS_SAMPLES));
chunk_appendf(&trash, "accepted:"); SHOW_TOT(thr, activity[thr].accepted);
chunk_appendf(&trash, "accq_pushed:"); SHOW_TOT(thr, activity[thr].accq_pushed);
chunk_appendf(&trash, "accq_full:"); SHOW_TOT(thr, activity[thr].accq_full);
#ifdef USE_THREAD
chunk_appendf(&trash, "accq_ring:"); SHOW_TOT(thr, (accept_queue_rings[thr].tail - accept_queue_rings[thr].head + ACCEPT_QUEUE_SIZE) % ACCEPT_QUEUE_SIZE);
chunk_appendf(&trash, "fd_takeover:"); SHOW_TOT(thr, activity[thr].fd_takeover);
#endif
#if defined(DEBUG_DEV)
/* keep these ones at the end */
chunk_appendf(&trash, "ctr0:"); SHOW_TOT(thr, activity[thr].ctr0);
chunk_appendf(&trash, "ctr1:"); SHOW_TOT(thr, activity[thr].ctr1);
chunk_appendf(&trash, "ctr2:"); SHOW_TOT(thr, activity[thr].ctr2);
#endif
if (applet_putchk(appctx, &trash) == -1) {
chunk_reset(&trash);
chunk_printf(&trash, "[output too large, cannot dump]\n");
}
#undef SHOW_AVG
#undef SHOW_TOT
/* dump complete */
return 1;
}
/*
* CLI IO handler for `show cli sockets`.
* Uses the svcctx as a show_sock_ctx to store/retrieve the bind_conf and the
* listener pointers.
*/
static int cli_io_handler_show_cli_sock(struct appctx *appctx)
{
struct show_sock_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
struct bind_conf *bind_conf = ctx->bind_conf;
if (!global.cli_fe)
goto done;
chunk_reset(&trash);
if (!bind_conf) {
/* first call */
if (applet_putstr(appctx, "# socket lvl processes\n") == -1)
goto full;
bind_conf = LIST_ELEM(global.cli_fe->conf.bind.n, typeof(bind_conf), by_fe);
}
list_for_each_entry_from(bind_conf, &global.cli_fe->conf.bind, by_fe) {
struct listener *l = ctx->listener;
if (!l)
l = LIST_ELEM(bind_conf->listeners.n, typeof(l), by_bind);
list_for_each_entry_from(l, &bind_conf->listeners, by_bind) {
char addr[46];
char port[6];
if (l->rx.addr.ss_family == AF_UNIX) {
const struct sockaddr_un *un;
un = (struct sockaddr_un *)&l->rx.addr;
if (un->sun_path[0] == '\0') {
chunk_appendf(&trash, "abns@%s ", un->sun_path+1);
} else {
chunk_appendf(&trash, "unix@%s ", un->sun_path);
}
} else if (l->rx.addr.ss_family == AF_INET) {
addr_to_str(&l->rx.addr, addr, sizeof(addr));
port_to_str(&l->rx.addr, port, sizeof(port));
chunk_appendf(&trash, "ipv4@%s:%s ", addr, port);
} else if (l->rx.addr.ss_family == AF_INET6) {
addr_to_str(&l->rx.addr, addr, sizeof(addr));
port_to_str(&l->rx.addr, port, sizeof(port));
chunk_appendf(&trash, "ipv6@[%s]:%s ", addr, port);
} else if (l->rx.addr.ss_family == AF_CUST_SOCKPAIR) {
chunk_appendf(&trash, "sockpair@%d ", ((struct sockaddr_in *)&l->rx.addr)->sin_addr.s_addr);
} else
chunk_appendf(&trash, "unknown ");
if ((bind_conf->level & ACCESS_LVL_MASK) == ACCESS_LVL_ADMIN)
chunk_appendf(&trash, "admin ");
else if ((bind_conf->level & ACCESS_LVL_MASK) == ACCESS_LVL_OPER)
chunk_appendf(&trash, "operator ");
else if ((bind_conf->level & ACCESS_LVL_MASK) == ACCESS_LVL_USER)
chunk_appendf(&trash, "user ");
else
chunk_appendf(&trash, " ");
chunk_appendf(&trash, "all\n");
if (applet_putchk(appctx, &trash) == -1) {
ctx->bind_conf = bind_conf;
ctx->listener = l;
goto full;
}
}
}
done:
return 1;
full:
return 0;
}
/* parse a "show activity" CLI request. Returns 0 if it needs to continue, 1 if it
* wants to stop here. It sets a show_activity_ctx context where, if a specific
* thread is requested, it puts the thread number into ->thr otherwise sets it to
* -1.
*/
static int cli_parse_show_activity(char **args, char *payload, struct appctx *appctx, void *private)
{
struct show_activity_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
if (!cli_has_level(appctx, ACCESS_LVL_OPER))
return 1;
ctx->thr = -1; // show all by default
if (*args[2])
ctx->thr = atoi(args[2]);
if (ctx->thr < -1 || ctx->thr > global.nbthread)
return cli_err(appctx, "Thread ID number must be between -1 and nbthread\n");
return 0;
}
/* parse a "show env" CLI request. Returns 0 if it needs to continue, 1 if it
* wants to stop here. It reserves a sohw_env_ctx where it puts the variable to
* be dumped as well as a flag if a single variable is requested, otherwise puts
* environ there.
*/
static int cli_parse_show_env(char **args, char *payload, struct appctx *appctx, void *private)
{
struct show_env_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
extern char **environ;
char **var;
if (!cli_has_level(appctx, ACCESS_LVL_OPER))
return 1;
var = environ;
if (*args[2]) {
int len = strlen(args[2]);
for (; *var; var++) {
if (strncmp(*var, args[2], len) == 0 &&
(*var)[len] == '=')
break;
}
if (!*var)
return cli_err(appctx, "Variable not found\n");
ctx->show_one = 1;
}
ctx->var = var;
return 0;
}
/* parse a "show fd" CLI request. Returns 0 if it needs to continue, 1 if it
* wants to stop here. It sets a show_fd_ctx context where, if a specific fd is
* requested, it puts the FD number into ->fd and sets ->show_one to 1.
*/
static int cli_parse_show_fd(char **args, char *payload, struct appctx *appctx, void *private)
{
struct show_fd_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
if (!cli_has_level(appctx, ACCESS_LVL_OPER))
return 1;
if (*args[2]) {
ctx->fd = atoi(args[2]);
ctx->show_one = 1;
}
return 0;
}
/* parse a "set timeout" CLI request. It always returns 1. */
static int cli_parse_set_timeout(char **args, char *payload, struct appctx *appctx, void *private)
{
struct stream *s = appctx_strm(appctx);
if (strcmp(args[2], "cli") == 0) {
unsigned timeout;
const char *res;
if (!*args[3])
return cli_err(appctx, "Expects an integer value.\n");
res = parse_time_err(args[3], &timeout, TIME_UNIT_S);
if (res || timeout < 1)
return cli_err(appctx, "Invalid timeout value.\n");
s->req.rto = s->res.wto = 1 + MS_TO_TICKS(timeout*1000);
task_wakeup(s->task, TASK_WOKEN_MSG); // recompute timeouts
return 1;
}
return cli_err(appctx, "'set timeout' only supports 'cli'.\n");
}
/* parse a "set maxconn global" command. It always returns 1. */
static int cli_parse_set_maxconn_global(char **args, char *payload, struct appctx *appctx, void *private)
{
int v;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
if (!*args[3])
return cli_err(appctx, "Expects an integer value.\n");
v = atoi(args[3]);
if (v > global.hardmaxconn)
return cli_err(appctx, "Value out of range.\n");
/* check for unlimited values */
if (v <= 0)
v = global.hardmaxconn;
global.maxconn = v;
/* Dequeues all of the listeners waiting for a resource */
dequeue_all_listeners();
return 1;
}
static int set_severity_output(int *target, char *argument)
{
if (strcmp(argument, "none") == 0) {
*target = CLI_SEVERITY_NONE;
return 1;
}
else if (strcmp(argument, "number") == 0) {
*target = CLI_SEVERITY_NUMBER;
return 1;
}
else if (strcmp(argument, "string") == 0) {
*target = CLI_SEVERITY_STRING;
return 1;
}
return 0;
}
/* parse a "set severity-output" command. */
static int cli_parse_set_severity_output(char **args, char *payload, struct appctx *appctx, void *private)
{
if (*args[2] && set_severity_output(&appctx->cli_severity_output, args[2]))
return 0;
return cli_err(appctx, "one of 'none', 'number', 'string' is a required argument\n");
}
/* show the level of the current CLI session */
static int cli_parse_show_lvl(char **args, char *payload, struct appctx *appctx, void *private)
{
if ((appctx->cli_level & ACCESS_LVL_MASK) == ACCESS_LVL_ADMIN)
return cli_msg(appctx, LOG_INFO, "admin\n");
else if ((appctx->cli_level & ACCESS_LVL_MASK) == ACCESS_LVL_OPER)
return cli_msg(appctx, LOG_INFO, "operator\n");
else if ((appctx->cli_level & ACCESS_LVL_MASK) == ACCESS_LVL_USER)
return cli_msg(appctx, LOG_INFO, "user\n");
else
return cli_msg(appctx, LOG_INFO, "unknown\n");
}
/* parse and set the CLI level dynamically */
static int cli_parse_set_lvl(char **args, char *payload, struct appctx *appctx, void *private)
{
/* this will ask the applet to not output a \n after the command */
if (strcmp(args[1], "-") == 0)
appctx->st1 |= APPCTX_CLI_ST1_NOLF;
if (strcmp(args[0], "operator") == 0) {
if (!cli_has_level(appctx, ACCESS_LVL_OPER)) {
return 1;
}
appctx->cli_level &= ~ACCESS_LVL_MASK;
appctx->cli_level |= ACCESS_LVL_OPER;
} else if (strcmp(args[0], "user") == 0) {
if (!cli_has_level(appctx, ACCESS_LVL_USER)) {
return 1;
}
appctx->cli_level &= ~ACCESS_LVL_MASK;
appctx->cli_level |= ACCESS_LVL_USER;
}
appctx->cli_level &= ~(ACCESS_EXPERT|ACCESS_EXPERIMENTAL);
return 1;
}
/* parse and set the CLI expert/experimental-mode dynamically */
static int cli_parse_expert_experimental_mode(char **args, char *payload, struct appctx *appctx, void *private)
{
int level;
char *level_str;
char *output = NULL;
/* this will ask the applet to not output a \n after the command */
if (*args[1] && *args[2] && strcmp(args[2], "-") == 0)
appctx->st1 |= APPCTX_CLI_ST1_NOLF;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
if (strcmp(args[0], "expert-mode") == 0) {
level = ACCESS_EXPERT;
level_str = "expert-mode";
}
else if (strcmp(args[0], "experimental-mode") == 0) {
level = ACCESS_EXPERIMENTAL;
level_str = "experimental-mode";
}
else if (strcmp(args[0], "mcli-debug-mode") == 0) {
level = ACCESS_MCLI_DEBUG;
level_str = "mcli-debug-mode";
}
else {
return 1;
}
if (!*args[1]) {
memprintf(&output, "%s is %s\n", level_str,
(appctx->cli_level & level) ? "ON" : "OFF");
return cli_dynmsg(appctx, LOG_INFO, output);
}
appctx->cli_level &= ~level;
if (strcmp(args[1], "on") == 0)
appctx->cli_level |= level;
return 1;
}
/* shows HAProxy version */
static int cli_parse_show_version(char **args, char *payload, struct appctx *appctx, void *private)
{
char *msg = NULL;
return cli_dynmsg(appctx, LOG_INFO, memprintf(&msg, "%s\n", haproxy_version));
}
int cli_parse_default(char **args, char *payload, struct appctx *appctx, void *private)
{
return 0;
}
/* enable or disable the anonymized mode, it returns 1 when it works or displays an error message if it doesn't. */
static int cli_parse_set_anon(char **args, char *payload, struct appctx *appctx, void *private)
{
uint32_t tmp;
long long key;
if (strcmp(args[2], "on") == 0) {
if (*args[3]) {
key = atoll(args[3]);
if (key < 1 || key > UINT_MAX)
return cli_err(appctx, "Value out of range (1 to 4294967295 expected).\n");
appctx->cli_anon_key = key;
}
else {
tmp = HA_ATOMIC_LOAD(&global.anon_key);
if (tmp != 0)
appctx->cli_anon_key = tmp;
else
appctx->cli_anon_key = ha_random32();
}
}
else if (strcmp(args[2], "off") == 0) {
if (*args[3]) {
return cli_err(appctx, "Key can't be added while disabling anonymized mode\n");
}
else {
appctx->cli_anon_key = 0;
}
}
else {
return cli_err(appctx,
"'set anon' only supports :\n"
" - 'on' [key] to enable the anonymized mode\n"
" - 'off' to disable the anonymized mode");
}
return 1;
}
/* This function set the global anonyzing key, restricted to level 'admin' */
static int cli_parse_set_global_key(char **args, char *payload, struct appctx *appctx, void *private)
{
long long key;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return cli_err(appctx, "Permission denied\n");
if (!*args[2])
return cli_err(appctx, "Expects an integer value.\n");
key = atoll(args[2]);
if (key < 0 || key > UINT_MAX)
return cli_err(appctx, "Value out of range (0 to 4294967295 expected).\n");
HA_ATOMIC_STORE(&global.anon_key, key);
return 1;
}
/* shows the anonymized mode state to everyone, and the key except for users, it always returns 1. */
static int cli_parse_show_anon(char **args, char *payload, struct appctx *appctx, void *private)
{
char *msg = NULL;
char *anon_mode = NULL;
uint32_t c_key = appctx->cli_anon_key;
if (!c_key)
anon_mode = "Anonymized mode disabled";
else
anon_mode = "Anonymized mode enabled";
if ( !((appctx->cli_level & ACCESS_LVL_MASK) < ACCESS_LVL_OPER) && c_key != 0) {
cli_dynmsg(appctx, LOG_INFO, memprintf(&msg, "%s\nKey : %u\n", anon_mode, c_key));
}
else {
cli_dynmsg(appctx, LOG_INFO, memprintf(&msg, "%s\n", anon_mode));
}
return 1;
}
/* parse a "set rate-limit" command. It always returns 1. */
static int cli_parse_set_ratelimit(char **args, char *payload, struct appctx *appctx, void *private)
{
int v;
int *res;
int mul = 1;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
if (strcmp(args[2], "connections") == 0 && strcmp(args[3], "global") == 0)
res = &global.cps_lim;
else if (strcmp(args[2], "sessions") == 0 && strcmp(args[3], "global") == 0)
res = &global.sps_lim;
#ifdef USE_OPENSSL
else if (strcmp(args[2], "ssl-sessions") == 0 && strcmp(args[3], "global") == 0)
res = &global.ssl_lim;
#endif
else if (strcmp(args[2], "http-compression") == 0 && strcmp(args[3], "global") == 0) {
res = &global.comp_rate_lim;
mul = 1024;
}
else {
return cli_err(appctx,
"'set rate-limit' only supports :\n"
" - 'connections global' to set the per-process maximum connection rate\n"
" - 'sessions global' to set the per-process maximum session rate\n"
#ifdef USE_OPENSSL
" - 'ssl-sessions global' to set the per-process maximum SSL session rate\n"
#endif
" - 'http-compression global' to set the per-process maximum compression speed in kB/s\n");
}
if (!*args[4])
return cli_err(appctx, "Expects an integer value.\n");
v = atoi(args[4]);
if (v < 0)
return cli_err(appctx, "Value out of range.\n");
*res = v * mul;
/* Dequeues all of the listeners waiting for a resource */
dequeue_all_listeners();
return 1;
}
/* parse the "expose-fd" argument on the bind lines */
static int bind_parse_expose_fd(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing fd type", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if (strcmp(args[cur_arg + 1], "listeners") == 0) {
conf->level |= ACCESS_FD_LISTENERS;
} else {
memprintf(err, "'%s' only supports 'listeners' (got '%s')",
args[cur_arg], args[cur_arg+1]);
return ERR_ALERT | ERR_FATAL;
}
return 0;
}
/* parse the "level" argument on the bind lines */
static int bind_parse_level(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing level", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if (strcmp(args[cur_arg + 1], "user") == 0) {
conf->level &= ~ACCESS_LVL_MASK;
conf->level |= ACCESS_LVL_USER;
} else if (strcmp(args[cur_arg + 1], "operator") == 0) {
conf->level &= ~ACCESS_LVL_MASK;
conf->level |= ACCESS_LVL_OPER;
} else if (strcmp(args[cur_arg + 1], "admin") == 0) {
conf->level &= ~ACCESS_LVL_MASK;
conf->level |= ACCESS_LVL_ADMIN;
} else {
memprintf(err, "'%s' only supports 'user', 'operator', and 'admin' (got '%s')",
args[cur_arg], args[cur_arg+1]);
return ERR_ALERT | ERR_FATAL;
}
return 0;
}
static int bind_parse_severity_output(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing severity format", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if (set_severity_output(&conf->severity_output, args[cur_arg+1]))
return 0;
else {
memprintf(err, "'%s' only supports 'none', 'number', and 'string' (got '%s')",
args[cur_arg], args[cur_arg+1]);
return ERR_ALERT | ERR_FATAL;
}
}
/* Send all the bound sockets, always returns 1 */
static int _getsocks(char **args, char *payload, struct appctx *appctx, void *private)
{
static int already_sent = 0;
char *cmsgbuf = NULL;
unsigned char *tmpbuf = NULL;
struct cmsghdr *cmsg;
struct stconn *sc = appctx_sc(appctx);
struct stream *s = __sc_strm(sc);
struct connection *remote = sc_conn(sc_opposite(sc));
struct msghdr msghdr;
struct iovec iov;
struct timeval tv = { .tv_sec = 1, .tv_usec = 0 };
const char *ns_name, *if_name;
unsigned char ns_nlen, if_nlen;
int nb_queued;
int cur_fd = 0;
int *tmpfd;
int tot_fd_nb = 0;
int fd = -1;
int curoff = 0;
int old_fcntl = -1;
int ret;
if (!remote) {
ha_warning("Only works on real connections\n");
goto out;
}
fd = remote->handle.fd;
/* Temporary set the FD in blocking mode, that will make our life easier */
old_fcntl = fcntl(fd, F_GETFL);
if (old_fcntl < 0) {
ha_warning("Couldn't get the flags for the unix socket\n");
goto out;
}
cmsgbuf = malloc(CMSG_SPACE(sizeof(int) * MAX_SEND_FD));
if (!cmsgbuf) {
ha_warning("Failed to allocate memory to send sockets\n");
goto out;
}
if (fcntl(fd, F_SETFL, old_fcntl &~ O_NONBLOCK) == -1) {
ha_warning("Cannot make the unix socket blocking\n");
goto out;
}
setsockopt(fd, SOL_SOCKET, SO_RCVTIMEO, (void *)&tv, sizeof(tv));
iov.iov_base = &tot_fd_nb;
iov.iov_len = sizeof(tot_fd_nb);
if (!(strm_li(s)->bind_conf->level & ACCESS_FD_LISTENERS))
goto out;
memset(&msghdr, 0, sizeof(msghdr));
/*
* First, calculates the total number of FD, so that we can let
* the caller know how much it should expect.
*/
for (cur_fd = 0;cur_fd < global.maxsock; cur_fd++)
tot_fd_nb += !!(fdtab[cur_fd].state & FD_EXPORTED);
if (tot_fd_nb == 0) {
if (already_sent)
ha_warning("_getsocks: attempt to get sockets but they were already sent and closed in this process!\n");
goto out;
}
/* First send the total number of file descriptors, so that the
* receiving end knows what to expect.
*/
msghdr.msg_iov = &iov;
msghdr.msg_iovlen = 1;
ret = sendmsg(fd, &msghdr, 0);
if (ret != sizeof(tot_fd_nb)) {
ha_warning("Failed to send the number of sockets to send\n");
goto out;
}
/* Now send the fds */
msghdr.msg_control = cmsgbuf;
msghdr.msg_controllen = CMSG_SPACE(sizeof(int) * MAX_SEND_FD);
cmsg = CMSG_FIRSTHDR(&msghdr);
cmsg->cmsg_len = CMSG_LEN(MAX_SEND_FD * sizeof(int));
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
tmpfd = (int *)CMSG_DATA(cmsg);
/* For each socket, e message is sent, containing the following :
* Size of the namespace name (or 0 if none), as an unsigned char.
* The namespace name, if any
* Size of the interface name (or 0 if none), as an unsigned char
* The interface name, if any
* 32 bits of zeroes (used to be listener options).
*/
/* We will send sockets MAX_SEND_FD per MAX_SEND_FD, allocate a
* buffer big enough to store the socket information.
*/
tmpbuf = malloc(MAX_SEND_FD * (1 + MAXPATHLEN + 1 + IFNAMSIZ + sizeof(int)));
if (tmpbuf == NULL) {
ha_warning("Failed to allocate memory to transfer socket information\n");
goto out;
}
nb_queued = 0;
iov.iov_base = tmpbuf;
for (cur_fd = 0; cur_fd < global.maxsock; cur_fd++) {
if (!(fdtab[cur_fd].state & FD_EXPORTED))
continue;
ns_name = if_name = "";
ns_nlen = if_nlen = 0;
/* for now we can only retrieve namespaces and interfaces from
* pure listeners.
*/
if (fdtab[cur_fd].iocb == sock_accept_iocb) {
const struct listener *l = fdtab[cur_fd].owner;
if (l->rx.settings->interface) {
if_name = l->rx.settings->interface;
if_nlen = strlen(if_name);
}
#ifdef USE_NS
if (l->rx.settings->netns) {
ns_name = l->rx.settings->netns->node.key;
ns_nlen = l->rx.settings->netns->name_len;
}
#endif
}
/* put the FD into the CMSG_DATA */
tmpfd[nb_queued++] = cur_fd;
/* first block is <ns_name_len> <ns_name> */
tmpbuf[curoff++] = ns_nlen;
if (ns_nlen)
memcpy(tmpbuf + curoff, ns_name, ns_nlen);
curoff += ns_nlen;
/* second block is <if_name_len> <if_name> */
tmpbuf[curoff++] = if_nlen;
if (if_nlen)
memcpy(tmpbuf + curoff, if_name, if_nlen);
curoff += if_nlen;
/* we used to send the listener options here before 2.3 */
memset(tmpbuf + curoff, 0, sizeof(int));
curoff += sizeof(int);
/* there's a limit to how many FDs may be sent at once */
if (nb_queued == MAX_SEND_FD) {
iov.iov_len = curoff;
if (sendmsg(fd, &msghdr, 0) != curoff) {
ha_warning("Failed to transfer sockets\n");
return -1;
}
/* Wait for an ack */
do {
ret = recv(fd, &tot_fd_nb, sizeof(tot_fd_nb), 0);
} while (ret == -1 && errno == EINTR);
if (ret <= 0) {
ha_warning("Unexpected error while transferring sockets\n");
return -1;
}
curoff = 0;
nb_queued = 0;
}
}
already_sent = 1;
/* flush pending stuff */
if (nb_queued) {
iov.iov_len = curoff;
cmsg->cmsg_len = CMSG_LEN(nb_queued * sizeof(int));
msghdr.msg_controllen = CMSG_SPACE(nb_queued * sizeof(int));
if (sendmsg(fd, &msghdr, 0) != curoff) {
ha_warning("Failed to transfer sockets\n");
goto out;
}
}
out:
if (fd >= 0 && old_fcntl >= 0 && fcntl(fd, F_SETFL, old_fcntl) == -1) {
ha_warning("Cannot make the unix socket non-blocking\n");
goto out;
}
appctx->st0 = CLI_ST_END;
free(cmsgbuf);
free(tmpbuf);
return 1;
}
static int cli_parse_simple(char **args, char *payload, struct appctx *appctx, void *private)
{
if (*args[0] == 'h')
/* help */
cli_gen_usage_msg(appctx, args);
else if (*args[0] == 'p')
/* prompt */
appctx->st1 ^= APPCTX_CLI_ST1_PROMPT;
else if (*args[0] == 'q')
/* quit */
appctx->st0 = CLI_ST_END;
return 1;
}
void pcli_write_prompt(struct stream *s)
{
struct buffer *msg = get_trash_chunk();
struct channel *oc = sc_oc(s->scf);
if (!(s->pcli_flags & PCLI_F_PROMPT))
return;
if (s->pcli_flags & PCLI_F_PAYLOAD) {
chunk_appendf(msg, "+ ");
} else {
if (s->pcli_next_pid == 0)
chunk_appendf(msg, "master%s",
(proc_self->failedreloads > 0) ? "[ReloadFailed]" : "");
else
chunk_appendf(msg, "%d", s->pcli_next_pid);
if (s->pcli_flags & (ACCESS_EXPERIMENTAL|ACCESS_EXPERT|ACCESS_MCLI_DEBUG)) {
chunk_appendf(msg, "(");
if (s->pcli_flags & ACCESS_EXPERIMENTAL)
chunk_appendf(msg, "x");
if (s->pcli_flags & ACCESS_EXPERT)
chunk_appendf(msg, "e");
if (s->pcli_flags & ACCESS_MCLI_DEBUG)
chunk_appendf(msg, "d");
chunk_appendf(msg, ")");
}
chunk_appendf(msg, "> ");
}
co_inject(oc, msg->area, msg->data);
}
/* The pcli_* functions are used for the CLI proxy in the master */
void pcli_reply_and_close(struct stream *s, const char *msg)
{
struct buffer *buf = get_trash_chunk();
chunk_initstr(buf, msg);
stream_retnclose(s, buf);
}
static enum obj_type *pcli_pid_to_server(int proc_pid)
{
struct mworker_proc *child;
/* return the mCLI applet of the master */
if (proc_pid == 0)
return &mcli_applet.obj_type;
list_for_each_entry(child, &proc_list, list) {
if (child->pid == proc_pid){
return &child->srv->obj_type;
}
}
return NULL;
}
/* Take a CLI prefix in argument (eg: @!1234 @master @1)
* Return:
* 0: master
* > 0: pid of a worker
* < 0: didn't find a worker
*/
static int pcli_prefix_to_pid(const char *prefix)
{
int proc_pid;
struct mworker_proc *child;
char *errtol = NULL;
if (*prefix != '@') /* not a prefix, should not happen */
return -1;
prefix++;
if (!*prefix) /* sent @ alone, return the master */
return 0;
if (strcmp("master", prefix) == 0) {
return 0;
} else if (*prefix == '!') {
prefix++;
if (!*prefix)
return -1;
proc_pid = strtol(prefix, &errtol, 10);
if (*errtol != '\0')
return -1;
list_for_each_entry(child, &proc_list, list) {
if (!(child->options & PROC_O_TYPE_WORKER))
continue;
if (child->pid == proc_pid){
return child->pid;
}
}
} else {
struct mworker_proc *chosen = NULL;
/* this is a relative pid */
proc_pid = strtol(prefix, &errtol, 10);
if (*errtol != '\0')
return -1;
if (proc_pid == 0) /* return the master */
return 0;
if (proc_pid != 1) /* only the "@1" relative PID is supported */
return -1;
/* chose the right process, the current one is the one with the
least number of reloads */
list_for_each_entry(child, &proc_list, list) {
if (!(child->options & PROC_O_TYPE_WORKER))
continue;
if (child->reloads == 0)
return child->pid;
else if (chosen == NULL || child->reloads < chosen->reloads)
chosen = child;
}
if (chosen)
return chosen->pid;
}
return -1;
}
/* Return::
* >= 0 : number of words to escape
* = -1 : error
*/
int pcli_find_and_exec_kw(struct stream *s, char **args, int argl, char **errmsg, int *next_pid)
{
if (argl < 1)
return 0;
/* there is a prefix */
if (args[0][0] == '@') {
int target_pid = pcli_prefix_to_pid(args[0]);
if (target_pid == -1) {
memprintf(errmsg, "Can't find the target PID matching the prefix '%s'\n", args[0]);
return -1;
}
/* if the prefix is alone, define a default target */
if (argl == 1)
s->pcli_next_pid = target_pid;
else
*next_pid = target_pid;
return 1;
} else if (strcmp("prompt", args[0]) == 0) {
s->pcli_flags ^= PCLI_F_PROMPT;
return argl; /* return the number of elements in the array */
} else if (strcmp("quit", args[0]) == 0) {
channel_shutr_now(&s->req);
channel_shutw_now(&s->res);
return argl; /* return the number of elements in the array */
} else if (strcmp(args[0], "operator") == 0) {
if (!pcli_has_level(s, ACCESS_LVL_OPER)) {
memprintf(errmsg, "Permission denied!\n");
return -1;
}
s->pcli_flags &= ~ACCESS_LVL_MASK;
s->pcli_flags |= ACCESS_LVL_OPER;
return argl;
} else if (strcmp(args[0], "user") == 0) {
if (!pcli_has_level(s, ACCESS_LVL_USER)) {
memprintf(errmsg, "Permission denied!\n");
return -1;
}
s->pcli_flags &= ~ACCESS_LVL_MASK;
s->pcli_flags |= ACCESS_LVL_USER;
return argl;
} else if (strcmp(args[0], "expert-mode") == 0) {
if (!pcli_has_level(s, ACCESS_LVL_ADMIN)) {
memprintf(errmsg, "Permission denied!\n");
return -1;
}
s->pcli_flags &= ~ACCESS_EXPERT;
if ((argl > 1) && (strcmp(args[1], "on") == 0))
s->pcli_flags |= ACCESS_EXPERT;
return argl;
} else if (strcmp(args[0], "experimental-mode") == 0) {
if (!pcli_has_level(s, ACCESS_LVL_ADMIN)) {
memprintf(errmsg, "Permission denied!\n");
return -1;
}
s->pcli_flags &= ~ACCESS_EXPERIMENTAL;
if ((argl > 1) && (strcmp(args[1], "on") == 0))
s->pcli_flags |= ACCESS_EXPERIMENTAL;
return argl;
} else if (strcmp(args[0], "mcli-debug-mode") == 0) {
if (!pcli_has_level(s, ACCESS_LVL_ADMIN)) {
memprintf(errmsg, "Permission denied!\n");
return -1;
}
s->pcli_flags &= ~ACCESS_MCLI_DEBUG;
if ((argl > 1) && (strcmp(args[1], "on") == 0))
s->pcli_flags |= ACCESS_MCLI_DEBUG;
return argl;
}
return 0;
}
/*
* Parse the CLI request:
* - It does basically the same as the cli_io_handler, but as a proxy
* - It can exec a command and strip non forwardable commands
*
* Return:
* - the number of characters to forward or
* - 1 if there is an error or not enough data
*/
int pcli_parse_request(struct stream *s, struct channel *req, char **errmsg, int *next_pid)
{
char *str;
char *end;
char *args[MAX_CLI_ARGS + 1]; /* +1 for storing a NULL */
int argl; /* number of args */
char *p;
char *trim = NULL;
char *payload = NULL;
int wtrim = 0; /* number of words to trim */
int reql = 0;
int ret;
int i = 0;
/* we cannot deal with a wrapping buffer, so let's take care of this
* first.
*/
if (b_head(&req->buf) + b_data(&req->buf) > b_wrap(&req->buf))
b_slow_realign(&req->buf, trash.area, co_data(req));
str = (char *)ci_head(req);
end = (char *)ci_stop(req);
p = str;
if (!(s->pcli_flags & PCLI_F_PAYLOAD)) {
/* Looks for the end of one command */
while (p+reql < end) {
/* handle escaping */
if (p[reql] == '\\') {
reql+=2;
continue;
}
if (p[reql] == ';' || p[reql] == '\n') {
/* found the end of the command */
p[reql] = '\n';
reql++;
break;
}
reql++;
}
} else {
while (p+reql < end) {
if (p[reql] == '\n') {
/* found the end of the line */
reql++;
break;
}
reql++;
}
}
/* set end to first byte after the end of the command */
end = p + reql;
/* there is no end to this command, need more to parse ! */
if (!reql || *(end-1) != '\n') {
return -1;
}
if (s->pcli_flags & PCLI_F_PAYLOAD) {
if (reql == 1) /* last line of the payload */
s->pcli_flags &= ~PCLI_F_PAYLOAD;
return reql;
}
*(end-1) = '\0';
/* splits the command in words */
while (i < MAX_CLI_ARGS && p < end) {
/* skip leading spaces/tabs */
p += strspn(p, " \t");
if (!*p)
break;
args[i] = p;
while (1) {
p += strcspn(p, " \t\\");
/* escaped chars using backlashes (\) */
if (*p == '\\') {
if (!*++p)
break;
if (!*++p)
break;
} else {
break;
}
}
*p++ = 0;
i++;
}
argl = i;
for (; i < MAX_CLI_ARGS + 1; i++)
args[i] = NULL;
wtrim = pcli_find_and_exec_kw(s, args, argl, errmsg, next_pid);
/* End of words are ending by \0, we need to replace the \0s by spaces
before forwarding them */
p = str;
while (p < end-1) {
if (*p == '\0')
*p = ' ';
p++;
}
payload = strstr(str, PAYLOAD_PATTERN);
if ((end - 1) == (payload + strlen(PAYLOAD_PATTERN))) {
/* if the payload pattern is at the end */
s->pcli_flags |= PCLI_F_PAYLOAD;
}
*(end-1) = '\n';
if (wtrim > 0) {
trim = &args[wtrim][0];
if (trim == NULL) /* if this was the last word in the table */
trim = end;
b_del(&req->buf, trim - str);
ret = end - trim;
} else if (wtrim < 0) {
/* parsing error */
return -1;
} else {
/* the whole string */
ret = end - str;
}
if (ret > 1) {
/* the mcli-debug-mode is only sent to the applet of the master */
if ((s->pcli_flags & ACCESS_MCLI_DEBUG) && *next_pid <= 0) {
ci_insert_line2(req, 0, "mcli-debug-mode on -", strlen("mcli-debug-mode on -"));
ret += strlen("mcli-debug-mode on -") + 2;
}
if (s->pcli_flags & ACCESS_EXPERIMENTAL) {
ci_insert_line2(req, 0, "experimental-mode on -", strlen("experimental-mode on -"));
ret += strlen("experimental-mode on -") + 2;
}
if (s->pcli_flags & ACCESS_EXPERT) {
ci_insert_line2(req, 0, "expert-mode on -", strlen("expert-mode on -"));
ret += strlen("expert-mode on -") + 2;
}
if (pcli_has_level(s, ACCESS_LVL_ADMIN)) {
goto end;
} else if (pcli_has_level(s, ACCESS_LVL_OPER)) {
ci_insert_line2(req, 0, "operator -", strlen("operator -"));
ret += strlen("operator -") + 2;
} else if (pcli_has_level(s, ACCESS_LVL_USER)) {
ci_insert_line2(req, 0, "user -", strlen("user -"));
ret += strlen("user -") + 2;
}
}
end:
return ret;
}
int pcli_wait_for_request(struct stream *s, struct channel *req, int an_bit)
{
int next_pid = -1;
int to_forward;
char *errmsg = NULL;
/* Don't read the next command if still processing the response of the
* current one. Just wait. At this stage, errors should be handled by
* the response analyzer.
*/
if (s->res.analysers & AN_RES_WAIT_CLI)
return 0;
if ((s->pcli_flags & ACCESS_LVL_MASK) == ACCESS_LVL_NONE)
s->pcli_flags |= strm_li(s)->bind_conf->level & ACCESS_LVL_MASK;
/* stream that comes from the reload listener only responses the reload
* status and quits */
if (!(s->pcli_flags & PCLI_F_RELOAD)
&& strm_li(s)->bind_conf == mcli_reload_bind_conf)
goto send_status;
read_again:
/* if the channel is closed for read, we won't receive any more data
from the client, but we don't want to forward this close to the
server */
channel_dont_close(req);
/* We don't know yet to which server we will connect */
channel_dont_connect(req);
req->flags |= CF_READ_DONTWAIT;
/* need more data */
if (!ci_data(req))
goto missing_data;
/* If there is data available for analysis, log the end of the idle time. */
if (c_data(req) && s->logs.t_idle == -1)
s->logs.t_idle = tv_ms_elapsed(&s->logs.tv_accept, &now) - s->logs.t_handshake;
to_forward = pcli_parse_request(s, req, &errmsg, &next_pid);
if (to_forward > 0) {
int target_pid;
/* enough data */
/* forward only 1 command */
channel_forward(req, to_forward);
if (!(s->pcli_flags & PCLI_F_PAYLOAD)) {
/* we send only 1 command per request, and we write close after it */
channel_shutw_now(req);
} else {
pcli_write_prompt(s);
}
s->res.flags |= CF_WAKE_ONCE; /* need to be called again */
s->res.analysers |= AN_RES_WAIT_CLI;
if (!(s->flags & SF_ASSIGNED)) {
if (next_pid > -1)
target_pid = next_pid;
else
target_pid = s->pcli_next_pid;
/* we can connect now */
s->target = pcli_pid_to_server(target_pid);
if (!s->target)
goto server_disconnect;
s->flags |= (SF_DIRECT | SF_ASSIGNED);
channel_auto_connect(req);
}
} else if (to_forward == 0) {
/* we trimmed things but we might have other commands to consume */
pcli_write_prompt(s);
goto read_again;
} else if (to_forward == -1) {
if (errmsg) {
/* there was an error during the parsing */
pcli_reply_and_close(s, errmsg);
s->req.analysers &= ~AN_REQ_WAIT_CLI;
return 0;
}
goto missing_data;
}
return 0;
send_help:
b_reset(&req->buf);
b_putblk(&req->buf, "help\n", 5);
goto read_again;
send_status:
s->pcli_flags |= PCLI_F_RELOAD;
/* dont' use ci_putblk here because SHUTW could have been sent */
b_reset(&req->buf);
b_putblk(&req->buf, "_loadstatus;quit\n", 17);
goto read_again;
missing_data:
if (req->flags & CF_SHUTR) {
/* There is no more request or a only a partial one and we
* receive a close from the client, we can leave */
channel_shutw_now(&s->res);
s->req.analysers &= ~AN_REQ_WAIT_CLI;
return 1;
}
else if (channel_full(req, global.tune.maxrewrite)) {
/* buffer is full and we didn't catch the end of a command */
goto send_help;
}
return 0;
server_disconnect:
pcli_reply_and_close(s, "Can't connect to the target CLI!\n");
return 0;
}
int pcli_wait_for_response(struct stream *s, struct channel *rep, int an_bit)
{
struct proxy *fe = strm_fe(s);
struct proxy *be = s->be;
if ((rep->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) ||
((rep->flags & CF_SHUTW) && (rep->to_forward || co_data(rep)))) {
pcli_reply_and_close(s, "Can't connect to the target CLI!\n");
s->req.analysers &= ~AN_REQ_WAIT_CLI;
s->res.analysers &= ~AN_RES_WAIT_CLI;
return 0;
}
rep->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */
rep->flags |= CF_NEVER_WAIT;
/* don't forward the close */
channel_dont_close(&s->res);
channel_dont_close(&s->req);
if (s->pcli_flags & PCLI_F_PAYLOAD) {
s->res.analysers &= ~AN_RES_WAIT_CLI;
s->req.flags |= CF_WAKE_ONCE; /* need to be called again if there is some command left in the request */
return 0;
}
/* forward the data */
if (ci_data(rep)) {
c_adv(rep, ci_data(rep));
return 0;
}
if ((rep->flags & (CF_SHUTR|CF_READ_NULL))) {
/* stream cleanup */
pcli_write_prompt(s);
s->scb->flags |= SC_FL_NOLINGER | SC_FL_NOHALF;
sc_shutr(s->scb);
sc_shutw(s->scb);
/*
* starting from there this the same code as
* http_end_txn_clean_session().
*
* It allows to do frontend keepalive while reconnecting to a
* new server for each request.
*/
if (s->flags & SF_BE_ASSIGNED) {
HA_ATOMIC_DEC(&be->beconn);
if (unlikely(s->srv_conn))
sess_change_server(s, NULL);
}
s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now);
stream_process_counters(s);
/* don't count other requests' data */
s->logs.bytes_in -= ci_data(&s->req);
s->logs.bytes_out -= ci_data(&s->res);
/* we may need to know the position in the queue */
pendconn_free(s);
/* let's do a final log if we need it */
if (!LIST_ISEMPTY(&fe->logformat) && s->logs.logwait &&
!(s->flags & SF_MONITOR) &&
(!(fe->options & PR_O_NULLNOLOG) || s->req.total)) {
s->do_log(s);
}
/* stop tracking content-based counters */
stream_stop_content_counters(s);
stream_update_time_stats(s);
s->logs.accept_date = date; /* user-visible date for logging */
s->logs.tv_accept = now; /* corrected date for internal use */
s->logs.t_handshake = 0; /* There are no handshake in keep alive connection. */
s->logs.t_idle = -1;
tv_zero(&s->logs.tv_request);
s->logs.t_queue = -1;
s->logs.t_connect = -1;
s->logs.t_data = -1;
s->logs.t_close = 0;
s->logs.prx_queue_pos = 0; /* we get the number of pending conns before us */
s->logs.srv_queue_pos = 0; /* we will get this number soon */
s->logs.bytes_in = s->req.total = ci_data(&s->req);
s->logs.bytes_out = s->res.total = ci_data(&s->res);
stream_del_srv_conn(s);
if (objt_server(s->target)) {
if (s->flags & SF_CURR_SESS) {
s->flags &= ~SF_CURR_SESS;
HA_ATOMIC_DEC(&__objt_server(s->target)->cur_sess);
}
if (may_dequeue_tasks(__objt_server(s->target), be))
process_srv_queue(__objt_server(s->target));
}
s->target = NULL;
/* only release our endpoint if we don't intend to reuse the
* connection.
*/
if (!sc_conn_ready(s->scb)) {
s->srv_conn = NULL;
if (sc_reset_endp(s->scb) < 0) {
if (!s->conn_err_type)
s->conn_err_type = STRM_ET_CONN_OTHER;
if (s->srv_error)
s->srv_error(s, s->scb);
return 1;
}
se_fl_clr(s->scb->sedesc, ~SE_FL_DETACHED);
}
sockaddr_free(&s->scb->dst);
sc_set_state(s->scb, SC_ST_INI);
s->scb->flags &= SC_FL_ISBACK | SC_FL_DONT_WAKE; /* we're in the context of process_stream */
s->req.flags &= ~(CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CONNECT|CF_WRITE_ERROR|CF_STREAMER|CF_STREAMER_FAST|CF_NEVER_WAIT|CF_WROTE_DATA);
s->res.flags &= ~(CF_SHUTR|CF_SHUTR_NOW|CF_READ_ATTACHED|CF_READ_ERROR|CF_READ_NOEXP|CF_STREAMER|CF_STREAMER_FAST|CF_WRITE_PARTIAL|CF_NEVER_WAIT|CF_WROTE_DATA|CF_READ_NULL);
s->flags &= ~(SF_DIRECT|SF_ASSIGNED|SF_BE_ASSIGNED|SF_FORCE_PRST|SF_IGNORE_PRST);
s->flags &= ~(SF_CURR_SESS|SF_REDIRECTABLE|SF_SRV_REUSED);
s->flags &= ~(SF_ERR_MASK|SF_FINST_MASK|SF_REDISP);
s->conn_retries = 0; /* used for logging too */
s->conn_exp = TICK_ETERNITY;
s->conn_err_type = STRM_ET_NONE;
/* reinitialise the current rule list pointer to NULL. We are sure that
* any rulelist match the NULL pointer.
*/
s->current_rule_list = NULL;
s->be = strm_fe(s);
s->logs.logwait = strm_fe(s)->to_log;
s->logs.level = 0;
stream_del_srv_conn(s);
s->target = NULL;
/* re-init store persistence */
s->store_count = 0;
s->uniq_id = global.req_count++;
s->req.flags |= CF_READ_DONTWAIT; /* one read is usually enough */
s->req.flags |= CF_WAKE_ONCE; /* need to be called again if there is some command left in the request */
s->res.analysers &= ~AN_RES_WAIT_CLI;
/* We must trim any excess data from the response buffer, because we
* may have blocked an invalid response from a server that we don't
* want to accidentally forward once we disable the analysers, nor do
* we want those data to come along with next response. A typical
* example of such data would be from a buggy server responding to
* a HEAD with some data, or sending more than the advertised
* content-length.
*/
if (unlikely(ci_data(&s->res)))
b_set_data(&s->res.buf, co_data(&s->res));
/* Now we can realign the response buffer */
c_realign_if_empty(&s->res);
s->req.rto = strm_fe(s)->timeout.client;
s->req.wto = TICK_ETERNITY;
s->res.rto = TICK_ETERNITY;
s->res.wto = strm_fe(s)->timeout.client;
s->req.rex = TICK_ETERNITY;
s->req.wex = TICK_ETERNITY;
s->req.analyse_exp = TICK_ETERNITY;
s->res.rex = TICK_ETERNITY;
s->res.wex = TICK_ETERNITY;
s->res.analyse_exp = TICK_ETERNITY;
s->scb->hcto = TICK_ETERNITY;
/* we're removing the analysers, we MUST re-enable events detection.
* We don't enable close on the response channel since it's either
* already closed, or in keep-alive with an idle connection handler.
*/
channel_auto_read(&s->req);
channel_auto_close(&s->req);
channel_auto_read(&s->res);
return 1;
}
return 0;
}
/*
* The mworker functions are used to initialize the CLI in the master process
*/
/*
* Stop the mworker proxy
*/
void mworker_cli_proxy_stop()
{
if (mworker_proxy)
stop_proxy(mworker_proxy);
}
/*
* Create the mworker CLI proxy
*/
int mworker_cli_proxy_create()
{
struct mworker_proc *child;
char *msg = NULL;
char *errmsg = NULL;
mworker_proxy = alloc_new_proxy("MASTER", PR_CAP_LISTEN|PR_CAP_INT, &errmsg);
if (!mworker_proxy)
goto error_proxy;
mworker_proxy->mode = PR_MODE_CLI;
mworker_proxy->maxconn = 10; /* default to 10 concurrent connections */
mworker_proxy->timeout.client = 0; /* no timeout */
mworker_proxy->conf.file = strdup("MASTER");
mworker_proxy->conf.line = 0;
mworker_proxy->accept = frontend_accept;
mworker_proxy-> lbprm.algo = BE_LB_ALGO_NONE;
/* Does not init the default target the CLI applet, but must be done in
* the request parsing code */
mworker_proxy->default_target = NULL;
/* create all servers using the mworker_proc list */
list_for_each_entry(child, &proc_list, list) {
struct server *newsrv = NULL;
struct sockaddr_storage *sk;
int port1, port2, port;
struct protocol *proto;
/* only the workers support the master CLI */
if (!(child->options & PROC_O_TYPE_WORKER))
continue;
newsrv = new_server(mworker_proxy);
if (!newsrv)
goto error;
/* we don't know the new pid yet */
if (child->pid == -1)
memprintf(&msg, "cur-%d", 1);
else
memprintf(&msg, "old-%d", child->pid);
newsrv->next = mworker_proxy->srv;
mworker_proxy->srv = newsrv;
newsrv->conf.file = strdup(msg);
newsrv->id = strdup(msg);
newsrv->conf.line = 0;
memprintf(&msg, "sockpair@%d", child->ipc_fd[0]);
if ((sk = str2sa_range(msg, &port, &port1, &port2, NULL, &proto,
&errmsg, NULL, NULL, PA_O_STREAM)) == 0) {
goto error;
}
ha_free(&msg);
if (!proto->connect) {
goto error;
}
/* no port specified */
newsrv->flags |= SRV_F_MAPPORTS;
newsrv->addr = *sk;
/* don't let the server participate to load balancing */
newsrv->iweight = 0;
newsrv->uweight = 0;
srv_lb_commit_status(newsrv);
child->srv = newsrv;
}
mworker_proxy->next = proxies_list;
proxies_list = mworker_proxy;
return 0;
error:
list_for_each_entry(child, &proc_list, list) {
free((char *)child->srv->conf.file); /* cast because of const char * */
free(child->srv->id);
ha_free(&child->srv);
}
free_proxy(mworker_proxy);
free(msg);
error_proxy:
ha_alert("%s\n", errmsg);
free(errmsg);
return -1;
}
/*
* Create a new listener for the master CLI proxy
*/
struct bind_conf *mworker_cli_proxy_new_listener(char *line)
{
struct bind_conf *bind_conf;
struct listener *l;
char *err = NULL;
char *args[MAX_LINE_ARGS + 1];
int arg;
int cur_arg;
arg = 1;
args[0] = line;
/* args is a bind configuration with spaces replaced by commas */
while (*line && arg < MAX_LINE_ARGS) {
if (*line == ',') {
*line++ = '\0';
while (*line == ',')
line++;
args[arg++] = line;
}
line++;
}
args[arg] = "\0";
bind_conf = bind_conf_alloc(mworker_proxy, "master-socket", 0, "", xprt_get(XPRT_RAW));
if (!bind_conf)
goto err;
bind_conf->level &= ~ACCESS_LVL_MASK;
bind_conf->level |= ACCESS_LVL_ADMIN;
bind_conf->level |= ACCESS_MASTER | ACCESS_MASTER_ONLY;
bind_conf->bind_tgroup = 1; // bind to a single group in any case
if (!str2listener(args[0], mworker_proxy, bind_conf, "master-socket", 0, &err)) {
ha_alert("Cannot create the listener of the master CLI\n");
goto err;
}
cur_arg = 1;
while (*args[cur_arg]) {
struct bind_kw *kw;
const char *best;
kw = bind_find_kw(args[cur_arg]);
if (kw) {
if (!kw->parse) {
memprintf(&err, "'%s %s' : '%s' option is not implemented in this version (check build options).",
args[0], args[1], args[cur_arg]);
goto err;
}
if (kw->parse(args, cur_arg, global.cli_fe, bind_conf, &err) != 0) {
if (err)
memprintf(&err, "'%s %s' : '%s'", args[0], args[1], err);
else
memprintf(&err, "'%s %s' : error encountered while processing '%s'",
args[0], args[1], args[cur_arg]);
goto err;
}
cur_arg += 1 + kw->skip;
continue;
}
best = bind_find_best_kw(args[cur_arg]);
if (best)
memprintf(&err, "'%s %s' : unknown keyword '%s'. Did you mean '%s' maybe ?",
args[0], args[1], args[cur_arg], best);
else
memprintf(&err, "'%s %s' : unknown keyword '%s'.",
args[0], args[1], args[cur_arg]);
goto err;
}
list_for_each_entry(l, &bind_conf->listeners, by_bind) {
l->accept = session_accept_fd;
l->default_target = mworker_proxy->default_target;
/* don't make the peers subject to global limits and don't close it in the master */
l->options |= LI_O_UNLIMITED;
l->rx.flags |= RX_F_MWORKER; /* we are keeping this FD in the master */
l->nice = -64; /* we want to boost priority for local stats */
global.maxsock++; /* for the listening socket */
}
global.maxsock += mworker_proxy->maxconn;
return bind_conf;
err:
ha_alert("%s\n", err);
free(err);
free(bind_conf);
return NULL;
}
/*
* Create a new CLI socket using a socketpair for a worker process
* <mworker_proc> is the process structure, and <proc> is the process number
*/
int mworker_cli_sockpair_new(struct mworker_proc *mworker_proc, int proc)
{
struct bind_conf *bind_conf;
struct listener *l;
char *path = NULL;
char *err = NULL;
/* master pipe to ensure the master is still alive */
if (socketpair(AF_UNIX, SOCK_STREAM, 0, mworker_proc->ipc_fd) < 0) {
ha_alert("Cannot create worker socketpair.\n");
return -1;
}
/* XXX: we might want to use a separate frontend at some point */
if (!global.cli_fe) {
if ((global.cli_fe = cli_alloc_fe("GLOBAL", "master-socket", 0)) == NULL) {
ha_alert("out of memory trying to allocate the stats frontend");
goto error;
}
}
bind_conf = bind_conf_alloc(global.cli_fe, "master-socket", 0, "", xprt_get(XPRT_RAW));
if (!bind_conf)
goto error;
bind_conf->level &= ~ACCESS_LVL_MASK;
bind_conf->level |= ACCESS_LVL_ADMIN; /* TODO: need to lower the rights with a CLI keyword*/
bind_conf->level |= ACCESS_FD_LISTENERS;
bind_conf->bind_tgroup = 1; // bind to a single group in any case
if (!memprintf(&path, "sockpair@%d", mworker_proc->ipc_fd[1])) {
ha_alert("Cannot allocate listener.\n");
goto error;
}
if (!str2listener(path, global.cli_fe, bind_conf, "master-socket", 0, &err)) {
free(path);
ha_alert("Cannot create a CLI sockpair listener for process #%d\n", proc);
goto error;
}
ha_free(&path);
list_for_each_entry(l, &bind_conf->listeners, by_bind) {
l->accept = session_accept_fd;
l->default_target = global.cli_fe->default_target;
l->options |= (LI_O_UNLIMITED | LI_O_NOSTOP);
HA_ATOMIC_INC(&unstoppable_jobs);
/* it's a sockpair but we don't want to keep the fd in the master */
l->rx.flags &= ~RX_F_INHERITED;
l->nice = -64; /* we want to boost priority for local stats */
global.maxsock++; /* for the listening socket */
}
return 0;
error:
close(mworker_proc->ipc_fd[0]);
close(mworker_proc->ipc_fd[1]);
free(err);
return -1;
}
static struct applet cli_applet = {
.obj_type = OBJ_TYPE_APPLET,
.name = "<CLI>", /* used for logging */
.fct = cli_io_handler,
.release = cli_release_handler,
};
/* master CLI */
static struct applet mcli_applet = {
.obj_type = OBJ_TYPE_APPLET,
.name = "<MCLI>", /* used for logging */
.fct = cli_io_handler,
.release = cli_release_handler,
};
/* register cli keywords */
static struct cli_kw_list cli_kws = {{ },{
{ { "help", NULL }, NULL, cli_parse_simple, NULL, NULL, NULL, ACCESS_MASTER },
{ { "prompt", NULL }, NULL, cli_parse_simple, NULL, NULL, NULL, ACCESS_MASTER },
{ { "quit", NULL }, NULL, cli_parse_simple, NULL, NULL, NULL, ACCESS_MASTER },
{ { "_getsocks", NULL }, NULL, _getsocks, NULL },
{ { "expert-mode", NULL }, NULL, cli_parse_expert_experimental_mode, NULL, NULL, NULL, ACCESS_MASTER }, // not listed
{ { "experimental-mode", NULL }, NULL, cli_parse_expert_experimental_mode, NULL, NULL, NULL, ACCESS_MASTER }, // not listed
{ { "mcli-debug-mode", NULL }, NULL, cli_parse_expert_experimental_mode, NULL, NULL, NULL, ACCESS_MASTER_ONLY }, // not listed
{ { "set", "anon", NULL }, "set anon <setting> [value] : change the anonymized mode setting", cli_parse_set_anon, NULL, NULL },
{ { "set", "global-key", NULL }, "set global-key <value> : change the global anonymizing key", cli_parse_set_global_key, NULL, NULL },
{ { "set", "maxconn", "global", NULL }, "set maxconn global <value> : change the per-process maxconn setting", cli_parse_set_maxconn_global, NULL },
{ { "set", "rate-limit", NULL }, "set rate-limit <setting> <value> : change a rate limiting value", cli_parse_set_ratelimit, NULL },
{ { "set", "severity-output", NULL }, "set severity-output [none|number|string]: set presence of severity level in feedback information", cli_parse_set_severity_output, NULL, NULL },
{ { "set", "timeout", NULL }, "set timeout [cli] <delay> : change a timeout setting", cli_parse_set_timeout, NULL, NULL },
{ { "show", "anon", NULL }, "show anon : display the current state of anonymized mode", cli_parse_show_anon, NULL },
{ { "show", "env", NULL }, "show env [var] : dump environment variables known to the process", cli_parse_show_env, cli_io_handler_show_env, NULL },
{ { "show", "cli", "sockets", NULL }, "show cli sockets : dump list of cli sockets", cli_parse_default, cli_io_handler_show_cli_sock, NULL, NULL, ACCESS_MASTER },
{ { "show", "cli", "level", NULL }, "show cli level : display the level of the current CLI session", cli_parse_show_lvl, NULL, NULL, NULL, ACCESS_MASTER},
{ { "show", "fd", NULL }, "show fd [num] : dump list of file descriptors in use or a specific one", cli_parse_show_fd, cli_io_handler_show_fd, NULL },
{ { "show", "activity", NULL }, "show activity [-1|0|thread_num] : show per-thread activity stats (for support/developers)", cli_parse_show_activity, cli_io_handler_show_activity, NULL },
{ { "show", "version", NULL }, "show version : show version of the current process", cli_parse_show_version, NULL, NULL, NULL, ACCESS_MASTER },
{ { "operator", NULL }, "operator : lower the level of the current CLI session to operator", cli_parse_set_lvl, NULL, NULL, NULL, ACCESS_MASTER},
{ { "user", NULL }, "user : lower the level of the current CLI session to user", cli_parse_set_lvl, NULL, NULL, NULL, ACCESS_MASTER},
{{},}
}};
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
static struct cfg_kw_list cfg_kws = {ILH, {
{ CFG_GLOBAL, "stats", cli_parse_global },
{ 0, NULL, NULL },
}};
INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
static struct bind_kw_list bind_kws = { "STAT", { }, {
{ "level", bind_parse_level, 1 }, /* set the unix socket admin level */
{ "expose-fd", bind_parse_expose_fd, 1 }, /* set the unix socket expose fd rights */
{ "severity-output", bind_parse_severity_output, 1 }, /* set the severity output format */
{ NULL, NULL, 0 },
}};
INITCALL1(STG_REGISTER, bind_register_keywords, &bind_kws);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/