| /* |
| * Backend variables and functions. |
| * |
| * Copyright 2000-2013 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <syslog.h> |
| #include <string.h> |
| #include <ctype.h> |
| #include <sys/types.h> |
| |
| #include <common/buffer.h> |
| #include <common/compat.h> |
| #include <common/config.h> |
| #include <common/debug.h> |
| #include <common/hash.h> |
| #include <common/htx.h> |
| #include <common/initcall.h> |
| #include <common/ticks.h> |
| #include <common/time.h> |
| #include <common/namespace.h> |
| |
| #include <types/global.h> |
| |
| #include <proto/acl.h> |
| #include <proto/arg.h> |
| #include <proto/backend.h> |
| #include <proto/channel.h> |
| #include <proto/checks.h> |
| #include <proto/frontend.h> |
| #include <proto/http_htx.h> |
| #include <proto/lb_chash.h> |
| #include <proto/lb_fas.h> |
| #include <proto/lb_fwlc.h> |
| #include <proto/lb_fwrr.h> |
| #include <proto/lb_map.h> |
| #include <proto/log.h> |
| #include <proto/mux_pt.h> |
| #include <proto/obj_type.h> |
| #include <proto/payload.h> |
| #include <proto/protocol.h> |
| #include <proto/http_ana.h> |
| #include <proto/proto_tcp.h> |
| #include <proto/proxy.h> |
| #include <proto/queue.h> |
| #include <proto/sample.h> |
| #include <proto/server.h> |
| #include <proto/session.h> |
| #include <proto/stream.h> |
| #include <proto/stream_interface.h> |
| #include <proto/ssl_sock.h> |
| #include <proto/task.h> |
| |
| #define TRACE_SOURCE &trace_strm |
| |
| int be_lastsession(const struct proxy *be) |
| { |
| if (be->be_counters.last_sess) |
| return now.tv_sec - be->be_counters.last_sess; |
| |
| return -1; |
| } |
| |
| /* helper function to invoke the correct hash method */ |
| static unsigned int gen_hash(const struct proxy* px, const char* key, unsigned long len) |
| { |
| unsigned int hash; |
| |
| switch (px->lbprm.algo & BE_LB_HASH_FUNC) { |
| case BE_LB_HFCN_DJB2: |
| hash = hash_djb2(key, len); |
| break; |
| case BE_LB_HFCN_WT6: |
| hash = hash_wt6(key, len); |
| break; |
| case BE_LB_HFCN_CRC32: |
| hash = hash_crc32(key, len); |
| break; |
| case BE_LB_HFCN_SDBM: |
| /* this is the default hash function */ |
| default: |
| hash = hash_sdbm(key, len); |
| break; |
| } |
| |
| return hash; |
| } |
| |
| /* |
| * This function recounts the number of usable active and backup servers for |
| * proxy <p>. These numbers are returned into the p->srv_act and p->srv_bck. |
| * This function also recomputes the total active and backup weights. However, |
| * it does not update tot_weight nor tot_used. Use update_backend_weight() for |
| * this. |
| * This functions is designed to be called before server's weight and state |
| * commit so it uses 'next' weight and states values. |
| * |
| * threads: this is the caller responsibility to lock data. For now, this |
| * function is called from lb modules, so it should be ok. But if you need to |
| * call it from another place, be careful (and update this comment). |
| */ |
| void recount_servers(struct proxy *px) |
| { |
| struct server *srv; |
| |
| px->srv_act = px->srv_bck = 0; |
| px->lbprm.tot_wact = px->lbprm.tot_wbck = 0; |
| px->lbprm.fbck = NULL; |
| for (srv = px->srv; srv != NULL; srv = srv->next) { |
| if (!srv_willbe_usable(srv)) |
| continue; |
| |
| if (srv->flags & SRV_F_BACKUP) { |
| if (!px->srv_bck && |
| !(px->options & PR_O_USE_ALL_BK)) |
| px->lbprm.fbck = srv; |
| px->srv_bck++; |
| srv->cumulative_weight = px->lbprm.tot_wbck; |
| px->lbprm.tot_wbck += srv->next_eweight; |
| } else { |
| px->srv_act++; |
| srv->cumulative_weight = px->lbprm.tot_wact; |
| px->lbprm.tot_wact += srv->next_eweight; |
| } |
| } |
| } |
| |
| /* This function simply updates the backend's tot_weight and tot_used values |
| * after servers weights have been updated. It is designed to be used after |
| * recount_servers() or equivalent. |
| * |
| * threads: this is the caller responsibility to lock data. For now, this |
| * function is called from lb modules, so it should be ok. But if you need to |
| * call it from another place, be careful (and update this comment). |
| */ |
| void update_backend_weight(struct proxy *px) |
| { |
| if (px->srv_act) { |
| px->lbprm.tot_weight = px->lbprm.tot_wact; |
| px->lbprm.tot_used = px->srv_act; |
| } |
| else if (px->lbprm.fbck) { |
| /* use only the first backup server */ |
| px->lbprm.tot_weight = px->lbprm.fbck->next_eweight; |
| px->lbprm.tot_used = 1; |
| } |
| else { |
| px->lbprm.tot_weight = px->lbprm.tot_wbck; |
| px->lbprm.tot_used = px->srv_bck; |
| } |
| } |
| |
| /* |
| * This function tries to find a running server for the proxy <px> following |
| * the source hash method. Depending on the number of active/backup servers, |
| * it will either look for active servers, or for backup servers. |
| * If any server is found, it will be returned. If no valid server is found, |
| * NULL is returned. |
| */ |
| static struct server *get_server_sh(struct proxy *px, const char *addr, int len, const struct server *avoid) |
| { |
| unsigned int h, l; |
| |
| if (px->lbprm.tot_weight == 0) |
| return NULL; |
| |
| l = h = 0; |
| |
| /* note: we won't hash if there's only one server left */ |
| if (px->lbprm.tot_used == 1) |
| goto hash_done; |
| |
| while ((l + sizeof (int)) <= len) { |
| h ^= ntohl(*(unsigned int *)(&addr[l])); |
| l += sizeof (int); |
| } |
| if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL) |
| h = full_hash(h); |
| hash_done: |
| if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE) |
| return chash_get_server_hash(px, h, avoid); |
| else |
| return map_get_server_hash(px, h); |
| } |
| |
| /* |
| * This function tries to find a running server for the proxy <px> following |
| * the URI hash method. In order to optimize cache hits, the hash computation |
| * ends at the question mark. Depending on the number of active/backup servers, |
| * it will either look for active servers, or for backup servers. |
| * If any server is found, it will be returned. If no valid server is found, |
| * NULL is returned. The lbprm.arg_opt{1,2,3} values correspond respectively to |
| * the "whole" optional argument (boolean), the "len" argument (numeric) and |
| * the "depth" argument (numeric). |
| * |
| * This code was contributed by Guillaume Dallaire, who also selected this hash |
| * algorithm out of a tens because it gave him the best results. |
| * |
| */ |
| static struct server *get_server_uh(struct proxy *px, char *uri, int uri_len, const struct server *avoid) |
| { |
| unsigned int hash = 0; |
| int c; |
| int slashes = 0; |
| const char *start, *end; |
| |
| if (px->lbprm.tot_weight == 0) |
| return NULL; |
| |
| /* note: we won't hash if there's only one server left */ |
| if (px->lbprm.tot_used == 1) |
| goto hash_done; |
| |
| if (px->lbprm.arg_opt2) // "len" |
| uri_len = MIN(uri_len, px->lbprm.arg_opt2); |
| |
| start = end = uri; |
| while (uri_len--) { |
| c = *end; |
| if (c == '/') { |
| slashes++; |
| if (slashes == px->lbprm.arg_opt3) /* depth+1 */ |
| break; |
| } |
| else if (c == '?' && !px->lbprm.arg_opt1) // "whole" |
| break; |
| end++; |
| } |
| |
| hash = gen_hash(px, start, (end - start)); |
| |
| if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL) |
| hash = full_hash(hash); |
| hash_done: |
| if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE) |
| return chash_get_server_hash(px, hash, avoid); |
| else |
| return map_get_server_hash(px, hash); |
| } |
| |
| /* |
| * This function tries to find a running server for the proxy <px> following |
| * the URL parameter hash method. It looks for a specific parameter in the |
| * URL and hashes it to compute the server ID. This is useful to optimize |
| * performance by avoiding bounces between servers in contexts where sessions |
| * are shared but cookies are not usable. If the parameter is not found, NULL |
| * is returned. If any server is found, it will be returned. If no valid server |
| * is found, NULL is returned. |
| */ |
| static struct server *get_server_ph(struct proxy *px, const char *uri, int uri_len, const struct server *avoid) |
| { |
| unsigned int hash = 0; |
| const char *start, *end; |
| const char *p; |
| const char *params; |
| int plen; |
| |
| /* when tot_weight is 0 then so is srv_count */ |
| if (px->lbprm.tot_weight == 0) |
| return NULL; |
| |
| if ((p = memchr(uri, '?', uri_len)) == NULL) |
| return NULL; |
| |
| p++; |
| |
| uri_len -= (p - uri); |
| plen = px->lbprm.arg_len; |
| params = p; |
| |
| while (uri_len > plen) { |
| /* Look for the parameter name followed by an equal symbol */ |
| if (params[plen] == '=') { |
| if (memcmp(params, px->lbprm.arg_str, plen) == 0) { |
| /* OK, we have the parameter here at <params>, and |
| * the value after the equal sign, at <p> |
| * skip the equal symbol |
| */ |
| p += plen + 1; |
| start = end = p; |
| uri_len -= plen + 1; |
| |
| while (uri_len && *end != '&') { |
| uri_len--; |
| end++; |
| } |
| hash = gen_hash(px, start, (end - start)); |
| |
| if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL) |
| hash = full_hash(hash); |
| |
| if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE) |
| return chash_get_server_hash(px, hash, avoid); |
| else |
| return map_get_server_hash(px, hash); |
| } |
| } |
| /* skip to next parameter */ |
| p = memchr(params, '&', uri_len); |
| if (!p) |
| return NULL; |
| p++; |
| uri_len -= (p - params); |
| params = p; |
| } |
| return NULL; |
| } |
| |
| /* |
| * this does the same as the previous server_ph, but check the body contents |
| */ |
| static struct server *get_server_ph_post(struct stream *s, const struct server *avoid) |
| { |
| unsigned int hash = 0; |
| struct channel *req = &s->req; |
| struct proxy *px = s->be; |
| struct htx *htx = htxbuf(&req->buf); |
| struct htx_blk *blk; |
| unsigned int plen = px->lbprm.arg_len; |
| unsigned long len; |
| const char *params, *p, *start, *end; |
| |
| if (px->lbprm.tot_weight == 0) |
| return NULL; |
| |
| p = params = NULL; |
| len = 0; |
| for (blk = htx_get_first_blk(htx); blk; blk = htx_get_next_blk(htx, blk)) { |
| enum htx_blk_type type = htx_get_blk_type(blk); |
| struct ist v; |
| |
| if (type != HTX_BLK_DATA) |
| continue; |
| v = htx_get_blk_value(htx, blk); |
| p = params = v.ptr; |
| len = v.len; |
| break; |
| } |
| |
| while (len > plen) { |
| /* Look for the parameter name followed by an equal symbol */ |
| if (params[plen] == '=') { |
| if (memcmp(params, px->lbprm.arg_str, plen) == 0) { |
| /* OK, we have the parameter here at <params>, and |
| * the value after the equal sign, at <p> |
| * skip the equal symbol |
| */ |
| p += plen + 1; |
| start = end = p; |
| len -= plen + 1; |
| |
| while (len && *end != '&') { |
| if (unlikely(!HTTP_IS_TOKEN(*p))) { |
| /* if in a POST, body must be URI encoded or it's not a URI. |
| * Do not interpret any possible binary data as a parameter. |
| */ |
| if (likely(HTTP_IS_LWS(*p))) /* eol, uncertain uri len */ |
| break; |
| return NULL; /* oh, no; this is not uri-encoded. |
| * This body does not contain parameters. |
| */ |
| } |
| len--; |
| end++; |
| /* should we break if vlen exceeds limit? */ |
| } |
| hash = gen_hash(px, start, (end - start)); |
| |
| if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL) |
| hash = full_hash(hash); |
| |
| if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE) |
| return chash_get_server_hash(px, hash, avoid); |
| else |
| return map_get_server_hash(px, hash); |
| } |
| } |
| /* skip to next parameter */ |
| p = memchr(params, '&', len); |
| if (!p) |
| return NULL; |
| p++; |
| len -= (p - params); |
| params = p; |
| } |
| return NULL; |
| } |
| |
| |
| /* |
| * This function tries to find a running server for the proxy <px> following |
| * the Header parameter hash method. It looks for a specific parameter in the |
| * URL and hashes it to compute the server ID. This is useful to optimize |
| * performance by avoiding bounces between servers in contexts where sessions |
| * are shared but cookies are not usable. If the parameter is not found, NULL |
| * is returned. If any server is found, it will be returned. If no valid server |
| * is found, NULL is returned. When lbprm.arg_opt1 is set, the hash will only |
| * apply to the middle part of a domain name ("use_domain_only" option). |
| */ |
| static struct server *get_server_hh(struct stream *s, const struct server *avoid) |
| { |
| unsigned int hash = 0; |
| struct proxy *px = s->be; |
| unsigned int plen = px->lbprm.arg_len; |
| unsigned long len; |
| const char *p; |
| const char *start, *end; |
| struct htx *htx = htxbuf(&s->req.buf); |
| struct http_hdr_ctx ctx = { .blk = NULL }; |
| |
| /* tot_weight appears to mean srv_count */ |
| if (px->lbprm.tot_weight == 0) |
| return NULL; |
| |
| /* note: we won't hash if there's only one server left */ |
| if (px->lbprm.tot_used == 1) |
| goto hash_done; |
| |
| http_find_header(htx, ist2(px->lbprm.arg_str, plen), &ctx, 0); |
| |
| /* if the header is not found or empty, let's fallback to round robin */ |
| if (!ctx.blk || !ctx.value.len) |
| return NULL; |
| |
| /* Found a the param_name in the headers. |
| * we will compute the hash based on this value ctx.val. |
| */ |
| len = ctx.value.len; |
| p = ctx.value.ptr; |
| |
| if (!px->lbprm.arg_opt1) { |
| hash = gen_hash(px, p, len); |
| } else { |
| int dohash = 0; |
| p += len; |
| /* special computation, use only main domain name, not tld/host |
| * going back from the end of string, start hashing at first |
| * dot stop at next. |
| * This is designed to work with the 'Host' header, and requires |
| * a special option to activate this. |
| */ |
| end = p; |
| while (len) { |
| if (dohash) { |
| /* Rewind the pointer until the previous char |
| * is a dot, this will allow to set the start |
| * position of the domain. */ |
| if (*(p - 1) == '.') |
| break; |
| } |
| else if (*p == '.') { |
| /* The pointer is rewinded to the dot before the |
| * tld, we memorize the end of the domain and |
| * can enter the domain processing. */ |
| end = p; |
| dohash = 1; |
| } |
| p--; |
| len--; |
| } |
| start = p; |
| hash = gen_hash(px, start, (end - start)); |
| } |
| if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL) |
| hash = full_hash(hash); |
| hash_done: |
| if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE) |
| return chash_get_server_hash(px, hash, avoid); |
| else |
| return map_get_server_hash(px, hash); |
| } |
| |
| /* RDP Cookie HASH. */ |
| static struct server *get_server_rch(struct stream *s, const struct server *avoid) |
| { |
| unsigned int hash = 0; |
| struct proxy *px = s->be; |
| unsigned long len; |
| int ret; |
| struct sample smp; |
| int rewind; |
| |
| /* tot_weight appears to mean srv_count */ |
| if (px->lbprm.tot_weight == 0) |
| return NULL; |
| |
| memset(&smp, 0, sizeof(smp)); |
| |
| rewind = co_data(&s->req); |
| c_rew(&s->req, rewind); |
| |
| ret = fetch_rdp_cookie_name(s, &smp, px->lbprm.arg_str, px->lbprm.arg_len); |
| len = smp.data.u.str.data; |
| |
| c_adv(&s->req, rewind); |
| |
| if (ret == 0 || (smp.flags & SMP_F_MAY_CHANGE) || len == 0) |
| return NULL; |
| |
| /* note: we won't hash if there's only one server left */ |
| if (px->lbprm.tot_used == 1) |
| goto hash_done; |
| |
| /* Found the param_name in the headers. |
| * we will compute the hash based on this value ctx.val. |
| */ |
| hash = gen_hash(px, smp.data.u.str.area, len); |
| |
| if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL) |
| hash = full_hash(hash); |
| hash_done: |
| if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE) |
| return chash_get_server_hash(px, hash, avoid); |
| else |
| return map_get_server_hash(px, hash); |
| } |
| |
| /* random value */ |
| static struct server *get_server_rnd(struct stream *s, const struct server *avoid) |
| { |
| unsigned int hash = 0; |
| struct proxy *px = s->be; |
| struct server *prev, *curr; |
| int draws = px->lbprm.arg_opt1; // number of draws |
| |
| /* tot_weight appears to mean srv_count */ |
| if (px->lbprm.tot_weight == 0) |
| return NULL; |
| |
| curr = NULL; |
| do { |
| prev = curr; |
| hash = ha_random32(); |
| curr = chash_get_server_hash(px, hash, avoid); |
| if (!curr) |
| break; |
| |
| /* compare the new server to the previous best choice and pick |
| * the one with the least currently served requests. |
| */ |
| if (prev && prev != curr && |
| curr->served * prev->cur_eweight > prev->served * curr->cur_eweight) |
| curr = prev; |
| } while (--draws > 0); |
| |
| return curr; |
| } |
| |
| /* |
| * This function applies the load-balancing algorithm to the stream, as |
| * defined by the backend it is assigned to. The stream is then marked as |
| * 'assigned'. |
| * |
| * This function MAY NOT be called with SF_ASSIGNED already set. If the stream |
| * had a server previously assigned, it is rebalanced, trying to avoid the same |
| * server, which should still be present in target_srv(&s->target) before the call. |
| * The function tries to keep the original connection slot if it reconnects to |
| * the same server, otherwise it releases it and tries to offer it. |
| * |
| * It is illegal to call this function with a stream in a queue. |
| * |
| * It may return : |
| * SRV_STATUS_OK if everything is OK. ->srv and ->target are assigned. |
| * SRV_STATUS_NOSRV if no server is available. Stream is not ASSIGNED |
| * SRV_STATUS_FULL if all servers are saturated. Stream is not ASSIGNED |
| * SRV_STATUS_INTERNAL for other unrecoverable errors. |
| * |
| * Upon successful return, the stream flag SF_ASSIGNED is set to indicate that |
| * it does not need to be called anymore. This means that target_srv(&s->target) |
| * can be trusted in balance and direct modes. |
| * |
| */ |
| |
| int assign_server(struct stream *s) |
| { |
| struct connection *conn = NULL; |
| struct server *conn_slot; |
| struct server *srv = NULL, *prev_srv; |
| int err; |
| |
| DPRINTF(stderr,"assign_server : s=%p\n",s); |
| |
| err = SRV_STATUS_INTERNAL; |
| if (unlikely(s->pend_pos || s->flags & SF_ASSIGNED)) |
| goto out_err; |
| |
| prev_srv = objt_server(s->target); |
| conn_slot = s->srv_conn; |
| |
| /* We have to release any connection slot before applying any LB algo, |
| * otherwise we may erroneously end up with no available slot. |
| */ |
| if (conn_slot) |
| sess_change_server(s, NULL); |
| |
| /* We will now try to find the good server and store it into <objt_server(s->target)>. |
| * Note that <objt_server(s->target)> may be NULL in case of dispatch or proxy mode, |
| * as well as if no server is available (check error code). |
| */ |
| |
| srv = NULL; |
| s->target = NULL; |
| |
| if ((s->be->lbprm.algo & BE_LB_KIND) != BE_LB_KIND_HI && |
| ((s->sess->flags & SESS_FL_PREFER_LAST) || |
| (s->be->options & PR_O_PREF_LAST))) { |
| struct sess_srv_list *srv_list; |
| list_for_each_entry(srv_list, &s->sess->srv_list, srv_list) { |
| struct server *tmpsrv = objt_server(srv_list->target); |
| |
| if (tmpsrv && tmpsrv->proxy == s->be && |
| ((s->sess->flags & SESS_FL_PREFER_LAST) || |
| (!s->be->max_ka_queue || |
| server_has_room(tmpsrv) || ( |
| tmpsrv->nbpend + 1 < s->be->max_ka_queue))) && |
| srv_currently_usable(tmpsrv)) { |
| list_for_each_entry(conn, &srv_list->conn_list, session_list) { |
| if (!(conn->flags & CO_FL_WAIT_XPRT)) { |
| srv = tmpsrv; |
| s->target = &srv->obj_type; |
| goto out_ok; |
| } |
| } |
| } |
| } |
| } |
| if (s->be->lbprm.algo & BE_LB_KIND) { |
| |
| /* we must check if we have at least one server available */ |
| if (!s->be->lbprm.tot_weight) { |
| err = SRV_STATUS_NOSRV; |
| goto out; |
| } |
| |
| /* First check whether we need to fetch some data or simply call |
| * the LB lookup function. Only the hashing functions will need |
| * some input data in fact, and will support multiple algorithms. |
| */ |
| switch (s->be->lbprm.algo & BE_LB_LKUP) { |
| case BE_LB_LKUP_RRTREE: |
| srv = fwrr_get_next_server(s->be, prev_srv); |
| break; |
| |
| case BE_LB_LKUP_FSTREE: |
| srv = fas_get_next_server(s->be, prev_srv); |
| break; |
| |
| case BE_LB_LKUP_LCTREE: |
| srv = fwlc_get_next_server(s->be, prev_srv); |
| break; |
| |
| case BE_LB_LKUP_CHTREE: |
| case BE_LB_LKUP_MAP: |
| if ((s->be->lbprm.algo & BE_LB_KIND) == BE_LB_KIND_RR) { |
| if ((s->be->lbprm.algo & BE_LB_PARM) == BE_LB_RR_RANDOM) |
| srv = get_server_rnd(s, prev_srv); |
| else if ((s->be->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE) |
| srv = chash_get_next_server(s->be, prev_srv); |
| else |
| srv = map_get_server_rr(s->be, prev_srv); |
| break; |
| } |
| else if ((s->be->lbprm.algo & BE_LB_KIND) != BE_LB_KIND_HI) { |
| /* unknown balancing algorithm */ |
| err = SRV_STATUS_INTERNAL; |
| goto out; |
| } |
| |
| switch (s->be->lbprm.algo & BE_LB_PARM) { |
| case BE_LB_HASH_SRC: |
| conn = objt_conn(strm_orig(s)); |
| if (conn && conn_get_src(conn) && conn->src->ss_family == AF_INET) { |
| srv = get_server_sh(s->be, |
| (void *)&((struct sockaddr_in *)conn->src)->sin_addr, |
| 4, prev_srv); |
| } |
| else if (conn && conn_get_src(conn) && conn->src->ss_family == AF_INET6) { |
| srv = get_server_sh(s->be, |
| (void *)&((struct sockaddr_in6 *)conn->src)->sin6_addr, |
| 16, prev_srv); |
| } |
| else { |
| /* unknown IP family */ |
| err = SRV_STATUS_INTERNAL; |
| goto out; |
| } |
| break; |
| |
| case BE_LB_HASH_URI: |
| /* URI hashing */ |
| if (IS_HTX_STRM(s) && s->txn->req.msg_state >= HTTP_MSG_BODY) { |
| struct ist uri; |
| |
| uri = htx_sl_req_uri(http_get_stline(htxbuf(&s->req.buf))); |
| srv = get_server_uh(s->be, uri.ptr, uri.len, prev_srv); |
| } |
| break; |
| |
| case BE_LB_HASH_PRM: |
| /* URL Parameter hashing */ |
| if (IS_HTX_STRM(s) && s->txn->req.msg_state >= HTTP_MSG_BODY) { |
| struct ist uri; |
| |
| uri = htx_sl_req_uri(http_get_stline(htxbuf(&s->req.buf))); |
| srv = get_server_ph(s->be, uri.ptr, uri.len, prev_srv); |
| |
| if (!srv && s->txn->meth == HTTP_METH_POST) |
| srv = get_server_ph_post(s, prev_srv); |
| } |
| break; |
| |
| case BE_LB_HASH_HDR: |
| /* Header Parameter hashing */ |
| if (IS_HTX_STRM(s) && s->txn->req.msg_state >= HTTP_MSG_BODY) |
| srv = get_server_hh(s, prev_srv); |
| break; |
| |
| case BE_LB_HASH_RDP: |
| /* RDP Cookie hashing */ |
| srv = get_server_rch(s, prev_srv); |
| break; |
| |
| default: |
| /* unknown balancing algorithm */ |
| err = SRV_STATUS_INTERNAL; |
| goto out; |
| } |
| |
| /* If the hashing parameter was not found, let's fall |
| * back to round robin on the map. |
| */ |
| if (!srv) { |
| if ((s->be->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE) |
| srv = chash_get_next_server(s->be, prev_srv); |
| else |
| srv = map_get_server_rr(s->be, prev_srv); |
| } |
| |
| /* end of map-based LB */ |
| break; |
| |
| default: |
| /* unknown balancing algorithm */ |
| err = SRV_STATUS_INTERNAL; |
| goto out; |
| } |
| |
| if (!srv) { |
| err = SRV_STATUS_FULL; |
| goto out; |
| } |
| else if (srv != prev_srv) { |
| _HA_ATOMIC_ADD(&s->be->be_counters.cum_lbconn, 1); |
| _HA_ATOMIC_ADD(&srv->counters.cum_lbconn, 1); |
| } |
| s->target = &srv->obj_type; |
| } |
| else if (s->be->options & (PR_O_DISPATCH | PR_O_TRANSP)) { |
| s->target = &s->be->obj_type; |
| } |
| else if ((s->be->options & PR_O_HTTP_PROXY)) { |
| conn = cs_conn(objt_cs(s->si[1].end)); |
| |
| if (conn && conn->dst && is_addr(conn->dst)) { |
| /* in proxy mode, we need a valid destination address */ |
| s->target = &s->be->obj_type; |
| } else { |
| err = SRV_STATUS_NOSRV; |
| goto out; |
| } |
| } |
| else { |
| err = SRV_STATUS_NOSRV; |
| goto out; |
| } |
| |
| out_ok: |
| s->flags |= SF_ASSIGNED; |
| err = SRV_STATUS_OK; |
| out: |
| |
| /* Either we take back our connection slot, or we offer it to someone |
| * else if we don't need it anymore. |
| */ |
| if (conn_slot) { |
| if (conn_slot == srv) { |
| sess_change_server(s, srv); |
| } else { |
| if (may_dequeue_tasks(conn_slot, s->be)) |
| process_srv_queue(conn_slot); |
| } |
| } |
| |
| out_err: |
| return err; |
| } |
| |
| /* |
| * This function assigns a server address to a stream, and sets SF_ADDR_SET. |
| * The address is taken from the currently assigned server, or from the |
| * dispatch or transparent address. |
| * |
| * It may return : |
| * SRV_STATUS_OK if everything is OK. |
| * SRV_STATUS_INTERNAL for other unrecoverable errors. |
| * |
| * Upon successful return, the stream flag SF_ADDR_SET is set. This flag is |
| * not cleared, so it's to the caller to clear it if required. |
| */ |
| int assign_server_address(struct stream *s) |
| { |
| struct connection *cli_conn = objt_conn(strm_orig(s)); |
| |
| DPRINTF(stderr,"assign_server_address : s=%p\n",s); |
| |
| if (!sockaddr_alloc(&s->target_addr)) |
| return SRV_STATUS_INTERNAL; |
| |
| if ((s->flags & SF_DIRECT) || (s->be->lbprm.algo & BE_LB_KIND)) { |
| /* A server is necessarily known for this stream */ |
| if (!(s->flags & SF_ASSIGNED)) |
| return SRV_STATUS_INTERNAL; |
| |
| *s->target_addr = __objt_server(s->target)->addr; |
| set_host_port(s->target_addr, __objt_server(s->target)->svc_port); |
| |
| if (!is_addr(s->target_addr) && cli_conn) { |
| /* if the server has no address, we use the same address |
| * the client asked, which is handy for remapping ports |
| * locally on multiple addresses at once. Nothing is done |
| * for AF_UNIX addresses. |
| */ |
| if (!conn_get_dst(cli_conn)) { |
| /* do nothing if we can't retrieve the address */ |
| } else if (cli_conn->dst->ss_family == AF_INET) { |
| ((struct sockaddr_in *)s->target_addr)->sin_addr = ((struct sockaddr_in *)cli_conn->dst)->sin_addr; |
| } else if (cli_conn->dst->ss_family == AF_INET6) { |
| ((struct sockaddr_in6 *)s->target_addr)->sin6_addr = ((struct sockaddr_in6 *)cli_conn->dst)->sin6_addr; |
| } |
| } |
| |
| /* if this server remaps proxied ports, we'll use |
| * the port the client connected to with an offset. */ |
| if ((__objt_server(s->target)->flags & SRV_F_MAPPORTS) && cli_conn) { |
| int base_port; |
| |
| if (conn_get_dst(cli_conn)) { |
| /* First, retrieve the port from the incoming connection */ |
| base_port = get_host_port(cli_conn->dst); |
| |
| /* Second, assign the outgoing connection's port */ |
| base_port += get_host_port(s->target_addr); |
| set_host_port(s->target_addr, base_port); |
| } |
| } |
| } |
| else if (s->be->options & PR_O_DISPATCH) { |
| /* connect to the defined dispatch addr */ |
| *s->target_addr = s->be->dispatch_addr; |
| } |
| else if ((s->be->options & PR_O_TRANSP) && cli_conn) { |
| /* in transparent mode, use the original dest addr if no dispatch specified */ |
| if (conn_get_dst(cli_conn) && |
| (cli_conn->dst->ss_family == AF_INET || cli_conn->dst->ss_family == AF_INET6)) |
| *s->target_addr = *cli_conn->dst; |
| } |
| else if (s->be->options & PR_O_HTTP_PROXY) { |
| /* If HTTP PROXY option is set, then server is already assigned |
| * during incoming client request parsing. */ |
| } |
| else { |
| /* no server and no LB algorithm ! */ |
| return SRV_STATUS_INTERNAL; |
| } |
| |
| s->flags |= SF_ADDR_SET; |
| return SRV_STATUS_OK; |
| } |
| |
| /* This function assigns a server to stream <s> if required, and can add the |
| * connection to either the assigned server's queue or to the proxy's queue. |
| * If ->srv_conn is set, the stream is first released from the server. |
| * It may also be called with SF_DIRECT and/or SF_ASSIGNED though. It will |
| * be called before any connection and after any retry or redispatch occurs. |
| * |
| * It is not allowed to call this function with a stream in a queue. |
| * |
| * Returns : |
| * |
| * SRV_STATUS_OK if everything is OK. |
| * SRV_STATUS_NOSRV if no server is available. objt_server(s->target) = NULL. |
| * SRV_STATUS_QUEUED if the connection has been queued. |
| * SRV_STATUS_FULL if the server(s) is/are saturated and the |
| * connection could not be queued at the server's, |
| * which may be NULL if we queue on the backend. |
| * SRV_STATUS_INTERNAL for other unrecoverable errors. |
| * |
| */ |
| int assign_server_and_queue(struct stream *s) |
| { |
| struct pendconn *p; |
| struct server *srv; |
| int err; |
| |
| if (s->pend_pos) |
| return SRV_STATUS_INTERNAL; |
| |
| err = SRV_STATUS_OK; |
| if (!(s->flags & SF_ASSIGNED)) { |
| struct server *prev_srv = objt_server(s->target); |
| |
| err = assign_server(s); |
| if (prev_srv) { |
| /* This stream was previously assigned to a server. We have to |
| * update the stream's and the server's stats : |
| * - if the server changed : |
| * - set TX_CK_DOWN if txn.flags was TX_CK_VALID |
| * - set SF_REDISP if it was successfully redispatched |
| * - increment srv->redispatches and be->redispatches |
| * - if the server remained the same : update retries. |
| */ |
| |
| if (prev_srv != objt_server(s->target)) { |
| if (s->txn && (s->txn->flags & TX_CK_MASK) == TX_CK_VALID) { |
| s->txn->flags &= ~TX_CK_MASK; |
| s->txn->flags |= TX_CK_DOWN; |
| } |
| s->flags |= SF_REDISP; |
| _HA_ATOMIC_ADD(&prev_srv->counters.redispatches, 1); |
| _HA_ATOMIC_ADD(&s->be->be_counters.redispatches, 1); |
| } else { |
| _HA_ATOMIC_ADD(&prev_srv->counters.retries, 1); |
| _HA_ATOMIC_ADD(&s->be->be_counters.retries, 1); |
| } |
| } |
| } |
| |
| switch (err) { |
| case SRV_STATUS_OK: |
| /* we have SF_ASSIGNED set */ |
| srv = objt_server(s->target); |
| if (!srv) |
| return SRV_STATUS_OK; /* dispatch or proxy mode */ |
| |
| /* If we already have a connection slot, no need to check any queue */ |
| if (s->srv_conn == srv) |
| return SRV_STATUS_OK; |
| |
| /* OK, this stream already has an assigned server, but no |
| * connection slot yet. Either it is a redispatch, or it was |
| * assigned from persistence information (direct mode). |
| */ |
| if ((s->flags & SF_REDIRECTABLE) && srv->rdr_len) { |
| /* server scheduled for redirection, and already assigned. We |
| * don't want to go further nor check the queue. |
| */ |
| sess_change_server(s, srv); /* not really needed in fact */ |
| return SRV_STATUS_OK; |
| } |
| |
| /* We might have to queue this stream if the assigned server is full. |
| * We know we have to queue it into the server's queue, so if a maxqueue |
| * is set on the server, we must also check that the server's queue is |
| * not full, in which case we have to return FULL. |
| */ |
| if (srv->maxconn && |
| (srv->nbpend || srv->served >= srv_dynamic_maxconn(srv))) { |
| |
| if (srv->maxqueue > 0 && srv->nbpend >= srv->maxqueue) |
| return SRV_STATUS_FULL; |
| |
| p = pendconn_add(s); |
| if (p) |
| return SRV_STATUS_QUEUED; |
| else |
| return SRV_STATUS_INTERNAL; |
| } |
| |
| /* OK, we can use this server. Let's reserve our place */ |
| sess_change_server(s, srv); |
| return SRV_STATUS_OK; |
| |
| case SRV_STATUS_FULL: |
| /* queue this stream into the proxy's queue */ |
| p = pendconn_add(s); |
| if (p) |
| return SRV_STATUS_QUEUED; |
| else |
| return SRV_STATUS_INTERNAL; |
| |
| case SRV_STATUS_NOSRV: |
| return err; |
| |
| case SRV_STATUS_INTERNAL: |
| return err; |
| |
| default: |
| return SRV_STATUS_INTERNAL; |
| } |
| } |
| |
| /* If an explicit source binding is specified on the server and/or backend, and |
| * this source makes use of the transparent proxy, then it is extracted now and |
| * assigned to the stream's pending connection. This function assumes that an |
| * outgoing connection has already been assigned to s->si[1].end. |
| */ |
| static void assign_tproxy_address(struct stream *s) |
| { |
| #if defined(CONFIG_HAP_TRANSPARENT) |
| struct server *srv = objt_server(s->target); |
| struct conn_src *src; |
| struct connection *cli_conn; |
| struct connection *srv_conn; |
| |
| if (objt_cs(s->si[1].end)) |
| srv_conn = cs_conn(__objt_cs(s->si[1].end)); |
| else |
| srv_conn = objt_conn(s->si[1].end); |
| |
| if (srv && srv->conn_src.opts & CO_SRC_BIND) |
| src = &srv->conn_src; |
| else if (s->be->conn_src.opts & CO_SRC_BIND) |
| src = &s->be->conn_src; |
| else |
| return; |
| |
| if (!sockaddr_alloc(&srv_conn->src)) |
| return; |
| |
| switch (src->opts & CO_SRC_TPROXY_MASK) { |
| case CO_SRC_TPROXY_ADDR: |
| *srv_conn->src = src->tproxy_addr; |
| break; |
| case CO_SRC_TPROXY_CLI: |
| case CO_SRC_TPROXY_CIP: |
| /* FIXME: what can we do if the client connects in IPv6 or unix socket ? */ |
| cli_conn = objt_conn(strm_orig(s)); |
| if (cli_conn && conn_get_src(cli_conn)) |
| *srv_conn->src = *cli_conn->src; |
| else { |
| sockaddr_free(&srv_conn->src); |
| } |
| break; |
| case CO_SRC_TPROXY_DYN: |
| if (src->bind_hdr_occ && IS_HTX_STRM(s)) { |
| char *vptr; |
| size_t vlen; |
| |
| /* bind to the IP in a header */ |
| ((struct sockaddr_in *)srv_conn->src)->sin_family = AF_INET; |
| ((struct sockaddr_in *)srv_conn->src)->sin_port = 0; |
| ((struct sockaddr_in *)srv_conn->src)->sin_addr.s_addr = 0; |
| if (http_get_htx_hdr(htxbuf(&s->req.buf), |
| ist2(src->bind_hdr_name, src->bind_hdr_len), |
| src->bind_hdr_occ, NULL, &vptr, &vlen)) { |
| ((struct sockaddr_in *)srv_conn->src)->sin_addr.s_addr = |
| htonl(inetaddr_host_lim(vptr, vptr + vlen)); |
| } |
| } |
| break; |
| default: |
| sockaddr_free(&srv_conn->src); |
| } |
| #endif |
| } |
| |
| /* Attempt to get a backend connection from the specified mt_list array |
| * (safe or idle connections). |
| */ |
| static struct connection *conn_backend_get(struct server *srv, int is_safe) |
| { |
| struct mt_list *mt_list = is_safe ? srv->safe_conns : srv->idle_conns; |
| struct connection *conn; |
| int i; |
| int found = 0; |
| |
| /* We need to lock even if this is our own list, because another |
| * thread may be trying to migrate that connection, and we don't want |
| * to end up with two threads using the same connection. |
| */ |
| HA_SPIN_LOCK(OTHER_LOCK, &toremove_lock[tid]); |
| conn = MT_LIST_POP(&mt_list[tid], struct connection *, list); |
| HA_SPIN_UNLOCK(OTHER_LOCK, &toremove_lock[tid]); |
| |
| /* If we found a connection in our own list, and we don't have to |
| * steal one from another thread, then we're done. |
| */ |
| if (conn) { |
| i = tid; |
| goto fix_conn; |
| } |
| |
| /* Lookup all other threads for an idle connection, starting from tid + 1 */ |
| for (i = tid; !found && (i = ((i + 1 == global.nbthread) ? 0 : i + 1)) != tid;) { |
| struct mt_list *elt1, elt2; |
| |
| HA_SPIN_LOCK(OTHER_LOCK, &toremove_lock[i]); |
| mt_list_for_each_entry_safe(conn, &mt_list[i], list, elt1, elt2) { |
| if (conn->mux->takeover && conn->mux->takeover(conn) == 0) { |
| MT_LIST_DEL_SAFE(elt1); |
| found = 1; |
| break; |
| } |
| } |
| HA_SPIN_UNLOCK(OTHER_LOCK, &toremove_lock[i]); |
| } |
| |
| if (!found) |
| conn = NULL; |
| else { |
| fix_conn: |
| conn->idle_time = 0; |
| _HA_ATOMIC_SUB(&srv->curr_idle_conns, 1); |
| _HA_ATOMIC_SUB(&srv->curr_idle_thr[i], 1); |
| _HA_ATOMIC_SUB(is_safe ? &srv->curr_safe_nb : &srv->curr_idle_nb, 1); |
| __ha_barrier_atomic_store(); |
| LIST_ADDQ(&srv->available_conns[tid], mt_list_to_list(&conn->list)); |
| } |
| return conn; |
| } |
| |
| /* |
| * This function initiates a connection to the server assigned to this stream |
| * (s->target, s->si[1].addr.to). It will assign a server if none |
| * is assigned yet. |
| * It can return one of : |
| * - SF_ERR_NONE if everything's OK |
| * - SF_ERR_SRVTO if there are no more servers |
| * - SF_ERR_SRVCL if the connection was refused by the server |
| * - SF_ERR_PRXCOND if the connection has been limited by the proxy (maxconn) |
| * - SF_ERR_RESOURCE if a system resource is lacking (eg: fd limits, ports, ...) |
| * - SF_ERR_INTERNAL for any other purely internal errors |
| * Additionally, in the case of SF_ERR_RESOURCE, an emergency log will be emitted. |
| * The server-facing stream interface is expected to hold a pre-allocated connection |
| * in s->si[1].conn. |
| */ |
| int connect_server(struct stream *s) |
| { |
| struct connection *cli_conn = objt_conn(strm_orig(s)); |
| struct connection *srv_conn = NULL; |
| struct conn_stream *srv_cs = NULL; |
| struct sess_srv_list *srv_list; |
| struct server *srv; |
| int reuse = 0; |
| int reuse_orphan = 0; |
| int init_mux = 0; |
| int err; |
| |
| |
| /* This will catch some corner cases such as lying connections resulting from |
| * retries or connect timeouts but will rarely trigger. |
| */ |
| si_release_endpoint(&s->si[1]); |
| |
| /* first, search for a matching connection in the session's idle conns */ |
| list_for_each_entry(srv_list, &s->sess->srv_list, srv_list) { |
| if (srv_list->target == s->target) { |
| list_for_each_entry(srv_conn, &srv_list->conn_list, session_list) { |
| if (conn_xprt_ready(srv_conn) && |
| srv_conn->mux && (srv_conn->mux->avail_streams(srv_conn) > 0)) { |
| reuse = 1; |
| break; |
| } |
| } |
| break; |
| } |
| } |
| |
| if (!reuse) |
| srv_conn = NULL; |
| |
| srv = objt_server(s->target); |
| |
| if (srv && !reuse) { |
| srv_conn = NULL; |
| |
| /* Below we pick connections from the safe, idle or |
| * available (which are safe too) lists based |
| * on the strategy, the fact that this is a first or second |
| * (retryable) request, with the indicated priority (1 or 2) : |
| * |
| * SAFE AGGR ALWS |
| * |
| * +-----+-----+ +-----+-----+ +-----+-----+ |
| * req| 1st | 2nd | req| 1st | 2nd | req| 1st | 2nd | |
| * ----+-----+-----+ ----+-----+-----+ ----+-----+-----+ |
| * safe| - | 2 | safe| 1 | 2 | safe| 1 | 2 | |
| * ----+-----+-----+ ----+-----+-----+ ----+-----+-----+ |
| * idle| - | 1 | idle| - | 1 | idle| 2 | 1 | |
| * ----+-----+-----+ ----+-----+-----+ ----+-----+-----+ |
| * |
| * Idle conns are necessarily looked up on the same thread so |
| * that there is no concurrency issues. |
| */ |
| if (srv->available_conns && !LIST_ISEMPTY(&srv->available_conns[tid]) && |
| ((s->be->options & PR_O_REUSE_MASK) != PR_O_REUSE_NEVR)) { |
| srv_conn = LIST_ELEM(srv->available_conns[tid].n, struct connection *, list); |
| reuse = 1; |
| } |
| else if (!srv_conn && srv->curr_idle_conns > 0) { |
| if (srv->idle_conns && |
| ((s->be->options & PR_O_REUSE_MASK) != PR_O_REUSE_NEVR && |
| s->txn && (s->txn->flags & TX_NOT_FIRST)) && |
| srv->curr_idle_nb > 0) { |
| srv_conn = conn_backend_get(srv, 0); |
| } |
| else if (srv->safe_conns && |
| ((s->txn && (s->txn->flags & TX_NOT_FIRST)) || |
| (s->be->options & PR_O_REUSE_MASK) >= PR_O_REUSE_AGGR) && |
| srv->curr_safe_nb > 0) { |
| srv_conn = conn_backend_get(srv, 1); |
| } |
| else if (srv->idle_conns && |
| ((s->be->options & PR_O_REUSE_MASK) == PR_O_REUSE_ALWS) && |
| srv->curr_idle_nb > 0) { |
| srv_conn = conn_backend_get(srv, 0); |
| } |
| /* If we've picked a connection from the pool, we now have to |
| * detach it. We may have to get rid of the previous idle |
| * connection we had, so for this we try to swap it with the |
| * other owner's. That way it may remain alive for others to |
| * pick. |
| */ |
| if (srv_conn) { |
| reuse_orphan = 1; |
| reuse = 1; |
| srv_conn->flags &= ~CO_FL_LIST_MASK; |
| } |
| } |
| } |
| |
| |
| /* here reuse might have been set above, indicating srv_conn finally |
| * is OK. |
| */ |
| if (reuse) { |
| /* Disable connection reuse if a dynamic source is used. |
| * As long as we don't share connections between servers, |
| * we don't need to disable connection reuse on no-idempotent |
| * requests nor when PROXY protocol is used. |
| */ |
| if (srv && srv->conn_src.opts & CO_SRC_BIND) { |
| if ((srv->conn_src.opts & CO_SRC_TPROXY_MASK) == CO_SRC_TPROXY_DYN) |
| reuse = 0; |
| } |
| else if (s->be->conn_src.opts & CO_SRC_BIND) { |
| if ((s->be->conn_src.opts & CO_SRC_TPROXY_MASK) == CO_SRC_TPROXY_DYN) |
| reuse = 0; |
| } |
| } |
| |
| if (ha_used_fds > global.tune.pool_high_count && srv && srv->idle_conns) { |
| struct connection *tokill_conn; |
| |
| /* We can't reuse a connection, and e have more FDs than deemd |
| * acceptable, attempt to kill an idling connection |
| */ |
| /* First, try from our own idle list */ |
| tokill_conn = MT_LIST_POP(&srv->idle_conns[tid], |
| struct connection *, list); |
| if (tokill_conn) |
| tokill_conn->mux->destroy(tokill_conn->ctx); |
| /* If not, iterate over other thread's idling pool, and try to grab one */ |
| else { |
| int i; |
| |
| for (i = 0; i < global.nbthread; i++) { |
| if (i == tid) |
| continue; |
| |
| // just silence stupid gcc which reports an absurd |
| // out-of-bounds warning for <i> which is always |
| // exactly zero without threads, but it seems to |
| // see it possibly larger. |
| ALREADY_CHECKED(i); |
| |
| HA_SPIN_LOCK(OTHER_LOCK, &toremove_lock[tid]); |
| tokill_conn = MT_LIST_POP(&srv->idle_conns[i], |
| struct connection *, list); |
| if (!tokill_conn) |
| tokill_conn = MT_LIST_POP(&srv->safe_conns[i], |
| struct connection *, list); |
| if (tokill_conn) { |
| /* We got one, put it into the concerned thread's to kill list, and wake it's kill task */ |
| |
| MT_LIST_ADDQ(&toremove_connections[i], |
| (struct mt_list *)&tokill_conn->list); |
| task_wakeup(idle_conn_cleanup[i], TASK_WOKEN_OTHER); |
| HA_SPIN_UNLOCK(OTHER_LOCK, &toremove_lock[tid]); |
| break; |
| } |
| HA_SPIN_UNLOCK(OTHER_LOCK, &toremove_lock[tid]); |
| } |
| } |
| |
| } |
| /* If we're really reusing the connection, remove it from the orphan |
| * list and add it back to the idle list. |
| */ |
| if (reuse) { |
| if (!reuse_orphan) { |
| if (srv_conn->flags & CO_FL_SESS_IDLE) { |
| struct session *sess = srv_conn->owner; |
| |
| srv_conn->flags &= ~CO_FL_SESS_IDLE; |
| sess->idle_conns--; |
| } |
| } |
| } |
| |
| if (reuse) { |
| if (srv_conn->mux) { |
| int avail = srv_conn->mux->avail_streams(srv_conn); |
| |
| if (avail <= 1) { |
| /* No more streams available, remove it from the list */ |
| MT_LIST_DEL(&srv_conn->list); |
| } |
| |
| if (avail >= 1) { |
| srv_cs = srv_conn->mux->attach(srv_conn, s->sess); |
| if (srv_cs) |
| si_attach_cs(&s->si[1], srv_cs); |
| else |
| srv_conn = NULL; |
| } |
| else |
| srv_conn = NULL; |
| } |
| /* otherwise srv_conn is left intact */ |
| } |
| else |
| srv_conn = NULL; |
| |
| /* no reuse or failed to reuse the connection above, pick a new one */ |
| if (!srv_conn) { |
| srv_conn = conn_new(); |
| if (srv_conn) |
| srv_conn->target = s->target; |
| srv_cs = NULL; |
| } |
| |
| if (!srv_conn || !sockaddr_alloc(&srv_conn->dst)) { |
| if (srv_conn) |
| conn_free(srv_conn); |
| return SF_ERR_RESOURCE; |
| } |
| |
| if (!(s->flags & SF_ADDR_SET)) { |
| err = assign_server_address(s); |
| if (err != SRV_STATUS_OK) { |
| conn_free(srv_conn); |
| return SF_ERR_INTERNAL; |
| } |
| } |
| |
| /* copy the target address into the connection */ |
| *srv_conn->dst = *s->target_addr; |
| |
| /* Copy network namespace from client connection */ |
| srv_conn->proxy_netns = cli_conn ? cli_conn->proxy_netns : NULL; |
| |
| if (!conn_xprt_ready(srv_conn) && !srv_conn->mux) { |
| /* set the correct protocol on the output stream interface */ |
| if (srv) |
| conn_prepare(srv_conn, protocol_by_family(srv_conn->dst->ss_family), srv->xprt); |
| else if (obj_type(s->target) == OBJ_TYPE_PROXY) { |
| /* proxies exclusively run on raw_sock right now */ |
| conn_prepare(srv_conn, protocol_by_family(srv_conn->dst->ss_family), xprt_get(XPRT_RAW)); |
| if (!(srv_conn->ctrl)) { |
| conn_free(srv_conn); |
| return SF_ERR_INTERNAL; |
| } |
| } |
| else { |
| conn_free(srv_conn); |
| return SF_ERR_INTERNAL; /* how did we get there ? */ |
| } |
| |
| srv_cs = si_alloc_cs(&s->si[1], srv_conn); |
| if (!srv_cs) { |
| conn_free(srv_conn); |
| return SF_ERR_RESOURCE; |
| } |
| srv_conn->ctx = srv_cs; |
| #if defined(USE_OPENSSL) && defined(TLSEXT_TYPE_application_layer_protocol_negotiation) |
| if (!srv || |
| ((!(srv->ssl_ctx.alpn_str) && !(srv->ssl_ctx.npn_str)) || |
| srv->mux_proto || s->be->mode != PR_MODE_HTTP)) |
| #endif |
| init_mux = 1; |
| /* process the case where the server requires the PROXY protocol to be sent */ |
| srv_conn->send_proxy_ofs = 0; |
| |
| if (srv && srv->pp_opts) { |
| srv_conn->flags |= CO_FL_PRIVATE; |
| srv_conn->flags |= CO_FL_SEND_PROXY; |
| srv_conn->send_proxy_ofs = 1; /* must compute size */ |
| if (cli_conn) |
| conn_get_dst(cli_conn); |
| } |
| |
| assign_tproxy_address(s); |
| |
| if (srv && (srv->flags & SRV_F_SOCKS4_PROXY)) { |
| srv_conn->send_proxy_ofs = 1; |
| srv_conn->flags |= CO_FL_SOCKS4; |
| } |
| } |
| else if (!conn_xprt_ready(srv_conn)) { |
| if (srv_conn->mux->reset) |
| srv_conn->mux->reset(srv_conn); |
| } |
| else { |
| /* Only consider we're doing reuse if the connection was |
| * ready. |
| */ |
| if (srv_conn->mux->ctl(srv_conn, MUX_STATUS, NULL) & MUX_STATUS_READY) |
| s->flags |= SF_SRV_REUSED; |
| } |
| |
| /* flag for logging source ip/port */ |
| if (strm_fe(s)->options2 & PR_O2_SRC_ADDR) |
| s->si[1].flags |= SI_FL_SRC_ADDR; |
| |
| /* disable lingering */ |
| if (s->be->options & PR_O_TCP_NOLING) |
| s->si[1].flags |= SI_FL_NOLINGER; |
| |
| if (s->flags & SF_SRV_REUSED) { |
| _HA_ATOMIC_ADD(&s->be->be_counters.reuse, 1); |
| if (srv) |
| _HA_ATOMIC_ADD(&srv->counters.reuse, 1); |
| } else { |
| _HA_ATOMIC_ADD(&s->be->be_counters.connect, 1); |
| if (srv) |
| _HA_ATOMIC_ADD(&srv->counters.connect, 1); |
| } |
| |
| err = si_connect(&s->si[1], srv_conn); |
| if (err != SF_ERR_NONE) |
| return err; |
| |
| /* We have to defer the mux initialization until after si_connect() |
| * has been called, as we need the xprt to have been properly |
| * initialized, or any attempt to recv during the mux init may |
| * fail, and flag the connection as CO_FL_ERROR. |
| */ |
| if (init_mux) { |
| if (conn_install_mux_be(srv_conn, srv_cs, s->sess) < 0) { |
| conn_full_close(srv_conn); |
| return SF_ERR_INTERNAL; |
| } |
| /* If we're doing http-reuse always, and the connection |
| * is an http2 connection, add it to the available list, |
| * so that others can use it right away. |
| */ |
| if (srv && ((s->be->options & PR_O_REUSE_MASK) == PR_O_REUSE_ALWS) && |
| srv_conn->mux->avail_streams(srv_conn) > 0) |
| LIST_ADDQ(&srv->available_conns[tid], mt_list_to_list(&srv_conn->list)); |
| } |
| /* The CO_FL_SEND_PROXY flag may have been set by the connect method, |
| * if so, add our handshake pseudo-XPRT now. |
| */ |
| if ((srv_conn->flags & CO_FL_HANDSHAKE)) { |
| if (xprt_add_hs(srv_conn) < 0) { |
| conn_full_close(srv_conn); |
| return SF_ERR_INTERNAL; |
| } |
| } |
| |
| |
| #if USE_OPENSSL && (defined(OPENSSL_IS_BORINGSSL) || (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)) |
| |
| if (!reuse && cli_conn && srv && srv_conn->mux && |
| (srv->ssl_ctx.options & SRV_SSL_O_EARLY_DATA) && |
| /* Only attempt to use early data if either the client sent |
| * early data, so that we know it can handle a 425, or if |
| * we are allwoed to retry requests on early data failure, and |
| * it's our first try |
| */ |
| ((cli_conn->flags & CO_FL_EARLY_DATA) || |
| ((s->be->retry_type & PR_RE_EARLY_ERROR) && |
| s->si[1].conn_retries == s->be->conn_retries)) && |
| !channel_is_empty(si_oc(&s->si[1])) && |
| srv_conn->flags & CO_FL_SSL_WAIT_HS) |
| srv_conn->flags &= ~(CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN); |
| #endif |
| |
| /* set connect timeout */ |
| s->si[1].exp = tick_add_ifset(now_ms, s->be->timeout.connect); |
| |
| if (srv) { |
| int count; |
| |
| s->flags |= SF_CURR_SESS; |
| count = _HA_ATOMIC_ADD(&srv->cur_sess, 1); |
| HA_ATOMIC_UPDATE_MAX(&srv->counters.cur_sess_max, count); |
| if (s->be->lbprm.server_take_conn) |
| s->be->lbprm.server_take_conn(srv); |
| |
| #ifdef USE_OPENSSL |
| if (srv->ssl_ctx.sni) { |
| struct sample *smp; |
| |
| smp = sample_fetch_as_type(s->be, s->sess, s, SMP_OPT_DIR_REQ | SMP_OPT_FINAL, |
| srv->ssl_ctx.sni, SMP_T_STR); |
| if (smp_make_safe(smp)) { |
| ssl_sock_set_servername(srv_conn, |
| smp->data.u.str.area); |
| srv_conn->flags |= CO_FL_PRIVATE; |
| } |
| } |
| #endif /* USE_OPENSSL */ |
| |
| } |
| |
| /* Now handle synchronously connected sockets. We know the stream-int |
| * is at least in state SI_ST_CON. These ones typically are UNIX |
| * sockets, socket pairs, and occasionally TCP connections on the |
| * loopback on a heavily loaded system. |
| */ |
| if ((srv_conn->flags & CO_FL_ERROR || srv_cs->flags & CS_FL_ERROR)) |
| s->si[1].flags |= SI_FL_ERR; |
| |
| /* If we had early data, and the handshake ended, then |
| * we can remove the flag, and attempt to wake the task up, |
| * in the event there's an analyser waiting for the end of |
| * the handshake. |
| */ |
| if (!(srv_conn->flags & (CO_FL_WAIT_XPRT | CO_FL_EARLY_SSL_HS))) |
| srv_cs->flags &= ~CS_FL_WAIT_FOR_HS; |
| |
| if (!si_state_in(s->si[1].state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO) && |
| (srv_conn->flags & CO_FL_WAIT_XPRT) == 0) { |
| s->si[1].exp = TICK_ETERNITY; |
| si_oc(&s->si[1])->flags |= CF_WRITE_NULL; |
| if (s->si[1].state == SI_ST_CON) |
| s->si[1].state = SI_ST_RDY; |
| } |
| |
| /* Report EOI on the channel if it was reached from the mux point of |
| * view. |
| * |
| * Note: This test is only required because si_cs_process is also the SI |
| * wake callback. Otherwise si_cs_recv()/si_cs_send() already take |
| * care of it. |
| */ |
| if ((srv_cs->flags & CS_FL_EOI) && !(si_ic(&s->si[1])->flags & CF_EOI)) |
| si_ic(&s->si[1])->flags |= (CF_EOI|CF_READ_PARTIAL); |
| |
| return SF_ERR_NONE; /* connection is OK */ |
| } |
| |
| |
| /* This function performs the "redispatch" part of a connection attempt. It |
| * will assign a server if required, queue the connection if required, and |
| * handle errors that might arise at this level. It can change the server |
| * state. It will return 1 if it encounters an error, switches the server |
| * state, or has to queue a connection. Otherwise, it will return 0 indicating |
| * that the connection is ready to use. |
| */ |
| |
| int srv_redispatch_connect(struct stream *s) |
| { |
| struct server *srv; |
| int conn_err; |
| |
| /* We know that we don't have any connection pending, so we will |
| * try to get a new one, and wait in this state if it's queued |
| */ |
| redispatch: |
| conn_err = assign_server_and_queue(s); |
| srv = objt_server(s->target); |
| |
| switch (conn_err) { |
| case SRV_STATUS_OK: |
| break; |
| |
| case SRV_STATUS_FULL: |
| /* The server has reached its maxqueue limit. Either PR_O_REDISP is set |
| * and we can redispatch to another server, or it is not and we return |
| * 503. This only makes sense in DIRECT mode however, because normal LB |
| * algorithms would never select such a server, and hash algorithms |
| * would bring us on the same server again. Note that s->target is set |
| * in this case. |
| */ |
| if (((s->flags & (SF_DIRECT|SF_FORCE_PRST)) == SF_DIRECT) && |
| (s->be->options & PR_O_REDISP)) { |
| s->flags &= ~(SF_DIRECT | SF_ASSIGNED | SF_ADDR_SET); |
| sockaddr_free(&s->target_addr); |
| goto redispatch; |
| } |
| |
| if (!s->si[1].err_type) { |
| s->si[1].err_type = SI_ET_QUEUE_ERR; |
| } |
| |
| _HA_ATOMIC_ADD(&srv->counters.failed_conns, 1); |
| _HA_ATOMIC_ADD(&s->be->be_counters.failed_conns, 1); |
| return 1; |
| |
| case SRV_STATUS_NOSRV: |
| /* note: it is guaranteed that srv == NULL here */ |
| if (!s->si[1].err_type) { |
| s->si[1].err_type = SI_ET_CONN_ERR; |
| } |
| |
| _HA_ATOMIC_ADD(&s->be->be_counters.failed_conns, 1); |
| return 1; |
| |
| case SRV_STATUS_QUEUED: |
| s->si[1].exp = tick_add_ifset(now_ms, s->be->timeout.queue); |
| s->si[1].state = SI_ST_QUE; |
| /* do nothing else and do not wake any other stream up */ |
| return 1; |
| |
| case SRV_STATUS_INTERNAL: |
| default: |
| if (!s->si[1].err_type) { |
| s->si[1].err_type = SI_ET_CONN_OTHER; |
| } |
| |
| if (srv) |
| srv_inc_sess_ctr(srv); |
| if (srv) |
| srv_set_sess_last(srv); |
| if (srv) |
| _HA_ATOMIC_ADD(&srv->counters.failed_conns, 1); |
| _HA_ATOMIC_ADD(&s->be->be_counters.failed_conns, 1); |
| |
| /* release other streams waiting for this server */ |
| if (may_dequeue_tasks(srv, s->be)) |
| process_srv_queue(srv); |
| return 1; |
| } |
| /* if we get here, it's because we got SRV_STATUS_OK, which also |
| * means that the connection has not been queued. |
| */ |
| return 0; |
| } |
| |
| /* Check if the connection request is in such a state that it can be aborted. */ |
| static int back_may_abort_req(struct channel *req, struct stream *s) |
| { |
| return ((req->flags & (CF_READ_ERROR)) || |
| ((req->flags & (CF_SHUTW_NOW|CF_SHUTW)) && /* empty and client aborted */ |
| (channel_is_empty(req) || (s->be->options & PR_O_ABRT_CLOSE)))); |
| } |
| |
| /* Update back stream interface status for input states SI_ST_ASS, SI_ST_QUE, |
| * SI_ST_TAR. Other input states are simply ignored. |
| * Possible output states are SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ, SI_ST_CON |
| * and SI_ST_EST. Flags must have previously been updated for timeouts and other |
| * conditions. |
| */ |
| void back_try_conn_req(struct stream *s) |
| { |
| struct server *srv = objt_server(s->target); |
| struct stream_interface *si = &s->si[1]; |
| struct channel *req = &s->req; |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| |
| if (si->state == SI_ST_ASS) { |
| /* Server assigned to connection request, we have to try to connect now */ |
| int conn_err; |
| |
| /* Before we try to initiate the connection, see if the |
| * request may be aborted instead. |
| */ |
| if (back_may_abort_req(req, s)) { |
| si->err_type |= SI_ET_CONN_ABRT; |
| DBG_TRACE_STATE("connection aborted", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s); |
| goto abort_connection; |
| } |
| |
| conn_err = connect_server(s); |
| srv = objt_server(s->target); |
| |
| if (conn_err == SF_ERR_NONE) { |
| /* state = SI_ST_CON or SI_ST_EST now */ |
| if (srv) |
| srv_inc_sess_ctr(srv); |
| if (srv) |
| srv_set_sess_last(srv); |
| DBG_TRACE_STATE("connection attempt", STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| goto end; |
| } |
| |
| /* We have received a synchronous error. We might have to |
| * abort, retry immediately or redispatch. |
| */ |
| if (conn_err == SF_ERR_INTERNAL) { |
| if (!si->err_type) { |
| si->err_type = SI_ET_CONN_OTHER; |
| } |
| |
| if (srv) |
| srv_inc_sess_ctr(srv); |
| if (srv) |
| srv_set_sess_last(srv); |
| if (srv) |
| _HA_ATOMIC_ADD(&srv->counters.failed_conns, 1); |
| _HA_ATOMIC_ADD(&s->be->be_counters.failed_conns, 1); |
| |
| /* release other streams waiting for this server */ |
| sess_change_server(s, NULL); |
| if (may_dequeue_tasks(srv, s->be)) |
| process_srv_queue(srv); |
| |
| /* Failed and not retryable. */ |
| si_shutr(si); |
| si_shutw(si); |
| req->flags |= CF_WRITE_ERROR; |
| |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| |
| /* we may need to know the position in the queue for logging */ |
| pendconn_cond_unlink(s->pend_pos); |
| |
| /* no stream was ever accounted for this server */ |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| DBG_TRACE_STATE("internal error during connection", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s); |
| goto end; |
| } |
| |
| /* We are facing a retryable error, but we don't want to run a |
| * turn-around now, as the problem is likely a source port |
| * allocation problem, so we want to retry now. |
| */ |
| si->state = SI_ST_CER; |
| si->flags &= ~SI_FL_ERR; |
| back_handle_st_cer(s); |
| |
| DBG_TRACE_STATE("connection error, retry", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s); |
| /* now si->state is one of SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ */ |
| } |
| else if (si->state == SI_ST_QUE) { |
| /* connection request was queued, check for any update */ |
| if (!pendconn_dequeue(s)) { |
| /* The connection is not in the queue anymore. Either |
| * we have a server connection slot available and we |
| * go directly to the assigned state, or we need to |
| * load-balance first and go to the INI state. |
| */ |
| si->exp = TICK_ETERNITY; |
| if (unlikely(!(s->flags & SF_ASSIGNED))) |
| si->state = SI_ST_REQ; |
| else { |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->state = SI_ST_ASS; |
| } |
| DBG_TRACE_STATE("dequeue connection request", STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| goto end; |
| } |
| |
| /* Connection request still in queue... */ |
| if (si->flags & SI_FL_EXP) { |
| /* ... and timeout expired */ |
| si->exp = TICK_ETERNITY; |
| si->flags &= ~SI_FL_EXP; |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| |
| /* we may need to know the position in the queue for logging */ |
| pendconn_cond_unlink(s->pend_pos); |
| |
| if (srv) |
| _HA_ATOMIC_ADD(&srv->counters.failed_conns, 1); |
| _HA_ATOMIC_ADD(&s->be->be_counters.failed_conns, 1); |
| si_shutr(si); |
| si_shutw(si); |
| req->flags |= CF_WRITE_TIMEOUT; |
| if (!si->err_type) |
| si->err_type = SI_ET_QUEUE_TO; |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| DBG_TRACE_STATE("connection request still queued", STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| goto end; |
| } |
| |
| /* Connection remains in queue, check if we have to abort it */ |
| if (back_may_abort_req(req, s)) { |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| |
| /* we may need to know the position in the queue for logging */ |
| pendconn_cond_unlink(s->pend_pos); |
| |
| si->err_type |= SI_ET_QUEUE_ABRT; |
| DBG_TRACE_STATE("abort queued connection request", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s); |
| goto abort_connection; |
| } |
| |
| /* Nothing changed */ |
| } |
| else if (si->state == SI_ST_TAR) { |
| /* Connection request might be aborted */ |
| if (back_may_abort_req(req, s)) { |
| si->err_type |= SI_ET_CONN_ABRT; |
| DBG_TRACE_STATE("connection aborted", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s); |
| goto abort_connection; |
| } |
| |
| if (!(si->flags & SI_FL_EXP)) |
| return; /* still in turn-around */ |
| |
| si->flags &= ~SI_FL_EXP; |
| si->exp = TICK_ETERNITY; |
| |
| /* we keep trying on the same server as long as the stream is |
| * marked "assigned". |
| * FIXME: Should we force a redispatch attempt when the server is down ? |
| */ |
| if (s->flags & SF_ASSIGNED) |
| si->state = SI_ST_ASS; |
| else |
| si->state = SI_ST_REQ; |
| |
| DBG_TRACE_STATE("retry connection now", STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| } |
| |
| end: |
| DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| return; |
| |
| abort_connection: |
| /* give up */ |
| si->exp = TICK_ETERNITY; |
| si->flags &= ~SI_FL_EXP; |
| si_shutr(si); |
| si_shutw(si); |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s); |
| return; |
| } |
| |
| /* This function initiates a server connection request on a stream interface |
| * already in SI_ST_REQ state. Upon success, the state goes to SI_ST_ASS for |
| * a real connection to a server, indicating that a server has been assigned, |
| * or SI_ST_EST for a successful connection to an applet. It may also return |
| * SI_ST_QUE, or SI_ST_CLO upon error. |
| */ |
| void back_handle_st_req(struct stream *s) |
| { |
| struct stream_interface *si = &s->si[1]; |
| |
| if (si->state != SI_ST_REQ) |
| return; |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| |
| if (unlikely(obj_type(s->target) == OBJ_TYPE_APPLET)) { |
| /* the applet directly goes to the EST state */ |
| struct appctx *appctx = objt_appctx(si->end); |
| |
| if (!appctx || appctx->applet != __objt_applet(s->target)) |
| appctx = si_register_handler(si, objt_applet(s->target)); |
| |
| if (!appctx) { |
| /* No more memory, let's immediately abort. Force the |
| * error code to ignore the ERR_LOCAL which is not a |
| * real error. |
| */ |
| s->flags &= ~(SF_ERR_MASK | SF_FINST_MASK); |
| |
| si_shutr(si); |
| si_shutw(si); |
| s->req.flags |= CF_WRITE_ERROR; |
| si->err_type = SI_ET_CONN_RES; |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| DBG_TRACE_STATE("failed to register applet", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s); |
| goto end; |
| } |
| |
| if (tv_iszero(&s->logs.tv_request)) |
| s->logs.tv_request = now; |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->state = SI_ST_EST; |
| si->err_type = SI_ET_NONE; |
| be_set_sess_last(s->be); |
| |
| DBG_TRACE_STATE("applet registered", STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| /* let back_establish() finish the job */ |
| goto end; |
| } |
| |
| /* Try to assign a server */ |
| if (srv_redispatch_connect(s) != 0) { |
| /* We did not get a server. Either we queued the |
| * connection request, or we encountered an error. |
| */ |
| if (si->state == SI_ST_QUE) { |
| DBG_TRACE_STATE("connection request queued", STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| goto end; |
| } |
| |
| /* we did not get any server, let's check the cause */ |
| si_shutr(si); |
| si_shutw(si); |
| s->req.flags |= CF_WRITE_ERROR; |
| if (!si->err_type) |
| si->err_type = SI_ET_CONN_OTHER; |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| DBG_TRACE_STATE("connection request failed", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s); |
| goto end; |
| } |
| |
| /* The server is assigned */ |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->state = SI_ST_ASS; |
| be_set_sess_last(s->be); |
| DBG_TRACE_STATE("connection request assigned to a server", STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| |
| end: |
| DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| } |
| |
| /* This function is called with (si->state == SI_ST_CON) meaning that a |
| * connection was attempted and that the file descriptor is already allocated. |
| * We must check for timeout, error and abort. Possible output states are |
| * SI_ST_CER (error), SI_ST_DIS (abort), and SI_ST_CON (no change). This only |
| * works with connection-based streams. We know that there were no I/O event |
| * when reaching this function. Timeouts and errors are *not* cleared. |
| */ |
| void back_handle_st_con(struct stream *s) |
| { |
| struct stream_interface *si = &s->si[1]; |
| struct channel *req = &s->req; |
| struct channel *rep = &s->res; |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| |
| /* the client might want to abort */ |
| if ((rep->flags & CF_SHUTW) || |
| ((req->flags & CF_SHUTW_NOW) && |
| (channel_is_empty(req) || (s->be->options & PR_O_ABRT_CLOSE)))) { |
| si->flags |= SI_FL_NOLINGER; |
| si_shutw(si); |
| si->err_type |= SI_ET_CONN_ABRT; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| /* Note: state = SI_ST_DIS now */ |
| DBG_TRACE_STATE("client abort during connection attempt", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s); |
| goto end; |
| } |
| |
| done: |
| /* retryable error ? */ |
| if (si->flags & (SI_FL_EXP|SI_FL_ERR)) { |
| if (!si->err_type) { |
| if (si->flags & SI_FL_ERR) |
| si->err_type = SI_ET_CONN_ERR; |
| else |
| si->err_type = SI_ET_CONN_TO; |
| } |
| |
| si->state = SI_ST_CER; |
| DBG_TRACE_STATE("connection failed, retry", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s); |
| } |
| |
| end: |
| DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| } |
| |
| /* This function is called with (si->state == SI_ST_CER) meaning that a |
| * previous connection attempt has failed and that the file descriptor |
| * has already been released. Possible causes include asynchronous error |
| * notification and time out. Possible output states are SI_ST_CLO when |
| * retries are exhausted, SI_ST_TAR when a delay is wanted before a new |
| * connection attempt, SI_ST_ASS when it's wise to retry on the same server, |
| * and SI_ST_REQ when an immediate redispatch is wanted. The buffers are |
| * marked as in error state. Timeouts and errors are cleared before retrying. |
| */ |
| void back_handle_st_cer(struct stream *s) |
| { |
| struct stream_interface *si = &s->si[1]; |
| struct conn_stream *cs = objt_cs(si->end); |
| struct connection *conn = cs_conn(cs); |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| |
| si->exp = TICK_ETERNITY; |
| si->flags &= ~SI_FL_EXP; |
| |
| /* we probably have to release last stream from the server */ |
| if (objt_server(s->target)) { |
| health_adjust(objt_server(s->target), HANA_STATUS_L4_ERR); |
| |
| if (s->flags & SF_CURR_SESS) { |
| s->flags &= ~SF_CURR_SESS; |
| _HA_ATOMIC_SUB(&__objt_server(s->target)->cur_sess, 1); |
| } |
| |
| if ((si->flags & SI_FL_ERR) && |
| conn && conn->err_code == CO_ER_SSL_MISMATCH_SNI) { |
| /* We tried to connect to a server which is configured |
| * with "verify required" and which doesn't have the |
| * "verifyhost" directive. The server presented a wrong |
| * certificate (a certificate for an unexpected name), |
| * which implies that we have used SNI in the handshake, |
| * and that the server doesn't have the associated cert |
| * and presented a default one. |
| * |
| * This is a serious enough issue not to retry. It's |
| * especially important because this wrong name might |
| * either be the result of a configuration error, and |
| * retrying will only hammer the server, or is caused |
| * by the use of a wrong SNI value, most likely |
| * provided by the client and we don't want to let the |
| * client provoke retries. |
| */ |
| si->conn_retries = 0; |
| DBG_TRACE_DEVEL("Bad SSL cert, disable connection retries", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s); |
| } |
| } |
| |
| /* ensure that we have enough retries left */ |
| si->conn_retries--; |
| if (si->conn_retries < 0 || !(s->be->retry_type & PR_RE_CONN_FAILED)) { |
| if (!si->err_type) { |
| si->err_type = SI_ET_CONN_ERR; |
| } |
| |
| if (objt_server(s->target)) |
| _HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_conns, 1); |
| _HA_ATOMIC_ADD(&s->be->be_counters.failed_conns, 1); |
| sess_change_server(s, NULL); |
| if (may_dequeue_tasks(objt_server(s->target), s->be)) |
| process_srv_queue(objt_server(s->target)); |
| |
| /* shutw is enough so stop a connecting socket */ |
| si_shutw(si); |
| s->req.flags |= CF_WRITE_ERROR; |
| s->res.flags |= CF_READ_ERROR; |
| |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| |
| DBG_TRACE_STATE("connection failed", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s); |
| goto end; |
| } |
| |
| stream_choose_redispatch(s); |
| |
| if (si->flags & SI_FL_ERR) { |
| /* The error was an asynchronous connection error, and we will |
| * likely have to retry connecting to the same server, most |
| * likely leading to the same result. To avoid this, we wait |
| * MIN(one second, connect timeout) before retrying. We don't |
| * do it when the failure happened on a reused connection |
| * though. |
| */ |
| |
| int delay = 1000; |
| |
| if (s->be->timeout.connect && s->be->timeout.connect < delay) |
| delay = s->be->timeout.connect; |
| |
| if (!si->err_type) |
| si->err_type = SI_ET_CONN_ERR; |
| |
| /* only wait when we're retrying on the same server */ |
| if ((si->state == SI_ST_ASS || |
| (s->be->lbprm.algo & BE_LB_KIND) != BE_LB_KIND_RR || |
| (s->be->srv_act <= 1)) && !(s->flags & SF_SRV_REUSED)) { |
| si->state = SI_ST_TAR; |
| si->exp = tick_add(now_ms, MS_TO_TICKS(delay)); |
| } |
| si->flags &= ~SI_FL_ERR; |
| DBG_TRACE_STATE("retry a new connection", STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| } |
| |
| end: |
| DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| } |
| |
| /* This function is called with (si->state == SI_ST_RDY) meaning that a |
| * connection was attempted, that the file descriptor is already allocated, |
| * and that it has succeeded. We must still check for errors and aborts. |
| * Possible output states are SI_ST_EST (established), SI_ST_CER (error), |
| * and SI_ST_DIS (abort). This only works with connection-based streams. |
| * Timeouts and errors are *not* cleared. |
| */ |
| void back_handle_st_rdy(struct stream *s) |
| { |
| struct stream_interface *si = &s->si[1]; |
| struct channel *req = &s->req; |
| struct channel *rep = &s->res; |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| /* We know the connection at least succeeded, though it could have |
| * since met an error for any other reason. At least it didn't time out |
| * eventhough the timeout might have been reported right after success. |
| * We need to take care of various situations here : |
| * - everything might be OK. We have to switch to established. |
| * - an I/O error might have been reported after a successful transfer, |
| * which is not retryable and needs to be logged correctly, and needs |
| * established as well |
| * - SI_ST_CON implies !CF_WROTE_DATA but not conversely as we could |
| * have validated a connection with incoming data (e.g. TCP with a |
| * banner protocol), or just a successful connect() probe. |
| * - the client might have requested a connection abort, this needs to |
| * be checked before we decide to retry anything. |
| */ |
| |
| /* it's still possible to handle client aborts or connection retries |
| * before any data were sent. |
| */ |
| if (!(req->flags & CF_WROTE_DATA)) { |
| /* client abort ? */ |
| if ((rep->flags & CF_SHUTW) || |
| ((req->flags & CF_SHUTW_NOW) && |
| (channel_is_empty(req) || (s->be->options & PR_O_ABRT_CLOSE)))) { |
| /* give up */ |
| si->flags |= SI_FL_NOLINGER; |
| si_shutw(si); |
| si->err_type |= SI_ET_CONN_ABRT; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| DBG_TRACE_STATE("client abort during connection attempt", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s); |
| goto end; |
| } |
| |
| /* retryable error ? */ |
| if (si->flags & SI_FL_ERR) { |
| if (!si->err_type) |
| si->err_type = SI_ET_CONN_ERR; |
| si->state = SI_ST_CER; |
| DBG_TRACE_STATE("connection failed, retry", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s); |
| goto end; |
| } |
| } |
| |
| /* data were sent and/or we had no error, back_establish() will |
| * now take over. |
| */ |
| DBG_TRACE_STATE("connection established", STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| si->err_type = SI_ET_NONE; |
| si->state = SI_ST_EST; |
| |
| end: |
| DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| } |
| |
| /* sends a log message when a backend goes down, and also sets last |
| * change date. |
| */ |
| void set_backend_down(struct proxy *be) |
| { |
| be->last_change = now.tv_sec; |
| _HA_ATOMIC_ADD(&be->down_trans, 1); |
| |
| if (!(global.mode & MODE_STARTING)) { |
| ha_alert("%s '%s' has no server available!\n", proxy_type_str(be), be->id); |
| send_log(be, LOG_EMERG, "%s %s has no server available!\n", proxy_type_str(be), be->id); |
| } |
| } |
| |
| /* Apply RDP cookie persistence to the current stream. For this, the function |
| * tries to extract an RDP cookie from the request buffer, and look for the |
| * matching server in the list. If the server is found, it is assigned to the |
| * stream. This always returns 1, and the analyser removes itself from the |
| * list. Nothing is performed if a server was already assigned. |
| */ |
| int tcp_persist_rdp_cookie(struct stream *s, struct channel *req, int an_bit) |
| { |
| struct proxy *px = s->be; |
| int ret; |
| struct sample smp; |
| struct server *srv = px->srv; |
| uint16_t port; |
| uint32_t addr; |
| char *p; |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_TCP_ANA, s); |
| |
| if (s->flags & SF_ASSIGNED) |
| goto no_cookie; |
| |
| memset(&smp, 0, sizeof(smp)); |
| |
| ret = fetch_rdp_cookie_name(s, &smp, s->be->rdp_cookie_name, s->be->rdp_cookie_len); |
| if (ret == 0 || (smp.flags & SMP_F_MAY_CHANGE) || smp.data.u.str.data == 0) |
| goto no_cookie; |
| |
| /* Considering an rdp cookie detected using acl, str ended with <cr><lf> and should return. |
| * The cookie format is <ip> "." <port> where "ip" is the integer corresponding to the |
| * server's IP address in network order, and "port" is the integer corresponding to the |
| * server's port in network order. Comments please Emeric. |
| */ |
| addr = strtoul(smp.data.u.str.area, &p, 10); |
| if (*p != '.') |
| goto no_cookie; |
| p++; |
| |
| port = ntohs(strtoul(p, &p, 10)); |
| if (*p != '.') |
| goto no_cookie; |
| |
| s->target = NULL; |
| while (srv) { |
| if (srv->addr.ss_family == AF_INET && |
| port == srv->svc_port && |
| addr == ((struct sockaddr_in *)&srv->addr)->sin_addr.s_addr) { |
| if ((srv->cur_state != SRV_ST_STOPPED) || (px->options & PR_O_PERSIST)) { |
| /* we found the server and it is usable */ |
| s->flags |= SF_DIRECT | SF_ASSIGNED; |
| s->target = &srv->obj_type; |
| break; |
| } |
| } |
| srv = srv->next; |
| } |
| |
| no_cookie: |
| req->analysers &= ~an_bit; |
| req->analyse_exp = TICK_ETERNITY; |
| DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_TCP_ANA, s); |
| return 1; |
| } |
| |
| int be_downtime(struct proxy *px) { |
| if (px->lbprm.tot_weight && px->last_change < now.tv_sec) // ignore negative time |
| return px->down_time; |
| |
| return now.tv_sec - px->last_change + px->down_time; |
| } |
| |
| /* |
| * This function returns a string containing the balancing |
| * mode of the proxy in a format suitable for stats. |
| */ |
| |
| const char *backend_lb_algo_str(int algo) { |
| |
| if (algo == BE_LB_ALGO_RR) |
| return "roundrobin"; |
| else if (algo == BE_LB_ALGO_SRR) |
| return "static-rr"; |
| else if (algo == BE_LB_ALGO_FAS) |
| return "first"; |
| else if (algo == BE_LB_ALGO_LC) |
| return "leastconn"; |
| else if (algo == BE_LB_ALGO_SH) |
| return "source"; |
| else if (algo == BE_LB_ALGO_UH) |
| return "uri"; |
| else if (algo == BE_LB_ALGO_PH) |
| return "url_param"; |
| else if (algo == BE_LB_ALGO_HH) |
| return "hdr"; |
| else if (algo == BE_LB_ALGO_RCH) |
| return "rdp-cookie"; |
| else if (algo == BE_LB_ALGO_NONE) |
| return "none"; |
| else |
| return "unknown"; |
| } |
| |
| /* This function parses a "balance" statement in a backend section describing |
| * <curproxy>. It returns -1 if there is any error, otherwise zero. If it |
| * returns -1, it will write an error message into the <err> buffer which will |
| * automatically be allocated and must be passed as NULL. The trailing '\n' |
| * will not be written. The function must be called with <args> pointing to the |
| * first word after "balance". |
| */ |
| int backend_parse_balance(const char **args, char **err, struct proxy *curproxy) |
| { |
| if (!*(args[0])) { |
| /* if no option is set, use round-robin by default */ |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_RR; |
| return 0; |
| } |
| |
| if (!strcmp(args[0], "roundrobin")) { |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_RR; |
| } |
| else if (!strcmp(args[0], "static-rr")) { |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_SRR; |
| } |
| else if (!strcmp(args[0], "first")) { |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_FAS; |
| } |
| else if (!strcmp(args[0], "leastconn")) { |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_LC; |
| } |
| else if (!strncmp(args[0], "random", 6)) { |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_RND; |
| curproxy->lbprm.arg_opt1 = 2; |
| |
| if (*(args[0] + 6) == '(' && *(args[0] + 7) != ')') { /* number of draws */ |
| const char *beg; |
| char *end; |
| |
| beg = args[0] + 7; |
| curproxy->lbprm.arg_opt1 = strtol(beg, &end, 0); |
| |
| if (*end != ')') { |
| if (!*end) |
| memprintf(err, "random : missing closing parenthesis."); |
| else |
| memprintf(err, "random : unexpected character '%c' after argument.", *end); |
| return -1; |
| } |
| |
| if (curproxy->lbprm.arg_opt1 < 1) { |
| memprintf(err, "random : number of draws must be at least 1."); |
| return -1; |
| } |
| } |
| } |
| else if (!strcmp(args[0], "source")) { |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_SH; |
| } |
| else if (!strcmp(args[0], "uri")) { |
| int arg = 1; |
| |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_UH; |
| curproxy->lbprm.arg_opt1 = 0; // "whole" |
| curproxy->lbprm.arg_opt2 = 0; // "len" |
| curproxy->lbprm.arg_opt3 = 0; // "depth" |
| |
| while (*args[arg]) { |
| if (!strcmp(args[arg], "len")) { |
| if (!*args[arg+1] || (atoi(args[arg+1]) <= 0)) { |
| memprintf(err, "%s : '%s' expects a positive integer (got '%s').", args[0], args[arg], args[arg+1]); |
| return -1; |
| } |
| curproxy->lbprm.arg_opt2 = atoi(args[arg+1]); |
| arg += 2; |
| } |
| else if (!strcmp(args[arg], "depth")) { |
| if (!*args[arg+1] || (atoi(args[arg+1]) <= 0)) { |
| memprintf(err, "%s : '%s' expects a positive integer (got '%s').", args[0], args[arg], args[arg+1]); |
| return -1; |
| } |
| /* hint: we store the position of the ending '/' (depth+1) so |
| * that we avoid a comparison while computing the hash. |
| */ |
| curproxy->lbprm.arg_opt3 = atoi(args[arg+1]) + 1; |
| arg += 2; |
| } |
| else if (!strcmp(args[arg], "whole")) { |
| curproxy->lbprm.arg_opt1 = 1; |
| arg += 1; |
| } |
| else { |
| memprintf(err, "%s only accepts parameters 'len', 'depth', and 'whole' (got '%s').", args[0], args[arg]); |
| return -1; |
| } |
| } |
| } |
| else if (!strcmp(args[0], "url_param")) { |
| if (!*args[1]) { |
| memprintf(err, "%s requires an URL parameter name.", args[0]); |
| return -1; |
| } |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_PH; |
| |
| free(curproxy->lbprm.arg_str); |
| curproxy->lbprm.arg_str = strdup(args[1]); |
| curproxy->lbprm.arg_len = strlen(args[1]); |
| if (*args[2]) { |
| if (strcmp(args[2], "check_post")) { |
| memprintf(err, "%s only accepts 'check_post' modifier (got '%s').", args[0], args[2]); |
| return -1; |
| } |
| } |
| } |
| else if (!strncmp(args[0], "hdr(", 4)) { |
| const char *beg, *end; |
| |
| beg = args[0] + 4; |
| end = strchr(beg, ')'); |
| |
| if (!end || end == beg) { |
| memprintf(err, "hdr requires an http header field name."); |
| return -1; |
| } |
| |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_HH; |
| |
| free(curproxy->lbprm.arg_str); |
| curproxy->lbprm.arg_len = end - beg; |
| curproxy->lbprm.arg_str = my_strndup(beg, end - beg); |
| curproxy->lbprm.arg_opt1 = 0; |
| |
| if (*args[1]) { |
| if (strcmp(args[1], "use_domain_only")) { |
| memprintf(err, "%s only accepts 'use_domain_only' modifier (got '%s').", args[0], args[1]); |
| return -1; |
| } |
| curproxy->lbprm.arg_opt1 = 1; |
| } |
| } |
| else if (!strncmp(args[0], "rdp-cookie", 10)) { |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_RCH; |
| |
| if ( *(args[0] + 10 ) == '(' ) { /* cookie name */ |
| const char *beg, *end; |
| |
| beg = args[0] + 11; |
| end = strchr(beg, ')'); |
| |
| if (!end || end == beg) { |
| memprintf(err, "rdp-cookie : missing cookie name."); |
| return -1; |
| } |
| |
| free(curproxy->lbprm.arg_str); |
| curproxy->lbprm.arg_str = my_strndup(beg, end - beg); |
| curproxy->lbprm.arg_len = end - beg; |
| } |
| else if ( *(args[0] + 10 ) == '\0' ) { /* default cookie name 'mstshash' */ |
| free(curproxy->lbprm.arg_str); |
| curproxy->lbprm.arg_str = strdup("mstshash"); |
| curproxy->lbprm.arg_len = strlen(curproxy->lbprm.arg_str); |
| } |
| else { /* syntax */ |
| memprintf(err, "rdp-cookie : missing cookie name."); |
| return -1; |
| } |
| } |
| else { |
| memprintf(err, "only supports 'roundrobin', 'static-rr', 'leastconn', 'source', 'uri', 'url_param', 'hdr(name)' and 'rdp-cookie(name)' options."); |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| /************************************************************************/ |
| /* All supported sample and ACL keywords must be declared here. */ |
| /************************************************************************/ |
| |
| /* set temp integer to the number of enabled servers on the proxy. |
| * Accepts exactly 1 argument. Argument is a backend, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_nbsrv(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct proxy *px; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| px = args->data.prx; |
| |
| smp->data.u.sint = be_usable_srv(px); |
| |
| return 1; |
| } |
| |
| /* report in smp->flags a success or failure depending on the designated |
| * server's state. There is no match function involved since there's no pattern. |
| * Accepts exactly 1 argument. Argument is a server, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_srv_is_up(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct server *srv = args->data.srv; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_BOOL; |
| if (!(srv->cur_admin & SRV_ADMF_MAINT) && |
| (!(srv->check.state & CHK_ST_CONFIGURED) || (srv->cur_state != SRV_ST_STOPPED))) |
| smp->data.u.sint = 1; |
| else |
| smp->data.u.sint = 0; |
| return 1; |
| } |
| |
| /* set temp integer to the number of enabled servers on the proxy. |
| * Accepts exactly 1 argument. Argument is a backend, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_connslots(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct server *iterator; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| |
| for (iterator = args->data.prx->srv; iterator; iterator = iterator->next) { |
| if (iterator->cur_state == SRV_ST_STOPPED) |
| continue; |
| |
| if (iterator->maxconn == 0 || iterator->maxqueue == 0) { |
| /* configuration is stupid */ |
| smp->data.u.sint = -1; /* FIXME: stupid value! */ |
| return 1; |
| } |
| |
| smp->data.u.sint += (iterator->maxconn - iterator->cur_sess) |
| + (iterator->maxqueue - iterator->nbpend); |
| } |
| |
| return 1; |
| } |
| |
| /* set temp integer to the id of the backend */ |
| static int |
| smp_fetch_be_id(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| if (!smp->strm) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TXN; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = smp->strm->be->uuid; |
| return 1; |
| } |
| |
| /* set string to the name of the backend */ |
| static int |
| smp_fetch_be_name(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| if (!smp->strm) |
| return 0; |
| |
| smp->data.u.str.area = (char *)smp->strm->be->id; |
| if (!smp->data.u.str.area) |
| return 0; |
| |
| smp->data.type = SMP_T_STR; |
| smp->flags = SMP_F_CONST; |
| smp->data.u.str.data = strlen(smp->data.u.str.area); |
| |
| return 1; |
| } |
| |
| /* set temp integer to the id of the server */ |
| static int |
| smp_fetch_srv_id(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| if (!smp->strm) |
| return 0; |
| |
| if (!objt_server(smp->strm->target)) |
| return 0; |
| |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = __objt_server(smp->strm->target)->puid; |
| |
| return 1; |
| } |
| |
| /* set string to the name of the server */ |
| static int |
| smp_fetch_srv_name(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| if (!smp->strm) |
| return 0; |
| |
| if (!objt_server(smp->strm->target)) |
| return 0; |
| |
| smp->data.u.str.area = (char *)__objt_server(smp->strm->target)->id; |
| if (!smp->data.u.str.area) |
| return 0; |
| |
| smp->data.type = SMP_T_STR; |
| smp->data.u.str.data = strlen(smp->data.u.str.area); |
| |
| return 1; |
| } |
| |
| /* set temp integer to the number of connections per second reaching the backend. |
| * Accepts exactly 1 argument. Argument is a backend, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_be_sess_rate(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = read_freq_ctr(&args->data.prx->be_sess_per_sec); |
| return 1; |
| } |
| |
| /* set temp integer to the number of concurrent connections on the backend. |
| * Accepts exactly 1 argument. Argument is a backend, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_be_conn(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = args->data.prx->beconn; |
| return 1; |
| } |
| |
| /* set temp integer to the number of available connections across available |
| * servers on the backend. |
| * Accepts exactly 1 argument. Argument is a backend, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_be_conn_free(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct server *iterator; |
| struct proxy *px; |
| unsigned int maxconn; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| |
| for (iterator = args->data.prx->srv; iterator; iterator = iterator->next) { |
| if (iterator->cur_state == SRV_ST_STOPPED) |
| continue; |
| |
| px = iterator->proxy; |
| if (!srv_currently_usable(iterator) || |
| ((iterator->flags & SRV_F_BACKUP) && |
| (px->srv_act || (iterator != px->lbprm.fbck && !(px->options & PR_O_USE_ALL_BK))))) |
| continue; |
| |
| if (iterator->maxconn == 0) { |
| /* one active server is unlimited, return -1 */ |
| smp->data.u.sint = -1; |
| return 1; |
| } |
| |
| maxconn = srv_dynamic_maxconn(iterator); |
| if (maxconn > iterator->cur_sess) |
| smp->data.u.sint += maxconn - iterator->cur_sess; |
| } |
| |
| return 1; |
| } |
| |
| /* set temp integer to the total number of queued connections on the backend. |
| * Accepts exactly 1 argument. Argument is a backend, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_queue_size(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = args->data.prx->totpend; |
| return 1; |
| } |
| |
| /* set temp integer to the total number of queued connections on the backend divided |
| * by the number of running servers and rounded up. If there is no running |
| * server, we return twice the total, just as if we had half a running server. |
| * This is more or less correct anyway, since we expect the last server to come |
| * back soon. |
| * Accepts exactly 1 argument. Argument is a backend, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_avg_queue_size(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| int nbsrv; |
| struct proxy *px; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| px = args->data.prx; |
| |
| nbsrv = be_usable_srv(px); |
| |
| if (nbsrv > 0) |
| smp->data.u.sint = (px->totpend + nbsrv - 1) / nbsrv; |
| else |
| smp->data.u.sint = px->totpend * 2; |
| |
| return 1; |
| } |
| |
| /* set temp integer to the number of concurrent connections on the server in the backend. |
| * Accepts exactly 1 argument. Argument is a server, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_srv_conn(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = args->data.srv->cur_sess; |
| return 1; |
| } |
| |
| /* set temp integer to the number of available connections on the server in the backend. |
| * Accepts exactly 1 argument. Argument is a server, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_srv_conn_free(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| unsigned int maxconn; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| |
| if (args->data.srv->maxconn == 0) { |
| /* one active server is unlimited, return -1 */ |
| smp->data.u.sint = -1; |
| return 1; |
| } |
| |
| maxconn = srv_dynamic_maxconn(args->data.srv); |
| if (maxconn > args->data.srv->cur_sess) |
| smp->data.u.sint = maxconn - args->data.srv->cur_sess; |
| else |
| smp->data.u.sint = 0; |
| |
| return 1; |
| } |
| |
| /* set temp integer to the number of connections pending in the server's queue. |
| * Accepts exactly 1 argument. Argument is a server, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_srv_queue(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = args->data.srv->nbpend; |
| return 1; |
| } |
| |
| /* set temp integer to the number of enabled servers on the proxy. |
| * Accepts exactly 1 argument. Argument is a server, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_srv_sess_rate(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = read_freq_ctr(&args->data.srv->sess_per_sec); |
| return 1; |
| } |
| |
| static int sample_conv_nbsrv(const struct arg *args, struct sample *smp, void *private) |
| { |
| |
| struct proxy *px; |
| |
| if (!smp_make_safe(smp)) |
| return 0; |
| |
| px = proxy_find_by_name(smp->data.u.str.area, PR_CAP_BE, 0); |
| if (!px) |
| return 0; |
| |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = be_usable_srv(px); |
| |
| return 1; |
| } |
| |
| static int |
| sample_conv_srv_queue(const struct arg *args, struct sample *smp, void *private) |
| { |
| struct proxy *px; |
| struct server *srv; |
| char *bksep; |
| |
| if (!smp_make_safe(smp)) |
| return 0; |
| |
| bksep = strchr(smp->data.u.str.area, '/'); |
| |
| if (bksep) { |
| *bksep = '\0'; |
| px = proxy_find_by_name(smp->data.u.str.area, PR_CAP_BE, 0); |
| if (!px) |
| return 0; |
| smp->data.u.str.area = bksep + 1; |
| } else { |
| if (!(smp->px->cap & PR_CAP_BE)) |
| return 0; |
| px = smp->px; |
| } |
| |
| srv = server_find_by_name(px, smp->data.u.str.area); |
| if (!srv) |
| return 0; |
| |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = srv->nbpend; |
| return 1; |
| } |
| |
| /* Note: must not be declared <const> as its list will be overwritten. |
| * Please take care of keeping this list alphabetically sorted. |
| */ |
| static struct sample_fetch_kw_list smp_kws = {ILH, { |
| { "avg_queue", smp_fetch_avg_queue_size, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "be_conn", smp_fetch_be_conn, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "be_conn_free", smp_fetch_be_conn_free, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "be_id", smp_fetch_be_id, 0, NULL, SMP_T_SINT, SMP_USE_BKEND, }, |
| { "be_name", smp_fetch_be_name, 0, NULL, SMP_T_STR, SMP_USE_BKEND, }, |
| { "be_sess_rate", smp_fetch_be_sess_rate, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "connslots", smp_fetch_connslots, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "nbsrv", smp_fetch_nbsrv, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "queue", smp_fetch_queue_size, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "srv_conn", smp_fetch_srv_conn, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "srv_conn_free", smp_fetch_srv_conn_free, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "srv_id", smp_fetch_srv_id, 0, NULL, SMP_T_SINT, SMP_USE_SERVR, }, |
| { "srv_is_up", smp_fetch_srv_is_up, ARG1(1,SRV), NULL, SMP_T_BOOL, SMP_USE_INTRN, }, |
| { "srv_name", smp_fetch_srv_name, 0, NULL, SMP_T_STR, SMP_USE_SERVR, }, |
| { "srv_queue", smp_fetch_srv_queue, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "srv_sess_rate", smp_fetch_srv_sess_rate, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { /* END */ }, |
| }}; |
| |
| INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws); |
| |
| /* Note: must not be declared <const> as its list will be overwritten */ |
| static struct sample_conv_kw_list sample_conv_kws = {ILH, { |
| { "nbsrv", sample_conv_nbsrv, 0, NULL, SMP_T_STR, SMP_T_SINT }, |
| { "srv_queue", sample_conv_srv_queue, 0, NULL, SMP_T_STR, SMP_T_SINT }, |
| { /* END */ }, |
| }}; |
| |
| INITCALL1(STG_REGISTER, sample_register_convs, &sample_conv_kws); |
| |
| /* Note: must not be declared <const> as its list will be overwritten. |
| * Please take care of keeping this list alphabetically sorted. |
| */ |
| static struct acl_kw_list acl_kws = {ILH, { |
| { /* END */ }, |
| }}; |
| |
| INITCALL1(STG_REGISTER, acl_register_keywords, &acl_kws); |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |