| /* |
| * include/common/standard.h |
| * This files contains some general purpose functions and macros. |
| * |
| * Copyright (C) 2000-2010 Willy Tarreau - w@1wt.eu |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation, version 2.1 |
| * exclusively. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #ifndef _COMMON_STANDARD_H |
| #define _COMMON_STANDARD_H |
| |
| #include <limits.h> |
| #include <string.h> |
| #include <time.h> |
| #include <sys/types.h> |
| #include <netinet/in.h> |
| #include <common/config.h> |
| #include <eb32tree.h> |
| #include <proto/fd.h> |
| |
| #ifndef LLONG_MAX |
| # define LLONG_MAX 9223372036854775807LL |
| # define LLONG_MIN (-LLONG_MAX - 1LL) |
| #endif |
| |
| #ifndef ULLONG_MAX |
| # define ULLONG_MAX (LLONG_MAX * 2ULL + 1) |
| #endif |
| |
| |
| /****** string-specific macros and functions ******/ |
| /* if a > max, then bound <a> to <max>. The macro returns the new <a> */ |
| #define UBOUND(a, max) ({ typeof(a) b = (max); if ((a) > b) (a) = b; (a); }) |
| |
| /* if a < min, then bound <a> to <min>. The macro returns the new <a> */ |
| #define LBOUND(a, min) ({ typeof(a) b = (min); if ((a) < b) (a) = b; (a); }) |
| |
| /* returns 1 only if only zero or one bit is set in X, which means that X is a |
| * power of 2, and 0 otherwise */ |
| #define POWEROF2(x) (((x) & ((x)-1)) == 0) |
| |
| /* operators to compare values. They're ordered that way so that the lowest bit |
| * serves as a negation for the test and contains all tests that are not equal. |
| */ |
| enum { |
| STD_OP_LE = 0, STD_OP_GT = 1, |
| STD_OP_EQ = 2, STD_OP_NE = 3, |
| STD_OP_GE = 4, STD_OP_LT = 5, |
| }; |
| |
| /* |
| * copies at most <size-1> chars from <src> to <dst>. Last char is always |
| * set to 0, unless <size> is 0. The number of chars copied is returned |
| * (excluding the terminating zero). |
| * This code has been optimized for size and speed : on x86, it's 45 bytes |
| * long, uses only registers, and consumes only 4 cycles per char. |
| */ |
| extern int strlcpy2(char *dst, const char *src, int size); |
| |
| /* |
| * This function simply returns a locally allocated string containing |
| * the ascii representation for number 'n' in decimal. |
| */ |
| extern char itoa_str[][171]; |
| extern char *ultoa_r(unsigned long n, char *buffer, int size); |
| extern const char *ulltoh_r(unsigned long long n, char *buffer, int size); |
| static inline const char *ultoa(unsigned long n) |
| { |
| return ultoa_r(n, itoa_str[0], sizeof(itoa_str[0])); |
| } |
| |
| /* |
| * unsigned long long ASCII representation |
| * |
| * return the last char '\0' or NULL if no enough |
| * space in dst |
| */ |
| char *ulltoa(unsigned long long n, char *dst, size_t size); |
| |
| |
| /* |
| * unsigned long ASCII representation |
| * |
| * return the last char '\0' or NULL if no enough |
| * space in dst |
| */ |
| char *ultoa_o(unsigned long n, char *dst, size_t size); |
| |
| /* |
| * signed long ASCII representation |
| * |
| * return the last char '\0' or NULL if no enough |
| * space in dst |
| */ |
| char *ltoa_o(long int n, char *dst, size_t size); |
| |
| /* |
| * signed long long ASCII representation |
| * |
| * return the last char '\0' or NULL if no enough |
| * space in dst |
| */ |
| char *lltoa(long long n, char *dst, size_t size); |
| |
| /* |
| * write a ascii representation of a unsigned into dst, |
| * return a pointer to the last character |
| * Pad the ascii representation with '0', using size. |
| */ |
| char *utoa_pad(unsigned int n, char *dst, size_t size); |
| |
| /* Fast macros to convert up to 10 different parameters inside a same call of |
| * expression. |
| */ |
| #define U2A0(n) ({ ultoa_r((n), itoa_str[0], sizeof(itoa_str[0])); }) |
| #define U2A1(n) ({ ultoa_r((n), itoa_str[1], sizeof(itoa_str[1])); }) |
| #define U2A2(n) ({ ultoa_r((n), itoa_str[2], sizeof(itoa_str[2])); }) |
| #define U2A3(n) ({ ultoa_r((n), itoa_str[3], sizeof(itoa_str[3])); }) |
| #define U2A4(n) ({ ultoa_r((n), itoa_str[4], sizeof(itoa_str[4])); }) |
| #define U2A5(n) ({ ultoa_r((n), itoa_str[5], sizeof(itoa_str[5])); }) |
| #define U2A6(n) ({ ultoa_r((n), itoa_str[6], sizeof(itoa_str[6])); }) |
| #define U2A7(n) ({ ultoa_r((n), itoa_str[7], sizeof(itoa_str[7])); }) |
| #define U2A8(n) ({ ultoa_r((n), itoa_str[8], sizeof(itoa_str[8])); }) |
| #define U2A9(n) ({ ultoa_r((n), itoa_str[9], sizeof(itoa_str[9])); }) |
| |
| /* The same macros provide HTML encoding of numbers */ |
| #define U2H0(n) ({ ulltoh_r((n), itoa_str[0], sizeof(itoa_str[0])); }) |
| #define U2H1(n) ({ ulltoh_r((n), itoa_str[1], sizeof(itoa_str[1])); }) |
| #define U2H2(n) ({ ulltoh_r((n), itoa_str[2], sizeof(itoa_str[2])); }) |
| #define U2H3(n) ({ ulltoh_r((n), itoa_str[3], sizeof(itoa_str[3])); }) |
| #define U2H4(n) ({ ulltoh_r((n), itoa_str[4], sizeof(itoa_str[4])); }) |
| #define U2H5(n) ({ ulltoh_r((n), itoa_str[5], sizeof(itoa_str[5])); }) |
| #define U2H6(n) ({ ulltoh_r((n), itoa_str[6], sizeof(itoa_str[6])); }) |
| #define U2H7(n) ({ ulltoh_r((n), itoa_str[7], sizeof(itoa_str[7])); }) |
| #define U2H8(n) ({ ulltoh_r((n), itoa_str[8], sizeof(itoa_str[8])); }) |
| #define U2H9(n) ({ ulltoh_r((n), itoa_str[9], sizeof(itoa_str[9])); }) |
| |
| /* |
| * This function simply returns a locally allocated string containing the ascii |
| * representation for number 'n' in decimal, unless n is 0 in which case it |
| * returns the alternate string (or an empty string if the alternate string is |
| * NULL). It use is intended for limits reported in reports, where it's |
| * desirable not to display anything if there is no limit. Warning! it shares |
| * the same vector as ultoa_r(). |
| */ |
| extern const char *limit_r(unsigned long n, char *buffer, int size, const char *alt); |
| |
| /* Fast macros to convert up to 10 different parameters inside a same call of |
| * expression. Warning! they share the same vectors as U2A*! |
| */ |
| #define LIM2A0(n, alt) ({ limit_r((n), itoa_str[0], sizeof(itoa_str[0]), (alt)); }) |
| #define LIM2A1(n, alt) ({ limit_r((n), itoa_str[1], sizeof(itoa_str[1]), (alt)); }) |
| #define LIM2A2(n, alt) ({ limit_r((n), itoa_str[2], sizeof(itoa_str[2]), (alt)); }) |
| #define LIM2A3(n, alt) ({ limit_r((n), itoa_str[3], sizeof(itoa_str[3]), (alt)); }) |
| #define LIM2A4(n, alt) ({ limit_r((n), itoa_str[4], sizeof(itoa_str[4]), (alt)); }) |
| #define LIM2A5(n, alt) ({ limit_r((n), itoa_str[5], sizeof(itoa_str[5]), (alt)); }) |
| #define LIM2A6(n, alt) ({ limit_r((n), itoa_str[6], sizeof(itoa_str[6]), (alt)); }) |
| #define LIM2A7(n, alt) ({ limit_r((n), itoa_str[7], sizeof(itoa_str[7]), (alt)); }) |
| #define LIM2A8(n, alt) ({ limit_r((n), itoa_str[8], sizeof(itoa_str[8]), (alt)); }) |
| #define LIM2A9(n, alt) ({ limit_r((n), itoa_str[9], sizeof(itoa_str[9]), (alt)); }) |
| |
| /* |
| * Returns non-zero if character <s> is a hex digit (0-9, a-f, A-F), else zero. |
| */ |
| extern int ishex(char s); |
| |
| /* |
| * Return integer equivalent of character <c> for a hex digit (0-9, a-f, A-F), |
| * otherwise -1. |
| */ |
| extern int hex2i(int c); |
| |
| /* |
| * Checks <name> for invalid characters. Valid chars are [A-Za-z0-9_:.-]. If an |
| * invalid character is found, a pointer to it is returned. If everything is |
| * fine, NULL is returned. |
| */ |
| extern const char *invalid_char(const char *name); |
| |
| /* |
| * Checks <domainname> for invalid characters. Valid chars are [A-Za-z0-9_.-]. |
| * If an invalid character is found, a pointer to it is returned. |
| * If everything is fine, NULL is returned. |
| */ |
| extern const char *invalid_domainchar(const char *name); |
| |
| /* |
| * converts <str> to a struct sockaddr_un* which is locally allocated. |
| * The format is "/path", where "/path" is a path to a UNIX domain socket. |
| */ |
| struct sockaddr_un *str2sun(const char *str); |
| |
| /* |
| * converts <str> to a struct sockaddr_storage* which is locally allocated. The |
| * string is assumed to contain only an address, no port. The address can be a |
| * dotted IPv4 address, an IPv6 address, a host name, or empty or "*" to |
| * indicate INADDR_ANY. NULL is returned if the host part cannot be resolved. |
| * The return address will only have the address family and the address set, |
| * all other fields remain zero. The string is not supposed to be modified. |
| * The IPv6 '::' address is IN6ADDR_ANY. |
| */ |
| struct sockaddr_storage *str2ip(const char *str); |
| |
| /* |
| * converts <str> to a locally allocated struct sockaddr_storage *. |
| * The format is "addr[:[port]]", where "addr" can be a dotted IPv4 address, an |
| * IPv6 address, a host name, or empty or "*" to indicate INADDR_ANY. If an IPv6 |
| * address wants to ignore port, it must be terminated by a trailing colon (':'). |
| * The IPv6 '::' address is IN6ADDR_ANY, so in order to bind to a given port on |
| * IPv6, use ":::port". NULL is returned if the host part cannot be resolved. |
| */ |
| struct sockaddr_storage *str2sa(const char *str); |
| |
| /* |
| * converts <str> to a locally allocated struct sockaddr_storage *, and a |
| * port range consisting in two integers. The low and high end are always set |
| * even if the port is unspecified, in which case (0,0) is returned. The low |
| * port is set in the sockaddr. Thus, it is enough to check the size of the |
| * returned range to know if an array must be allocated or not. The format is |
| * "addr[:[port[-port]]]", where "addr" can be a dotted IPv4 address, an IPv6 |
| * address, a host name, or empty or "*" to indicate INADDR_ANY. If an IPv6 |
| * address wants to ignore port, it must be terminated by a trailing colon (':'). |
| * The IPv6 '::' address is IN6ADDR_ANY, so in order to bind to a given port on |
| * IPv6, use ":::port". NULL is returned if the host part cannot be resolved. |
| */ |
| struct sockaddr_storage *str2sa_range(const char *str, int *low, int *high); |
| |
| /* converts <str> to a struct in_addr containing a network mask. It can be |
| * passed in dotted form (255.255.255.0) or in CIDR form (24). It returns 1 |
| * if the conversion succeeds otherwise non-zero. |
| */ |
| int str2mask(const char *str, struct in_addr *mask); |
| |
| /* |
| * converts <str> to two struct in_addr* which must be pre-allocated. |
| * The format is "addr[/mask]", where "addr" cannot be empty, and mask |
| * is optionnal and either in the dotted or CIDR notation. |
| * Note: "addr" can also be a hostname. Returns 1 if OK, 0 if error. |
| */ |
| int str2net(const char *str, struct in_addr *addr, struct in_addr *mask); |
| |
| /* |
| * Parse IP address found in url. |
| */ |
| int url2ipv4(const char *addr, struct in_addr *dst); |
| |
| /* |
| * Resolve destination server from URL. Convert <str> to a sockaddr_storage*. |
| */ |
| int url2sa(const char *url, int ulen, struct sockaddr_storage *addr); |
| |
| /* Tries to convert a sockaddr_storage address to text form. Upon success, the |
| * address family is returned so that it's easy for the caller to adapt to the |
| * output format. Zero is returned if the address family is not supported. -1 |
| * is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are |
| * supported. |
| */ |
| int addr_to_str(struct sockaddr_storage *addr, char *str, int size); |
| |
| /* will try to encode the string <string> replacing all characters tagged in |
| * <map> with the hexadecimal representation of their ASCII-code (2 digits) |
| * prefixed by <escape>, and will store the result between <start> (included) |
| * and <stop> (excluded), and will always terminate the string with a '\0' |
| * before <stop>. The position of the '\0' is returned if the conversion |
| * completes. If bytes are missing between <start> and <stop>, then the |
| * conversion will be incomplete and truncated. If <stop> <= <start>, the '\0' |
| * cannot even be stored so we return <start> without writing the 0. |
| * The input string must also be zero-terminated. |
| */ |
| extern const char hextab[]; |
| char *encode_string(char *start, char *stop, |
| const char escape, const fd_set *map, |
| const char *string); |
| |
| /* Decode an URL-encoded string in-place. The resulting string might |
| * be shorter. If some forbidden characters are found, the conversion is |
| * aborted, the string is truncated before the issue and non-zero is returned, |
| * otherwise the operation returns non-zero indicating success. |
| */ |
| int url_decode(char *string); |
| |
| /* This one is 6 times faster than strtoul() on athlon, but does |
| * no check at all. |
| */ |
| static inline unsigned int __str2ui(const char *s) |
| { |
| unsigned int i = 0; |
| while (*s) { |
| i = i * 10 - '0'; |
| i += (unsigned char)*s++; |
| } |
| return i; |
| } |
| |
| /* This one is 5 times faster than strtoul() on athlon with checks. |
| * It returns the value of the number composed of all valid digits read. |
| */ |
| static inline unsigned int __str2uic(const char *s) |
| { |
| unsigned int i = 0; |
| unsigned int j; |
| while (1) { |
| j = (*s++) - '0'; |
| if (j > 9) |
| break; |
| i *= 10; |
| i += j; |
| } |
| return i; |
| } |
| |
| /* This one is 28 times faster than strtoul() on athlon, but does |
| * no check at all! |
| */ |
| static inline unsigned int __strl2ui(const char *s, int len) |
| { |
| unsigned int i = 0; |
| while (len-- > 0) { |
| i = i * 10 - '0'; |
| i += (unsigned char)*s++; |
| } |
| return i; |
| } |
| |
| /* This one is 7 times faster than strtoul() on athlon with checks. |
| * It returns the value of the number composed of all valid digits read. |
| */ |
| static inline unsigned int __strl2uic(const char *s, int len) |
| { |
| unsigned int i = 0; |
| unsigned int j, k; |
| |
| while (len-- > 0) { |
| j = (*s++) - '0'; |
| k = i * 10; |
| if (j > 9) |
| break; |
| i = k + j; |
| } |
| return i; |
| } |
| |
| /* This function reads an unsigned integer from the string pointed to by <s> |
| * and returns it. The <s> pointer is adjusted to point to the first unread |
| * char. The function automatically stops at <end>. |
| */ |
| static inline unsigned int __read_uint(const char **s, const char *end) |
| { |
| const char *ptr = *s; |
| unsigned int i = 0; |
| unsigned int j, k; |
| |
| while (ptr < end) { |
| j = *ptr - '0'; |
| k = i * 10; |
| if (j > 9) |
| break; |
| i = k + j; |
| ptr++; |
| } |
| *s = ptr; |
| return i; |
| } |
| |
| extern unsigned int str2ui(const char *s); |
| extern unsigned int str2uic(const char *s); |
| extern unsigned int strl2ui(const char *s, int len); |
| extern unsigned int strl2uic(const char *s, int len); |
| extern int strl2ic(const char *s, int len); |
| extern int strl2irc(const char *s, int len, int *ret); |
| extern int strl2llrc(const char *s, int len, long long *ret); |
| extern unsigned int read_uint(const char **s, const char *end); |
| unsigned int inetaddr_host(const char *text); |
| unsigned int inetaddr_host_lim(const char *text, const char *stop); |
| unsigned int inetaddr_host_lim_ret(char *text, char *stop, char **ret); |
| |
| static inline char *cut_crlf(char *s) { |
| |
| while (*s != '\r' || *s == '\n') { |
| char *p = s++; |
| |
| if (!*p) |
| return p; |
| } |
| |
| *s++ = 0; |
| |
| return s; |
| } |
| |
| static inline char *ltrim(char *s, char c) { |
| |
| if (c) |
| while (*s == c) |
| s++; |
| |
| return s; |
| } |
| |
| static inline char *rtrim(char *s, char c) { |
| |
| char *p = s + strlen(s); |
| |
| while (p-- > s) |
| if (*p == c) |
| *p = '\0'; |
| else |
| break; |
| |
| return s; |
| } |
| |
| static inline char *alltrim(char *s, char c) { |
| |
| rtrim(s, c); |
| |
| return ltrim(s, c); |
| } |
| |
| /* This function converts the time_t value <now> into a broken out struct tm |
| * which must be allocated by the caller. It is highly recommended to use this |
| * function intead of localtime() because that one requires a time_t* which |
| * is not always compatible with tv_sec depending on OS/hardware combinations. |
| */ |
| static inline void get_localtime(const time_t now, struct tm *tm) |
| { |
| localtime_r(&now, tm); |
| } |
| |
| /* This function converts the time_t value <now> into a broken out struct tm |
| * which must be allocated by the caller. It is highly recommended to use this |
| * function intead of gmtime() because that one requires a time_t* which |
| * is not always compatible with tv_sec depending on OS/hardware combinations. |
| */ |
| static inline void get_gmtime(const time_t now, struct tm *tm) |
| { |
| gmtime_r(&now, tm); |
| } |
| |
| /* This function parses a time value optionally followed by a unit suffix among |
| * "d", "h", "m", "s", "ms" or "us". It converts the value into the unit |
| * expected by the caller. The computation does its best to avoid overflows. |
| * The value is returned in <ret> if everything is fine, and a NULL is returned |
| * by the function. In case of error, a pointer to the error is returned and |
| * <ret> is left untouched. |
| */ |
| extern const char *parse_time_err(const char *text, unsigned *ret, unsigned unit_flags); |
| extern const char *parse_size_err(const char *text, unsigned *ret); |
| |
| /* unit flags to pass to parse_time_err */ |
| #define TIME_UNIT_US 0x0000 |
| #define TIME_UNIT_MS 0x0001 |
| #define TIME_UNIT_S 0x0002 |
| #define TIME_UNIT_MIN 0x0003 |
| #define TIME_UNIT_HOUR 0x0004 |
| #define TIME_UNIT_DAY 0x0005 |
| #define TIME_UNIT_MASK 0x0007 |
| |
| #define SEC 1 |
| #define MINUTE (60 * SEC) |
| #define HOUR (60 * MINUTE) |
| #define DAY (24 * HOUR) |
| |
| /* Multiply the two 32-bit operands and shift the 64-bit result right 32 bits. |
| * This is used to compute fixed ratios by setting one of the operands to |
| * (2^32*ratio). |
| */ |
| static inline unsigned int mul32hi(unsigned int a, unsigned int b) |
| { |
| return ((unsigned long long)a * b) >> 32; |
| } |
| |
| /* gcc does not know when it can safely divide 64 bits by 32 bits. Use this |
| * function when you know for sure that the result fits in 32 bits, because |
| * it is optimal on x86 and on 64bit processors. |
| */ |
| static inline unsigned int div64_32(unsigned long long o1, unsigned int o2) |
| { |
| unsigned int result; |
| #ifdef __i386__ |
| asm("divl %2" |
| : "=a" (result) |
| : "A"(o1), "rm"(o2)); |
| #else |
| result = o1 / o2; |
| #endif |
| return result; |
| } |
| |
| /* copies at most <n> characters from <src> and always terminates with '\0' */ |
| char *my_strndup(const char *src, int n); |
| |
| /* This function returns the first unused key greater than or equal to <key> in |
| * ID tree <root>. Zero is returned if no place is found. |
| */ |
| unsigned int get_next_id(struct eb_root *root, unsigned int key); |
| |
| /* This function compares a sample word possibly followed by blanks to another |
| * clean word. The compare is case-insensitive. 1 is returned if both are equal, |
| * otherwise zero. This intends to be used when checking HTTP headers for some |
| * values. |
| */ |
| int word_match(const char *sample, int slen, const char *word, int wlen); |
| |
| /* Convert a fixed-length string to an IP address. Returns 0 in case of error, |
| * or the number of chars read in case of success. |
| */ |
| int buf2ip(const char *buf, size_t len, struct in_addr *dst); |
| |
| /* To be used to quote config arg positions. Returns the string at <ptr> |
| * surrounded by simple quotes if <ptr> is valid and non-empty, or "end of line" |
| * if ptr is NULL or empty. The string is locally allocated. |
| */ |
| const char *quote_arg(const char *ptr); |
| |
| /* returns an operator among STD_OP_* for string <str> or < 0 if unknown */ |
| int get_std_op(const char *str); |
| |
| /* hash a 32-bit integer to another 32-bit integer */ |
| extern unsigned int full_hash(unsigned int a); |
| static inline unsigned int __full_hash(unsigned int a) |
| { |
| /* This function is one of Bob Jenkins' full avalanche hashing |
| * functions, which when provides quite a good distribution for little |
| * input variations. The result is quite suited to fit over a 32-bit |
| * space with enough variations so that a randomly picked number falls |
| * equally before any server position. |
| * Check http://burtleburtle.net/bob/hash/integer.html for more info. |
| */ |
| a = (a+0x7ed55d16) + (a<<12); |
| a = (a^0xc761c23c) ^ (a>>19); |
| a = (a+0x165667b1) + (a<<5); |
| a = (a+0xd3a2646c) ^ (a<<9); |
| a = (a+0xfd7046c5) + (a<<3); |
| a = (a^0xb55a4f09) ^ (a>>16); |
| |
| /* ensure values are better spread all around the tree by multiplying |
| * by a large prime close to 3/4 of the tree. |
| */ |
| return a * 3221225473U; |
| } |
| |
| /* returns non-zero if addr has a valid and non-null IPv4 or IPv6 address, |
| * otherwise zero. |
| */ |
| static inline int is_addr(struct sockaddr_storage *addr) |
| { |
| int i; |
| |
| switch (addr->ss_family) { |
| case AF_INET: |
| return *(int *)&((struct sockaddr_in *)addr)->sin_addr; |
| case AF_INET6: |
| for (i = 0; i < sizeof(struct in6_addr) / sizeof(int); i++) |
| if (((int *)&((struct sockaddr_in6 *)addr)->sin6_addr)[i] != 0) |
| return ((int *)&((struct sockaddr_in6 *)addr)->sin6_addr)[i]; |
| } |
| return 0; |
| } |
| |
| /* returns port in network byte order */ |
| static inline int get_net_port(struct sockaddr_storage *addr) |
| { |
| switch (addr->ss_family) { |
| case AF_INET: |
| return ((struct sockaddr_in *)addr)->sin_port; |
| case AF_INET6: |
| return ((struct sockaddr_in6 *)addr)->sin6_port; |
| } |
| return 0; |
| } |
| |
| /* returns port in host byte order */ |
| static inline int get_host_port(struct sockaddr_storage *addr) |
| { |
| switch (addr->ss_family) { |
| case AF_INET: |
| return ntohs(((struct sockaddr_in *)addr)->sin_port); |
| case AF_INET6: |
| return ntohs(((struct sockaddr_in6 *)addr)->sin6_port); |
| } |
| return 0; |
| } |
| |
| /* returns address len for <addr>'s family, 0 for unknown families */ |
| static inline int get_addr_len(const struct sockaddr_storage *addr) |
| { |
| switch (addr->ss_family) { |
| case AF_INET: |
| return sizeof(struct sockaddr_in); |
| case AF_INET6: |
| return sizeof(struct sockaddr_in6); |
| case AF_UNIX: |
| return sizeof(struct sockaddr_un); |
| } |
| return 0; |
| } |
| |
| /* set port in host byte order */ |
| static inline int set_net_port(struct sockaddr_storage *addr, int port) |
| { |
| switch (addr->ss_family) { |
| case AF_INET: |
| ((struct sockaddr_in *)addr)->sin_port = port; |
| case AF_INET6: |
| ((struct sockaddr_in6 *)addr)->sin6_port = port; |
| } |
| return 0; |
| } |
| |
| /* set port in network byte order */ |
| static inline int set_host_port(struct sockaddr_storage *addr, int port) |
| { |
| switch (addr->ss_family) { |
| case AF_INET: |
| ((struct sockaddr_in *)addr)->sin_port = htons(port); |
| case AF_INET6: |
| ((struct sockaddr_in6 *)addr)->sin6_port = htons(port); |
| } |
| return 0; |
| } |
| |
| /* Return true if IPv4 address is part of the network */ |
| extern int in_net_ipv4(struct in_addr *addr, struct in_addr *mask, struct in_addr *net); |
| |
| /* Return true if IPv6 address is part of the network */ |
| extern int in_net_ipv6(struct in6_addr *addr, struct in6_addr *mask, struct in6_addr *net); |
| |
| /* Map IPv4 adress on IPv6 address, as specified in RFC 3513. */ |
| extern void v4tov6(struct in6_addr *sin6_addr, struct in_addr *sin_addr); |
| |
| /* Map IPv6 adress on IPv4 address, as specified in RFC 3513. |
| * Return true if conversion is possible and false otherwise. |
| */ |
| extern int v6tov4(struct in_addr *sin_addr, struct in6_addr *sin6_addr); |
| |
| char *human_time(int t, short hz_div); |
| |
| extern const char *monthname[]; |
| |
| /* date2str_log: write a date in the format : |
| * sprintf(str, "%02d/%s/%04d:%02d:%02d:%02d.%03d", |
| * tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900, |
| * tm.tm_hour, tm.tm_min, tm.tm_sec, (int)date.tv_usec/1000); |
| * |
| * without using sprintf. return a pointer to the last char written (\0) or |
| * NULL if there isn't enough space. |
| */ |
| char *date2str_log(char *dest, struct tm *tm, struct timeval *date, size_t size); |
| |
| /* gmt2str_log: write a date in the format : |
| * "%02d/%s/%04d:%02d:%02d:%02d +0000" without using snprintf |
| * return a pointer to the last char written (\0) or |
| * NULL if there isn't enough space. |
| */ |
| char *gmt2str_log(char *dst, struct tm *tm, size_t size); |
| |
| /* Dynamically allocates a string of the proper length to hold the formatted |
| * output. NULL is returned on error. The caller is responsible for freeing the |
| * memory area using free(). The resulting string is returned in <out> if the |
| * pointer is not NULL. A previous version of <out> might be used to build the |
| * new string, and it will be freed before returning if it is not NULL, which |
| * makes it possible to build complex strings from iterative calls without |
| * having to care about freeing intermediate values, as in the example below : |
| * |
| * memprintf(&err, "invalid argument: '%s'", arg); |
| * ... |
| * memprintf(&err, "parser said : <%s>\n", *err); |
| * ... |
| * free(*err); |
| * |
| * This means that <err> must be initialized to NULL before first invocation. |
| * The return value also holds the allocated string, which eases error checking |
| * and immediate consumption. If the output pointer is not used, NULL must be |
| * passed instead and it will be ignored. |
| * |
| * It is also convenient to use it without any free except the last one : |
| * err = NULL; |
| * if (!fct1(err)) report(*err); |
| * if (!fct2(err)) report(*err); |
| * if (!fct3(err)) report(*err); |
| * free(*err); |
| */ |
| char *memprintf(char **out, const char *format, ...) |
| __attribute__ ((format(printf, 2, 3))); |
| |
| #endif /* _COMMON_STANDARD_H */ |