blob: a99d30ab62307c4e6b0bbbe57668b3ff1a4ef2cd [file] [log] [blame]
/*
* Task management functions.
*
* Copyright 2000-2009 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <string.h>
#include <import/eb32sctree.h>
#include <import/eb32tree.h>
#include <haproxy/api.h>
#include <haproxy/cfgparse.h>
#include <haproxy/fd.h>
#include <haproxy/freq_ctr.h>
#include <haproxy/list.h>
#include <haproxy/pool.h>
#include <haproxy/stream.h>
#include <haproxy/task.h>
#include <haproxy/time.h>
#include <haproxy/tools.h>
DECLARE_POOL(pool_head_task, "task", sizeof(struct task));
DECLARE_POOL(pool_head_tasklet, "tasklet", sizeof(struct tasklet));
/* This is the memory pool containing all the signal structs. These
* struct are used to store each required signal between two tasks.
*/
DECLARE_POOL(pool_head_notification, "notification", sizeof(struct notification));
volatile unsigned long global_tasks_mask = 0; /* Mask of threads with tasks in the global runqueue */
unsigned int niced_tasks = 0; /* number of niced tasks in the run queue */
THREAD_LOCAL struct task_per_thread *sched = &task_per_thread[0]; /* scheduler context for the current thread */
__decl_aligned_spinlock(rq_lock); /* spin lock related to run queue */
__decl_aligned_rwlock(wq_lock); /* RW lock related to the wait queue */
#ifdef USE_THREAD
struct eb_root timers; /* sorted timers tree, global, accessed under wq_lock */
struct eb_root rqueue; /* tree constituting the global run queue, accessed under rq_lock */
unsigned int grq_total; /* total number of entries in the global run queue, atomic */
static unsigned int global_rqueue_ticks; /* insertion count in the grq, use rq_lock */
#endif
struct task_per_thread task_per_thread[MAX_THREADS];
/* Flags the task <t> for immediate destruction and puts it into its first
* thread's shared tasklet list if not yet queued/running. This will bypass
* the priority scheduling and make the task show up as fast as possible in
* the other thread's queue. Note that this operation isn't idempotent and is
* not supposed to be run on the same task from multiple threads at once. It's
* the caller's responsibility to make sure it is the only one able to kill the
* task.
*/
void task_kill(struct task *t)
{
unsigned int state = t->state;
unsigned int thr;
BUG_ON(state & TASK_KILLED);
while (1) {
while (state & (TASK_RUNNING | TASK_QUEUED)) {
/* task already in the queue and about to be executed,
* or even currently running. Just add the flag and be
* done with it, the process loop will detect it and kill
* it. The CAS will fail if we arrive too late.
*/
if (_HA_ATOMIC_CAS(&t->state, &state, state | TASK_KILLED))
return;
}
/* We'll have to wake it up, but we must also secure it so that
* it doesn't vanish under us. TASK_QUEUED guarantees nobody will
* add past us.
*/
if (_HA_ATOMIC_CAS(&t->state, &state, state | TASK_QUEUED | TASK_KILLED)) {
/* Bypass the tree and go directly into the shared tasklet list.
* Note: that's a task so it must be accounted for as such. Pick
* the task's first thread for the job.
*/
thr = my_ffsl(t->thread_mask) - 1;
/* Beware: tasks that have never run don't have their ->list empty yet! */
MT_LIST_ADDQ(&task_per_thread[thr].shared_tasklet_list,
(struct mt_list *)&((struct tasklet *)t)->list);
_HA_ATOMIC_ADD(&task_per_thread[thr].rq_total, 1);
_HA_ATOMIC_ADD(&task_per_thread[thr].tasks_in_list, 1);
if (sleeping_thread_mask & (1UL << thr)) {
_HA_ATOMIC_AND(&sleeping_thread_mask, ~(1UL << thr));
wake_thread(thr);
}
return;
}
}
}
/* Do not call this one, please use tasklet_wakeup_on() instead, as this one is
* the slow path of tasklet_wakeup_on() which performs some preliminary checks
* and sets TASK_IN_LIST before calling this one. A negative <thr> designates
* the current thread.
*/
void __tasklet_wakeup_on(struct tasklet *tl, int thr)
{
if (likely(thr < 0)) {
/* this tasklet runs on the caller thread */
if (tl->state & TASK_HEAVY) {
LIST_ADDQ(&sched->tasklets[TL_HEAVY], &tl->list);
sched->tl_class_mask |= 1 << TL_HEAVY;
}
else if (tl->state & TASK_SELF_WAKING) {
LIST_ADDQ(&sched->tasklets[TL_BULK], &tl->list);
sched->tl_class_mask |= 1 << TL_BULK;
}
else if ((struct task *)tl == sched->current) {
_HA_ATOMIC_OR(&tl->state, TASK_SELF_WAKING);
LIST_ADDQ(&sched->tasklets[TL_BULK], &tl->list);
sched->tl_class_mask |= 1 << TL_BULK;
}
else if (sched->current_queue < 0) {
LIST_ADDQ(&sched->tasklets[TL_URGENT], &tl->list);
sched->tl_class_mask |= 1 << TL_URGENT;
}
else {
LIST_ADDQ(&sched->tasklets[sched->current_queue], &tl->list);
sched->tl_class_mask |= 1 << sched->current_queue;
}
_HA_ATOMIC_ADD(&sched->rq_total, 1);
} else {
/* this tasklet runs on a specific thread. */
MT_LIST_ADDQ(&task_per_thread[thr].shared_tasklet_list, (struct mt_list *)&tl->list);
_HA_ATOMIC_ADD(&task_per_thread[thr].rq_total, 1);
if (sleeping_thread_mask & (1UL << thr)) {
_HA_ATOMIC_AND(&sleeping_thread_mask, ~(1UL << thr));
wake_thread(thr);
}
}
}
/* Puts the task <t> in run queue at a position depending on t->nice. <t> is
* returned. The nice value assigns boosts in 32th of the run queue size. A
* nice value of -1024 sets the task to -tasks_run_queue*32, while a nice value
* of 1024 sets the task to tasks_run_queue*32. The state flags are cleared, so
* the caller will have to set its flags after this call.
* The task must not already be in the run queue. If unsure, use the safer
* task_wakeup() function.
*/
void __task_wakeup(struct task *t)
{
struct eb_root *root = &sched->rqueue;
#ifdef USE_THREAD
if (t->thread_mask != tid_bit && global.nbthread != 1) {
root = &rqueue;
_HA_ATOMIC_ADD(&grq_total, 1);
HA_SPIN_LOCK(TASK_RQ_LOCK, &rq_lock);
global_tasks_mask |= t->thread_mask;
t->rq.key = ++global_rqueue_ticks;
__ha_barrier_store();
} else
#endif
{
_HA_ATOMIC_ADD(&sched->rq_total, 1);
t->rq.key = ++sched->rqueue_ticks;
}
if (likely(t->nice)) {
int offset;
_HA_ATOMIC_ADD(&niced_tasks, 1);
offset = t->nice * (int)global.tune.runqueue_depth;
t->rq.key += offset;
}
if (task_profiling_mask & tid_bit)
t->call_date = now_mono_time();
eb32sc_insert(root, &t->rq, t->thread_mask);
#ifdef USE_THREAD
if (root == &rqueue) {
_HA_ATOMIC_OR(&t->state, TASK_GLOBAL);
HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock);
/* If all threads that are supposed to handle this task are sleeping,
* wake one.
*/
if ((((t->thread_mask & all_threads_mask) & sleeping_thread_mask) ==
(t->thread_mask & all_threads_mask))) {
unsigned long m = (t->thread_mask & all_threads_mask) &~ tid_bit;
m = (m & (m - 1)) ^ m; // keep lowest bit set
_HA_ATOMIC_AND(&sleeping_thread_mask, ~m);
wake_thread(my_ffsl(m) - 1);
}
}
#endif
return;
}
/*
* __task_queue()
*
* Inserts a task into wait queue <wq> at the position given by its expiration
* date. It does not matter if the task was already in the wait queue or not,
* as it will be unlinked. The task must not have an infinite expiration timer.
* Last, tasks must not be queued further than the end of the tree, which is
* between <now_ms> and <now_ms> + 2^31 ms (now+24days in 32bit).
*
* This function should not be used directly, it is meant to be called by the
* inline version of task_queue() which performs a few cheap preliminary tests
* before deciding to call __task_queue(). Moreover this function doesn't care
* at all about locking so the caller must be careful when deciding whether to
* lock or not around this call.
*/
void __task_queue(struct task *task, struct eb_root *wq)
{
#ifdef USE_THREAD
BUG_ON((wq == &timers && !(task->state & TASK_SHARED_WQ)) ||
(wq == &sched->timers && (task->state & TASK_SHARED_WQ)) ||
(wq != &timers && wq != &sched->timers));
#endif
if (likely(task_in_wq(task)))
__task_unlink_wq(task);
/* the task is not in the queue now */
task->wq.key = task->expire;
#ifdef DEBUG_CHECK_INVALID_EXPIRATION_DATES
if (tick_is_lt(task->wq.key, now_ms))
/* we're queuing too far away or in the past (most likely) */
return;
#endif
eb32_insert(wq, &task->wq);
}
/*
* Extract all expired timers from the timer queue, and wakes up all
* associated tasks.
*/
void wake_expired_tasks()
{
struct task_per_thread * const tt = sched; // thread's tasks
int max_processed = global.tune.runqueue_depth;
struct task *task;
struct eb32_node *eb;
__decl_thread(int key);
while (max_processed-- > 0) {
lookup_next_local:
eb = eb32_lookup_ge(&tt->timers, now_ms - TIMER_LOOK_BACK);
if (!eb) {
/* we might have reached the end of the tree, typically because
* <now_ms> is in the first half and we're first scanning the last
* half. Let's loop back to the beginning of the tree now.
*/
eb = eb32_first(&tt->timers);
if (likely(!eb))
break;
}
/* It is possible that this task was left at an earlier place in the
* tree because a recent call to task_queue() has not moved it. This
* happens when the new expiration date is later than the old one.
* Since it is very unlikely that we reach a timeout anyway, it's a
* lot cheaper to proceed like this because we almost never update
* the tree. We may also find disabled expiration dates there. Since
* we have detached the task from the tree, we simply call task_queue
* to take care of this. Note that we might occasionally requeue it at
* the same place, before <eb>, so we have to check if this happens,
* and adjust <eb>, otherwise we may skip it which is not what we want.
* We may also not requeue the task (and not point eb at it) if its
* expiration time is not set. We also make sure we leave the real
* expiration date for the next task in the queue so that when calling
* next_timer_expiry() we're guaranteed to see the next real date and
* not the next apparent date. This is in order to avoid useless
* wakeups.
*/
task = eb32_entry(eb, struct task, wq);
if (tick_is_expired(task->expire, now_ms)) {
/* expired task, wake it up */
__task_unlink_wq(task);
task_wakeup(task, TASK_WOKEN_TIMER);
}
else if (task->expire != eb->key) {
/* task is not expired but its key doesn't match so let's
* update it and skip to next apparently expired task.
*/
__task_unlink_wq(task);
if (tick_isset(task->expire))
__task_queue(task, &tt->timers);
}
else {
/* task not expired and correctly placed */
break;
}
}
#ifdef USE_THREAD
if (eb_is_empty(&timers))
goto leave;
HA_RWLOCK_RDLOCK(TASK_WQ_LOCK, &wq_lock);
eb = eb32_lookup_ge(&timers, now_ms - TIMER_LOOK_BACK);
if (!eb) {
eb = eb32_first(&timers);
if (likely(!eb)) {
HA_RWLOCK_RDUNLOCK(TASK_WQ_LOCK, &wq_lock);
goto leave;
}
}
key = eb->key;
if (tick_is_lt(now_ms, key)) {
HA_RWLOCK_RDUNLOCK(TASK_WQ_LOCK, &wq_lock);
goto leave;
}
/* There's really something of interest here, let's visit the queue */
if (HA_RWLOCK_TRYRDTOSK(TASK_WQ_LOCK, &wq_lock)) {
/* if we failed to grab the lock it means another thread is
* already doing the same here, so let it do the job.
*/
HA_RWLOCK_RDUNLOCK(TASK_WQ_LOCK, &wq_lock);
goto leave;
}
while (1) {
lookup_next:
if (max_processed-- <= 0)
break;
eb = eb32_lookup_ge(&timers, now_ms - TIMER_LOOK_BACK);
if (!eb) {
/* we might have reached the end of the tree, typically because
* <now_ms> is in the first half and we're first scanning the last
* half. Let's loop back to the beginning of the tree now.
*/
eb = eb32_first(&timers);
if (likely(!eb))
break;
}
task = eb32_entry(eb, struct task, wq);
if (tick_is_expired(task->expire, now_ms)) {
/* expired task, wake it up */
HA_RWLOCK_SKTOWR(TASK_WQ_LOCK, &wq_lock);
__task_unlink_wq(task);
HA_RWLOCK_WRTOSK(TASK_WQ_LOCK, &wq_lock);
task_wakeup(task, TASK_WOKEN_TIMER);
}
else if (task->expire != eb->key) {
/* task is not expired but its key doesn't match so let's
* update it and skip to next apparently expired task.
*/
HA_RWLOCK_SKTOWR(TASK_WQ_LOCK, &wq_lock);
__task_unlink_wq(task);
if (tick_isset(task->expire))
__task_queue(task, &timers);
HA_RWLOCK_WRTOSK(TASK_WQ_LOCK, &wq_lock);
goto lookup_next;
}
else {
/* task not expired and correctly placed */
break;
}
}
HA_RWLOCK_SKUNLOCK(TASK_WQ_LOCK, &wq_lock);
#endif
leave:
return;
}
/* Checks the next timer for the current thread by looking into its own timer
* list and the global one. It may return TICK_ETERNITY if no timer is present.
* Note that the next timer might very well be slightly in the past.
*/
int next_timer_expiry()
{
struct task_per_thread * const tt = sched; // thread's tasks
struct eb32_node *eb;
int ret = TICK_ETERNITY;
__decl_thread(int key = TICK_ETERNITY);
/* first check in the thread-local timers */
eb = eb32_lookup_ge(&tt->timers, now_ms - TIMER_LOOK_BACK);
if (!eb) {
/* we might have reached the end of the tree, typically because
* <now_ms> is in the first half and we're first scanning the last
* half. Let's loop back to the beginning of the tree now.
*/
eb = eb32_first(&tt->timers);
}
if (eb)
ret = eb->key;
#ifdef USE_THREAD
if (!eb_is_empty(&timers)) {
HA_RWLOCK_RDLOCK(TASK_WQ_LOCK, &wq_lock);
eb = eb32_lookup_ge(&timers, now_ms - TIMER_LOOK_BACK);
if (!eb)
eb = eb32_first(&timers);
if (eb)
key = eb->key;
HA_RWLOCK_RDUNLOCK(TASK_WQ_LOCK, &wq_lock);
if (eb)
ret = tick_first(ret, key);
}
#endif
return ret;
}
/* Walks over tasklet lists sched->tasklets[0..TL_CLASSES-1] and run at most
* budget[TL_*] of them. Returns the number of entries effectively processed
* (tasks and tasklets merged). The count of tasks in the list for the current
* thread is adjusted.
*/
unsigned int run_tasks_from_lists(unsigned int budgets[])
{
struct task *(*process)(struct task *t, void *ctx, unsigned int state);
struct list *tl_queues = sched->tasklets;
struct task *t;
uint8_t budget_mask = (1 << TL_CLASSES) - 1;
struct sched_activity *profile_entry = NULL;
unsigned int done = 0;
unsigned int queue;
unsigned int state;
void *ctx;
for (queue = 0; queue < TL_CLASSES;) {
sched->current_queue = queue;
/* global.tune.sched.low-latency is set */
if (global.tune.options & GTUNE_SCHED_LOW_LATENCY) {
if (unlikely(sched->tl_class_mask & budget_mask & ((1 << queue) - 1))) {
/* a lower queue index has tasks again and still has a
* budget to run them. Let's switch to it now.
*/
queue = (sched->tl_class_mask & 1) ? 0 :
(sched->tl_class_mask & 2) ? 1 : 2;
continue;
}
if (unlikely(queue > TL_URGENT &&
budget_mask & (1 << TL_URGENT) &&
!MT_LIST_ISEMPTY(&sched->shared_tasklet_list))) {
/* an urgent tasklet arrived from another thread */
break;
}
if (unlikely(queue > TL_NORMAL &&
budget_mask & (1 << TL_NORMAL) &&
(!eb_is_empty(&sched->rqueue) ||
(global_tasks_mask & tid_bit)))) {
/* a task was woken up by a bulk tasklet or another thread */
break;
}
}
if (LIST_ISEMPTY(&tl_queues[queue])) {
sched->tl_class_mask &= ~(1 << queue);
queue++;
continue;
}
if (!budgets[queue]) {
budget_mask &= ~(1 << queue);
queue++;
continue;
}
budgets[queue]--;
t = (struct task *)LIST_ELEM(tl_queues[queue].n, struct tasklet *, list);
state = t->state & (TASK_SHARED_WQ|TASK_SELF_WAKING|TASK_HEAVY|TASK_F_TASKLET|TASK_KILLED);
ti->flags &= ~TI_FL_STUCK; // this thread is still running
activity[tid].ctxsw++;
ctx = t->context;
process = t->process;
t->calls++;
sched->current = t;
_HA_ATOMIC_SUB(&sched->rq_total, 1);
if (state & TASK_F_TASKLET) {
uint64_t before = 0;
LIST_DEL_INIT(&((struct tasklet *)t)->list);
__ha_barrier_store();
if (unlikely(task_profiling_mask & tid_bit)) {
profile_entry = sched_activity_entry(sched_activity, t->process);
before = now_mono_time();
#ifdef DEBUG_TASK
if (((struct tasklet *)t)->call_date) {
HA_ATOMIC_ADD(&profile_entry->lat_time, before - ((struct tasklet *)t)->call_date);
((struct tasklet *)t)->call_date = 0;
}
#endif
}
state = _HA_ATOMIC_XCHG(&t->state, state);
__ha_barrier_atomic_store();
process(t, ctx, state);
if (unlikely(task_profiling_mask & tid_bit)) {
HA_ATOMIC_ADD(&profile_entry->calls, 1);
HA_ATOMIC_ADD(&profile_entry->cpu_time, now_mono_time() - before);
}
done++;
sched->current = NULL;
__ha_barrier_store();
continue;
}
LIST_DEL_INIT(&((struct tasklet *)t)->list);
__ha_barrier_store();
state = _HA_ATOMIC_XCHG(&t->state, state | TASK_RUNNING);
__ha_barrier_atomic_store();
/* OK then this is a regular task */
_HA_ATOMIC_SUB(&task_per_thread[tid].tasks_in_list, 1);
if (unlikely(t->call_date)) {
uint64_t now_ns = now_mono_time();
uint64_t lat = now_ns - t->call_date;
t->lat_time += lat;
t->call_date = now_ns;
profile_entry = sched_activity_entry(sched_activity, t->process);
HA_ATOMIC_ADD(&profile_entry->lat_time, lat);
HA_ATOMIC_ADD(&profile_entry->calls, 1);
}
__ha_barrier_store();
/* Note for below: if TASK_KILLED arrived before we've read the state, we
* directly free the task. Otherwise it will be seen after processing and
* it's freed on the exit path.
*/
if (likely(!(state & TASK_KILLED) && process == process_stream))
t = process_stream(t, ctx, state);
else if (!(state & TASK_KILLED) && process != NULL)
t = process(t, ctx, state);
else {
task_unlink_wq(t);
__task_free(t);
sched->current = NULL;
__ha_barrier_store();
/* We don't want max_processed to be decremented if
* we're just freeing a destroyed task, we should only
* do so if we really ran a task.
*/
continue;
}
sched->current = NULL;
__ha_barrier_store();
/* If there is a pending state we have to wake up the task
* immediately, else we defer it into wait queue
*/
if (t != NULL) {
if (unlikely(t->call_date)) {
uint64_t cpu = now_mono_time() - t->call_date;
t->cpu_time += cpu;
t->call_date = 0;
HA_ATOMIC_ADD(&profile_entry->cpu_time, cpu);
}
state = _HA_ATOMIC_AND(&t->state, ~TASK_RUNNING);
if (unlikely(state & TASK_KILLED)) {
task_unlink_wq(t);
__task_free(t);
}
else if (state & TASK_WOKEN_ANY)
task_wakeup(t, 0);
else
task_queue(t);
}
done++;
}
sched->current_queue = -1;
return done;
}
/* The run queue is chronologically sorted in a tree. An insertion counter is
* used to assign a position to each task. This counter may be combined with
* other variables (eg: nice value) to set the final position in the tree. The
* counter may wrap without a problem, of course. We then limit the number of
* tasks processed to 200 in any case, so that general latency remains low and
* so that task positions have a chance to be considered. The function scans
* both the global and local run queues and picks the most urgent task between
* the two. We need to grab the global runqueue lock to touch it so it's taken
* on the very first access to the global run queue and is released as soon as
* it reaches the end.
*
* The function adjusts <next> if a new event is closer.
*/
void process_runnable_tasks()
{
struct task_per_thread * const tt = sched;
struct eb32sc_node *lrq; // next local run queue entry
struct eb32sc_node *grq; // next global run queue entry
struct task *t;
const unsigned int default_weights[TL_CLASSES] = {
[TL_URGENT] = 64, // ~50% of CPU bandwidth for I/O
[TL_NORMAL] = 48, // ~37% of CPU bandwidth for tasks
[TL_BULK] = 16, // ~13% of CPU bandwidth for self-wakers
[TL_HEAVY] = 1, // never more than 1 heavy task at once
};
unsigned int max[TL_CLASSES]; // max to be run per class
unsigned int max_total; // sum of max above
struct mt_list *tmp_list;
unsigned int queue;
int max_processed;
int lpicked, gpicked;
int heavy_queued = 0;
int budget;
ti->flags &= ~TI_FL_STUCK; // this thread is still running
if (!thread_has_tasks()) {
activity[tid].empty_rq++;
return;
}
max_processed = global.tune.runqueue_depth;
if (likely(niced_tasks))
max_processed = (max_processed + 3) / 4;
not_done_yet:
max[TL_URGENT] = max[TL_NORMAL] = max[TL_BULK] = 0;
/* urgent tasklets list gets a default weight of ~50% */
if ((tt->tl_class_mask & (1 << TL_URGENT)) ||
!MT_LIST_ISEMPTY(&tt->shared_tasklet_list))
max[TL_URGENT] = default_weights[TL_URGENT];
/* normal tasklets list gets a default weight of ~37% */
if ((tt->tl_class_mask & (1 << TL_NORMAL)) ||
!eb_is_empty(&sched->rqueue) || (global_tasks_mask & tid_bit))
max[TL_NORMAL] = default_weights[TL_NORMAL];
/* bulk tasklets list gets a default weight of ~13% */
if ((tt->tl_class_mask & (1 << TL_BULK)))
max[TL_BULK] = default_weights[TL_BULK];
/* heavy tasks are processed only once and never refilled in a
* call round. That budget is not lost either as we don't reset
* it unless consumed.
*/
if (!heavy_queued) {
if ((tt->tl_class_mask & (1 << TL_HEAVY)))
max[TL_HEAVY] = default_weights[TL_HEAVY];
else
max[TL_HEAVY] = 0;
heavy_queued = 1;
}
/* Now compute a fair share of the weights. Total may slightly exceed
* 100% due to rounding, this is not a problem. Note that while in
* theory the sum cannot be NULL as we cannot get there without tasklets
* to process, in practice it seldom happens when multiple writers
* conflict and rollback on MT_LIST_TRY_ADDQ(shared_tasklet_list), causing
* a first MT_LIST_ISEMPTY() to succeed for thread_has_task() and the
* one above to finally fail. This is extremely rare and not a problem.
*/
max_total = max[TL_URGENT] + max[TL_NORMAL] + max[TL_BULK] + max[TL_HEAVY];
if (!max_total)
return;
for (queue = 0; queue < TL_CLASSES; queue++)
max[queue] = ((unsigned)max_processed * max[queue] + max_total - 1) / max_total;
/* The heavy queue must never process more than one task at once
* anyway.
*/
if (max[TL_HEAVY] > 1)
max[TL_HEAVY] = 1;
lrq = grq = NULL;
/* pick up to max[TL_NORMAL] regular tasks from prio-ordered run queues */
/* Note: the grq lock is always held when grq is not null */
lpicked = gpicked = 0;
budget = max[TL_NORMAL] - tt->tasks_in_list;
while (lpicked + gpicked < budget) {
if ((global_tasks_mask & tid_bit) && !grq) {
#ifdef USE_THREAD
HA_SPIN_LOCK(TASK_RQ_LOCK, &rq_lock);
grq = eb32sc_lookup_ge(&rqueue, global_rqueue_ticks - TIMER_LOOK_BACK, tid_bit);
if (unlikely(!grq)) {
grq = eb32sc_first(&rqueue, tid_bit);
if (!grq) {
global_tasks_mask &= ~tid_bit;
HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock);
}
}
#endif
}
/* If a global task is available for this thread, it's in grq
* now and the global RQ is locked.
*/
if (!lrq) {
lrq = eb32sc_lookup_ge(&tt->rqueue, tt->rqueue_ticks - TIMER_LOOK_BACK, tid_bit);
if (unlikely(!lrq))
lrq = eb32sc_first(&tt->rqueue, tid_bit);
}
if (!lrq && !grq)
break;
if (likely(!grq || (lrq && (int)(lrq->key - grq->key) <= 0))) {
t = eb32sc_entry(lrq, struct task, rq);
lrq = eb32sc_next(lrq, tid_bit);
eb32sc_delete(&t->rq);
lpicked++;
}
#ifdef USE_THREAD
else {
t = eb32sc_entry(grq, struct task, rq);
grq = eb32sc_next(grq, tid_bit);
_HA_ATOMIC_AND(&t->state, ~TASK_GLOBAL);
eb32sc_delete(&t->rq);
if (unlikely(!grq)) {
grq = eb32sc_first(&rqueue, tid_bit);
if (!grq) {
global_tasks_mask &= ~tid_bit;
HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock);
}
}
gpicked++;
}
#endif
if (t->nice)
_HA_ATOMIC_SUB(&niced_tasks, 1);
/* Add it to the local task list */
LIST_ADDQ(&tt->tasklets[TL_NORMAL], &((struct tasklet *)t)->list);
}
/* release the rqueue lock */
if (grq) {
HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock);
grq = NULL;
}
if (lpicked + gpicked) {
tt->tl_class_mask |= 1 << TL_NORMAL;
_HA_ATOMIC_ADD(&tt->tasks_in_list, lpicked + gpicked);
if (gpicked) {
_HA_ATOMIC_SUB(&grq_total, gpicked);
_HA_ATOMIC_ADD(&tt->rq_total, gpicked);
}
activity[tid].tasksw += lpicked + gpicked;
}
/* Merge the list of tasklets waken up by other threads to the
* main list.
*/
tmp_list = MT_LIST_BEHEAD(&tt->shared_tasklet_list);
if (tmp_list) {
LIST_SPLICE_END_DETACHED(&tt->tasklets[TL_URGENT], (struct list *)tmp_list);
if (!LIST_ISEMPTY(&tt->tasklets[TL_URGENT]))
tt->tl_class_mask |= 1 << TL_URGENT;
}
/* execute tasklets in each queue */
max_processed -= run_tasks_from_lists(max);
/* some tasks may have woken other ones up */
if (max_processed > 0 && thread_has_tasks())
goto not_done_yet;
if (tt->tl_class_mask)
activity[tid].long_rq++;
}
/* create a work list array for <nbthread> threads, using tasks made of
* function <fct>. The context passed to the function will be the pointer to
* the thread's work list, which will contain a copy of argument <arg>. The
* wake up reason will be TASK_WOKEN_OTHER. The pointer to the work_list array
* is returned on success, otherwise NULL on failure.
*/
struct work_list *work_list_create(int nbthread,
struct task *(*fct)(struct task *, void *, unsigned int),
void *arg)
{
struct work_list *wl;
int i;
wl = calloc(nbthread, sizeof(*wl));
if (!wl)
goto fail;
for (i = 0; i < nbthread; i++) {
MT_LIST_INIT(&wl[i].head);
wl[i].task = task_new(1UL << i);
if (!wl[i].task)
goto fail;
wl[i].task->process = fct;
wl[i].task->context = &wl[i];
wl[i].arg = arg;
}
return wl;
fail:
work_list_destroy(wl, nbthread);
return NULL;
}
/* destroy work list <work> */
void work_list_destroy(struct work_list *work, int nbthread)
{
int t;
if (!work)
return;
for (t = 0; t < nbthread; t++)
task_destroy(work[t].task);
free(work);
}
/*
* Delete every tasks before running the master polling loop
*/
void mworker_cleantasks()
{
struct task *t;
int i;
struct eb32_node *tmp_wq = NULL;
struct eb32sc_node *tmp_rq = NULL;
#ifdef USE_THREAD
/* cleanup the global run queue */
tmp_rq = eb32sc_first(&rqueue, MAX_THREADS_MASK);
while (tmp_rq) {
t = eb32sc_entry(tmp_rq, struct task, rq);
tmp_rq = eb32sc_next(tmp_rq, MAX_THREADS_MASK);
task_destroy(t);
}
/* cleanup the timers queue */
tmp_wq = eb32_first(&timers);
while (tmp_wq) {
t = eb32_entry(tmp_wq, struct task, wq);
tmp_wq = eb32_next(tmp_wq);
task_destroy(t);
}
#endif
/* clean the per thread run queue */
for (i = 0; i < global.nbthread; i++) {
tmp_rq = eb32sc_first(&task_per_thread[i].rqueue, MAX_THREADS_MASK);
while (tmp_rq) {
t = eb32sc_entry(tmp_rq, struct task, rq);
tmp_rq = eb32sc_next(tmp_rq, MAX_THREADS_MASK);
task_destroy(t);
}
/* cleanup the per thread timers queue */
tmp_wq = eb32_first(&task_per_thread[i].timers);
while (tmp_wq) {
t = eb32_entry(tmp_wq, struct task, wq);
tmp_wq = eb32_next(tmp_wq);
task_destroy(t);
}
}
}
/* perform minimal intializations */
static void init_task()
{
int i, q;
#ifdef USE_THREAD
memset(&timers, 0, sizeof(timers));
memset(&rqueue, 0, sizeof(rqueue));
#endif
memset(&task_per_thread, 0, sizeof(task_per_thread));
for (i = 0; i < MAX_THREADS; i++) {
for (q = 0; q < TL_CLASSES; q++)
LIST_INIT(&task_per_thread[i].tasklets[q]);
MT_LIST_INIT(&task_per_thread[i].shared_tasklet_list);
}
}
/* config parser for global "tune.sched.low-latency", accepts "on" or "off" */
static int cfg_parse_tune_sched_low_latency(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(1, args, err, NULL))
return -1;
if (strcmp(args[1], "on") == 0)
global.tune.options |= GTUNE_SCHED_LOW_LATENCY;
else if (strcmp(args[1], "off") == 0)
global.tune.options &= ~GTUNE_SCHED_LOW_LATENCY;
else {
memprintf(err, "'%s' expects either 'on' or 'off' but got '%s'.", args[0], args[1]);
return -1;
}
return 0;
}
/* config keyword parsers */
static struct cfg_kw_list cfg_kws = {ILH, {
{ CFG_GLOBAL, "tune.sched.low-latency", cfg_parse_tune_sched_low_latency },
{ 0, NULL, NULL }
}};
INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
INITCALL0(STG_PREPARE, init_task);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/