blob: 586978a0a3c0ec65ed450c43312ff9f8e0e0add1 [file] [log] [blame]
/*
* HA-Proxy : High Availability-enabled HTTP/TCP proxy
* 2000-2006 - Willy Tarreau - willy AT meta-x DOT org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Please refer to RFC2068 or RFC2616 for informations about HTTP protocol, and
* RFC2965 for informations about cookies usage. More generally, the IETF HTTP
* Working Group's web site should be consulted for protocol related changes :
*
* http://ftp.ics.uci.edu/pub/ietf/http/
*
* Pending bugs (may be not fixed because never reproduced) :
* - solaris only : sometimes, an HTTP proxy with only a dispatch address causes
* the proxy to terminate (no core) if the client breaks the connection during
* the response. Seen on 1.1.8pre4, but never reproduced. May not be related to
* the snprintf() bug since requests were simple (GET / HTTP/1.0), but may be
* related to missing setsid() (fixed in 1.1.15)
* - a proxy with an invalid config will prevent the startup even if disabled.
*
* ChangeLog has moved to the CHANGELOG file.
*
* TODO:
* - handle properly intermediate incomplete server headers. Done ?
* - handle hot-reconfiguration
* - fix client/server state transition when server is in connect or headers state
* and client suddenly disconnects. The server *should* switch to SHUT_WR, but
* still handle HTTP headers.
* - remove MAX_NEWHDR
* - cut this huge file into several ones
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <ctype.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/tcp.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <fcntl.h>
#include <errno.h>
#include <signal.h>
#include <stdarg.h>
#include <sys/resource.h>
#include <time.h>
#include <syslog.h>
#ifdef USE_PCRE
#include <pcre.h>
#include <pcreposix.h>
#else
#include <regex.h>
#endif
#if defined(TPROXY) && defined(NETFILTER)
#include <linux/netfilter_ipv4.h>
#endif
#if defined(__dietlibc__)
#include <strings.h>
#endif
#if defined(ENABLE_POLL)
#include <sys/poll.h>
#endif
#if defined(ENABLE_EPOLL)
#if !defined(USE_MY_EPOLL)
#include <sys/epoll.h>
#else
#include "include/epoll.h"
#endif
#endif
#ifdef DEBUG_FULL
#include <assert.h>
#endif
#include <include/base64.h>
#include <include/uri_auth.h>
#include "include/appsession.h"
#include "include/mini-clist.h"
#ifndef HAPROXY_VERSION
#define HAPROXY_VERSION "1.2.13.1"
#endif
#ifndef HAPROXY_DATE
#define HAPROXY_DATE "2006/05/14"
#endif
/* this is for libc5 for example */
#ifndef TCP_NODELAY
#define TCP_NODELAY 1
#endif
#ifndef SHUT_RD
#define SHUT_RD 0
#endif
#ifndef SHUT_WR
#define SHUT_WR 1
#endif
/*
* BUFSIZE defines the size of a read and write buffer. It is the maximum
* amount of bytes which can be stored by the proxy for each session. However,
* when reading HTTP headers, the proxy needs some spare space to add or rewrite
* headers if needed. The size of this spare is defined with MAXREWRITE. So it
* is not possible to process headers longer than BUFSIZE-MAXREWRITE bytes. By
* default, BUFSIZE=16384 bytes and MAXREWRITE=BUFSIZE/2, so the maximum length
* of headers accepted is 8192 bytes, which is in line with Apache's limits.
*/
#ifndef BUFSIZE
#define BUFSIZE 16384
#endif
// reserved buffer space for header rewriting
#ifndef MAXREWRITE
#define MAXREWRITE (BUFSIZE / 2)
#endif
#define REQURI_LEN 1024
#define CAPTURE_LEN 64
// max # args on a configuration line
#define MAX_LINE_ARGS 40
// max # of added headers per request
#define MAX_NEWHDR 10
// max # of matches per regexp
#define MAX_MATCH 10
// cookie delimitor in "prefix" mode. This character is inserted between the
// persistence cookie and the original value. The '~' is allowed by RFC2965,
// and should not be too common in server names.
#ifndef COOKIE_DELIM
#define COOKIE_DELIM '~'
#endif
#define CONN_RETRIES 3
#define CHK_CONNTIME 2000
#define DEF_CHKINTR 2000
#define DEF_FALLTIME 3
#define DEF_RISETIME 2
#define DEF_CHECK_REQ "OPTIONS / HTTP/1.0\r\n\r\n"
/* Default connections limit.
*
* A system limit can be enforced at build time in order to avoid using haproxy
* beyond reasonable system limits. For this, just define SYSTEM_MAXCONN to the
* absolute limit accepted by the system. If the configuration specifies a
* higher value, it will be capped to SYSTEM_MAXCONN and a warning will be
* emitted. The only way to override this limit will be to set it via the
* command-line '-n' argument.
*/
#ifndef SYSTEM_MAXCONN
#define DEFAULT_MAXCONN 2000
#else
#define DEFAULT_MAXCONN SYSTEM_MAXCONN
#endif
#ifdef CONFIG_PRODUCT_NAME
#define PRODUCT_NAME CONFIG_PRODUCT_NAME
#else
#define PRODUCT_NAME "HAProxy"
#endif
/* how many bits are needed to code the size of an int (eg: 32bits -> 5) */
#define INTBITS 5
/* show stats this every millisecond, 0 to disable */
#ifndef STATTIME
#define STATTIME 2000
#endif
/* this reduces the number of calls to select() by choosing appropriate
* sheduler precision in milliseconds. It should be near the minimum
* time that is needed by select() to collect all events. All timeouts
* are rounded up by adding this value prior to pass it to select().
*/
#define SCHEDULER_RESOLUTION 9
#define TIME_ETERNITY -1
/* returns the lowest delay amongst <old> and <new>, and respects TIME_ETERNITY */
#define MINTIME(old, new) (((new)<0)?(old):(((old)<0||(new)<(old))?(new):(old)))
#define SETNOW(a) (*a=now)
/****** string-specific macros and functions ******/
/* if a > max, then bound <a> to <max>. The macro returns the new <a> */
#define UBOUND(a, max) ({ typeof(a) b = (max); if ((a) > b) (a) = b; (a); })
/* if a < min, then bound <a> to <min>. The macro returns the new <a> */
#define LBOUND(a, min) ({ typeof(a) b = (min); if ((a) < b) (a) = b; (a); })
/* returns 1 only if only zero or one bit is set in X, which means that X is a
* power of 2, and 0 otherwise */
#define POWEROF2(x) (((x) & ((x)-1)) == 0)
/*
* copies at most <size-1> chars from <src> to <dst>. Last char is always
* set to 0, unless <size> is 0. The number of chars copied is returned
* (excluding the terminating zero).
* This code has been optimized for size and speed : on x86, it's 45 bytes
* long, uses only registers, and consumes only 4 cycles per char.
*/
int strlcpy2(char *dst, const char *src, int size) {
char *orig = dst;
if (size) {
while (--size && (*dst = *src)) {
src++; dst++;
}
*dst = 0;
}
return dst - orig;
}
/*
* This function simply returns a statically allocated string containing
* the ascii representation for number 'n' in decimal.
*/
char *ultoa(unsigned long n) {
/* enough to store 2^63=18446744073709551615 */
static char itoa_str[21];
char *pos;
pos = itoa_str + sizeof(itoa_str) - 1;
*pos-- = '\0';
do {
*pos-- = '0' + n % 10;
n /= 10;
} while (n && pos >= itoa_str);
return pos + 1;
}
/*
* Returns a pointer to an area of <__len> bytes taken from the pool <pool> or
* dynamically allocated. In the first case, <__pool> is updated to point to
* the next element in the list.
*/
#define pool_alloc_from(__pool, __len) ({ \
void *__p; \
if ((__p = (__pool)) == NULL) \
__p = malloc(((__len) >= sizeof (void *)) ? (__len) : sizeof(void *)); \
else { \
__pool = *(void **)(__pool); \
} \
__p; \
})
/*
* Puts a memory area back to the corresponding pool.
* Items are chained directly through a pointer that
* is written in the beginning of the memory area, so
* there's no need for any carrier cell. This implies
* that each memory area is at least as big as one
* pointer.
*/
#define pool_free_to(__pool, __ptr) ({ \
*(void **)(__ptr) = (void *)(__pool); \
__pool = (void *)(__ptr); \
})
#define MEM_OPTIM
#ifdef MEM_OPTIM
/*
* Returns a pointer to type <type> taken from the
* pool <pool_type> or dynamically allocated. In the
* first case, <pool_type> is updated to point to the
* next element in the list.
*/
#define pool_alloc(type) ({ \
void *__p; \
if ((__p = pool_##type) == NULL) \
__p = malloc(sizeof_##type); \
else { \
pool_##type = *(void **)pool_##type; \
} \
__p; \
})
/*
* Puts a memory area back to the corresponding pool.
* Items are chained directly through a pointer that
* is written in the beginning of the memory area, so
* there's no need for any carrier cell. This implies
* that each memory area is at least as big as one
* pointer.
*/
#define pool_free(type, ptr) ({ \
*(void **)ptr = (void *)pool_##type; \
pool_##type = (void *)ptr; \
})
#else
#define pool_alloc(type) (calloc(1,sizeof_##type));
#define pool_free(type, ptr) (free(ptr));
#endif /* MEM_OPTIM */
#define sizeof_task sizeof(struct task)
#define sizeof_session sizeof(struct session)
#define sizeof_pendconn sizeof(struct pendconn)
#define sizeof_buffer sizeof(struct buffer)
#define sizeof_fdtab sizeof(struct fdtab)
#define sizeof_requri REQURI_LEN
#define sizeof_capture CAPTURE_LEN
#define sizeof_curappsession CAPTURE_LEN /* current_session pool */
#define sizeof_appsess sizeof(struct appsessions)
/* different possible states for the sockets */
#define FD_STCLOSE 0
#define FD_STLISTEN 1
#define FD_STCONN 2
#define FD_STREADY 3
#define FD_STERROR 4
/* values for task->state */
#define TASK_IDLE 0
#define TASK_RUNNING 1
/* values for proxy->state */
#define PR_STNEW 0
#define PR_STIDLE 1
#define PR_STRUN 2
#define PR_STSTOPPED 3
#define PR_STPAUSED 4
#define PR_STERROR 5
/* values for proxy->mode */
#define PR_MODE_TCP 0
#define PR_MODE_HTTP 1
#define PR_MODE_HEALTH 2
/* possible actions for the *poll() loops */
#define POLL_LOOP_ACTION_INIT 0
#define POLL_LOOP_ACTION_RUN 1
#define POLL_LOOP_ACTION_CLEAN 2
/* poll mechanisms available */
#define POLL_USE_SELECT (1<<0)
#define POLL_USE_POLL (1<<1)
#define POLL_USE_EPOLL (1<<2)
/* bits for proxy->options */
#define PR_O_REDISP 0x00000001 /* allow reconnection to dispatch in case of errors */
#define PR_O_TRANSP 0x00000002 /* transparent mode : use original DEST as dispatch */
#define PR_O_COOK_RW 0x00000004 /* rewrite all direct cookies with the right serverid */
#define PR_O_COOK_IND 0x00000008 /* keep only indirect cookies */
#define PR_O_COOK_INS 0x00000010 /* insert cookies when not accessing a server directly */
#define PR_O_COOK_PFX 0x00000020 /* rewrite all cookies by prefixing the right serverid */
#define PR_O_COOK_ANY (PR_O_COOK_RW | PR_O_COOK_IND | PR_O_COOK_INS | PR_O_COOK_PFX)
#define PR_O_BALANCE_RR 0x00000040 /* balance in round-robin mode */
#define PR_O_KEEPALIVE 0x00000080 /* follow keep-alive sessions */
#define PR_O_FWDFOR 0x00000100 /* insert x-forwarded-for with client address */
#define PR_O_BIND_SRC 0x00000200 /* bind to a specific source address when connect()ing */
#define PR_O_NULLNOLOG 0x00000400 /* a connect without request will not be logged */
#define PR_O_COOK_NOC 0x00000800 /* add a 'Cache-control' header with the cookie */
#define PR_O_COOK_POST 0x00001000 /* don't insert cookies for requests other than a POST */
#define PR_O_HTTP_CHK 0x00002000 /* use HTTP 'OPTIONS' method to check server health */
#define PR_O_PERSIST 0x00004000 /* server persistence stays effective even when server is down */
#define PR_O_LOGASAP 0x00008000 /* log as soon as possible, without waiting for the session to complete */
#define PR_O_HTTP_CLOSE 0x00010000 /* force 'connection: close' in both directions */
#define PR_O_CHK_CACHE 0x00020000 /* require examination of cacheability of the 'set-cookie' field */
#define PR_O_TCP_CLI_KA 0x00040000 /* enable TCP keep-alive on client-side sessions */
#define PR_O_TCP_SRV_KA 0x00080000 /* enable TCP keep-alive on server-side sessions */
#define PR_O_USE_ALL_BK 0x00100000 /* load-balance between backup servers */
#define PR_O_FORCE_CLO 0x00200000 /* enforce the connection close immediately after server response */
#define PR_O_BALANCE_SH 0x00400000 /* balance on source IP hash */
#define PR_O_BALANCE (PR_O_BALANCE_RR | PR_O_BALANCE_SH)
#define PR_O_ABRT_CLOSE 0x00800000 /* immediately abort request when client closes */
/* various session flags, bits values 0x01 to 0x20 (shift 0) */
#define SN_DIRECT 0x00000001 /* connection made on the server matching the client cookie */
#define SN_CLDENY 0x00000002 /* a client header matches a deny regex */
#define SN_CLALLOW 0x00000004 /* a client header matches an allow regex */
#define SN_SVDENY 0x00000008 /* a server header matches a deny regex */
#define SN_SVALLOW 0x00000010 /* a server header matches an allow regex */
#define SN_POST 0x00000020 /* the request was an HTTP POST */
/* session flags dedicated to cookies : bits values 0x40, 0x80 (0-3 shift 6) */
#define SN_CK_NONE 0x00000000 /* this session had no cookie */
#define SN_CK_INVALID 0x00000040 /* this session had a cookie which matches no server */
#define SN_CK_DOWN 0x00000080 /* this session had cookie matching a down server */
#define SN_CK_VALID 0x000000C0 /* this session had cookie matching a valid server */
#define SN_CK_MASK 0x000000C0 /* mask to get this session's cookie flags */
#define SN_CK_SHIFT 6 /* bit shift */
/* session termination conditions, bits values 0x100 to 0x700 (0-7 shift 8) */
#define SN_ERR_NONE 0x00000000
#define SN_ERR_CLITO 0x00000100 /* client time-out */
#define SN_ERR_CLICL 0x00000200 /* client closed (read/write error) */
#define SN_ERR_SRVTO 0x00000300 /* server time-out, connect time-out */
#define SN_ERR_SRVCL 0x00000400 /* server closed (connect/read/write error) */
#define SN_ERR_PRXCOND 0x00000500 /* the proxy decided to close (deny...) */
#define SN_ERR_RESOURCE 0x00000600 /* the proxy encountered a lack of a local resources (fd, mem, ...) */
#define SN_ERR_INTERNAL 0x00000700 /* the proxy encountered an internal error */
#define SN_ERR_MASK 0x00000700 /* mask to get only session error flags */
#define SN_ERR_SHIFT 8 /* bit shift */
/* session state at termination, bits values 0x1000 to 0x7000 (0-7 shift 12) */
#define SN_FINST_R 0x00001000 /* session ended during client request */
#define SN_FINST_C 0x00002000 /* session ended during server connect */
#define SN_FINST_H 0x00003000 /* session ended during server headers */
#define SN_FINST_D 0x00004000 /* session ended during data phase */
#define SN_FINST_L 0x00005000 /* session ended while pushing last data to client */
#define SN_FINST_Q 0x00006000 /* session ended while waiting in queue for a server slot */
#define SN_FINST_MASK 0x00007000 /* mask to get only final session state flags */
#define SN_FINST_SHIFT 12 /* bit shift */
/* cookie information, bits values 0x10000 to 0x80000 (0-8 shift 16) */
#define SN_SCK_NONE 0x00000000 /* no set-cookie seen for the server cookie */
#define SN_SCK_DELETED 0x00010000 /* existing set-cookie deleted or changed */
#define SN_SCK_INSERTED 0x00020000 /* new set-cookie inserted or changed existing one */
#define SN_SCK_SEEN 0x00040000 /* set-cookie seen for the server cookie */
#define SN_SCK_MASK 0x00070000 /* mask to get the set-cookie field */
#define SN_SCK_ANY 0x00080000 /* at least one set-cookie seen (not to be counted) */
#define SN_SCK_SHIFT 16 /* bit shift */
/* cacheability management, bits values 0x100000 to 0x300000 (0-3 shift 20) */
#define SN_CACHEABLE 0x00100000 /* at least part of the response is cacheable */
#define SN_CACHE_COOK 0x00200000 /* a cookie in the response is cacheable */
#define SN_CACHE_SHIFT 20 /* bit shift */
/* various other session flags, bits values 0x400000 and above */
#define SN_MONITOR 0x00400000 /* this session comes from a monitoring system */
#define SN_ASSIGNED 0x00800000 /* no need to assign a server to this session */
#define SN_ADDR_SET 0x01000000 /* this session's server address has been set */
#define SN_SELF_GEN 0x02000000 /* the proxy generates data for the client (eg: stats) */
/* various data sources for the responses */
#define DATA_SRC_NONE 0
#define DATA_SRC_STATS 1
/* data transmission states for the responses */
#define DATA_ST_INIT 0
#define DATA_ST_DATA 1
/* different possible states for the client side */
#define CL_STHEADERS 0
#define CL_STDATA 1
#define CL_STSHUTR 2
#define CL_STSHUTW 3
#define CL_STCLOSE 4
/* different possible states for the server side */
#define SV_STIDLE 0
#define SV_STCONN 1
#define SV_STHEADERS 2
#define SV_STDATA 3
#define SV_STSHUTR 4
#define SV_STSHUTW 5
#define SV_STCLOSE 6
/* result of an I/O event */
#define RES_SILENT 0 /* didn't happen */
#define RES_DATA 1 /* data were sent or received */
#define RES_NULL 2 /* result is 0 (read == 0), or connect without need for writing */
#define RES_ERROR 3 /* result -1 or error on the socket (eg: connect()) */
/* modes of operation (global.mode) */
#define MODE_DEBUG 1
#define MODE_STATS 2
#define MODE_LOG 4
#define MODE_DAEMON 8
#define MODE_QUIET 16
#define MODE_CHECK 32
#define MODE_VERBOSE 64
#define MODE_STARTING 128
#define MODE_FOREGROUND 256
/* server flags */
#define SRV_RUNNING 1 /* the server is UP */
#define SRV_BACKUP 2 /* this server is a backup server */
#define SRV_MAPPORTS 4 /* this server uses mapped ports */
#define SRV_BIND_SRC 8 /* this server uses a specific source address */
#define SRV_CHECKED 16 /* this server needs to be checked */
/* function which act on servers need to return various errors */
#define SRV_STATUS_OK 0 /* everything is OK. */
#define SRV_STATUS_INTERNAL 1 /* other unrecoverable errors. */
#define SRV_STATUS_NOSRV 2 /* no server is available */
#define SRV_STATUS_FULL 3 /* the/all server(s) are saturated */
#define SRV_STATUS_QUEUED 4 /* the/all server(s) are saturated but the connection was queued */
/* what to do when a header matches a regex */
#define ACT_ALLOW 0 /* allow the request */
#define ACT_REPLACE 1 /* replace the matching header */
#define ACT_REMOVE 2 /* remove the matching header */
#define ACT_DENY 3 /* deny the request */
#define ACT_PASS 4 /* pass this header without allowing or denying the request */
/* configuration sections */
#define CFG_NONE 0
#define CFG_GLOBAL 1
#define CFG_LISTEN 2
/* fields that need to be logged. They appear as flags in session->logs.logwait */
#define LW_DATE 1 /* date */
#define LW_CLIP 2 /* CLient IP */
#define LW_SVIP 4 /* SerVer IP */
#define LW_SVID 8 /* server ID */
#define LW_REQ 16 /* http REQuest */
#define LW_RESP 32 /* http RESPonse */
#define LW_PXIP 64 /* proxy IP */
#define LW_PXID 128 /* proxy ID */
#define LW_BYTES 256 /* bytes read from server */
#define LW_COOKIE 512 /* captured cookie */
#define LW_REQHDR 1024 /* request header(s) */
#define LW_RSPHDR 2048 /* response header(s) */
#define ERR_NONE 0 /* no error */
#define ERR_RETRYABLE 1 /* retryable error, may be cumulated */
#define ERR_FATAL 2 /* fatal error, may be cumulated */
/*********************************************************************/
#define LIST_HEAD(a) ((void *)(&(a)))
/*********************************************************************/
/* describes a chunk of string */
struct chunk {
char *str; /* beginning of the string itself. Might not be 0-terminated */
int len; /* size of the string from first to last char. <0 = uninit. */
};
struct cap_hdr {
struct cap_hdr *next;
char *name; /* header name, case insensitive */
int namelen; /* length of the header name, to speed-up lookups */
int len; /* capture length, not including terminal zero */
int index; /* index in the output array */
void *pool; /* pool of pre-allocated memory area of (len+1) bytes */
};
struct hdr_exp {
struct hdr_exp *next;
regex_t *preg; /* expression to look for */
int action; /* ACT_ALLOW, ACT_REPLACE, ACT_REMOVE, ACT_DENY */
char *replace; /* expression to set instead */
};
struct buffer {
unsigned int l; /* data length */
char *r, *w, *h, *lr; /* read ptr, write ptr, last header ptr, last read */
char *rlim; /* read limit, used for header rewriting */
unsigned long long total; /* total data read */
char data[BUFSIZE];
};
struct pendconn {
struct list list; /* chaining ... */
struct session *sess; /* the session waiting for a connection */
struct server *srv; /* the server we are waiting for */
};
struct server {
struct server *next;
int state; /* server state (SRV_*) */
int cklen; /* the len of the cookie, to speed up checks */
char *cookie; /* the id set in the cookie */
char *id; /* just for identification */
struct list pendconns; /* pending connections */
int nbpend, nbpend_max; /* number of pending connections */
struct task *queue_mgt; /* the task associated to the queue processing */
struct sockaddr_in addr; /* the address to connect to */
struct sockaddr_in source_addr; /* the address to which we want to bind for connect() */
short check_port; /* the port to use for the health checks */
int health; /* 0->rise-1 = bad; rise->rise+fall-1 = good */
int rise, fall; /* time in iterations */
int inter; /* time in milliseconds */
int result; /* 0 = connect OK, -1 = connect KO */
int curfd; /* file desc used for current test, or -1 if not in test */
unsigned char uweight, eweight; /* user-specified weight-1, and effective weight-1 */
unsigned int wscore; /* weight score, used during srv map computation */
int cur_sess, cur_sess_max; /* number of currently active sessions (including syn_sent) */
unsigned int cum_sess; /* cumulated number of sessions really sent to this server */
unsigned int maxconn, minconn; /* max # of active sessions (0 = unlimited), min# for dynamic limit. */
unsigned failed_checks, down_trans; /* failed checks and up-down transitions */
unsigned failed_conns, failed_resp; /* failed connect() and responses */
unsigned failed_secu; /* blocked responses because of security concerns */
struct proxy *proxy; /* the proxy this server belongs to */
};
/* The base for all tasks */
struct task {
struct task *next, *prev; /* chaining ... */
struct task *rqnext; /* chaining in run queue ... */
struct task *wq; /* the wait queue this task is in */
int state; /* task state : IDLE or RUNNING */
struct timeval expire; /* next expiration time for this task, use only for fast sorting */
int (*process)(struct task *t); /* the function which processes the task */
void *context; /* the task's context */
};
/* WARNING: if new fields are added, they must be initialized in event_accept() */
struct session {
struct task *task; /* the task associated with this session */
/* application specific below */
struct timeval crexpire; /* expiration date for a client read */
struct timeval cwexpire; /* expiration date for a client write */
struct timeval srexpire; /* expiration date for a server read */
struct timeval swexpire; /* expiration date for a server write */
struct timeval cnexpire; /* expiration date for a connect */
char res_cr, res_cw, res_sr, res_sw;/* results of some events */
struct proxy *proxy; /* the proxy this socket belongs to */
int cli_fd; /* the client side fd */
int srv_fd; /* the server side fd */
int cli_state; /* state of the client side */
int srv_state; /* state of the server side */
int conn_retries; /* number of connect retries left */
int flags; /* some flags describing the session */
struct buffer *req; /* request buffer */
struct buffer *rep; /* response buffer */
struct sockaddr_storage cli_addr; /* the client address */
struct sockaddr_in srv_addr; /* the address to connect to */
struct server *srv; /* the server being used */
struct pendconn *pend_pos; /* if not NULL, points to the position in the pending queue */
char **req_cap; /* array of captured request headers (may be NULL) */
char **rsp_cap; /* array of captured response headers (may be NULL) */
struct chunk req_line; /* points to first line */
struct chunk auth_hdr; /* points to 'Authorization:' header */
struct {
int logwait; /* log fields waiting to be collected : LW_* */
struct timeval tv_accept; /* date of the accept() (beginning of the session) */
long t_request; /* delay before the end of the request arrives, -1 if never occurs */
long t_queue; /* delay before the session gets out of the connect queue, -1 if never occurs */
long t_connect; /* delay before the connect() to the server succeeds, -1 if never occurs */
long t_data; /* delay before the first data byte from the server ... */
unsigned long t_close; /* total session duration */
unsigned long srv_queue_size; /* number of sessions waiting for a connect slot on this server at accept() time (in direct assignment) */
unsigned long prx_queue_size; /* overall number of sessions waiting for a connect slot on this instance at accept() time */
char *uri; /* first line if log needed, NULL otherwise */
char *cli_cookie; /* cookie presented by the client, in capture mode */
char *srv_cookie; /* cookie presented by the server, in capture mode */
int status; /* HTTP status from the server, negative if from proxy */
long long bytes; /* number of bytes transferred from the server */
} logs;
short int data_source; /* where to get the data we generate ourselves */
short int data_state; /* where to get the data we generate ourselves */
union {
struct {
struct proxy *px;
struct server *sv;
short px_st, sv_st; /* DATA_ST_INIT or DATA_ST_DATA */
} stats;
} data_ctx;
unsigned int uniq_id; /* unique ID used for the traces */
};
struct listener {
int fd; /* the listen socket */
struct sockaddr_storage addr; /* the address we listen to */
struct listener *next; /* next address or NULL */
};
struct proxy {
struct listener *listen; /* the listen addresses and sockets */
struct in_addr mon_net, mon_mask; /* don't forward connections from this net (network order) FIXME: should support IPv6 */
int state; /* proxy state */
struct sockaddr_in dispatch_addr; /* the default address to connect to */
struct server *srv; /* known servers */
int srv_act, srv_bck; /* # of running servers */
int tot_wact, tot_wbck; /* total weights of active and backup servers */
struct server **srv_map; /* the server map used to apply weights */
int srv_map_sz; /* the size of the effective server map */
int srv_rr_idx; /* next server to be elected in round robin mode */
char *cookie_name; /* name of the cookie to look for */
int cookie_len; /* strlen(cookie_name), computed only once */
char *appsession_name; /* name of the cookie to look for */
int appsession_name_len; /* strlen(appsession_name), computed only once */
int appsession_len; /* length of the appsession cookie value to be used */
int appsession_timeout;
CHTbl htbl_proxy; /* Per Proxy hashtable */
char *capture_name; /* beginning of the name of the cookie to capture */
int capture_namelen; /* length of the cookie name to match */
int capture_len; /* length of the string to be captured */
struct uri_auth *uri_auth; /* if non-NULL, the (list of) per-URI authentications */
int clitimeout; /* client I/O timeout (in milliseconds) */
int srvtimeout; /* server I/O timeout (in milliseconds) */
int contimeout; /* connect timeout (in milliseconds) */
char *id; /* proxy id */
struct list pendconns; /* pending connections with no server assigned yet */
int nbpend, nbpend_max; /* number of pending connections with no server assigned yet */
int totpend; /* total number of pending connections on this instance (for stats) */
unsigned int nbconn, nbconn_max; /* # of active sessions */
unsigned int cum_conn; /* cumulated number of processed sessions */
unsigned int maxconn; /* max # of active sessions */
unsigned failed_conns, failed_resp; /* failed connect() and responses */
unsigned failed_secu; /* blocked responses because of security concerns */
int conn_retries; /* maximum number of connect retries */
int options; /* PR_O_REDISP, PR_O_TRANSP, ... */
int mode; /* mode = PR_MODE_TCP, PR_MODE_HTTP or PR_MODE_HEALTH */
struct sockaddr_in source_addr; /* the address to which we want to bind for connect() */
struct proxy *next;
struct sockaddr_in logsrv1, logsrv2; /* 2 syslog servers */
signed char logfac1, logfac2; /* log facility for both servers. -1 = disabled */
int loglev1, loglev2; /* log level for each server, 7 by default */
int to_log; /* things to be logged (LW_*) */
struct timeval stop_time; /* date to stop listening, when stopping != 0 */
int nb_reqadd, nb_rspadd;
struct hdr_exp *req_exp; /* regular expressions for request headers */
struct hdr_exp *rsp_exp; /* regular expressions for response headers */
int nb_req_cap, nb_rsp_cap; /* # of headers to be captured */
struct cap_hdr *req_cap; /* chained list of request headers to be captured */
struct cap_hdr *rsp_cap; /* chained list of response headers to be captured */
void *req_cap_pool, *rsp_cap_pool; /* pools of pre-allocated char ** used to build the sessions */
char *req_add[MAX_NEWHDR], *rsp_add[MAX_NEWHDR]; /* headers to be added */
int grace; /* grace time after stop request */
char *check_req; /* HTTP request to use if PR_O_HTTP_CHK is set, else NULL */
int check_len; /* Length of the HTTP request */
struct {
char *msg400; /* message for error 400 */
int len400; /* message length for error 400 */
char *msg403; /* message for error 403 */
int len403; /* message length for error 403 */
char *msg408; /* message for error 408 */
int len408; /* message length for error 408 */
char *msg500; /* message for error 500 */
int len500; /* message length for error 500 */
char *msg502; /* message for error 502 */
int len502; /* message length for error 502 */
char *msg503; /* message for error 503 */
int len503; /* message length for error 503 */
char *msg504; /* message for error 504 */
int len504; /* message length for error 504 */
} errmsg;
};
/* info about one given fd */
struct fdtab {
int (*read)(int fd); /* read function */
int (*write)(int fd); /* write function */
struct task *owner; /* the session (or proxy) associated with this fd */
int state; /* the state of this fd */
};
/*********************************************************************/
int cfg_maxpconn = DEFAULT_MAXCONN; /* # of simultaneous connections per proxy (-N) */
int cfg_maxconn = 0; /* # of simultaneous connections, (-n) */
char *cfg_cfgfile = NULL; /* configuration file */
char *progname = NULL; /* program name */
int pid; /* current process id */
/* global options */
static struct {
int uid;
int gid;
int nbproc;
int maxconn;
int maxsock; /* max # of sockets */
int rlimit_nofile; /* default ulimit-n value : 0=unset */
int rlimit_memmax; /* default ulimit-d in megs value : 0=unset */
int mode;
char *chroot;
char *pidfile;
int logfac1, logfac2;
int loglev1, loglev2;
struct sockaddr_in logsrv1, logsrv2;
} global = {
logfac1 : -1,
logfac2 : -1,
loglev1 : 7, /* max syslog level : debug */
loglev2 : 7,
/* others NULL OK */
};
/*********************************************************************/
fd_set *StaticReadEvent,
*StaticWriteEvent;
int cfg_polling_mechanism = 0; /* POLL_USE_{SELECT|POLL|EPOLL} */
void **pool_session = NULL,
**pool_pendconn = NULL,
**pool_buffer = NULL,
**pool_fdtab = NULL,
**pool_requri = NULL,
**pool_task = NULL,
**pool_capture = NULL,
**pool_appsess = NULL;
struct proxy *proxy = NULL; /* list of all existing proxies */
struct fdtab *fdtab = NULL; /* array of all the file descriptors */
struct task *rq = NULL; /* global run queue */
struct task wait_queue[2] = { /* global wait queue */
{
prev:LIST_HEAD(wait_queue[0]), /* expirable tasks */
next:LIST_HEAD(wait_queue[0]),
},
{
prev:LIST_HEAD(wait_queue[1]), /* non-expirable tasks */
next:LIST_HEAD(wait_queue[1]),
},
};
static int totalconn = 0; /* total # of terminated sessions */
static int actconn = 0; /* # of active sessions */
static int maxfd = 0; /* # of the highest fd + 1 */
static int listeners = 0; /* # of listeners */
static int stopping = 0; /* non zero means stopping in progress */
static struct timeval now = {0,0}; /* the current date at any moment */
static struct timeval start_date; /* the process's start date */
static struct proxy defproxy; /* fake proxy used to assign default values on all instances */
/* Here we store informations about the pids of the processes we may pause
* or kill. We will send them a signal every 10 ms until we can bind to all
* our ports. With 200 retries, that's about 2 seconds.
*/
#define MAX_START_RETRIES 200
static int nb_oldpids = 0;
static int *oldpids = NULL;
static int oldpids_sig; /* use USR1 or TERM */
#if defined(ENABLE_EPOLL)
/* FIXME: this is dirty, but at the moment, there's no other solution to remove
* the old FDs from outside the loop. Perhaps we should export a global 'poll'
* structure with pointers to functions such as init_fd() and close_fd(), plus
* a private structure with several pointers to places such as below.
*/
static fd_set *PrevReadEvent = NULL, *PrevWriteEvent = NULL;
#endif
static regmatch_t pmatch[MAX_MATCH]; /* rm_so, rm_eo for regular expressions */
/* this is used to drain data, and as a temporary buffer for sprintf()... */
static char trash[BUFSIZE];
const int zero = 0;
const int one = 1;
/*
* Syslog facilities and levels. Conforming to RFC3164.
*/
#define MAX_SYSLOG_LEN 1024
#define NB_LOG_FACILITIES 24
const char *log_facilities[NB_LOG_FACILITIES] = {
"kern", "user", "mail", "daemon",
"auth", "syslog", "lpr", "news",
"uucp", "cron", "auth2", "ftp",
"ntp", "audit", "alert", "cron2",
"local0", "local1", "local2", "local3",
"local4", "local5", "local6", "local7"
};
#define NB_LOG_LEVELS 8
const char *log_levels[NB_LOG_LEVELS] = {
"emerg", "alert", "crit", "err",
"warning", "notice", "info", "debug"
};
#define SYSLOG_PORT 514
const char *monthname[12] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
const char sess_term_cond[8] = "-cCsSPRI"; /* normal, CliTo, CliErr, SrvTo, SrvErr, PxErr, Resource, Internal */
const char sess_fin_state[8] = "-RCHDLQ7"; /* cliRequest, srvConnect, srvHeader, Data, Last, Queue, unknown */
const char sess_cookie[4] = "NIDV"; /* No cookie, Invalid cookie, cookie for a Down server, Valid cookie */
const char sess_set_cookie[8] = "N1I3PD5R"; /* No set-cookie, unknown, Set-Cookie Inserted, unknown,
Set-cookie seen and left unchanged (passive), Set-cookie Deleted,
unknown, Set-cookie Rewritten */
#define MAX_HOSTNAME_LEN 32
static char hostname[MAX_HOSTNAME_LEN] = "";
const char *HTTP_302 =
"HTTP/1.0 302 Found\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Location: "; /* not terminated since it will be concatenated with the URL */
/* same as 302 except that the browser MUST retry with the GET method */
const char *HTTP_303 =
"HTTP/1.0 303 See Other\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Location: "; /* not terminated since it will be concatenated with the URL */
const char *HTTP_400 =
"HTTP/1.0 400 Bad request\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"\r\n"
"<html><body><h1>400 Bad request</h1>\nYour browser sent an invalid request.\n</body></html>\n";
/* Warning: this one is an sprintf() fmt string, with <realm> as its only argument */
const char *HTTP_401_fmt =
"HTTP/1.0 401 Unauthorized\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"WWW-Authenticate: Basic realm=\"%s\"\r\n"
"\r\n"
"<html><body><h1>401 Unauthorized</h1>\nYou need a valid user and password to access this content.\n</body></html>\n";
const char *HTTP_403 =
"HTTP/1.0 403 Forbidden\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"\r\n"
"<html><body><h1>403 Forbidden</h1>\nRequest forbidden by administrative rules.\n</body></html>\n";
const char *HTTP_408 =
"HTTP/1.0 408 Request Time-out\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"\r\n"
"<html><body><h1>408 Request Time-out</h1>\nYour browser didn't send a complete request in time.\n</body></html>\n";
const char *HTTP_500 =
"HTTP/1.0 500 Server Error\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"\r\n"
"<html><body><h1>500 Server Error</h1>\nAn internal server error occured.\n</body></html>\n";
const char *HTTP_502 =
"HTTP/1.0 502 Bad Gateway\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"\r\n"
"<html><body><h1>502 Bad Gateway</h1>\nThe server returned an invalid or incomplete response.\n</body></html>\n";
const char *HTTP_503 =
"HTTP/1.0 503 Service Unavailable\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"\r\n"
"<html><body><h1>503 Service Unavailable</h1>\nNo server is available to handle this request.\n</body></html>\n";
const char *HTTP_504 =
"HTTP/1.0 504 Gateway Time-out\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"\r\n"
"<html><body><h1>504 Gateway Time-out</h1>\nThe server didn't respond in time.\n</body></html>\n";
/*********************************************************************/
/* statistics ******************************************************/
/*********************************************************************/
#if STATTIME > 0
static int stats_tsk_lsrch, stats_tsk_rsrch,
stats_tsk_good, stats_tsk_right, stats_tsk_left,
stats_tsk_new, stats_tsk_nsrch;
#endif
/*********************************************************************/
/* debugging *******************************************************/
/*********************************************************************/
#ifdef DEBUG_FULL
static char *cli_stnames[5] = {"HDR", "DAT", "SHR", "SHW", "CLS" };
static char *srv_stnames[7] = {"IDL", "CON", "HDR", "DAT", "SHR", "SHW", "CLS" };
#endif
/*********************************************************************/
/* function prototypes *********************************************/
/*********************************************************************/
int event_accept(int fd);
int event_cli_read(int fd);
int event_cli_write(int fd);
int event_srv_read(int fd);
int event_srv_write(int fd);
int process_session(struct task *t);
static int appsession_task_init(void);
static int appsession_init(void);
static int appsession_refresh(struct task *t);
/*********************************************************************/
/* general purpose functions ***************************************/
/*********************************************************************/
void display_version() {
printf("HA-Proxy version " HAPROXY_VERSION " " HAPROXY_DATE"\n");
printf("Copyright 2000-2006 Willy Tarreau <w@w.ods.org>\n\n");
}
/*
* This function prints the command line usage and exits
*/
void usage(char *name) {
display_version();
fprintf(stderr,
"Usage : %s -f <cfgfile> [ -vdV"
#if STATTIME > 0
"sl"
#endif
"D ] [ -n <maxconn> ] [ -N <maxpconn> ]\n"
" [ -p <pidfile> ] [ -m <max megs> ]\n"
" -v displays version\n"
" -d enters debug mode ; -db only disables background mode.\n"
" -V enters verbose mode (disables quiet mode)\n"
#if STATTIME > 0
" -s enables statistics output\n"
" -l enables long statistics format\n"
#endif
" -D goes daemon ; implies -q\n"
" -q quiet mode : don't display messages\n"
" -c check mode : only check config file and exit\n"
" -n sets the maximum total # of connections (%d)\n"
" -m limits the usable amount of memory (in MB)\n"
" -N sets the default, per-proxy maximum # of connections (%d)\n"
" -p writes pids of all children to this file\n"
#if defined(ENABLE_EPOLL)
" -de disables epoll() usage even when available\n"
#endif
#if defined(ENABLE_POLL)
" -dp disables poll() usage even when available\n"
#endif
" -sf/-st [pid ]* finishes/terminates old pids. Must be last arguments.\n"
"\n",
name, DEFAULT_MAXCONN, cfg_maxpconn);
exit(1);
}
/*
* Displays the message on stderr with the date and pid. Overrides the quiet
* mode during startup.
*/
void Alert(char *fmt, ...) {
va_list argp;
struct timeval tv;
struct tm *tm;
if (!(global.mode & MODE_QUIET) || (global.mode & (MODE_VERBOSE | MODE_STARTING))) {
va_start(argp, fmt);
gettimeofday(&tv, NULL);
tm=localtime(&tv.tv_sec);
fprintf(stderr, "[ALERT] %03d/%02d%02d%02d (%d) : ",
tm->tm_yday, tm->tm_hour, tm->tm_min, tm->tm_sec, (int)getpid());
vfprintf(stderr, fmt, argp);
fflush(stderr);
va_end(argp);
}
}
/*
* Displays the message on stderr with the date and pid.
*/
void Warning(char *fmt, ...) {
va_list argp;
struct timeval tv;
struct tm *tm;
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) {
va_start(argp, fmt);
gettimeofday(&tv, NULL);
tm=localtime(&tv.tv_sec);
fprintf(stderr, "[WARNING] %03d/%02d%02d%02d (%d) : ",
tm->tm_yday, tm->tm_hour, tm->tm_min, tm->tm_sec, (int)getpid());
vfprintf(stderr, fmt, argp);
fflush(stderr);
va_end(argp);
}
}
/*
* Displays the message on <out> only if quiet mode is not set.
*/
void qfprintf(FILE *out, char *fmt, ...) {
va_list argp;
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) {
va_start(argp, fmt);
vfprintf(out, fmt, argp);
fflush(out);
va_end(argp);
}
}
/*
* converts <str> to a struct sockaddr_in* which is locally allocated.
* The format is "addr:port", where "addr" can be empty or "*" to indicate
* INADDR_ANY.
*/
struct sockaddr_in *str2sa(char *str) {
static struct sockaddr_in sa;
char *c;
int port;
memset(&sa, 0, sizeof(sa));
str=strdup(str);
if ((c=strrchr(str,':')) != NULL) {
*c++=0;
port=atol(c);
}
else
port=0;
if (*str == '*' || *str == '\0') { /* INADDR_ANY */
sa.sin_addr.s_addr = INADDR_ANY;
}
else if (!inet_pton(AF_INET, str, &sa.sin_addr)) {
struct hostent *he;
if ((he = gethostbyname(str)) == NULL) {
Alert("Invalid server name: '%s'\n", str);
}
else
sa.sin_addr = *(struct in_addr *) *(he->h_addr_list);
}
sa.sin_port=htons(port);
sa.sin_family=AF_INET;
free(str);
return &sa;
}
/*
* converts <str> to a two struct in_addr* which are locally allocated.
* The format is "addr[/mask]", where "addr" cannot be empty, and mask
* is optionnal and either in the dotted or CIDR notation.
* Note: "addr" can also be a hostname. Returns 1 if OK, 0 if error.
*/
int str2net(char *str, struct in_addr *addr, struct in_addr *mask) {
char *c;
unsigned long len;
memset(mask, 0, sizeof(*mask));
memset(addr, 0, sizeof(*addr));
str=strdup(str);
if ((c = strrchr(str, '/')) != NULL) {
*c++ = 0;
/* c points to the mask */
if (strchr(c, '.') != NULL) { /* dotted notation */
if (!inet_pton(AF_INET, c, mask))
return 0;
}
else { /* mask length */
char *err;
len = strtol(c, &err, 10);
if (!*c || (err && *err) || (unsigned)len > 32)
return 0;
if (len)
mask->s_addr = htonl(0xFFFFFFFFUL << (32 - len));
else
mask->s_addr = 0;
}
}
else {
mask->s_addr = 0xFFFFFFFF;
}
if (!inet_pton(AF_INET, str, addr)) {
struct hostent *he;
if ((he = gethostbyname(str)) == NULL) {
return 0;
}
else
*addr = *(struct in_addr *) *(he->h_addr_list);
}
free(str);
return 1;
}
/*
* converts <str> to a list of listeners which are dynamically allocated.
* The format is "{addr|'*'}:port[-end][,{addr|'*'}:port[-end]]*", where :
* - <addr> can be empty or "*" to indicate INADDR_ANY ;
* - <port> is a numerical port from 1 to 65535 ;
* - <end> indicates to use the range from <port> to <end> instead (inclusive).
* This can be repeated as many times as necessary, separated by a coma.
* The <tail> argument is a pointer to a current list which should be appended
* to the tail of the new list. The pointer to the new list is returned.
*/
struct listener *str2listener(char *str, struct listener *tail) {
struct listener *l;
char *c, *next, *range, *dupstr;
int port, end;
next = dupstr = strdup(str);
while (next && *next) {
struct sockaddr_storage ss;
str = next;
/* 1) look for the end of the first address */
if ((next = strrchr(str, ',')) != NULL) {
*next++ = 0;
}
/* 2) look for the addr/port delimiter, it's the last colon. */
if ((range = strrchr(str, ':')) == NULL) {
Alert("Missing port number: '%s'\n", str);
goto fail;
}
*range++ = 0;
if (strrchr(str, ':') != NULL) {
/* IPv6 address contains ':' */
memset(&ss, 0, sizeof(ss));
ss.ss_family = AF_INET6;
if (!inet_pton(ss.ss_family, str, &((struct sockaddr_in6 *)&ss)->sin6_addr)) {
Alert("Invalid server address: '%s'\n", str);
goto fail;
}
}
else {
memset(&ss, 0, sizeof(ss));
ss.ss_family = AF_INET;
if (*str == '*' || *str == '\0') { /* INADDR_ANY */
((struct sockaddr_in *)&ss)->sin_addr.s_addr = INADDR_ANY;
}
else if (!inet_pton(ss.ss_family, str, &((struct sockaddr_in *)&ss)->sin_addr)) {
struct hostent *he;
if ((he = gethostbyname(str)) == NULL) {
Alert("Invalid server name: '%s'\n", str);
goto fail;
}
else
((struct sockaddr_in *)&ss)->sin_addr =
*(struct in_addr *) *(he->h_addr_list);
}
}
/* 3) look for the port-end delimiter */
if ((c = strchr(range, '-')) != NULL) {
*c++ = 0;
end = atol(c);
}
else {
end = atol(range);
}
port = atol(range);
if (port < 1 || port > 65535) {
Alert("Invalid port '%d' specified for address '%s'.\n", port, str);
goto fail;
}
if (end < 1 || end > 65535) {
Alert("Invalid port '%d' specified for address '%s'.\n", end, str);
goto fail;
}
for (; port <= end; port++) {
l = (struct listener *)calloc(1, sizeof(struct listener));
l->next = tail;
tail = l;
l->fd = -1;
l->addr = ss;
if (ss.ss_family == AF_INET6)
((struct sockaddr_in6 *)(&l->addr))->sin6_port = htons(port);
else
((struct sockaddr_in *)(&l->addr))->sin_port = htons(port);
} /* end for(port) */
} /* end while(next) */
free(dupstr);
return tail;
fail:
free(dupstr);
return NULL;
}
#define FD_SETS_ARE_BITFIELDS
#ifdef FD_SETS_ARE_BITFIELDS
/*
* This map is used with all the FD_* macros to check whether a particular bit
* is set or not. Each bit represents an ACSII code. FD_SET() sets those bytes
* which should be encoded. When FD_ISSET() returns non-zero, it means that the
* byte should be encoded. Be careful to always pass bytes from 0 to 255
* exclusively to the macros.
*/
fd_set hdr_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))];
fd_set url_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))];
#else
#error "Check if your OS uses bitfields for fd_sets"
#endif
/* will try to encode the string <string> replacing all characters tagged in
* <map> with the hexadecimal representation of their ASCII-code (2 digits)
* prefixed by <escape>, and will store the result between <start> (included
*) and <stop> (excluded), and will always terminate the string with a '\0'
* before <stop>. The position of the '\0' is returned if the conversion
* completes. If bytes are missing between <start> and <stop>, then the
* conversion will be incomplete and truncated. If <stop> <= <start>, the '\0'
* cannot even be stored so we return <start> without writing the 0.
* The input string must also be zero-terminated.
*/
char hextab[16] = "0123456789ABCDEF";
char *encode_string(char *start, char *stop,
const char escape, const fd_set *map,
const char *string)
{
if (start < stop) {
stop--; /* reserve one byte for the final '\0' */
while (start < stop && *string != 0) {
if (!FD_ISSET((unsigned char)(*string), map))
*start++ = *string;
else {
if (start + 3 >= stop)
break;
*start++ = escape;
*start++ = hextab[(*string >> 4) & 15];
*start++ = hextab[*string & 15];
}
string++;
}
*start = '\0';
}
return start;
}
/*
* This function sends a syslog message to both log servers of a proxy,
* or to global log servers if the proxy is NULL.
* It also tries not to waste too much time computing the message header.
* It doesn't care about errors nor does it report them.
*/
void send_log(struct proxy *p, int level, char *message, ...) {
static int logfd = -1; /* syslog UDP socket */
static long tvsec = -1; /* to force the string to be initialized */
struct timeval tv;
va_list argp;
static char logmsg[MAX_SYSLOG_LEN];
static char *dataptr = NULL;
int fac_level;
int hdr_len, data_len;
struct sockaddr_in *sa[2];
int facilities[2], loglevel[2];
int nbloggers = 0;
char *log_ptr;
if (logfd < 0) {
if ((logfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) < 0)
return;
}
if (level < 0 || progname == NULL || message == NULL)
return;
gettimeofday(&tv, NULL);
if (tv.tv_sec != tvsec || dataptr == NULL) {
/* this string is rebuild only once a second */
struct tm *tm = localtime(&tv.tv_sec);
tvsec = tv.tv_sec;
hdr_len = snprintf(logmsg, sizeof(logmsg),
"<<<<>%s %2d %02d:%02d:%02d %s[%d]: ",
monthname[tm->tm_mon],
tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec,
progname, pid);
/* WARNING: depending upon implementations, snprintf may return
* either -1 or the number of bytes that would be needed to store
* the total message. In both cases, we must adjust it.
*/
if (hdr_len < 0 || hdr_len > sizeof(logmsg))
hdr_len = sizeof(logmsg);
dataptr = logmsg + hdr_len;
}
va_start(argp, message);
data_len = vsnprintf(dataptr, logmsg + sizeof(logmsg) - dataptr, message, argp);
if (data_len < 0 || data_len > (logmsg + sizeof(logmsg) - dataptr))
data_len = logmsg + sizeof(logmsg) - dataptr;
va_end(argp);
dataptr[data_len - 1] = '\n'; /* force a break on ultra-long lines */
if (p == NULL) {
if (global.logfac1 >= 0) {
sa[nbloggers] = &global.logsrv1;
facilities[nbloggers] = global.logfac1;
loglevel[nbloggers] = global.loglev1;
nbloggers++;
}
if (global.logfac2 >= 0) {
sa[nbloggers] = &global.logsrv2;
facilities[nbloggers] = global.logfac2;
loglevel[nbloggers] = global.loglev2;
nbloggers++;
}
} else {
if (p->logfac1 >= 0) {
sa[nbloggers] = &p->logsrv1;
facilities[nbloggers] = p->logfac1;
loglevel[nbloggers] = p->loglev1;
nbloggers++;
}
if (p->logfac2 >= 0) {
sa[nbloggers] = &p->logsrv2;
facilities[nbloggers] = p->logfac2;
loglevel[nbloggers] = p->loglev2;
nbloggers++;
}
}
while (nbloggers-- > 0) {
/* we can filter the level of the messages that are sent to each logger */
if (level > loglevel[nbloggers])
continue;
/* For each target, we may have a different facility.
* We can also have a different log level for each message.
* This induces variations in the message header length.
* Since we don't want to recompute it each time, nor copy it every
* time, we only change the facility in the pre-computed header,
* and we change the pointer to the header accordingly.
*/
fac_level = (facilities[nbloggers] << 3) + level;
log_ptr = logmsg + 3; /* last digit of the log level */
do {
*log_ptr = '0' + fac_level % 10;
fac_level /= 10;
log_ptr--;
} while (fac_level && log_ptr > logmsg);
*log_ptr = '<';
/* the total syslog message now starts at logptr, for dataptr+data_len-logptr */
#ifndef MSG_NOSIGNAL
sendto(logfd, log_ptr, dataptr + data_len - log_ptr, MSG_DONTWAIT,
(struct sockaddr *)sa[nbloggers], sizeof(**sa));
#else
sendto(logfd, log_ptr, dataptr + data_len - log_ptr, MSG_DONTWAIT | MSG_NOSIGNAL,
(struct sockaddr *)sa[nbloggers], sizeof(**sa));
#endif
}
}
/* sets <tv> to the current time */
static inline struct timeval *tv_now(struct timeval *tv) {
if (tv)
gettimeofday(tv, NULL);
return tv;
}
/*
* adds <ms> ms to <from>, set the result to <tv> and returns a pointer <tv>
*/
static struct timeval *tv_delayfrom(struct timeval *tv, struct timeval *from, int ms) {
if (!tv || !from)
return NULL;
tv->tv_usec = from->tv_usec + (ms%1000)*1000;
tv->tv_sec = from->tv_sec + (ms/1000);
while (tv->tv_usec >= 1000000) {
tv->tv_usec -= 1000000;
tv->tv_sec++;
}
return tv;
}
/*
* compares <tv1> and <tv2> : returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2
* Must not be used when either argument is eternity. Use tv_cmp2() for that.
*/
static inline int tv_cmp(struct timeval *tv1, struct timeval *tv2) {
if (tv1->tv_sec < tv2->tv_sec)
return -1;
else if (tv1->tv_sec > tv2->tv_sec)
return 1;
else if (tv1->tv_usec < tv2->tv_usec)
return -1;
else if (tv1->tv_usec > tv2->tv_usec)
return 1;
else
return 0;
}
/*
* returns the absolute difference, in ms, between tv1 and tv2
* Must not be used when either argument is eternity.
*/
unsigned long tv_delta(struct timeval *tv1, struct timeval *tv2) {
int cmp;
unsigned long ret;
cmp = tv_cmp(tv1, tv2);
if (!cmp)
return 0; /* same dates, null diff */
else if (cmp < 0) {
struct timeval *tmp = tv1;
tv1 = tv2;
tv2 = tmp;
}
ret = (tv1->tv_sec - tv2->tv_sec) * 1000;
if (tv1->tv_usec > tv2->tv_usec)
ret += (tv1->tv_usec - tv2->tv_usec) / 1000;
else
ret -= (tv2->tv_usec - tv1->tv_usec) / 1000;
return (unsigned long) ret;
}
/*
* returns the difference, in ms, between tv1 and tv2
* Must not be used when either argument is eternity.
*/
static inline unsigned long tv_diff(struct timeval *tv1, struct timeval *tv2) {
unsigned long ret;
ret = (tv2->tv_sec - tv1->tv_sec) * 1000;
if (tv2->tv_usec > tv1->tv_usec)
ret += (tv2->tv_usec - tv1->tv_usec) / 1000;
else
ret -= (tv1->tv_usec - tv2->tv_usec) / 1000;
return (unsigned long) ret;
}
/*
* compares <tv1> and <tv2> modulo 1ms: returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2
* Must not be used when either argument is eternity. Use tv_cmp2_ms() for that.
*/
static int tv_cmp_ms(struct timeval *tv1, struct timeval *tv2) {
if (tv1->tv_sec == tv2->tv_sec) {
if (tv2->tv_usec >= tv1->tv_usec + 1000)
return -1;
else if (tv1->tv_usec >= tv2->tv_usec + 1000)
return 1;
else
return 0;
}
else if ((tv2->tv_sec > tv1->tv_sec + 1) ||
((tv2->tv_sec == tv1->tv_sec + 1) && (tv2->tv_usec + 1000000 >= tv1->tv_usec + 1000)))
return -1;
else if ((tv1->tv_sec > tv2->tv_sec + 1) ||
((tv1->tv_sec == tv2->tv_sec + 1) && (tv1->tv_usec + 1000000 >= tv2->tv_usec + 1000)))
return 1;
else
return 0;
}
/*
* returns the remaining time between tv1=now and event=tv2
* if tv2 is passed, 0 is returned.
* Must not be used when either argument is eternity.
*/
static inline unsigned long tv_remain(struct timeval *tv1, struct timeval *tv2) {
unsigned long ret;
if (tv_cmp_ms(tv1, tv2) >= 0)
return 0; /* event elapsed */
ret = (tv2->tv_sec - tv1->tv_sec) * 1000;
if (tv2->tv_usec > tv1->tv_usec)
ret += (tv2->tv_usec - tv1->tv_usec) / 1000;
else
ret -= (tv1->tv_usec - tv2->tv_usec) / 1000;
return (unsigned long) ret;
}
/*
* zeroes a struct timeval
*/
static inline struct timeval *tv_eternity(struct timeval *tv) {
tv->tv_sec = tv->tv_usec = 0;
return tv;
}
/*
* returns 1 if tv is null, else 0
*/
static inline int tv_iseternity(struct timeval *tv) {
if (tv->tv_sec == 0 && tv->tv_usec == 0)
return 1;
else
return 0;
}
/*
* compares <tv1> and <tv2> : returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2,
* considering that 0 is the eternity.
*/
static int tv_cmp2(struct timeval *tv1, struct timeval *tv2) {
if (tv_iseternity(tv1))
if (tv_iseternity(tv2))
return 0; /* same */
else
return 1; /* tv1 later than tv2 */
else if (tv_iseternity(tv2))
return -1; /* tv2 later than tv1 */
if (tv1->tv_sec > tv2->tv_sec)
return 1;
else if (tv1->tv_sec < tv2->tv_sec)
return -1;
else if (tv1->tv_usec > tv2->tv_usec)
return 1;
else if (tv1->tv_usec < tv2->tv_usec)
return -1;
else
return 0;
}
/*
* compares <tv1> and <tv2> modulo 1 ms: returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2,
* considering that 0 is the eternity.
*/
static int tv_cmp2_ms(struct timeval *tv1, struct timeval *tv2) {
if (tv_iseternity(tv1))
if (tv_iseternity(tv2))
return 0; /* same */
else
return 1; /* tv1 later than tv2 */
else if (tv_iseternity(tv2))
return -1; /* tv2 later than tv1 */
if (tv1->tv_sec == tv2->tv_sec) {
if (tv1->tv_usec >= tv2->tv_usec + 1000)
return 1;
else if (tv2->tv_usec >= tv1->tv_usec + 1000)
return -1;
else
return 0;
}
else if ((tv1->tv_sec > tv2->tv_sec + 1) ||
((tv1->tv_sec == tv2->tv_sec + 1) && (tv1->tv_usec + 1000000 >= tv2->tv_usec + 1000)))
return 1;
else if ((tv2->tv_sec > tv1->tv_sec + 1) ||
((tv2->tv_sec == tv1->tv_sec + 1) && (tv2->tv_usec + 1000000 >= tv1->tv_usec + 1000)))
return -1;
else
return 0;
}
/*
* returns the remaining time between tv1=now and event=tv2
* if tv2 is passed, 0 is returned.
* Returns TIME_ETERNITY if tv2 is eternity.
*/
static unsigned long tv_remain2(struct timeval *tv1, struct timeval *tv2) {
unsigned long ret;
if (tv_iseternity(tv2))
return TIME_ETERNITY;
if (tv_cmp_ms(tv1, tv2) >= 0)
return 0; /* event elapsed */
ret = (tv2->tv_sec - tv1->tv_sec) * 1000;
if (tv2->tv_usec > tv1->tv_usec)
ret += (tv2->tv_usec - tv1->tv_usec) / 1000;
else
ret -= (tv1->tv_usec - tv2->tv_usec) / 1000;
return (unsigned long) ret;
}
/*
* returns the first event between tv1 and tv2 into tvmin.
* a zero tv is ignored. tvmin is returned.
*/
static inline struct timeval *tv_min(struct timeval *tvmin,
struct timeval *tv1, struct timeval *tv2) {
if (tv_cmp2(tv1, tv2) <= 0)
*tvmin = *tv1;
else
*tvmin = *tv2;
return tvmin;
}
/***********************************************************/
/* fd management ***************************************/
/***********************************************************/
/* Deletes an FD from the fdsets, and recomputes the maxfd limit.
* The file descriptor is also closed.
*/
static void fd_delete(int fd) {
FD_CLR(fd, StaticReadEvent);
FD_CLR(fd, StaticWriteEvent);
#if defined(ENABLE_EPOLL)
if (PrevReadEvent) {
FD_CLR(fd, PrevReadEvent);
FD_CLR(fd, PrevWriteEvent);
}
#endif
close(fd);
fdtab[fd].state = FD_STCLOSE;
while ((maxfd-1 >= 0) && (fdtab[maxfd-1].state == FD_STCLOSE))
maxfd--;
}
/* recomputes the maxfd limit from the fd */
static inline void fd_insert(int fd) {
if (fd+1 > maxfd)
maxfd = fd+1;
}
/*************************************************************/
/* task management ***************************************/
/*************************************************************/
/* puts the task <t> in run queue <q>, and returns <t> */
static inline struct task *task_wakeup(struct task **q, struct task *t) {
if (t->state == TASK_RUNNING)
return t;
else {
t->rqnext = *q;
t->state = TASK_RUNNING;
return *q = t;
}
}
/* removes the task <t> from the queue <q>
* <s> MUST be <q>'s first task.
* set the run queue to point to the next one, and return it
*/
static inline struct task *task_sleep(struct task **q, struct task *t) {
if (t->state == TASK_RUNNING) {
*q = t->rqnext;
t->state = TASK_IDLE; /* tell that s has left the run queue */
}
return *q; /* return next running task */
}
/*
* removes the task <t> from its wait queue. It must have already been removed
* from the run queue. A pointer to the task itself is returned.
*/
static inline struct task *task_delete(struct task *t) {
t->prev->next = t->next;
t->next->prev = t->prev;
return t;
}
/*
* frees a task. Its context must have been freed since it will be lost.
*/
static inline void task_free(struct task *t) {
pool_free(task, t);
}
/* inserts <task> into its assigned wait queue, where it may already be. In this case, it
* may be only moved or left where it was, depending on its timing requirements.
* <task> is returned.
*/
struct task *task_queue(struct task *task) {
struct task *list = task->wq;
struct task *start_from;
/* This is a very dirty hack to queue non-expirable tasks in another queue
* in order to avoid pulluting the tail of the standard queue. This will go
* away with the new O(log(n)) scheduler anyway.
*/
if (tv_iseternity(&task->expire)) {
/* if the task was queued in the standard wait queue, we must dequeue it */
if (task->prev) {
if (task->wq == LIST_HEAD(wait_queue[1]))
return task;
else {
task_delete(task);
task->prev = NULL;
}
}
list = task->wq = LIST_HEAD(wait_queue[1]);
} else {
/* if the task was queued in the eternity queue, we must dequeue it */
if (task->prev && (task->wq == LIST_HEAD(wait_queue[1]))) {
task_delete(task);
task->prev = NULL;
list = task->wq = LIST_HEAD(wait_queue[0]);
}
}
/* next, test if the task was already in a list */
if (task->prev == NULL) {
// start_from = list;
start_from = list->prev;
#if STATTIME > 0
stats_tsk_new++;
#endif
/* insert the unlinked <task> into the list, searching back from the last entry */
while (start_from != list && tv_cmp2(&task->expire, &start_from->expire) < 0) {
start_from = start_from->prev;
#if STATTIME > 0
stats_tsk_nsrch++;
#endif
}
// while (start_from->next != list && tv_cmp2(&task->expire, &start_from->next->expire) > 0) {
// start_from = start_from->next;
// stats_tsk_nsrch++;
// }
}
else if (task->prev == list ||
tv_cmp2(&task->expire, &task->prev->expire) >= 0) { /* walk right */
start_from = task->next;
if (start_from == list || tv_cmp2(&task->expire, &start_from->expire) <= 0) {
#if STATTIME > 0
stats_tsk_good++;
#endif
return task; /* it's already in the right place */
}
#if STATTIME > 0
stats_tsk_right++;
#endif
/* if the task is not at the right place, there's little chance that
* it has only shifted a bit, and it will nearly always be queued
* at the end of the list because of constant timeouts
* (observed in real case).
*/
#ifndef WE_REALLY_THINK_THAT_THIS_TASK_MAY_HAVE_SHIFTED
start_from = list->prev; /* assume we'll queue to the end of the list */
while (start_from != list && tv_cmp2(&task->expire, &start_from->expire) < 0) {
start_from = start_from->prev;
#if STATTIME > 0
stats_tsk_lsrch++;
#endif
}
#else /* WE_REALLY_... */
/* insert the unlinked <task> into the list, searching after position <start_from> */
while (start_from->next != list && tv_cmp2(&task->expire, &start_from->next->expire) > 0) {
start_from = start_from->next;
#if STATTIME > 0
stats_tsk_rsrch++;
#endif
}
#endif /* WE_REALLY_... */
/* we need to unlink it now */
task_delete(task);
}
else { /* walk left. */
#if STATTIME > 0
stats_tsk_left++;
#endif
#ifdef LEFT_TO_TOP /* not very good */
start_from = list;
while (start_from->next != list && tv_cmp2(&task->expire, &start_from->next->expire) > 0) {
start_from = start_from->next;
#if STATTIME > 0
stats_tsk_lsrch++;
#endif
}
#else
start_from = task->prev->prev; /* valid because of the previous test above */
while (start_from != list && tv_cmp2(&task->expire, &start_from->expire) < 0) {
start_from = start_from->prev;
#if STATTIME > 0
stats_tsk_lsrch++;
#endif
}
#endif
/* we need to unlink it now */
task_delete(task);
}
task->prev = start_from;
task->next = start_from->next;
task->next->prev = task;
start_from->next = task;
return task;
}
/*********************************************************************/
/* pending connections queues **************************************/
/*********************************************************************/
/*
* Detaches pending connection <p>, decreases the pending count, and frees
* the pending connection. The connection might have been queued to a specific
* server as well as to the proxy. The session also gets marked unqueued.
*/
static void pendconn_free(struct pendconn *p) {
LIST_DEL(&p->list);
p->sess->pend_pos = NULL;
if (p->srv)
p->srv->nbpend--;
else
p->sess->proxy->nbpend--;
p->sess->proxy->totpend--;
pool_free(pendconn, p);
}
/* Returns the first pending connection for server <s>, which may be NULL if
* nothing is pending.
*/
static inline struct pendconn *pendconn_from_srv(struct server *s) {
if (!s->nbpend)
return NULL;
return LIST_ELEM(s->pendconns.n, struct pendconn *, list);
}
/* Returns the first pending connection for proxy <px>, which may be NULL if
* nothing is pending.
*/
static inline struct pendconn *pendconn_from_px(struct proxy *px) {
if (!px->nbpend)
return NULL;
return LIST_ELEM(px->pendconns.n, struct pendconn *, list);
}
/* Detaches the next pending connection from either a server or a proxy, and
* returns its associated session. If no pending connection is found, NULL is
* returned. Note that neither <srv> nor <px> can be NULL.
*/
static struct session *pendconn_get_next_sess(struct server *srv, struct proxy *px) {
struct pendconn *p;
struct session *sess;
p = pendconn_from_srv(srv);
if (!p) {
p = pendconn_from_px(px);
if (!p)
return NULL;
p->sess->srv = srv;
}
sess = p->sess;
pendconn_free(p);
return sess;
}
/* Adds the session <sess> to the pending connection list of server <sess>->srv
* or to the one of <sess>->proxy if srv is NULL. All counters and back pointers
* are updated accordingly. Returns NULL if no memory is available, otherwise the
* pendconn itself.
*/
static struct pendconn *pendconn_add(struct session *sess) {
struct pendconn *p;
p = pool_alloc(pendconn);
if (!p)
return NULL;
sess->pend_pos = p;
p->sess = sess;
p->srv = sess->srv;
if (sess->srv) {
LIST_ADDQ(&sess->srv->pendconns, &p->list);
sess->logs.srv_queue_size += sess->srv->nbpend;
sess->srv->nbpend++;
if (sess->srv->nbpend > sess->srv->nbpend_max)
sess->srv->nbpend_max = sess->srv->nbpend;
} else {
LIST_ADDQ(&sess->proxy->pendconns, &p->list);
sess->logs.prx_queue_size += sess->proxy->nbpend;
sess->proxy->nbpend++;
if (sess->proxy->nbpend > sess->proxy->nbpend_max)
sess->proxy->nbpend_max = sess->proxy->nbpend;
}
sess->proxy->totpend++;
return p;
}
/* returns the effective dynamic maxconn for a server, considering the minconn
* and the proxy's usage relative to its saturation.
*/
static unsigned int srv_dynamic_maxconn(struct server *s) {
return s->minconn ?
((s->maxconn * s->proxy->nbconn / s->proxy->maxconn) < s->minconn) ? s->minconn :
(s->maxconn * s->proxy->nbconn / s->proxy->maxconn) : s->maxconn;
}
/* returns 0 if nothing has to be done for server <s> regarding queued connections,
* and non-zero otherwise. Suited for and if/else usage.
*/
static inline int may_dequeue_tasks(struct server *s, struct proxy *p) {
return (s && (s->nbpend || p->nbpend) &&
(!s->maxconn || s->cur_sess < srv_dynamic_maxconn(s)) &&
s->queue_mgt);
}
/*********************************************************************/
/* more specific functions ***************************************/
/*********************************************************************/
/* some prototypes */
static int maintain_proxies(void);
/* This either returns the sockname or the original destination address. Code
* inspired from Patrick Schaaf's example of nf_getsockname() implementation.
*/
static int get_original_dst(int fd, struct sockaddr_in *sa, socklen_t *salen) {
#if defined(TPROXY) && defined(SO_ORIGINAL_DST)
return getsockopt(fd, SOL_IP, SO_ORIGINAL_DST, (void *)sa, salen);
#else
#if defined(TPROXY) && defined(USE_GETSOCKNAME)
return getsockname(fd, (struct sockaddr *)sa, salen);
#else
return -1;
#endif
#endif
}
/*
* frees the context associated to a session. It must have been removed first.
*/
static void session_free(struct session *s) {
if (s->pend_pos)
pendconn_free(s->pend_pos);
if (s->req)
pool_free(buffer, s->req);
if (s->rep)
pool_free(buffer, s->rep);
if (s->rsp_cap != NULL) {
struct cap_hdr *h;
for (h = s->proxy->rsp_cap; h; h = h->next) {
if (s->rsp_cap[h->index] != NULL)
pool_free_to(h->pool, s->rsp_cap[h->index]);
}
pool_free_to(s->proxy->rsp_cap_pool, s->rsp_cap);
}
if (s->req_cap != NULL) {
struct cap_hdr *h;
for (h = s->proxy->req_cap; h; h = h->next) {
if (s->req_cap[h->index] != NULL)
pool_free_to(h->pool, s->req_cap[h->index]);
}
pool_free_to(s->proxy->req_cap_pool, s->req_cap);
}
if (s->logs.uri)
pool_free(requri, s->logs.uri);
if (s->logs.cli_cookie)
pool_free(capture, s->logs.cli_cookie);
if (s->logs.srv_cookie)
pool_free(capture, s->logs.srv_cookie);
pool_free(session, s);
}
/*
* This function recounts the number of usable active and backup servers for
* proxy <p>. These numbers are returned into the p->srv_act and p->srv_bck.
* This function also recomputes the total active and backup weights.
*/
static void recount_servers(struct proxy *px) {
struct server *srv;
px->srv_act = 0; px->srv_bck = px->tot_wact = px->tot_wbck = 0;
for (srv = px->srv; srv != NULL; srv = srv->next) {
if (srv->state & SRV_RUNNING) {
if (srv->state & SRV_BACKUP) {
px->srv_bck++;
px->tot_wbck += srv->eweight + 1;
} else {
px->srv_act++;
px->tot_wact += srv->eweight + 1;
}
}
}
}
/* This function recomputes the server map for proxy px. It
* relies on px->tot_wact and px->tot_wbck, so it must be
* called after recount_servers(). It also expects px->srv_map
* to be initialized to the largest value needed.
*/
static void recalc_server_map(struct proxy *px) {
int o, tot, flag;
struct server *cur, *best;
if (px->srv_act) {
flag = SRV_RUNNING;
tot = px->tot_wact;
} else if (px->srv_bck) {
flag = SRV_RUNNING | SRV_BACKUP;
if (px->options & PR_O_USE_ALL_BK)
tot = px->tot_wbck;
else
tot = 1; /* the first server is enough */
} else {
px->srv_map_sz = 0;
return;
}
/* this algorithm gives priority to the first server, which means that
* it will respect the declaration order for equivalent weights, and
* that whatever the weights, the first server called will always be
* the first declard. This is an important asumption for the backup
* case, where we want the first server only.
*/
for (cur = px->srv; cur; cur = cur->next)
cur->wscore = 0;
for (o = 0; o < tot; o++) {
int max = 0;
best = NULL;
for (cur = px->srv; cur; cur = cur->next) {
if ((cur->state & (SRV_RUNNING | SRV_BACKUP)) == flag) {
int v;
/* If we are forced to return only one server, we don't want to
* go further, because we would return the wrong one due to
* divide overflow.
*/
if (tot == 1) {
best = cur;
break;
}
cur->wscore += cur->eweight + 1;
v = (cur->wscore + tot) / tot; /* result between 0 and 3 */
if (best == NULL || v > max) {
max = v;
best = cur;
}
}
}
px->srv_map[o] = best;
best->wscore -= tot;
}
px->srv_map_sz = tot;
}
/*
* This function tries to find a running server with free connection slots for
* the proxy <px> following the round-robin method.
* If any server is found, it will be returned and px->srv_rr_idx will be updated
* to point to the next server. If no valid server is found, NULL is returned.
*/
static inline struct server *get_server_rr_with_conns(struct proxy *px) {
int newidx;
struct server *srv;
if (px->srv_map_sz == 0)
return NULL;
if (px->srv_rr_idx < 0 || px->srv_rr_idx >= px->srv_map_sz)
px->srv_rr_idx = 0;
newidx = px->srv_rr_idx;
do {
srv = px->srv_map[newidx++];
if (!srv->maxconn || srv->cur_sess < srv_dynamic_maxconn(srv)) {
px->srv_rr_idx = newidx;
return srv;
}
if (newidx == px->srv_map_sz)
newidx = 0;
} while (newidx != px->srv_rr_idx);
return NULL;
}
/*
* This function tries to find a running server for the proxy <px> following
* the round-robin method.
* If any server is found, it will be returned and px->srv_rr_idx will be updated
* to point to the next server. If no valid server is found, NULL is returned.
*/
static inline struct server *get_server_rr(struct proxy *px) {
if (px->srv_map_sz == 0)
return NULL;
if (px->srv_rr_idx < 0 || px->srv_rr_idx >= px->srv_map_sz)
px->srv_rr_idx = 0;
return px->srv_map[px->srv_rr_idx++];
}
/*
* This function tries to find a running server for the proxy <px> following
* the source hash method. Depending on the number of active/backup servers,
* it will either look for active servers, or for backup servers.
* If any server is found, it will be returned. If no valid server is found,
* NULL is returned.
*/
static inline struct server *get_server_sh(struct proxy *px, char *addr, int len) {
unsigned int h, l;
if (px->srv_map_sz == 0)
return NULL;
l = h = 0;
if (px->srv_act > 1 || (px->srv_act == 0 && px->srv_bck > 1)) {
while ((l + sizeof (int)) <= len) {
h ^= ntohl(*(unsigned int *)(&addr[l]));
l += sizeof (int);
}
h %= px->srv_map_sz;
}
return px->srv_map[h];
}
/*
* This function marks the session as 'assigned' in direct or dispatch modes,
* or tries to assign one in balance mode, according to the algorithm. It does
* nothing if the session had already been assigned a server.
*
* It may return :
* SRV_STATUS_OK if everything is OK. s->srv will be valid.
* SRV_STATUS_NOSRV if no server is available. s->srv = NULL.
* SRV_STATUS_FULL if all servers are saturated. s->srv = NULL.
* SRV_STATUS_INTERNAL for other unrecoverable errors.
*
* Upon successful return, the session flag SN_ASSIGNED to indicate that it does
* not need to be called anymore. This usually means that s->srv can be trusted
* in balance and direct modes. This flag is not cleared, so it's to the caller
* to clear it if required (eg: redispatch).
*
*/
int assign_server(struct session *s) {
#ifdef DEBUG_FULL
fprintf(stderr,"assign_server : s=%p\n",s);
#endif
if (s->pend_pos)
return SRV_STATUS_INTERNAL;
if (!(s->flags & SN_ASSIGNED)) {
if ((s->proxy->options & PR_O_BALANCE) && !(s->flags & SN_DIRECT)) {
if (!s->proxy->srv_act && !s->proxy->srv_bck)
return SRV_STATUS_NOSRV;
if (s->proxy->options & PR_O_BALANCE_RR) {
s->srv = get_server_rr_with_conns(s->proxy);
if (!s->srv)
return SRV_STATUS_FULL;
}
else if (s->proxy->options & PR_O_BALANCE_SH) {
int len;
if (s->cli_addr.ss_family == AF_INET)
len = 4;
else if (s->cli_addr.ss_family == AF_INET6)
len = 16;
else /* unknown IP family */
return SRV_STATUS_INTERNAL;
s->srv = get_server_sh(s->proxy,
(void *)&((struct sockaddr_in *)&s->cli_addr)->sin_addr,
len);
}
else /* unknown balancing algorithm */
return SRV_STATUS_INTERNAL;
}
s->flags |= SN_ASSIGNED;
}
return SRV_STATUS_OK;
}
/*
* This function assigns a server address to a session, and sets SN_ADDR_SET.
* The address is taken from the currently assigned server, or from the
* dispatch or transparent address.
*
* It may return :
* SRV_STATUS_OK if everything is OK.
* SRV_STATUS_INTERNAL for other unrecoverable errors.
*
* Upon successful return, the session flag SN_ADDR_SET is set. This flag is
* not cleared, so it's to the caller to clear it if required.
*
*/
int assign_server_address(struct session *s) {
#ifdef DEBUG_FULL
fprintf(stderr,"assign_server_address : s=%p\n",s);
#endif
if (s->flags & SN_DIRECT || s->proxy->options & PR_O_BALANCE) {
/* A server is necessarily known for this session */
if (!(s->flags & SN_ASSIGNED))
return SRV_STATUS_INTERNAL;
s->srv_addr = s->srv->addr;
/* if this server remaps proxied ports, we'll use
* the port the client connected to with an offset. */
if (s->srv->state & SRV_MAPPORTS) {
struct sockaddr_in sockname;
socklen_t namelen = sizeof(sockname);
if (!(s->proxy->options & PR_O_TRANSP) ||
get_original_dst(s->cli_fd, (struct sockaddr_in *)&sockname, &namelen) == -1)
getsockname(s->cli_fd, (struct sockaddr *)&sockname, &namelen);
s->srv_addr.sin_port = htons(ntohs(s->srv_addr.sin_port) + ntohs(sockname.sin_port));
}
}
else if (*(int *)&s->proxy->dispatch_addr.sin_addr) {
/* connect to the defined dispatch addr */
s->srv_addr = s->proxy->dispatch_addr;
}
else if (s->proxy->options & PR_O_TRANSP) {
/* in transparent mode, use the original dest addr if no dispatch specified */
socklen_t salen = sizeof(s->srv_addr);
if (get_original_dst(s->cli_fd, &s->srv_addr, &salen) == -1) {
qfprintf(stderr, "Cannot get original server address.\n");
return SRV_STATUS_INTERNAL;
}
}
s->flags |= SN_ADDR_SET;
return SRV_STATUS_OK;
}
/* This function assigns a server to session <s> if required, and can add the
* connection to either the assigned server's queue or to the proxy's queue.
*
* Returns :
*
* SRV_STATUS_OK if everything is OK.
* SRV_STATUS_NOSRV if no server is available. s->srv = NULL.
* SRV_STATUS_QUEUED if the connection has been queued.
* SRV_STATUS_FULL if the server(s) is/are saturated and the
* connection could not be queued.
* SRV_STATUS_INTERNAL for other unrecoverable errors.
*
*/
int assign_server_and_queue(struct session *s) {
struct pendconn *p;
int err;
if (s->pend_pos)
return SRV_STATUS_INTERNAL;
if (s->flags & SN_ASSIGNED) {
/* a server does not need to be assigned, perhaps because we're in
* direct mode, or in dispatch or transparent modes where the server
* is not needed.
*/
if (s->srv &&
s->srv->maxconn && s->srv->cur_sess >= srv_dynamic_maxconn(s->srv)) {
p = pendconn_add(s);
if (p)
return SRV_STATUS_QUEUED;
else
return SRV_STATUS_FULL;
}
return SRV_STATUS_OK;
}
/* a server needs to be assigned */
err = assign_server(s);
switch (err) {
case SRV_STATUS_OK:
/* in balance mode, we might have servers with connection limits */
if (s->srv &&
s->srv->maxconn && s->srv->cur_sess >= srv_dynamic_maxconn(s->srv)) {
p = pendconn_add(s);
if (p)
return SRV_STATUS_QUEUED;
else
return SRV_STATUS_FULL;
}
return SRV_STATUS_OK;
case SRV_STATUS_FULL:
/* queue this session into the proxy's queue */
p = pendconn_add(s);
if (p)
return SRV_STATUS_QUEUED;
else
return SRV_STATUS_FULL;
case SRV_STATUS_NOSRV:
case SRV_STATUS_INTERNAL:
return err;
default:
return SRV_STATUS_INTERNAL;
}
}
/*
* This function initiates a connection to the server assigned to this session
* (s->srv, s->srv_addr). It will assign a server if none is assigned yet.
* It can return one of :
* - SN_ERR_NONE if everything's OK
* - SN_ERR_SRVTO if there are no more servers
* - SN_ERR_SRVCL if the connection was refused by the server
* - SN_ERR_PRXCOND if the connection has been limited by the proxy (maxconn)
* - SN_ERR_RESOURCE if a system resource is lacking (eg: fd limits, ports, ...)
* - SN_ERR_INTERNAL for any other purely internal errors
* Additionnally, in the case of SN_ERR_RESOURCE, an emergency log will be emitted.
*/
int connect_server(struct session *s) {
int fd, err;
if (!(s->flags & SN_ADDR_SET)) {
err = assign_server_address(s);
if (err != SRV_STATUS_OK)
return SN_ERR_INTERNAL;
}
if ((fd = s->srv_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) == -1) {
qfprintf(stderr, "Cannot get a server socket.\n");
if (errno == ENFILE)
send_log(s->proxy, LOG_EMERG,
"Proxy %s reached system FD limit at %d. Please check system tunables.\n",
s->proxy->id, maxfd);
else if (errno == EMFILE)
send_log(s->proxy, LOG_EMERG,
"Proxy %s reached process FD limit at %d. Please check 'ulimit-n' and restart.\n",
s->proxy->id, maxfd);
else if (errno == ENOBUFS || errno == ENOMEM)
send_log(s->proxy, LOG_EMERG,
"Proxy %s reached system memory limit at %d sockets. Please check system tunables.\n",
s->proxy->id, maxfd);
/* this is a resource error */
return SN_ERR_RESOURCE;
}
if (fd >= global.maxsock) {
/* do not log anything there, it's a normal condition when this option
* is used to serialize connections to a server !
*/
Alert("socket(): not enough free sockets. Raise -n argument. Giving up.\n");
close(fd);
return SN_ERR_PRXCOND; /* it is a configuration limit */
}
if ((fcntl(fd, F_SETFL, O_NONBLOCK)==-1) ||
(setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *) &one, sizeof(one)) == -1)) {
qfprintf(stderr,"Cannot set client socket to non blocking mode.\n");
close(fd);
return SN_ERR_INTERNAL;
}
if (s->proxy->options & PR_O_TCP_SRV_KA)
setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, (char *) &one, sizeof(one));
/* allow specific binding :
* - server-specific at first
* - proxy-specific next
*/
if (s->srv != NULL && s->srv->state & SRV_BIND_SRC) {
setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *) &one, sizeof(one));
if (bind(fd, (struct sockaddr *)&s->srv->source_addr, sizeof(s->srv->source_addr)) == -1) {
Alert("Cannot bind to source address before connect() for server %s/%s. Aborting.\n",
s->proxy->id, s->srv->id);
close(fd);
send_log(s->proxy, LOG_EMERG,
"Cannot bind to source address before connect() for server %s/%s.\n",
s->proxy->id, s->srv->id);
return SN_ERR_RESOURCE;
}
}
else if (s->proxy->options & PR_O_BIND_SRC) {
setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *) &one, sizeof(one));
if (bind(fd, (struct sockaddr *)&s->proxy->source_addr, sizeof(s->proxy->source_addr)) == -1) {
Alert("Cannot bind to source address before connect() for proxy %s. Aborting.\n", s->proxy->id);
close(fd);
send_log(s->proxy, LOG_EMERG,
"Cannot bind to source address before connect() for server %s/%s.\n",
s->proxy->id, s->srv->id);
return SN_ERR_RESOURCE;
}
}
if ((connect(fd, (struct sockaddr *)&s->srv_addr, sizeof(s->srv_addr)) == -1) &&
(errno != EINPROGRESS) && (errno != EALREADY) && (errno != EISCONN)) {
if (errno == EAGAIN || errno == EADDRINUSE) {
char *msg;
if (errno == EAGAIN) /* no free ports left, try again later */
msg = "no free ports";
else
msg = "local address already in use";
qfprintf(stderr,"Cannot connect: %s.\n",msg);
close(fd);
send_log(s->proxy, LOG_EMERG,
"Connect() failed for server %s/%s: %s.\n",
s->proxy->id, s->srv->id, msg);
return SN_ERR_RESOURCE;
} else if (errno == ETIMEDOUT) {
//qfprintf(stderr,"Connect(): ETIMEDOUT");
close(fd);
return SN_ERR_SRVTO;
} else {
// (errno == ECONNREFUSED || errno == ENETUNREACH || errno == EACCES || errno == EPERM)
//qfprintf(stderr,"Connect(): %d", errno);
close(fd);
return SN_ERR_SRVCL;
}
}
fdtab[fd].owner = s->task;
fdtab[fd].read = &event_srv_read;
fdtab[fd].write = &event_srv_write;
fdtab[fd].state = FD_STCONN; /* connection in progress */
FD_SET(fd, StaticWriteEvent); /* for connect status */
#if defined(DEBUG_FULL) && defined(ENABLE_EPOLL)
if (PrevReadEvent) {
assert(!(FD_ISSET(fd, PrevReadEvent)));
assert(!(FD_ISSET(fd, PrevWriteEvent)));
}
#endif
fd_insert(fd);
if (s->srv) {
s->srv->cur_sess++;
if (s->srv->cur_sess > s->srv->cur_sess_max)
s->srv->cur_sess_max = s->srv->cur_sess;
}
if (s->proxy->contimeout)
tv_delayfrom(&s->cnexpire, &now, s->proxy->contimeout);
else
tv_eternity(&s->cnexpire);
return SN_ERR_NONE; /* connection is OK */
}
/*
* this function is called on a read event from a client socket.
* It returns 0.
*/
int event_cli_read(int fd) {
struct task *t = fdtab[fd].owner;
struct session *s = t->context;
struct buffer *b = s->req;
int ret, max;
#ifdef DEBUG_FULL
fprintf(stderr,"event_cli_read : fd=%d, s=%p\n", fd, s);
#endif
if (fdtab[fd].state != FD_STERROR) {
#ifdef FILL_BUFFERS
while (1)
#else
do
#endif
{
if (b->l == 0) { /* let's realign the buffer to optimize I/O */
b->r = b->w = b->h = b->lr = b->data;
max = b->rlim - b->data;
}
else if (b->r > b->w) {
max = b->rlim - b->r;
}
else {
max = b->w - b->r;
/* FIXME: theorically, if w>0, we shouldn't have rlim < data+size anymore
* since it means that the rewrite protection has been removed. This
* implies that the if statement can be removed.
*/
if (max > b->rlim - b->data)
max = b->rlim - b->data;
}
if (max == 0) { /* not anymore room to store data */
FD_CLR(fd, StaticReadEvent);
break;
}
#ifndef MSG_NOSIGNAL
{
int skerr;
socklen_t lskerr = sizeof(skerr);
getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr);
if (skerr)
ret = -1;
else
ret = recv(fd, b->r, max, 0);
}
#else
ret = recv(fd, b->r, max, MSG_NOSIGNAL);
#endif
if (ret > 0) {
b->r += ret;
b->l += ret;
s->res_cr = RES_DATA;
if (b->r == b->data + BUFSIZE) {
b->r = b->data; /* wrap around the buffer */
}
b->total += ret;
/* we hope to read more data or to get a close on next round */
continue;
}
else if (ret == 0) {
s->res_cr = RES_NULL;
break;
}
else if (errno == EAGAIN) {/* ignore EAGAIN */
break;
}
else {
s->res_cr = RES_ERROR;
fdtab[fd].state = FD_STERROR;
break;
}
} /* while(1) */
#ifndef FILL_BUFFERS
while (0);
#endif
}
else {
s->res_cr = RES_ERROR;
fdtab[fd].state = FD_STERROR;
}
if (s->res_cr != RES_SILENT) {
if (s->proxy->clitimeout && FD_ISSET(fd, StaticReadEvent))
tv_delayfrom(&s->crexpire, &now, s->proxy->clitimeout);
else
tv_eternity(&s->crexpire);
task_wakeup(&rq, t);
}
return 0;
}
/*
* this function is called on a read event from a server socket.
* It returns 0.
*/
int event_srv_read(int fd) {
struct task *t = fdtab[fd].owner;
struct session *s = t->context;
struct buffer *b = s->rep;
int ret, max;
#ifdef DEBUG_FULL
fprintf(stderr,"event_srv_read : fd=%d, s=%p\n", fd, s);
#endif
if (fdtab[fd].state != FD_STERROR) {
#ifdef FILL_BUFFERS
while (1)
#else
do
#endif
{
if (b->l == 0) { /* let's realign the buffer to optimize I/O */
b->r = b->w = b->h = b->lr = b->data;
max = b->rlim - b->data;
}
else if (b->r > b->w) {
max = b->rlim - b->r;
}
else {
max = b->w - b->r;
/* FIXME: theorically, if w>0, we shouldn't have rlim < data+size anymore
* since it means that the rewrite protection has been removed. This
* implies that the if statement can be removed.
*/
if (max > b->rlim - b->data)
max = b->rlim - b->data;
}
if (max == 0) { /* not anymore room to store data */
FD_CLR(fd, StaticReadEvent);
break;
}
#ifndef MSG_NOSIGNAL
{
int skerr;
socklen_t lskerr = sizeof(skerr);
getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr);
if (skerr)
ret = -1;
else
ret = recv(fd, b->r, max, 0);
}
#else
ret = recv(fd, b->r, max, MSG_NOSIGNAL);
#endif
if (ret > 0) {
b->r += ret;
b->l += ret;
s->res_sr = RES_DATA;
if (b->r == b->data + BUFSIZE) {
b->r = b->data; /* wrap around the buffer */
}
b->total += ret;
/* we hope to read more data or to get a close on next round */
continue;
}
else if (ret == 0) {
s->res_sr = RES_NULL;
break;
}
else if (errno == EAGAIN) {/* ignore EAGAIN */
break;
}
else {
s->res_sr = RES_ERROR;
fdtab[fd].state = FD_STERROR;
break;
}
} /* while(1) */
#ifndef FILL_BUFFERS
while (0);
#endif
}
else {
s->res_sr = RES_ERROR;
fdtab[fd].state = FD_STERROR;
}
if (s->res_sr != RES_SILENT) {
if (s->proxy->srvtimeout && FD_ISSET(fd, StaticReadEvent))
tv_delayfrom(&s->srexpire, &now, s->proxy->srvtimeout);
else
tv_eternity(&s->srexpire);
task_wakeup(&rq, t);
}
return 0;
}
/*
* this function is called on a write event from a client socket.
* It returns 0.
*/
int event_cli_write(int fd) {
struct task *t = fdtab[fd].owner;
struct session *s = t->context;
struct buffer *b = s->rep;
int ret, max;
#ifdef DEBUG_FULL
fprintf(stderr,"event_cli_write : fd=%d, s=%p\n", fd, s);
#endif
if (b->l == 0) { /* let's realign the buffer to optimize I/O */
b->r = b->w = b->h = b->lr = b->data;
// max = BUFSIZE; BUG !!!!
max = 0;
}
else if (b->r > b->w) {
max = b->r - b->w;
}
else
max = b->data + BUFSIZE - b->w;
if (fdtab[fd].state != FD_STERROR) {
if (max == 0) {
s->res_cw = RES_NULL;
task_wakeup(&rq, t);
tv_eternity(&s->cwexpire);
FD_CLR(fd, StaticWriteEvent);
return 0;
}
#ifndef MSG_NOSIGNAL
{
int skerr;
socklen_t lskerr = sizeof(skerr);
getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr);
if (skerr)
ret = -1;
else
ret = send(fd, b->w, max, MSG_DONTWAIT);
}
#else
ret = send(fd, b->w, max, MSG_DONTWAIT | MSG_NOSIGNAL);
#endif
if (ret > 0) {
b->l -= ret;
b->w += ret;
s->res_cw = RES_DATA;
if (b->w == b->data + BUFSIZE) {
b->w = b->data; /* wrap around the buffer */
}
}
else if (ret == 0) {
/* nothing written, just make as if we were never called */
// s->res_cw = RES_NULL;
return 0;
}
else if (errno == EAGAIN) /* ignore EAGAIN */
return 0;
else {
s->res_cw = RES_ERROR;
fdtab[fd].state = FD_STERROR;
}
}
else {
s->res_cw = RES_ERROR;
fdtab[fd].state = FD_STERROR;
}
if (s->proxy->clitimeout) {
tv_delayfrom(&s->cwexpire, &now, s->proxy->clitimeout);
/* FIXME: to prevent the client from expiring read timeouts during writes,
* we refresh it. A solution would be to merge read+write timeouts into a
* unique one, although that needs some study particularly on full-duplex
* TCP connections. */
s->crexpire = s->cwexpire;
}
else
tv_eternity(&s->cwexpire);
task_wakeup(&rq, t);
return 0;
}
/*
* this function is called on a write event from a server socket.
* It returns 0.
*/
int event_srv_write(int fd) {
struct task *t = fdtab[fd].owner;
struct session *s = t->context;
struct buffer *b = s->req;
int ret, max;
#ifdef DEBUG_FULL
fprintf(stderr,"event_srv_write : fd=%d, s=%p\n", fd, s);
#endif
if (b->l == 0) { /* let's realign the buffer to optimize I/O */
b->r = b->w = b->h = b->lr = b->data;
// max = BUFSIZE; BUG !!!!
max = 0;
}
else if (b->r > b->w) {
max = b->r - b->w;
}
else
max = b->data + BUFSIZE - b->w;
if (fdtab[fd].state != FD_STERROR) {
if (max == 0) {
/* may be we have received a connection acknowledgement in TCP mode without data */
if (s->srv_state == SV_STCONN) {
int skerr;
socklen_t lskerr = sizeof(skerr);
getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr);
if (skerr) {
s->res_sw = RES_ERROR;
fdtab[fd].state = FD_STERROR;
task_wakeup(&rq, t);
tv_eternity(&s->swexpire);
FD_CLR(fd, StaticWriteEvent);
return 0;
}
}
s->res_sw = RES_NULL;
task_wakeup(&rq, t);
fdtab[fd].state = FD_STREADY;
tv_eternity(&s->swexpire);
FD_CLR(fd, StaticWriteEvent);
return 0;
}
#ifndef MSG_NOSIGNAL
{
int skerr;
socklen_t lskerr = sizeof(skerr);
getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr);
if (skerr)
ret = -1;
else
ret = send(fd, b->w, max, MSG_DONTWAIT);
}
#else
ret = send(fd, b->w, max, MSG_DONTWAIT | MSG_NOSIGNAL);
#endif
fdtab[fd].state = FD_STREADY;
if (ret > 0) {
b->l -= ret;
b->w += ret;
s->res_sw = RES_DATA;
if (b->w == b->data + BUFSIZE) {
b->w = b->data; /* wrap around the buffer */
}
}
else if (ret == 0) {
/* nothing written, just make as if we were never called */
// s->res_sw = RES_NULL;
return 0;
}
else if (errno == EAGAIN) /* ignore EAGAIN */
return 0;
else {
s->res_sw = RES_ERROR;
fdtab[fd].state = FD_STERROR;
}
}
else {
s->res_sw = RES_ERROR;
fdtab[fd].state = FD_STERROR;
}
/* We don't want to re-arm read/write timeouts if we're trying to connect,
* otherwise it could loop indefinitely !
*/
if (s->srv_state != SV_STCONN) {
if (s->proxy->srvtimeout) {
tv_delayfrom(&s->swexpire, &now, s->proxy->srvtimeout);
/* FIXME: to prevent the server from expiring read timeouts during writes,
* we refresh it. A solution would be to merge read+write+connect timeouts
* into a unique one since we don't mind expiring on read or write, and none
* of them is enabled while waiting for connect(), although that needs some
* study particularly on full-duplex TCP connections. */
s->srexpire = s->swexpire;
}
else
tv_eternity(&s->swexpire);
}
task_wakeup(&rq, t);
return 0;
}
/* returns 1 if the buffer is empty, 0 otherwise */
static inline int buffer_isempty(struct buffer *buf) {
return buf->l == 0;
}
/* returns 1 if the buffer is full, 0 otherwise */
static inline int buffer_isfull(struct buffer *buf) {
return buf->l == BUFSIZE;
}
/* flushes any content from buffer <buf> */
void buffer_flush(struct buffer *buf) {
buf->r = buf->h = buf->lr = buf->w = buf->data;
buf->l = 0;
}
/* returns the maximum number of bytes writable at once in this buffer */
int buffer_max(struct buffer *buf) {
if (buf->l == BUFSIZE)
return 0;
else if (buf->r >= buf->w)
return buf->data + BUFSIZE - buf->r;
else
return buf->w - buf->r;
}
/*
* Tries to realign the given buffer, and returns how many bytes can be written
* there at once without overwriting anything.
*/
int buffer_realign(struct buffer *buf) {
if (buf->l == 0) {
/* let's realign the buffer to optimize I/O */
buf->r = buf->w = buf->h = buf->lr = buf->data;
}
return buffer_max(buf);
}
/* writes <len> bytes from message <msg> to buffer <buf>. Returns 0 in case of
* success, or the number of bytes available otherwise.
* FIXME-20060521: handle unaligned data.
*/
int buffer_write(struct buffer *buf, const char *msg, int len) {
int max;
max = buffer_realign(buf);
if (len > max)
return max;
memcpy(buf->r, msg, len);
buf->l += len;
buf->r += len;
if (buf->r == buf->data + BUFSIZE)
buf->r = buf->data;
return 0;
}
/*
* returns a message to the client ; the connection is shut down for read,
* and the request is cleared so that no server connection can be initiated.
* The client must be in a valid state for this (HEADER, DATA ...).
* Nothing is performed on the server side.
* The reply buffer doesn't need to be empty before this.
*/
void client_retnclose(struct session *s, int len, const char *msg) {
FD_CLR(s->cli_fd, StaticReadEvent);
FD_SET(s->cli_fd, StaticWriteEvent);
tv_eternity(&s->crexpire);
tv_delayfrom(&s->cwexpire, &now, s->proxy->clitimeout);
shutdown(s->cli_fd, SHUT_RD);
s->cli_state = CL_STSHUTR;
buffer_flush(s->rep);
buffer_write(s->rep, msg, len);
s->req->l = 0;
}
/*
* returns a message into the rep buffer, and flushes the req buffer.
* The reply buffer doesn't need to be empty before this.
*/
void client_return(struct session *s, int len, const char *msg) {
buffer_flush(s->rep);
buffer_write(s->rep, msg, len);
s->req->l = 0;
}
/*
* Produces data for the session <s> depending on its source. Expects to be
* called with s->cli_state == CL_STSHUTR. Right now, only statistics can be
* produced. It stops by itself by unsetting the SN_SELF_GEN flag from the
* session, which it uses to keep on being called when there is free space in
* the buffer, of simply by letting an empty buffer upon return. It returns 1
* if it changes the session state from CL_STSHUTR, otherwise 0.
*/
int produce_content(struct session *s) {
struct buffer *rep = s->rep;
struct proxy *px;
struct server *sv;
int msglen;
if (s->data_source == DATA_SRC_NONE) {
s->flags &= ~SN_SELF_GEN;
return 1;
}
else if (s->data_source == DATA_SRC_STATS) {
msglen = 0;
if (s->data_state == DATA_ST_INIT) { /* the function had not been called yet */
unsigned int up;
s->flags |= SN_SELF_GEN; // more data will follow
/* send the start of the HTTP response */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"HTTP/1.0 200 OK\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"\r\n\r\n");
s->logs.status = 200;
client_retnclose(s, msglen, trash); // send the start of the response.
msglen = 0;
if (!(s->flags & SN_ERR_MASK)) // this is not really an error but it is
s->flags |= SN_ERR_PRXCOND; // to mark that it comes from the proxy
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_R;
/* WARNING! This must fit in the first buffer !!! */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<html><head><title>Statistics Report for " PRODUCT_NAME "</title>\n"
"<meta http-equiv=\"content-type\" content=\"text/html; charset=iso-8859-1\">\n"
"<style type=\"text/css\"><!--\n"
"body {"
" font-family: helvetica, arial;"
" font-size: 12px;"
" font-weight: normal;"
" color: black;"
" background: white;"
"}\n"
"td {"
" font-size: 12px;"
" align: center;"
"}\n"
"h1 {"
" font-size: xx-large;"
" margin-bottom: 0.5em;"
"}\n"
"h2 {"
" font-family: helvetica, arial;"
" font-size: x-large;"
" font-weight: bold;"
" font-style: italic;"
" color: #6020a0;"
" margin-top: 0em;"
" margin-bottom: 0em;"
"}\n"
"h3 {"
" font-family: helvetica, arial;"
" font-size: 16px;"
" font-weight: bold;"
" color: #b00040;"
" background: #e8e8d0;"
" margin-top: 0em;"
" margin-bottom: 0em;"
"}\n"
"li {"
" margin-top: 0.25em;"
" margin-right: 2em;"
"}\n"
".hr {"
" margin-top: 0.25em;"
" border-color: black;"
" border-bottom-style: solid;"
"}\n"
"table.tbl { border-collapse: collapse; border-width: 1px; border-style: solid; border-color: gray;}\n"
"table.tbl td { border-width: 1px 1px 1px 1px; border-style: solid solid solid solid; border-color: gray; }\n"
"table.tbl th { border-width: 1px; border-style: solid solid solid solid; border-color: gray; }\n"
"table.lgd { border-collapse: collapse; border-width: 1px; border-style: none none none solid; border-color: black;}\n"
"table.lgd td { border-width: 1px; border-style: solid solid solid solid; border-color: gray; padding: 2px;}\n"
"-->"
"</style></head>");
if (buffer_write(rep, trash, msglen) != 0)
return 0;
msglen = 0;
up = (now.tv_sec - start_date.tv_sec);
/* WARNING! this has to fit the first packet too */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<body><h1>" PRODUCT_NAME "</h1>\n"
"<h2>Statistics Report for pid %d</h2>\n"
"<hr width=\"100%%\" class=\"hr\">\n"
"<h3>&gt; General process information</h3>\n"
"<table border=0><tr><td align=\"left\">\n"
"<p><b>pid = </b> %d (nbproc = %d)<br>\n"
"<b>uptime = </b> %dd %dh%02dm%02ds<br>\n"
"<b>system limits :</b> memmax = %s%s ; ulimit-n = %d<br>\n"
"<b>maxsock = </b> %d<br>\n"
"<b>maxconn = </b> %d (current conns = %d)<br>\n"
"</td><td width=\"10%%\">\n"
"</td><td align=\"right\">\n"
"<table class=\"lgd\">"
"<tr><td bgcolor=\"#C0FFC0\">&nbsp;</td><td style=\"border-style: none;\">active UP </td>"
"<td bgcolor=\"#B0D0FF\">&nbsp;</td><td style=\"border-style: none;\">backup UP </td></tr>"
"<tr><td bgcolor=\"#FFFFA0\"></td><td style=\"border-style: none;\">active UP, going down </td>"
"<td bgcolor=\"#C060FF\"></td><td style=\"border-style: none;\">backup UP, going down </td></tr>"
"<tr><td bgcolor=\"#FFD020\"></td><td style=\"border-style: none;\">active DOWN, going up </td>"
"<td bgcolor=\"#FF80FF\"></td><td style=\"border-style: none;\">backup DOWN, going up </td></tr>"
"<tr><td bgcolor=\"#FF9090\"></td><td style=\"border-style: none;\">active or backup DOWN &nbsp;</td>"
"<td bgcolor=\"#E0E0E0\"></td><td style=\"border-style: none;\">not checked </td></tr>"
"</table>\n"
"</tr></table>\n"
"",
pid, pid, global.nbproc,
up / 86400, (up % 86400) / 3600,
(up % 3600) / 60, (up % 60),
global.rlimit_memmax ? ultoa(global.rlimit_memmax) : "unlimited",
global.rlimit_memmax ? " MB" : "",
global.rlimit_nofile,
global.maxsock,
global.maxconn,
actconn
);
if (buffer_write(rep, trash, msglen) != 0)
return 0;
msglen = 0;
s->data_state = DATA_ST_DATA;
memset(&s->data_ctx, 0, sizeof(s->data_ctx));
px = s->data_ctx.stats.px = proxy;
s->data_ctx.stats.px_st = DATA_ST_INIT;
}
while (s->data_ctx.stats.px) {
int dispatch_sess, dispatch_cum;
int failed_checks, down_trans;
int failed_secu, failed_conns, failed_resp;
if (s->data_ctx.stats.px_st == DATA_ST_INIT) {
/* we are on a new proxy */
px = s->data_ctx.stats.px;
/* skip the disabled proxies */
if (px->state == PR_STSTOPPED)
goto next_proxy;
if (s->proxy->uri_auth && s->proxy->uri_auth->scope) {
/* we have a limited scope, we have to check the proxy name */
struct stat_scope *scope;
int len;
len = strlen(px->id);
scope = s->proxy->uri_auth->scope;
while (scope) {
/* match exact proxy name */
if (scope->px_len == len && !memcmp(px->id, scope->px_id, len))
break;
/* match '.' which means 'self' proxy */
if (!strcmp(scope->px_id, ".") && px == s->proxy)
break;
scope = scope->next;
}
/* proxy name not found */
if (scope == NULL)
goto next_proxy;
}
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<h3>&gt; Proxy instance %s : "
"%d conns (maxconn=%d), %d queued (%d unassigned), %d total conns</h3>\n"
"",
px->id,
px->nbconn, px->maxconn, px->totpend, px->nbpend, px->cum_conn);
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<table cols=\"16\" class=\"tbl\">\n"
"<tr align=\"center\" bgcolor=\"#20C0C0\">"
"<th colspan=5>Server</th>"
"<th colspan=2>Queue</th>"
"<th colspan=4>Sessions</th>"
"<th colspan=5>Errors</th></tr>\n"
"<tr align=\"center\" bgcolor=\"#20C0C0\">"
"<th>Name</th><th>Weight</th><th>Status</th><th>Act.</th><th>Bck.</th>"
"<th>Curr.</th><th>Max.</th>"
"<th>Curr.</th><th>Max.</th><th>Limit</th><th>Cumul.</th>"
"<th>Conn.</th><th>Resp.</th><th>Sec.</th><th>Check</th><th>Down</th></tr>\n");
if (buffer_write(rep, trash, msglen) != 0)
return 0;
msglen = 0;
s->data_ctx.stats.sv = px->srv;
s->data_ctx.stats.px_st = DATA_ST_DATA;
}
px = s->data_ctx.stats.px;
/* stats.sv has been initialized above */
while (s->data_ctx.stats.sv != NULL) {
static char *act_tab_bg[5] = { /*down*/"#FF9090", /*rising*/"#FFD020", /*failing*/"#FFFFA0", /*up*/"#C0FFC0", /*unchecked*/"#E0E0E0" };
static char *bck_tab_bg[5] = { /*down*/"#FF9090", /*rising*/"#FF80ff", /*failing*/"#C060FF", /*up*/"#B0D0FF", /*unchecked*/"#E0E0E0" };
static char *srv_hlt_st[5] = { "DOWN", "DN %d/%d &uarr;", "UP %d/%d &darr;", "UP", "<i>no check</i>" };
int sv_state; /* 0=DOWN, 1=going up, 2=going down, 3=UP */
sv = s->data_ctx.stats.sv;
/* FIXME: produce some small strings for "UP/DOWN x/y &#xxxx;" */
if (!(sv->state & SRV_CHECKED))
sv_state = 4;
else if (sv->state & SRV_RUNNING)
if (sv->health == sv->rise + sv->fall - 1)
sv_state = 3; /* UP */
else
sv_state = 2; /* going down */
else
if (sv->health)
sv_state = 1; /* going up */
else
sv_state = 0; /* DOWN */
/* name, weight */
msglen += snprintf(trash, sizeof(trash),
"<tr align=center bgcolor=\"%s\"><td>%s</td><td>%d</td><td>",
(sv->state & SRV_BACKUP) ? bck_tab_bg[sv_state] : act_tab_bg[sv_state],
sv->id, sv->uweight+1);
/* status */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen, srv_hlt_st[sv_state],
(sv->state & SRV_RUNNING) ? (sv->health - sv->rise + 1) : (sv->health),
(sv->state & SRV_RUNNING) ? (sv->fall) : (sv->rise));
/* act, bck */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"</td><td>%s</td><td>%s</td>",
(sv->state & SRV_BACKUP) ? "-" : "Y",
(sv->state & SRV_BACKUP) ? "Y" : "-");
/* queue : current, max */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>%d</td><td align=right>%d</td>",
sv->nbpend, sv->nbpend_max);
/* sessions : current, max, limit, cumul */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>%d</td><td align=right>%d</td><td align=right>%s</td><td align=right>%d</td>",
sv->cur_sess, sv->cur_sess_max, sv->maxconn ? ultoa(sv->maxconn) : "-", sv->cum_sess);
/* errors : connect, response, security */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>%d</td><td align=right>%d</td><td align=right>%d</td>\n",
sv->failed_conns, sv->failed_resp, sv->failed_secu);
/* check failures : unique, fatal */
if (sv->state & SRV_CHECKED)
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>%d</td><td align=right>%d</td></tr>\n",
sv->failed_checks, sv->down_trans);
else
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>-</td><td align=right>-</td></tr>\n");
if (buffer_write(rep, trash, msglen) != 0)
return 0;
msglen = 0;
s->data_ctx.stats.sv = sv->next;
} /* while sv */
/* now we are past the last server, we'll dump information about the dispatcher */
/* We have to count down from the proxy to the servers to tell how
* many sessions are on the dispatcher, and how many checks have
* failed. We cannot count this during the servers dump because it
* might be interrupted multiple times.
*/
dispatch_sess = px->nbconn;
dispatch_cum = px->cum_conn;
failed_secu = px->failed_secu;
failed_conns = px->failed_conns;
failed_resp = px->failed_resp;
failed_checks = down_trans = 0;
sv = px->srv;
while (sv) {
dispatch_sess -= sv->cur_sess;
dispatch_cum -= sv->cum_sess;
failed_conns -= sv->failed_conns;
failed_resp -= sv->failed_resp;
failed_secu -= sv->failed_secu;
if (sv->state & SRV_CHECKED) {
failed_checks += sv->failed_checks;
down_trans += sv->down_trans;
}
sv = sv->next;
}
/* name, weight, status, act, bck */
msglen += snprintf(trash + msglen, sizeof(trash),
"<tr align=center bgcolor=\"#e8e8d0\">"
"<td>Dispatcher</td><td>-</td>"
"<td>%s</td><td>-</td><td>-</td>",
px->state == PR_STRUN ? "UP" : "DOWN");
/* queue : current, max */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>%d</td><td align=right>%d</td>",
px->nbpend, px->nbpend_max);
/* sessions : current, max, limit, cumul. */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>%d</td><td align=right>%d</td><td align=right>%d</td><td align=right>%d</td>",
dispatch_sess, px->nbconn_max, px->maxconn, dispatch_cum);
/* errors : connect, response, security */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>%d</td><td align=right>%d</td><td align=right>%d</td>\n",
failed_conns, failed_resp, failed_secu);
/* check failures : unique, fatal */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>-</td><td align=right>-</td></tr>\n");
/* now the summary for the whole proxy */
/* name, weight, status, act, bck */
msglen += snprintf(trash + msglen, sizeof(trash),
"<tr align=center style=\"color: #ffff80; background: #20C0C0;\">"
"<td><b>Total</b></td><td>-</td>"
"<td><b>%s</b></td><td><b>%d</b></td><td><b>%d</b></td>",
(px->state == PR_STRUN && ((px->srv == NULL) || px->srv_act || px->srv_bck)) ? "UP" : "DOWN",
px->srv_act, px->srv_bck);
/* queue : current, max */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right><b>%d</b></td><td align=right><b>%d</b></td>",
px->totpend, px->nbpend_max);
/* sessions : current, max, limit, cumul */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right><b>%d</b></td><td align=right><b>%d</b></td><td align=right><b>%d</b></td><td align=right><b>%d</b></td>",
px->nbconn, px->nbconn_max, px->maxconn, px->cum_conn);
/* errors : connect, response, security */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>%d</td><td align=right>%d</td><td align=right>%d</td>\n",
px->failed_conns, px->failed_resp, px->failed_secu);
/* check failures : unique, fatal */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>%d</td><td align=right>%d</td></tr>\n",
failed_checks, down_trans);
msglen += snprintf(trash + msglen, sizeof(trash) - msglen, "</table><p>\n");
if (buffer_write(rep, trash, msglen) != 0)
return 0;
msglen = 0;
s->data_ctx.stats.px_st = DATA_ST_INIT;
next_proxy:
s->data_ctx.stats.px = px->next;
} /* proxy loop */
/* here, we just have reached the sv == NULL and px == NULL */
s->flags &= ~SN_SELF_GEN;
return 1;
}
else {
/* unknown data source */
s->logs.status = 500;
client_retnclose(s, s->proxy->errmsg.len500, s->proxy->errmsg.msg500);
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_PRXCOND;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_R;
s->flags &= SN_SELF_GEN;
return 1;
}
}
/*
* send a log for the session when we have enough info about it
*/
void sess_log(struct session *s) {
char pn[INET6_ADDRSTRLEN + strlen(":65535")];
struct proxy *p = s->proxy;
int log;
char *uri;
char *pxid;
char *srv;
struct tm *tm;
/* This is a first attempt at a better logging system.
* For now, we rely on send_log() to provide the date, although it obviously
* is the date of the log and not of the request, and most fields are not
* computed.
*/
log = p->to_log & ~s->logs.logwait;
if (s->cli_addr.ss_family == AF_INET)
inet_ntop(AF_INET,
(const void *)&((struct sockaddr_in *)&s->cli_addr)->sin_addr,
pn, sizeof(pn));
else
inet_ntop(AF_INET6,
(const void *)&((struct sockaddr_in6 *)(&s->cli_addr))->sin6_addr,
pn, sizeof(pn));
uri = (log & LW_REQ) ? s->logs.uri ? s->logs.uri : "<BADREQ>" : "";
pxid = p->id;
srv = (p->to_log & LW_SVID) ? (s->srv != NULL) ? s->srv->id : "<NOSRV>" : "-";
tm = localtime(&s->logs.tv_accept.tv_sec);
if (p->to_log & LW_REQ) {
char tmpline[MAX_SYSLOG_LEN], *h;
int hdr;
h = tmpline;
if (p->to_log & LW_REQHDR && (h < tmpline + sizeof(tmpline) - 10)) {
*(h++) = ' ';
*(h++) = '{';
for (hdr = 0; hdr < p->nb_req_cap; hdr++) {
if (hdr)
*(h++) = '|';
if (s->req_cap[hdr] != NULL)
h = encode_string(h, tmpline + sizeof(tmpline) - 7, '#', hdr_encode_map, s->req_cap[hdr]);
}
*(h++) = '}';
}
if (p->to_log & LW_RSPHDR && (h < tmpline + sizeof(tmpline) - 7)) {
*(h++) = ' ';
*(h++) = '{';
for (hdr = 0; hdr < p->nb_rsp_cap; hdr++) {
if (hdr)
*(h++) = '|';
if (s->rsp_cap[hdr] != NULL)
h = encode_string(h, tmpline + sizeof(tmpline) - 4, '#', hdr_encode_map, s->rsp_cap[hdr]);
}
*(h++) = '}';
}
if (h < tmpline + sizeof(tmpline) - 4) {
*(h++) = ' ';
*(h++) = '"';
h = encode_string(h, tmpline + sizeof(tmpline) - 1, '#', url_encode_map, uri);
*(h++) = '"';
}
*h = '\0';
send_log(p, LOG_INFO, "%s:%d [%02d/%s/%04d:%02d:%02d:%02d] %s %s %d/%d/%d/%d/%s%d %d %s%lld %s %s %c%c%c%c %d/%d/%d %d/%d%s\n",
pn,
(s->cli_addr.ss_family == AF_INET) ?
ntohs(((struct sockaddr_in *)&s->cli_addr)->sin_port) :
ntohs(((struct sockaddr_in6 *)&s->cli_addr)->sin6_port),
tm->tm_mday, monthname[tm->tm_mon], tm->tm_year+1900,
tm->tm_hour, tm->tm_min, tm->tm_sec,
pxid, srv,
s->logs.t_request,
(s->logs.t_queue >= 0) ? s->logs.t_queue - s->logs.t_request : -1,
(s->logs.t_connect >= 0) ? s->logs.t_connect - s->logs.t_queue : -1,
(s->logs.t_data >= 0) ? s->logs.t_data - s->logs.t_connect : -1,
(p->to_log & LW_BYTES) ? "" : "+", s->logs.t_close,
s->logs.status,
(p->to_log & LW_BYTES) ? "" : "+", s->logs.bytes,
s->logs.cli_cookie ? s->logs.cli_cookie : "-",
s->logs.srv_cookie ? s->logs.srv_cookie : "-",
sess_term_cond[(s->flags & SN_ERR_MASK) >> SN_ERR_SHIFT],
sess_fin_state[(s->flags & SN_FINST_MASK) >> SN_FINST_SHIFT],
(p->options & PR_O_COOK_ANY) ? sess_cookie[(s->flags & SN_CK_MASK) >> SN_CK_SHIFT] : '-',
(p->options & PR_O_COOK_ANY) ? sess_set_cookie[(s->flags & SN_SCK_MASK) >> SN_SCK_SHIFT] : '-',
s->srv ? s->srv->cur_sess : 0, p->nbconn, actconn,
s->logs.srv_queue_size, s->logs.prx_queue_size, tmpline);
}
else {
send_log(p, LOG_INFO, "%s:%d [%02d/%s/%04d:%02d:%02d:%02d] %s %s %d/%d/%s%d %s%lld %c%c %d/%d/%d %d/%d\n",
pn,
(s->cli_addr.ss_family == AF_INET) ?
ntohs(((struct sockaddr_in *)&s->cli_addr)->sin_port) :
ntohs(((struct sockaddr_in6 *)&s->cli_addr)->sin6_port),
tm->tm_mday, monthname[tm->tm_mon], tm->tm_year+1900,
tm->tm_hour, tm->tm_min, tm->tm_sec,
pxid, srv,
(s->logs.t_queue >= 0) ? s->logs.t_queue : -1,
(s->logs.t_connect >= 0) ? s->logs.t_connect - s->logs.t_queue : -1,
(p->to_log & LW_BYTES) ? "" : "+", s->logs.t_close,
(p->to_log & LW_BYTES) ? "" : "+", s->logs.bytes,
sess_term_cond[(s->flags & SN_ERR_MASK) >> SN_ERR_SHIFT],
sess_fin_state[(s->flags & SN_FINST_MASK) >> SN_FINST_SHIFT],
s->srv ? s->srv->cur_sess : 0, p->nbconn, actconn,
s->logs.srv_queue_size, s->logs.prx_queue_size);
}
s->logs.logwait = 0;
}
/*
* this function is called on a read event from a listen socket, corresponding
* to an accept. It tries to accept as many connections as possible.
* It returns 0.
*/
int event_accept(int fd) {
struct proxy *p = (struct proxy *)fdtab[fd].owner;
struct session *s;
struct task *t;
int cfd;
int max_accept;
if (global.nbproc > 1)
max_accept = 8; /* let other processes catch some connections too */
else
max_accept = -1;
while (p->nbconn < p->maxconn && max_accept--) {
struct sockaddr_storage addr;
socklen_t laddr = sizeof(addr);
if ((cfd = accept(fd, (struct sockaddr *)&addr, &laddr)) == -1) {
switch (errno) {
case EAGAIN:
case EINTR:
case ECONNABORTED:
return 0; /* nothing more to accept */
case ENFILE:
send_log(p, LOG_EMERG,
"Proxy %s reached system FD limit at %d. Please check system tunables.\n",
p->id, maxfd);
return 0;
case EMFILE:
send_log(p, LOG_EMERG,
"Proxy %s reached process FD limit at %d. Please check 'ulimit-n' and restart.\n",
p->id, maxfd);
return 0;
case ENOBUFS:
case ENOMEM:
send_log(p, LOG_EMERG,
"Proxy %s reached system memory limit at %d sockets. Please check system tunables.\n",
p->id, maxfd);
return 0;
default:
return 0;
}
}
if ((s = pool_alloc(session)) == NULL) { /* disable this proxy for a while */
Alert("out of memory in event_accept().\n");
FD_CLR(fd, StaticReadEvent);
p->state = PR_STIDLE;
close(cfd);
return 0;
}
/* if this session comes from a known monitoring system, we want to ignore
* it as soon as possible, which means closing it immediately for TCP.
*/
s->flags = 0;
if (addr.ss_family == AF_INET &&
p->mon_mask.s_addr &&
(((struct sockaddr_in *)&addr)->sin_addr.s_addr & p->mon_mask.s_addr) == p->mon_net.s_addr) {
if (p->mode == PR_MODE_TCP) {
close(cfd);
pool_free(session, s);
continue;
}
s->flags |= SN_MONITOR;
}
if ((t = pool_alloc(task)) == NULL) { /* disable this proxy for a while */
Alert("out of memory in event_accept().\n");
FD_CLR(fd, StaticReadEvent);
p->state = PR_STIDLE;
close(cfd);
pool_free(session, s);
return 0;
}
s->cli_addr = addr;
if (cfd >= global.maxsock) {
Alert("accept(): not enough free sockets. Raise -n argument. Giving up.\n");
close(cfd);
pool_free(task, t);
pool_free(session, s);
return 0;
}
if ((fcntl(cfd, F_SETFL, O_NONBLOCK) == -1) ||
(setsockopt(cfd, IPPROTO_TCP, TCP_NODELAY,
(char *) &one, sizeof(one)) == -1)) {
Alert("accept(): cannot set the socket in non blocking mode. Giving up\n");
close(cfd);
pool_free(task, t);
pool_free(session, s);
return 0;
}
if (p->options & PR_O_TCP_CLI_KA)
setsockopt(cfd, SOL_SOCKET, SO_KEEPALIVE, (char *) &one, sizeof(one));
t->next = t->prev = t->rqnext = NULL; /* task not in run queue yet */
t->wq = LIST_HEAD(wait_queue[0]); /* but already has a wait queue assigned */
t->state = TASK_IDLE;
t->process = process_session;
t->context = s;
s->task = t;
s->proxy = p;
s->cli_state = (p->mode == PR_MODE_HTTP) ? CL_STHEADERS : CL_STDATA; /* no HTTP headers for non-HTTP proxies */
s->srv_state = SV_STIDLE;
s->req = s->rep = NULL; /* will be allocated later */
s->res_cr = s->res_cw = s->res_sr = s->res_sw = RES_SILENT;
s->cli_fd = cfd;
s->srv_fd = -1;
s->req_line.len = -1;
s->auth_hdr.len = -1;
s->srv = NULL;
s->pend_pos = NULL;
s->conn_retries = p->conn_retries;
if (s->flags & SN_MONITOR)
s->logs.logwait = 0;
else
s->logs.logwait = p->to_log;
s->logs.tv_accept = now;
s->logs.t_request = -1;
s->logs.t_queue = -1;
s->logs.t_connect = -1;
s->logs.t_data = -1;
s->logs.t_close = 0;
s->logs.uri = NULL;
s->logs.cli_cookie = NULL;
s->logs.srv_cookie = NULL;
s->logs.status = -1;
s->logs.bytes = 0;
s->logs.prx_queue_size = 0; /* we get the number of pending conns before us */
s->logs.srv_queue_size = 0; /* we will get this number soon */
s->data_source = DATA_SRC_NONE;
s->uniq_id = totalconn;
p->cum_conn++;
if (p->nb_req_cap > 0) {
if ((s->req_cap =
pool_alloc_from(p->req_cap_pool, p->nb_req_cap*sizeof(char *)))
== NULL) { /* no memory */
close(cfd); /* nothing can be done for this fd without memory */
pool_free(task, t);
pool_free(session, s);
return 0;
}
memset(s->req_cap, 0, p->nb_req_cap*sizeof(char *));
}
else
s->req_cap = NULL;
if (p->nb_rsp_cap > 0) {
if ((s->rsp_cap =
pool_alloc_from(p->rsp_cap_pool, p->nb_rsp_cap*sizeof(char *)))
== NULL) { /* no memory */
if (s->req_cap != NULL)
pool_free_to(p->req_cap_pool, s->req_cap);
close(cfd); /* nothing can be done for this fd without memory */
pool_free(task, t);
pool_free(session, s);
return 0;
}
memset(s->rsp_cap, 0, p->nb_rsp_cap*sizeof(char *));
}
else
s->rsp_cap = NULL;
if ((p->mode == PR_MODE_TCP || p->mode == PR_MODE_HTTP)
&& (p->logfac1 >= 0 || p->logfac2 >= 0)) {
struct sockaddr_storage sockname;
socklen_t namelen = sizeof(sockname);
if (addr.ss_family != AF_INET ||
!(s->proxy->options & PR_O_TRANSP) ||
get_original_dst(cfd, (struct sockaddr_in *)&sockname, &namelen) == -1)
getsockname(cfd, (struct sockaddr *)&sockname, &namelen);
if (p->to_log) {
/* we have the client ip */
if (s->logs.logwait & LW_CLIP)
if (!(s->logs.logwait &= ~LW_CLIP))
sess_log(s);
}
else if (s->cli_addr.ss_family == AF_INET) {
char pn[INET_ADDRSTRLEN], sn[INET_ADDRSTRLEN];
if (inet_ntop(AF_INET, (const void *)&((struct sockaddr_in *)&sockname)->sin_addr,
sn, sizeof(sn)) &&
inet_ntop(AF_INET, (const void *)&((struct sockaddr_in *)&s->cli_addr)->sin_addr,
pn, sizeof(pn))) {
send_log(p, LOG_INFO, "Connect from %s:%d to %s:%d (%s/%s)\n",
pn, ntohs(((struct sockaddr_in *)&s->cli_addr)->sin_port),
sn, ntohs(((struct sockaddr_in *)&sockname)->sin_port),
p->id, (p->mode == PR_MODE_HTTP) ? "HTTP" : "TCP");
}
}
else {
char pn[INET6_ADDRSTRLEN], sn[INET6_ADDRSTRLEN];
if (inet_ntop(AF_INET6, (const void *)&((struct sockaddr_in6 *)&sockname)->sin6_addr,
sn, sizeof(sn)) &&
inet_ntop(AF_INET6, (const void *)&((struct sockaddr_in6 *)&s->cli_addr)->sin6_addr,
pn, sizeof(pn))) {
send_log(p, LOG_INFO, "Connect from %s:%d to %s:%d (%s/%s)\n",
pn, ntohs(((struct sockaddr_in6 *)&s->cli_addr)->sin6_port),
sn, ntohs(((struct sockaddr_in6 *)&sockname)->sin6_port),
p->id, (p->mode == PR_MODE_HTTP) ? "HTTP" : "TCP");
}
}
}
if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) {
struct sockaddr_in sockname;
socklen_t namelen = sizeof(sockname);
int len;
if (addr.ss_family != AF_INET ||
!(s->proxy->options & PR_O_TRANSP) ||
get_original_dst(cfd, (struct sockaddr_in *)&sockname, &namelen) == -1)
getsockname(cfd, (struct sockaddr *)&sockname, &namelen);
if (s->cli_addr.ss_family == AF_INET) {
char pn[INET_ADDRSTRLEN];
inet_ntop(AF_INET,
(const void *)&((struct sockaddr_in *)&s->cli_addr)->sin_addr,
pn, sizeof(pn));
len = sprintf(trash, "%08x:%s.accept(%04x)=%04x from [%s:%d]\n",
s->uniq_id, p->id, (unsigned short)fd, (unsigned short)cfd,
pn, ntohs(((struct sockaddr_in *)&s->cli_addr)->sin_port));
}
else {
char pn[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6,
(const void *)&((struct sockaddr_in6 *)(&s->cli_addr))->sin6_addr,
pn, sizeof(pn));
len = sprintf(trash, "%08x:%s.accept(%04x)=%04x from [%s:%d]\n",
s->uniq_id, p->id, (unsigned short)fd, (unsigned short)cfd,
pn, ntohs(((struct sockaddr_in6 *)(&s->cli_addr))->sin6_port));
}
write(1, trash, len);
}
if ((s->req = pool_alloc(buffer)) == NULL) { /* no memory */
if (s->rsp_cap != NULL)
pool_free_to(p->rsp_cap_pool, s->rsp_cap);
if (s->req_cap != NULL)
pool_free_to(p->req_cap_pool, s->req_cap);
close(cfd); /* nothing can be done for this fd without memory */
pool_free(task, t);
pool_free(session, s);
return 0;
}
s->req->l = 0;
s->req->total = 0;
s->req->h = s->req->r = s->req->lr = s->req->w = s->req->data; /* r and w will be reset further */
s->req->rlim = s->req->data + BUFSIZE;
if (s->cli_state == CL_STHEADERS) /* reserve some space for header rewriting */
s->req->rlim -= MAXREWRITE;
if ((s->rep = pool_alloc(buffer)) == NULL) { /* no memory */
pool_free(buffer, s->req);
if (s->rsp_cap != NULL)
pool_free_to(p->rsp_cap_pool, s->rsp_cap);
if (s->req_cap != NULL)
pool_free_to(p->req_cap_pool, s->req_cap);
close(cfd); /* nothing can be done for this fd without memory */
pool_free(task, t);
pool_free(session, s);
return 0;
}
s->rep->l = 0;
s->rep->total = 0;
s->rep->h = s->rep->r = s->rep->lr = s->rep->w = s->rep->rlim = s->rep->data;
fdtab[cfd].read = &event_cli_read;
fdtab[cfd].write = &event_cli_write;
fdtab[cfd].owner = t;
fdtab[cfd].state = FD_STREADY;
if ((p->mode == PR_MODE_HTTP && (s->flags & SN_MONITOR)) ||
(p->mode == PR_MODE_HEALTH && (p->options & PR_O_HTTP_CHK)))
/* Either we got a request from a monitoring system on an HTTP instance,
* or we're in health check mode with the 'httpchk' option enabled. In
* both cases, we return a fake "HTTP/1.0 200 OK" response and we exit.
*/
client_retnclose(s, 19, "HTTP/1.0 200 OK\r\n\r\n"); /* forge a 200 response */
else if (p->mode == PR_MODE_HEALTH) { /* health check mode, no client reading */
client_retnclose(s, 3, "OK\n"); /* forge an "OK" response */
}
else {
FD_SET(cfd, StaticReadEvent);
}
#if defined(DEBUG_FULL) && defined(ENABLE_EPOLL)
if (PrevReadEvent) {
assert(!(FD_ISSET(cfd, PrevReadEvent)));
assert(!(FD_ISSET(cfd, PrevWriteEvent)));
}
#endif
fd_insert(cfd);
tv_eternity(&s->cnexpire);
tv_eternity(&s->srexpire);
tv_eternity(&s->swexpire);
tv_eternity(&s->crexpire);
tv_eternity(&s->cwexpire);
if (s->proxy->clitimeout) {
if (FD_ISSET(cfd, StaticReadEvent))
tv_delayfrom(&s->crexpire, &now, s->proxy->clitimeout);
if (FD_ISSET(cfd, StaticWriteEvent))
tv_delayfrom(&s->cwexpire, &now, s->proxy->clitimeout);
}
tv_min(&t->expire, &s->crexpire, &s->cwexpire);
task_queue(t);
if (p->mode != PR_MODE_HEALTH)
task_wakeup(&rq, t);
p->nbconn++;
if (p->nbconn > p->nbconn_max)
p->nbconn_max = p->nbconn;
actconn++;
totalconn++;
// fprintf(stderr, "accepting from %p => %d conn, %d total, task=%p\n", p, actconn, totalconn, t);
} /* end of while (p->nbconn < p->maxconn) */
return 0;
}
/*
* This function is used only for server health-checks. It handles
* the connection acknowledgement. If the proxy requires HTTP health-checks,
* it sends the request. In other cases, it returns 1 if the socket is OK,
* or -1 if an error occured.
*/
int event_srv_chk_w(int fd) {
struct task *t = fdtab[fd].owner;
struct server *s = t->context;
int skerr;
socklen_t lskerr = sizeof(skerr);
skerr = 1;
if ((getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr) == -1)
|| (skerr != 0)) {
/* in case of TCP only, this tells us if the connection failed */
s->result = -1;
fdtab[fd].state = FD_STERROR;
FD_CLR(fd, StaticWriteEvent);
}
else if (s->result != -1) {
/* we don't want to mark 'UP' a server on which we detected an error earlier */
if (s->proxy->options & PR_O_HTTP_CHK) {
int ret;
/* we want to check if this host replies to "OPTIONS / HTTP/1.0"
* so we'll send the request, and won't wake the checker up now.
*/
#ifndef MSG_NOSIGNAL
ret = send(fd, s->proxy->check_req, s->proxy->check_len, MSG_DONTWAIT);
#else
ret = send(fd, s->proxy->check_req, s->proxy->check_len, MSG_DONTWAIT | MSG_NOSIGNAL);
#endif
if (ret == s->proxy->check_len) {
FD_SET(fd, StaticReadEvent); /* prepare for reading reply */
FD_CLR(fd, StaticWriteEvent); /* nothing more to write */
return 0;
}
else {
s->result = -1;
FD_CLR(fd, StaticWriteEvent);
}
}
else {
/* good TCP connection is enough */
s->result = 1;
}
}
task_wakeup(&rq, t);
return 0;
}
/*
* This function is used only for server health-checks. It handles
* the server's reply to an HTTP request. It returns 1 if the server replies
* 2xx or 3xx (valid responses), or -1 in other cases.
*/
int event_srv_chk_r(int fd) {
char reply[64];
int len, result;
struct task *t = fdtab[fd].owner;
struct server *s = t->context;
int skerr;
socklen_t lskerr = sizeof(skerr);
result = len = -1;
getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr);
if (!skerr) {
#ifndef MSG_NOSIGNAL
len = recv(fd, reply, sizeof(reply), 0);
#else
/* Warning! Linux returns EAGAIN on SO_ERROR if data are still available
* but the connection was closed on the remote end. Fortunately, recv still
* works correctly and we don't need to do the getsockopt() on linux.
*/
len = recv(fd, reply, sizeof(reply), MSG_NOSIGNAL);
#endif
if ((len >= sizeof("HTTP/1.0 000")) &&
!memcmp(reply, "HTTP/1.", 7) &&
(reply[9] == '2' || reply[9] == '3')) /* 2xx or 3xx */
result = 1;
}
if (result == -1)
fdtab[fd].state = FD_STERROR;
if (s->result != -1)
s->result = result;
FD_CLR(fd, StaticReadEvent);
task_wakeup(&rq, t);
return 0;
}
/*
* this function writes the string <str> at position <pos> which must be in buffer <b>,
* and moves <end> just after the end of <str>.
* <b>'s parameters (l, r, w, h, lr) are recomputed to be valid after the shift.
* the shift value (positive or negative) is returned.
* If there's no space left, the move is not done.
*
*/
int buffer_replace(struct buffer *b, char *pos, char *end, char *str) {
int delta;
int len;
len = strlen(str);
delta = len - (end - pos);
if (delta + b->r >= b->data + BUFSIZE)
return 0; /* no space left */
/* first, protect the end of the buffer */
memmove(end + delta, end, b->data + b->l - end);
/* now, copy str over pos */
memcpy(pos, str,len);
/* we only move data after the displaced zone */
if (b->r > pos) b->r += delta;
if (b->w > pos) b->w += delta;
if (b->h > pos) b->h += delta;
if (b->lr > pos) b->lr += delta;
b->l += delta;
return delta;
}
/* same except that the string length is given, which allows str to be NULL if
* len is 0.
*/
int buffer_replace2(struct buffer *b, char *pos, char *end, char *str, int len) {
int delta;
delta = len - (end - pos);
if (delta + b->r >= b->data + BUFSIZE)
return 0; /* no space left */
if (b->data + b->l < end)
/* The data has been stolen, we could have crashed. Maybe we should abort() ? */
return 0;
/* first, protect the end of the buffer */
memmove(end + delta, end, b->data + b->l - end);
/* now, copy str over pos */
if (len)
memcpy(pos, str, len);
/* we only move data after the displaced zone */
if (b->r > pos) b->r += delta;
if (b->w > pos) b->w += delta;
if (b->h > pos) b->h += delta;
if (b->lr > pos) b->lr += delta;
b->l += delta;
return delta;
}
int exp_replace(char *dst, char *src, char *str, regmatch_t *matches) {
char *old_dst = dst;
while (*str) {
if (*str == '\\') {
str++;
if (isdigit((int)*str)) {
int len, num;
num = *str - '0';
str++;
if (matches[num].rm_eo > -1 && matches[num].rm_so > -1) {
len = matches[num].rm_eo - matches[num].rm_so;
memcpy(dst, src + matches[num].rm_so, len);
dst += len;
}
}
else if (*str == 'x') {
unsigned char hex1, hex2;
str++;
hex1 = toupper(*str++) - '0';
hex2 = toupper(*str++) - '0';
if (hex1 > 9) hex1 -= 'A' - '9' - 1;
if (hex2 > 9) hex2 -= 'A' - '9' - 1;
*dst++ = (hex1<<4) + hex2;
}
else
*dst++ = *str++;
}
else
*dst++ = *str++;
}
*dst = 0;
return dst - old_dst;
}
static int ishex(char s)
{
return (s >= '0' && s <= '9') || (s >= 'A' && s <= 'F') || (s >= 'a' && s <= 'f');
}
/* returns NULL if the replacement string <str> is valid, or the pointer to the first error */
char *check_replace_string(char *str)
{
char *err = NULL;
while (*str) {
if (*str == '\\') {
err = str; /* in case of a backslash, we return the pointer to it */
str++;
if (!*str)
return err;
else if (isdigit((int)*str))
err = NULL;
else if (*str == 'x') {
str++;
if (!ishex(*str))
return err;
str++;
if (!ishex(*str))
return err;
err = NULL;
}
else {
Warning("'\\%c' : deprecated use of a backslash before something not '\\','x' or a digit.\n", *str);
err = NULL;
}
}
str++;
}
return err;
}
/*
* manages the client FSM and its socket. BTW, it also tries to handle the
* cookie. It returns 1 if a state has changed (and a resync may be needed),
* 0 else.
*/
int process_cli(struct session *t) {
int s = t->srv_state;
int c = t->cli_state;
struct buffer *req = t->req;
struct buffer *rep = t->rep;
int method_checked = 0;
appsess *asession_temp = NULL;
appsess local_asession;
#ifdef DEBUG_FULL
fprintf(stderr,"process_cli: c=%s s=%s set(r,w)=%d,%d exp(r,w)=%d.%d,%d.%d\n",
cli_stnames[c], srv_stnames[s],
FD_ISSET(t->cli_fd, StaticReadEvent), FD_ISSET(t->cli_fd, StaticWriteEvent),
t->crexpire.tv_sec, t->crexpire.tv_usec,
t->cwexpire.tv_sec, t->cwexpire.tv_usec);
#endif
//fprintf(stderr,"process_cli: c=%d, s=%d, cr=%d, cw=%d, sr=%d, sw=%d\n", c, s,
//FD_ISSET(t->cli_fd, StaticReadEvent), FD_ISSET(t->cli_fd, StaticWriteEvent),
//FD_ISSET(t->srv_fd, StaticReadEvent), FD_ISSET(t->srv_fd, StaticWriteEvent)
//);
if (c == CL_STHEADERS) {
/* now parse the partial (or complete) headers */
while (req->lr < req->r) { /* this loop only sees one header at each iteration */
char *ptr;
int delete_header;
char *request_line = NULL;
ptr = req->lr;
/* look for the end of the current header */
while (ptr < req->r && *ptr != '\n' && *ptr != '\r')
ptr++;
if (ptr == req->h) { /* empty line, end of headers */
int line, len;
/*
* first, let's check that it's not a leading empty line, in
* which case we'll ignore and remove it (according to RFC2616).
*/
if (req->h == req->data) {
/* to get a complete header line, we need the ending \r\n, \n\r, \r or \n too */
if (ptr > req->r - 2) {
/* this is a partial header, let's wait for more to come */
req->lr = ptr;
break;
}
/* now we know that *ptr is either \r or \n,
* and that there are at least 1 char after it.
*/
if ((ptr[0] == ptr[1]) || (ptr[1] != '\r' && ptr[1] != '\n'))
req->lr = ptr + 1; /* \r\r, \n\n, \r[^\n], \n[^\r] */
else
req->lr = ptr + 2; /* \r\n or \n\r */
/* ignore empty leading lines */
buffer_replace2(req, req->h, req->lr, NULL, 0);
req->h = req->lr;
continue;
}
/* we can only get here after an end of headers */
/* we'll have something else to do here : add new headers ... */
if (t->flags & SN_CLDENY) {
/* no need to go further */
t->logs.status = 403;
t->logs.t_request = tv_diff(&t->logs.tv_accept, &now); /* let's log the request time */
client_retnclose(t, t->proxy->errmsg.len403, t->proxy->errmsg.msg403);
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_PRXCOND;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_R;
return 1;
}
/* Right now, we know that we have processed the entire headers
* and that unwanted requests have been filtered out. We can do
* whatever we want.
*/
if (t->proxy->uri_auth != NULL
&& t->req_line.len >= t->proxy->uri_auth->uri_len + 4) { /* +4 for "GET /" */
if (!memcmp(t->req_line.str + 4,
t->proxy->uri_auth->uri_prefix, t->proxy->uri_auth->uri_len)
&& !memcmp(t->req_line.str, "GET ", 4)) {
struct user_auth *user;
int authenticated;
/* we are in front of a interceptable URI. Let's check
* if there's an authentication and if it's valid.
*/
user = t->proxy->uri_auth->users;
if (!user) {
/* no user auth required, it's OK */
authenticated = 1;
} else {
authenticated = 0;
/* a user list is defined, we have to check.
* skip 21 chars for "Authorization: Basic ".
*/
if (t->auth_hdr.len < 21 || memcmp(t->auth_hdr.str + 14, " Basic ", 7))
user = NULL;
while (user) {
if ((t->auth_hdr.len == user->user_len + 21)
&& !memcmp(t->auth_hdr.str+21, user->user_pwd, user->user_len)) {
authenticated = 1;
break;
}
user = user->next;
}
}
if (!authenticated) {
int msglen;
/* no need to go further */
msglen = sprintf(trash, HTTP_401_fmt, t->proxy->uri_auth->auth_realm);
t->logs.status = 401;
client_retnclose(t, msglen, trash);
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_PRXCOND;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_R;
return 1;
}
t->cli_state = CL_STSHUTR;
req->rlim = req->data + BUFSIZE; /* no more rewrite needed */
t->logs.t_request = tv_diff(&t->logs.tv_accept, &now);
t->data_source = DATA_SRC_STATS;
t->data_state = DATA_ST_INIT;
produce_content(t);
return 1;
}
}
for (line = 0; line < t->proxy->nb_reqadd; line++) {
len = sprintf(trash, "%s\r\n", t->proxy->req_add[line]);
buffer_replace2(req, req->h, req->h, trash, len);
}
if (t->proxy->options & PR_O_FWDFOR) {
if (t->cli_addr.ss_family == AF_INET) {
unsigned char *pn;
pn = (unsigned char *)&((struct sockaddr_in *)&t->cli_addr)->sin_addr;
len = sprintf(trash, "X-Forwarded-For: %d.%d.%d.%d\r\n",
pn[0], pn[1], pn[2], pn[3]);
buffer_replace2(req, req->h, req->h, trash, len);
}
else if (t->cli_addr.ss_family == AF_INET6) {
char pn[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6,
(const void *)&((struct sockaddr_in6 *)(&t->cli_addr))->sin6_addr,
pn, sizeof(pn));
len = sprintf(trash, "X-Forwarded-For: %s\r\n", pn);
buffer_replace2(req, req->h, req->h, trash, len);
}
}
/* add a "connection: close" line if needed */
if (t->proxy->options & PR_O_HTTP_CLOSE)
buffer_replace2(req, req->h, req->h, "Connection: close\r\n", 19);
if (!memcmp(req->data, "POST ", 5)) {
/* this is a POST request, which is not cacheable by default */
t->flags |= SN_POST;
}
t->cli_state = CL_STDATA;
req->rlim = req->data + BUFSIZE; /* no more rewrite needed */
t->logs.t_request = tv_diff(&t->logs.tv_accept, &now);
/* FIXME: we'll set the client in a wait state while we try to
* connect to the server. Is this really needed ? wouldn't it be
* better to release the maximum of system buffers instead ?
* The solution is to enable the FD but set its time-out to
* eternity as long as the server-side does not enable data xfer.
* CL_STDATA also has to take care of this, which is done below.
*/
//FD_CLR(t->cli_fd, StaticReadEvent);
//tv_eternity(&t->crexpire);
/* FIXME: if we break here (as up to 1.1.23), having the client
* shutdown its connection can lead to an abort further.
* it's better to either return 1 or even jump directly to the
* data state which will save one schedule.
*/
//break;
if (!t->proxy->clitimeout ||
(t->srv_state < SV_STDATA && t->proxy->srvtimeout))
/* If the client has no timeout, or if the server is not ready yet,
* and we know for sure that it can expire, then it's cleaner to
* disable the timeout on the client side so that too low values
* cannot make the sessions abort too early.
*
* FIXME-20050705: the server needs a way to re-enable this time-out
* when it switches its state, otherwise a client can stay connected
* indefinitely. This now seems to be OK.
*/
tv_eternity(&t->crexpire);
goto process_data;
}
/* to get a complete header line, we need the ending \r\n, \n\r, \r or \n too */
if (ptr > req->r - 2) {
/* this is a partial header, let's wait for more to come */
req->lr = ptr;
break;
}
/* now we know that *ptr is either \r or \n,
* and that there are at least 1 char after it.
*/
if ((ptr[0] == ptr[1]) || (ptr[1] != '\r' && ptr[1] != '\n'))
req->lr = ptr + 1; /* \r\r, \n\n, \r[^\n], \n[^\r] */
else
req->lr = ptr + 2; /* \r\n or \n\r */
/*
* now we know that we have a full header ; we can do whatever
* we want with these pointers :
* req->h = beginning of header
* ptr = end of header (first \r or \n)
* req->lr = beginning of next line (next rep->h)
* req->r = end of data (not used at this stage)
*/
if (!method_checked && (t->proxy->appsession_name != NULL) &&
((memcmp(req->h, "GET ", 4) == 0) || (memcmp(req->h, "POST ", 4) == 0)) &&
((request_line = memchr(req->h, ';', req->lr - req->h)) != NULL)) {
/* skip ; */
request_line++;
/* look if we have a jsessionid */
if (strncasecmp(request_line, t->proxy->appsession_name, t->proxy->appsession_name_len) == 0) {
/* skip jsessionid= */
request_line += t->proxy->appsession_name_len + 1;
/* First try if we allready have an appsession */
asession_temp = &local_asession;
if ((asession_temp->sessid = pool_alloc_from(apools.sessid, apools.ses_msize)) == NULL) {
Alert("Not enough memory process_cli():asession_temp->sessid:calloc().\n");
send_log(t->proxy, LOG_ALERT, "Not enough Memory process_cli():asession_temp->sessid:calloc().\n");
return 0;
}
/* Copy the sessionid */
memcpy(asession_temp->sessid, request_line, t->proxy->appsession_len);
asession_temp->sessid[t->proxy->appsession_len] = 0;
asession_temp->serverid = NULL;
/* only do insert, if lookup fails */
if (chtbl_lookup(&(t->proxy->htbl_proxy), (void *)&asession_temp)) {
if ((asession_temp = pool_alloc(appsess)) == NULL) {
Alert("Not enough memory process_cli():asession:calloc().\n");
send_log(t->proxy, LOG_ALERT, "Not enough memory process_cli():asession:calloc().\n");
return 0;
}
asession_temp->sessid = local_asession.sessid;
asession_temp->serverid = local_asession.serverid;
chtbl_insert(&(t->proxy->htbl_proxy), (void *) asession_temp);
} /* end if (chtbl_lookup()) */
else {
/*free wasted memory;*/
pool_free_to(apools.sessid, local_asession.sessid);
}
tv_delayfrom(&asession_temp->expire, &now, t->proxy->appsession_timeout);
asession_temp->request_count++;
#if defined(DEBUG_HASH)
print_table(&(t->proxy->htbl_proxy));
#endif
if (asession_temp->serverid == NULL) {
Alert("Found Application Session without matching server.\n");
} else {
struct server *srv = t->proxy->srv;
while (srv) {
if (strcmp(srv->id, asession_temp->serverid) == 0) {
if (srv->state & SRV_RUNNING || t->proxy->options & PR_O_PERSIST) {
/* we found the server and it's usable */
t->flags &= ~SN_CK_MASK;
t->flags |= SN_CK_VALID | SN_DIRECT | SN_ASSIGNED;
t->srv = srv;
break;
} else {
t->flags &= ~SN_CK_MASK;
t->flags |= SN_CK_DOWN;
}
} /* end if (strcmp()) */
srv = srv->next;
}/* end while(srv) */
}/* end else of if (asession_temp->serverid == NULL) */
}/* end if (strncasecmp(request_line,t->proxy->appsession_name,apssesion_name_len) == 0) */
else {
//fprintf(stderr,">>>>>>>>>>>>>>>>>>>>>>NO SESSION\n");
}
method_checked = 1;
} /* end if (!method_checked ...) */
else{
//printf("No Methode-Header with Session-String\n");
}
if (t->logs.logwait & LW_REQ) {
/* we have a complete HTTP request that we must log */
int urilen;
if ((t->logs.uri = pool_alloc(requri)) == NULL) {
Alert("HTTP logging : out of memory.\n");
t->logs.status = 500;
client_retnclose(t, t->proxy->errmsg.len500, t->proxy->errmsg.msg500);
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_PRXCOND;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_R;
return 1;
}
urilen = ptr - req->h;
if (urilen >= REQURI_LEN)
urilen = REQURI_LEN - 1;
memcpy(t->logs.uri, req->h, urilen);
t->logs.uri[urilen] = 0;
if (!(t->logs.logwait &= ~LW_REQ))
sess_log(t);
}
else if (t->logs.logwait & LW_REQHDR) {
struct cap_hdr *h;
int len;
for (h = t->proxy->req_cap; h; h = h->next) {
if ((h->namelen + 2 <= ptr - req->h) &&
(req->h[h->namelen] == ':') &&
(strncasecmp(req->h, h->name, h->namelen) == 0)) {
if (t->req_cap[h->index] == NULL)
t->req_cap[h->index] = pool_alloc_from(h->pool, h->len + 1);
len = ptr - (req->h + h->namelen + 2);
if (len > h->len)
len = h->len;
memcpy(t->req_cap[h->index], req->h + h->namelen + 2, len);
t->req_cap[h->index][len]=0;
}
}
}
delete_header = 0;
if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) {
int len, max;
len = sprintf(trash, "%08x:%s.clihdr[%04x:%04x]: ", t->uniq_id, t->proxy->id, (unsigned short)t->cli_fd, (unsigned short)t->srv_fd);
max = ptr - req->h;
UBOUND(max, sizeof(trash) - len - 1);
len += strlcpy2(trash + len, req->h, max + 1);
trash[len++] = '\n';
write(1, trash, len);
}
/* remove "connection: " if needed */
if (!delete_header && (t->proxy->options & PR_O_HTTP_CLOSE)
&& (strncasecmp(req->h, "Connection: ", 12) == 0)) {
delete_header = 1;
}
/* try headers regexps */
if (!delete_header && t->proxy->req_exp != NULL
&& !(t->flags & SN_CLDENY)) {
struct hdr_exp *exp;
char term;
term = *ptr;
*ptr = '\0';
exp = t->proxy->req_exp;
do {
if (regexec(exp->preg, req->h, MAX_MATCH, pmatch, 0) == 0) {
switch (exp->action) {
case ACT_ALLOW:
if (!(t->flags & SN_CLDENY))
t->flags |= SN_CLALLOW;
break;
case ACT_REPLACE:
if (!(t->flags & SN_CLDENY)) {
int len = exp_replace(trash, req->h, exp->replace, pmatch);
ptr += buffer_replace2(req, req->h, ptr, trash, len);
}
break;
case ACT_REMOVE:
if (!(t->flags & SN_CLDENY))
delete_header = 1;
break;
case ACT_DENY:
if (!(t->flags & SN_CLALLOW))
t->flags |= SN_CLDENY;
break;
case ACT_PASS: /* we simply don't deny this one */
break;
}
break;
}
} while ((exp = exp->next) != NULL);
*ptr = term; /* restore the string terminator */
}
/* Now look for cookies. Conforming to RFC2109, we have to support
* attributes whose name begin with a '$', and associate them with
* the right cookie, if we want to delete this cookie.
* So there are 3 cases for each cookie read :
* 1) it's a special attribute, beginning with a '$' : ignore it.
* 2) it's a server id cookie that we *MAY* want to delete : save
* some pointers on it (last semi-colon, beginning of cookie...)
* 3) it's an application cookie : we *MAY* have to delete a previous
* "special" cookie.
* At the end of loop, if a "special" cookie remains, we may have to
* remove it. If no application cookie persists in the header, we
* *MUST* delete it
*/
if (!delete_header &&
(t->proxy->cookie_name != NULL || t->proxy->capture_name != NULL || t->proxy->appsession_name !=NULL)
&& !(t->flags & SN_CLDENY) && (ptr >= req->h + 8)
&& (strncasecmp(req->h, "Cookie: ", 8) == 0)) {
char *p1, *p2, *p3, *p4;
char *del_colon, *del_cookie, *colon;
int app_cookies;
p1 = req->h + 8; /* first char after 'Cookie: ' */
colon = p1;
/* del_cookie == NULL => nothing to be deleted */
del_colon = del_cookie = NULL;
app_cookies = 0;
while (p1 < ptr) {
/* skip spaces and colons, but keep an eye on these ones */
while (p1 < ptr) {
if (*p1 == ';' || *p1 == ',')
colon = p1;
else if (!isspace((int)*p1))
break;
p1++;
}
if (p1 == ptr)
break;
/* p1 is at the beginning of the cookie name */
p2 = p1;
while (p2 < ptr && *p2 != '=')
p2++;
if (p2 == ptr)
break;
p3 = p2 + 1; /* skips the '=' sign */
if (p3 == ptr)
break;
p4 = p3;
while (p4 < ptr && !isspace((int)*p4) && *p4 != ';' && *p4 != ',')
p4++;
/* here, we have the cookie name between p1 and p2,
* and its value between p3 and p4.
* we can process it :
*
* Cookie: NAME=VALUE;
* | || || |
* | || || +--> p4
* | || |+-------> p3
* | || +--------> p2
* | |+------------> p1
* | +-------------> colon
* +--------------------> req->h
*/
if (*p1 == '$') {
/* skip this one */
}
else {
/* first, let's see if we want to capture it */
if (t->proxy->capture_name != NULL &&
t->logs.cli_cookie == NULL &&
(p4 - p1 >= t->proxy->capture_namelen) &&
memcmp(p1, t->proxy->capture_name, t->proxy->capture_namelen) == 0) {
int log_len = p4 - p1;
if ((t->logs.cli_cookie = pool_alloc(capture)) == NULL) {
Alert("HTTP logging : out of memory.\n");
} else {
if (log_len > t->proxy->capture_len)
log_len = t->proxy->capture_len;
memcpy(t->logs.cli_cookie, p1, log_len);
t->logs.cli_cookie[log_len] = 0;
}
}
if ((p2 - p1 == t->proxy->cookie_len) && (t->proxy->cookie_name != NULL) &&
(memcmp(p1, t->proxy->cookie_name, p2 - p1) == 0)) {
/* Cool... it's the right one */
struct server *srv = t->proxy->srv;
char *delim;
/* if we're in cookie prefix mode, we'll search the delimitor so that we
* have the server ID betweek p3 and delim, and the original cookie between
* delim+1 and p4. Otherwise, delim==p4 :
*
* Cookie: NAME=SRV~VALUE;
* | || || | |
* | || || | +--> p4
* | || || +--------> delim
* | || |+-----------> p3
* | || +------------> p2
* | |+----------------> p1
* | +-----------------> colon
* +------------------------> req->h
*/
if (t->proxy->options & PR_O_COOK_PFX) {
for (delim = p3; delim < p4; delim++)
if (*delim == COOKIE_DELIM)
break;
}
else
delim = p4;
/* Here, we'll look for the first running server which supports the cookie.
* This allows to share a same cookie between several servers, for example
* to dedicate backup servers to specific servers only.
* However, to prevent clients from sticking to cookie-less backup server
* when they have incidentely learned an empty cookie, we simply ignore
* empty cookies and mark them as invalid.
*/
if (delim == p3)
srv = NULL;
while (srv) {
if ((srv->cklen == delim - p3) && !memcmp(p3, srv->cookie, delim - p3)) {
if (srv->state & SRV_RUNNING || t->proxy->options & PR_O_PERSIST) {
/* we found the server and it's usable */
t->flags &= ~SN_CK_MASK;
t->flags |= SN_CK_VALID | SN_DIRECT | SN_ASSIGNED;
t->srv = srv;
break;
} else {
/* we found a server, but it's down */
t->flags &= ~SN_CK_MASK;
t->flags |= SN_CK_DOWN;
}
}
srv = srv->next;
}
if (!srv && !(t->flags & SN_CK_DOWN)) {
/* no server matched this cookie */
t->flags &= ~SN_CK_MASK;
t->flags |= SN_CK_INVALID;
}
/* depending on the cookie mode, we may have to either :
* - delete the complete cookie if we're in insert+indirect mode, so that
* the server never sees it ;
* - remove the server id from the cookie value, and tag the cookie as an
* application cookie so that it does not get accidentely removed later,
* if we're in cookie prefix mode
*/
if ((t->proxy->options & PR_O_COOK_PFX) && (delim != p4)) {
buffer_replace2(req, p3, delim + 1, NULL, 0);
p4 -= (delim + 1 - p3);
ptr -= (delim + 1 - p3);
del_cookie = del_colon = NULL;
app_cookies++; /* protect the header from deletion */
}
else if (del_cookie == NULL &&
(t->proxy->options & (PR_O_COOK_INS | PR_O_COOK_IND)) == (PR_O_COOK_INS | PR_O_COOK_IND)) {
del_cookie = p1;
del_colon = colon;
}
} else {
/* now we know that we must keep this cookie since it's
* not ours. But if we wanted to delete our cookie
* earlier, we cannot remove the complete header, but we
* can remove the previous block itself.
*/
app_cookies++;
if (del_cookie != NULL) {
buffer_replace2(req, del_cookie, p1, NULL, 0);
p4 -= (p1 - del_cookie);
ptr -= (p1 - del_cookie);
del_cookie = del_colon = NULL;
}
}
if ((t->proxy->appsession_name != NULL) &&
(memcmp(p1, t->proxy->appsession_name, p2 - p1) == 0)) {
/* first, let's see if the cookie is our appcookie*/
/* Cool... it's the right one */
asession_temp = &local_asession;
if ((asession_temp->sessid = pool_alloc_from(apools.sessid, apools.ses_msize)) == NULL) {
Alert("Not enough memory process_cli():asession->sessid:malloc().\n");
send_log(t->proxy, LOG_ALERT, "Not enough memory process_cli():asession->sessid:malloc().\n");
return 0;
}
memcpy(asession_temp->sessid, p3, t->proxy->appsession_len);
asession_temp->sessid[t->proxy->appsession_len] = 0;
asession_temp->serverid = NULL;
/* only do insert, if lookup fails */
if (chtbl_lookup(&(t->proxy->htbl_proxy), (void *) &asession_temp) != 0) {
if ((asession_temp = pool_alloc(appsess)) == NULL) {
Alert("Not enough memory process_cli():asession:calloc().\n");
send_log(t->proxy, LOG_ALERT, "Not enough memory process_cli():asession:calloc().\n");
return 0;
}
asession_temp->sessid = local_asession.sessid;
asession_temp->serverid = local_asession.serverid;
chtbl_insert(&(t->proxy->htbl_proxy), (void *) asession_temp);
}
else{
/* free wasted memory */
pool_free_to(apools.sessid, local_asession.sessid);
}
if (asession_temp->serverid == NULL) {
Alert("Found Application Session without matching server.\n");
} else {
struct server *srv = t->proxy->srv;
while (srv) {
if (strcmp(srv->id, asession_temp->serverid) == 0) {
if (srv->state & SRV_RUNNING || t->proxy->options & PR_O_PERSIST) {
/* we found the server and it's usable */
t->flags &= ~SN_CK_MASK;
t->flags |= SN_CK_VALID | SN_DIRECT | SN_ASSIGNED;
t->srv = srv;
break;
} else {
t->flags &= ~SN_CK_MASK;
t->flags |= SN_CK_DOWN;
}
}
srv = srv->next;
}/* end while(srv) */
}/* end else if server == NULL */
tv_delayfrom(&asession_temp->expire, &now, t->proxy->appsession_timeout);
}/* end if ((t->proxy->appsession_name != NULL) ... */
}
/* we'll have to look for another cookie ... */
p1 = p4;
} /* while (p1 < ptr) */
/* There's no more cookie on this line.
* We may have marked the last one(s) for deletion.
* We must do this now in two ways :
* - if there is no app cookie, we simply delete the header ;
* - if there are app cookies, we must delete the end of the
* string properly, including the colon/semi-colon before
* the cookie name.
*/
if (del_cookie != NULL) {
if (app_cookies) {
buffer_replace2(req, del_colon, ptr, NULL, 0);
/* WARNING! <ptr> becomes invalid for now. If some code
* below needs to rely on it before the end of the global
* header loop, we need to correct it with this code :
*/
ptr = del_colon;
}
else
delete_header = 1;
}
} /* end of cookie processing on this header */
/* let's look if we have to delete this header */
if (delete_header && !(t->flags & SN_CLDENY)) {
buffer_replace2(req, req->h, req->lr, NULL, 0);
/* WARNING: ptr is not valid anymore, since the header may have
* been deleted or truncated ! */
} else {
/* try to catch the first line as the request */
if (t->req_line.len < 0) {
t->req_line.str = req->h;
t->req_line.len = ptr - req->h;
}
/* We might also need the 'Authorization: ' header */
if (t->auth_hdr.len < 0 &&
t->proxy->uri_auth != NULL &&
ptr > req->h + 15 &&
!strncasecmp("Authorization: ", req->h, 15)) {
t->auth_hdr.str = req->h;
t->auth_hdr.len = ptr - req->h;
}
}
req->h = req->lr;
} /* while (req->lr < req->r) */
/* end of header processing (even if incomplete) */
if ((req->l < req->rlim - req->data) && ! FD_ISSET(t->cli_fd, StaticReadEvent)) {
/* fd in StaticReadEvent was disabled, perhaps because of a previous buffer
* full. We cannot loop here since event_cli_read will disable it only if
* req->l == rlim-data
*/
FD_SET(t->cli_fd, StaticReadEvent);
if (t->proxy->clitimeout)
tv_delayfrom(&t->crexpire, &now, t->proxy->clitimeout);
else
tv_eternity(&t->crexpire);
}
/* Since we are in header mode, if there's no space left for headers, we
* won't be able to free more later, so the session will never terminate.
*/
if (req->l >= req->rlim - req->data) {
t->logs.status = 400;
client_retnclose(t, t->proxy->errmsg.len400, t->proxy->errmsg.msg400);
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_PRXCOND;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_R;
return 1;
}
else if (t->res_cr == RES_ERROR || t->res_cr == RES_NULL) {
/* read error, or last read : give up. */
tv_eternity(&t->crexpire);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLICL;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_R;
return 1;
}
else if (tv_cmp2_ms(&t->crexpire, &now) <= 0) {
/* read timeout : give up with an error message.
*/
t->logs.status = 408;
client_retnclose(t, t->proxy->errmsg.len408, t->proxy->errmsg.msg408);
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLITO;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_R;
return 1;
}
return t->cli_state != CL_STHEADERS;
}
else if (c == CL_STDATA) {
process_data:
/* FIXME: this error handling is partly buggy because we always report
* a 'DATA' phase while we don't know if the server was in IDLE, CONN
* or HEADER phase. BTW, it's not logical to expire the client while
* we're waiting for the server to connect.
*/
/* read or write error */
if (t->res_cw == RES_ERROR || t->res_cr == RES_ERROR) {
tv_eternity(&t->crexpire);
tv_eternity(&t->cwexpire);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLICL;
if (!(t->flags & SN_FINST_MASK)) {
if (t->pend_pos)
t->flags |= SN_FINST_Q;
else if (s == SV_STCONN)
t->flags |= SN_FINST_C;
else
t->flags |= SN_FINST_D;
}
return 1;
}
/* last read, or end of server write */
else if (t->res_cr == RES_NULL || s == SV_STSHUTW || s == SV_STCLOSE) {
FD_CLR(t->cli_fd, StaticReadEvent);
tv_eternity(&t->crexpire);
shutdown(t->cli_fd, SHUT_RD);
t->cli_state = CL_STSHUTR;
return 1;
}
/* last server read and buffer empty */
else if ((s == SV_STSHUTR || s == SV_STCLOSE) && (rep->l == 0)) {
FD_CLR(t->cli_fd, StaticWriteEvent);
tv_eternity(&t->cwexpire);
shutdown(t->cli_fd, SHUT_WR);
/* We must ensure that the read part is still alive when switching
* to shutw */
FD_SET(t->cli_fd, StaticReadEvent);
if (t->proxy->clitimeout)
tv_delayfrom(&t->crexpire, &now, t->proxy->clitimeout);
t->cli_state = CL_STSHUTW;
//fprintf(stderr,"%p:%s(%d), c=%d, s=%d\n", t, __FUNCTION__, __LINE__, t->cli_state, t->cli_state);
return 1;
}
/* read timeout */
else if (tv_cmp2_ms(&t->crexpire, &now) <= 0) {
FD_CLR(t->cli_fd, StaticReadEvent);
tv_eternity(&t->crexpire);
shutdown(t->cli_fd, SHUT_RD);
t->cli_state = CL_STSHUTR;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLITO;
if (!(t->flags & SN_FINST_MASK)) {
if (t->pend_pos)
t->flags |= SN_FINST_Q;
else if (s == SV_STCONN)
t->flags |= SN_FINST_C;
else
t->flags |= SN_FINST_D;
}
return 1;
}
/* write timeout */
else if (tv_cmp2_ms(&t->cwexpire, &now) <= 0) {
FD_CLR(t->cli_fd, StaticWriteEvent);
tv_eternity(&t->cwexpire);
shutdown(t->cli_fd, SHUT_WR);
/* We must ensure that the read part is still alive when switching
* to shutw */
FD_SET(t->cli_fd, StaticReadEvent);
if (t->proxy->clitimeout)
tv_delayfrom(&t->crexpire, &now, t->proxy->clitimeout);
t->cli_state = CL_STSHUTW;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLITO;
if (!(t->flags & SN_FINST_MASK)) {
if (t->pend_pos)
t->flags |= SN_FINST_Q;
else if (s == SV_STCONN)
t->flags |= SN_FINST_C;
else
t->flags |= SN_FINST_D;
}
return 1;
}
if (req->l >= req->rlim - req->data) {
/* no room to read more data */
if (FD_ISSET(t->cli_fd, StaticReadEvent)) {
/* stop reading until we get some space */
FD_CLR(t->cli_fd, StaticReadEvent);
tv_eternity(&t->crexpire);
}
}
else {
/* there's still some space in the buffer */
if (! FD_ISSET(t->cli_fd, StaticReadEvent)) {
FD_SET(t->cli_fd, StaticReadEvent);
if (!t->proxy->clitimeout ||
(t->srv_state < SV_STDATA && t->proxy->srvtimeout))
/* If the client has no timeout, or if the server not ready yet, and we
* know for sure that it can expire, then it's cleaner to disable the
* timeout on the client side so that too low values cannot make the
* sessions abort too early.
*/
tv_eternity(&t->crexpire);
else
tv_delayfrom(&t->crexpire, &now, t->proxy->clitimeout);
}
}
if ((rep->l == 0) ||
((s < SV_STDATA) /* FIXME: this may be optimized && (rep->w == rep->h)*/)) {
if (FD_ISSET(t->cli_fd, StaticWriteEvent)) {
FD_CLR(t->cli_fd, StaticWriteEvent); /* stop writing */
tv_eternity(&t->cwexpire);
}
}
else { /* buffer not empty */
if (! FD_ISSET(t->cli_fd, StaticWriteEvent)) {
FD_SET(t->cli_fd, StaticWriteEvent); /* restart writing */
if (t->proxy->clitimeout) {
tv_delayfrom(&t->cwexpire, &now, t->proxy->clitimeout);
/* FIXME: to prevent the client from expiring read timeouts during writes,
* we refresh it. */
t->crexpire = t->cwexpire;
}
else
tv_eternity(&t->cwexpire);
}
}
return 0; /* other cases change nothing */
}
else if (c == CL_STSHUTR) {
if (t->res_cw == RES_ERROR) {
tv_eternity(&t->cwexpire);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLICL;
if (!(t->flags & SN_FINST_MASK)) {
if (t->pend_pos)
t->flags |= SN_FINST_Q;
else if (s == SV_STCONN)
t->flags |= SN_FINST_C;
else
t->flags |= SN_FINST_D;
}
return 1;
}
else if ((s == SV_STSHUTR || s == SV_STCLOSE) && (rep->l == 0)
&& !(t->flags & SN_SELF_GEN)) {
tv_eternity(&t->cwexpire);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
return 1;
}
else if (tv_cmp2_ms(&t->cwexpire, &now) <= 0) {
tv_eternity(&t->cwexpire);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLITO;
if (!(t->flags & SN_FINST_MASK)) {
if (t->pend_pos)
t->flags |= SN_FINST_Q;
else if (s == SV_STCONN)
t->flags |= SN_FINST_C;
else
t->flags |= SN_FINST_D;
}
return 1;
}
if (t->flags & SN_SELF_GEN) {
produce_content(t);
if (rep->l == 0) {
tv_eternity(&t->cwexpire);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
return 1;
}
}
if ((rep->l == 0)
|| ((s == SV_STHEADERS) /* FIXME: this may be optimized && (rep->w == rep->h)*/)) {
if (FD_ISSET(t->cli_fd, StaticWriteEvent)) {
FD_CLR(t->cli_fd, StaticWriteEvent); /* stop writing */
tv_eternity(&t->cwexpire);
}
}
else { /* buffer not empty */
if (! FD_ISSET(t->cli_fd, StaticWriteEvent)) {
FD_SET(t->cli_fd, StaticWriteEvent); /* restart writing */
if (t->proxy->clitimeout) {
tv_delayfrom(&t->cwexpire, &now, t->proxy->clitimeout);
/* FIXME: to prevent the client from expiring read timeouts during writes,
* we refresh it. */
t->crexpire = t->cwexpire;
}
else
tv_eternity(&t->cwexpire);
}
}
return 0;
}
else if (c == CL_STSHUTW) {
if (t->res_cr == RES_ERROR) {
tv_eternity(&t->crexpire);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLICL;
if (!(t->flags & SN_FINST_MASK)) {
if (t->pend_pos)
t->flags |= SN_FINST_Q;
else if (s == SV_STCONN)
t->flags |= SN_FINST_C;
else
t->flags |= SN_FINST_D;
}
return 1;
}
else if (t->res_cr == RES_NULL || s == SV_STSHUTW || s == SV_STCLOSE) {
tv_eternity(&t->crexpire);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
return 1;
}
else if (tv_cmp2_ms(&t->crexpire, &now) <= 0) {
tv_eternity(&t->crexpire);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLITO;
if (!(t->flags & SN_FINST_MASK)) {
if (t->pend_pos)
t->flags |= SN_FINST_Q;
else if (s == SV_STCONN)
t->flags |= SN_FINST_C;
else
t->flags |= SN_FINST_D;
}
return 1;
}
else if (req->l >= req->rlim - req->data) {
/* no room to read more data */
/* FIXME-20050705: is it possible for a client to maintain a session
* after the timeout by sending more data after it receives a close ?
*/
if (FD_ISSET(t->cli_fd, StaticReadEvent)) {
/* stop reading until we get some space */
FD_CLR(t->cli_fd, StaticReadEvent);
tv_eternity(&t->crexpire);
//fprintf(stderr,"%p:%s(%d), c=%d, s=%d\n", t, __FUNCTION__, __LINE__, t->cli_state, t->cli_state);
}
}
else {
/* there's still some space in the buffer */
if (! FD_ISSET(t->cli_fd, StaticReadEvent)) {
FD_SET(t->cli_fd, StaticReadEvent);
if (t->proxy->clitimeout)
tv_delayfrom(&t->crexpire, &now, t->proxy->clitimeout);
else
tv_eternity(&t->crexpire);
//fprintf(stderr,"%p:%s(%d), c=%d, s=%d\n", t, __FUNCTION__, __LINE__, t->cli_state, t->cli_state);
}
}
return 0;
}
else { /* CL_STCLOSE: nothing to do */
if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) {
int len;
len = sprintf(trash, "%08x:%s.clicls[%04x:%04x]\n", t->uniq_id, t->proxy->id, (unsigned short)t->cli_fd, (unsigned short)t->srv_fd);
write(1, trash, len);
}
return 0;
}
return 0;
}
/* This function turns the server state into the SV_STCLOSE, and sets
* indicators accordingly. Note that if <status> is 0, no message is
* returned.
*/
void srv_close_with_err(struct session *t, int err, int finst, int status, int msglen, char *msg) {
t->srv_state = SV_STCLOSE;
if (status > 0) {
t->logs.status = status;
if (t->proxy->mode == PR_MODE_HTTP)
client_return(t, msglen, msg);
}
if (!(t->flags & SN_ERR_MASK))
t->flags |= err;
if (!(t->flags & SN_FINST_MASK))
t->flags |= finst;
}
/*
* This function checks the retry count during the connect() job.
* It updates the session's srv_state and retries, so that the caller knows
* what it has to do. It uses the last connection error to set the log when
* it expires. It returns 1 when it has expired, and 0 otherwise.
*/
int srv_count_retry_down(struct session *t, int conn_err) {
/* we are in front of a retryable error */
t->conn_retries--;
if (t->conn_retries < 0) {
/* if not retryable anymore, let's abort */
tv_eternity(&t->cnexpire);
srv_close_with_err(t, conn_err, SN_FINST_C,
503, t->proxy->errmsg.len503, t->proxy->errmsg.msg503);
if (t->srv)
t->srv->failed_conns++;
t->proxy->failed_conns++;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->proxy))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
return 0;
}
/*
* This function performs the retryable part of the connect() job.
* It updates the session's srv_state and retries, so that the caller knows
* what it has to do. It returns 1 when it breaks out of the loop, or 0 if
* it needs to redispatch.
*/
int srv_retryable_connect(struct session *t) {
int conn_err;
/* This loop ensures that we stop before the last retry in case of a
* redispatchable server.
*/
do {
/* initiate a connection to the server */
conn_err = connect_server(t);
switch (conn_err) {
case SN_ERR_NONE:
//fprintf(stderr,"0: c=%d, s=%d\n", c, s);
t->srv_state = SV_STCONN;
return 1;
case SN_ERR_INTERNAL:
tv_eternity(&t->cnexpire);
srv_close_with_err(t, SN_ERR_INTERNAL, SN_FINST_C,
500, t->proxy->errmsg.len500, t->proxy->errmsg.msg500);
if (t->srv)
t->srv->failed_conns++;
t->proxy->failed_conns++;
/* release other sessions waiting for this server */
if (may_dequeue_tasks(t->srv, t->proxy))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
/* ensure that we have enough retries left */
if (srv_count_retry_down(t, conn_err)) {
/* let's try to offer this slot to anybody */
if (may_dequeue_tasks(t->srv, t->proxy))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
} while (t->srv == NULL || t->conn_retries > 0 || !(t->proxy->options & PR_O_REDISP));
/* We're on our last chance, and the REDISP option was specified.
* We will ignore cookie and force to balance or use the dispatcher.
*/
/* let's try to offer this slot to anybody */
if (may_dequeue_tasks(t->srv, t->proxy))
task_wakeup(&rq, t->srv->queue_mgt);
if (t->srv)
t->srv->failed_conns++;
t->proxy->failed_conns++;
t->flags &= ~(SN_DIRECT | SN_ASSIGNED | SN_ADDR_SET);
t->srv = NULL; /* it's left to the dispatcher to choose a server */
if ((t->flags & SN_CK_MASK) == SN_CK_VALID) {
t->flags &= ~SN_CK_MASK;
t->flags |= SN_CK_DOWN;
}
return 0;
}
/* This function performs the "redispatch" part of a connection attempt. It
* will assign a server if required, queue the connection if required, and
* handle errors that might arise at this level. It can change the server
* state. It will return 1 if it encounters an error, switches the server
* state, or has to queue a connection. Otherwise, it will return 0 indicating
* that the connection is ready to use.
*/
int srv_redispatch_connect(struct session *t) {
int conn_err;
/* We know that we don't have any connection pending, so we will
* try to get a new one, and wait in this state if it's queued
*/
conn_err = assign_server_and_queue(t);
switch (conn_err) {
case SRV_STATUS_OK:
break;
case SRV_STATUS_NOSRV:
/* note: it is guaranteed that t->srv == NULL here */
tv_eternity(&t->cnexpire);
srv_close_with_err(t, SN_ERR_SRVTO, SN_FINST_C,
503, t->proxy->errmsg.len503, t->proxy->errmsg.msg503);
if (t->srv)
t->srv->failed_conns++;
t->proxy->failed_conns++;
return 1;
case SRV_STATUS_QUEUED:
/* FIXME-20060503 : we should use the queue timeout instead */
if (t->proxy->contimeout)
tv_delayfrom(&t->cnexpire, &now, t->proxy->contimeout);
else
tv_eternity(&t->cnexpire);
t->srv_state = SV_STIDLE;
/* do nothing else and do not wake any other session up */
return 1;
case SRV_STATUS_FULL:
case SRV_STATUS_INTERNAL:
default:
tv_eternity(&t->cnexpire);
srv_close_with_err(t, SN_ERR_INTERNAL, SN_FINST_C,
500, t->proxy->errmsg.len500, t->proxy->errmsg.msg500);
if (t->srv)
t->srv->failed_conns++;
t->proxy->failed_conns++;
/* release other sessions waiting for this server */
if (may_dequeue_tasks(t->srv, t->proxy))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
/* if we get here, it's because we got SRV_STATUS_OK, which also
* means that the connection has not been queued.
*/
return 0;
}
/*
* manages the server FSM and its socket. It returns 1 if a state has changed
* (and a resync may be needed), 0 else.
*/
int process_srv(struct session *t) {
int s = t->srv_state;
int c = t->cli_state;
struct buffer *req = t->req;
struct buffer *rep = t->rep;
appsess *asession_temp = NULL;
appsess local_asession;
int conn_err;
#ifdef DEBUG_FULL
fprintf(stderr,"process_srv: c=%s, s=%s\n", cli_stnames[c], srv_stnames[s]);
#endif
//fprintf(stderr,"process_srv: c=%d, s=%d, cr=%d, cw=%d, sr=%d, sw=%d\n", c, s,
//FD_ISSET(t->cli_fd, StaticReadEvent), FD_ISSET(t->cli_fd, StaticWriteEvent),
//FD_ISSET(t->srv_fd, StaticReadEvent), FD_ISSET(t->srv_fd, StaticWriteEvent)
//);
if (s == SV_STIDLE) {
if (c == CL_STHEADERS)
return 0; /* stay in idle, waiting for data to reach the client side */
else if (c == CL_STCLOSE || c == CL_STSHUTW ||
(c == CL_STSHUTR &&
(t->req->l == 0 || t->proxy->options & PR_O_ABRT_CLOSE))) { /* give up */
tv_eternity(&t->cnexpire);
if (t->pend_pos)
t->logs.t_queue = tv_diff(&t->logs.tv_accept, &now);
/* note that this must not return any error because it would be able to
* overwrite the client_retnclose() output.
*/
srv_close_with_err(t, SN_ERR_CLICL, t->pend_pos ? SN_FINST_Q : SN_FINST_C, 0, 0, NULL);
return 1;
}
else {
/* Right now, we will need to create a connection to the server.
* We might already have tried, and got a connection pending, in
* which case we will not do anything till it's pending. It's up
* to any other session to release it and wake us up again.
*/
if (t->pend_pos) {
if (tv_cmp2_ms(&t->cnexpire, &now) > 0)
return 0;
else {
/* we've been waiting too long here */
tv_eternity(&t->cnexpire);
t->logs.t_queue = tv_diff(&t->logs.tv_accept, &now);
srv_close_with_err(t, SN_ERR_SRVTO, SN_FINST_Q,
503, t->proxy->errmsg.len503, t->proxy->errmsg.msg503);
if (t->srv)
t->srv->failed_conns++;
t->proxy->failed_conns++;
return 1;
}
}
do {
/* first, get a connection */
if (srv_redispatch_connect(t))
return t->srv_state != SV_STIDLE;
/* try to (re-)connect to the server, and fail if we expire the
* number of retries.
*/
if (srv_retryable_connect(t)) {
t->logs.t_queue = tv_diff(&t->logs.tv_accept, &now);
return t->srv_state != SV_STIDLE;
}
} while (1);
}
}
else if (s == SV_STCONN) { /* connection in progress */
if (c == CL_STCLOSE || c == CL_STSHUTW ||
(c == CL_STSHUTR &&
(t->req->l == 0 || t->proxy->options & PR_O_ABRT_CLOSE))) { /* give up */
tv_eternity(&t->cnexpire);
fd_delete(t->srv_fd);
if (t->srv)
t->srv->cur_sess--;
/* note that this must not return any error because it would be able to
* overwrite the client_retnclose() output.
*/
srv_close_with_err(t, SN_ERR_CLICL, SN_FINST_C, 0, 0, NULL);
return 1;
}
if (t->res_sw == RES_SILENT && tv_cmp2_ms(&t->cnexpire, &now) > 0) {
//fprintf(stderr,"1: c=%d, s=%d, now=%d.%06d, exp=%d.%06d\n", c, s, now.tv_sec, now.tv_usec, t->cnexpire.tv_sec, t->cnexpire.tv_usec);
return 0; /* nothing changed */
}
else if (t->res_sw == RES_SILENT || t->res_sw == RES_ERROR) {
/* timeout, asynchronous connect error or first write error */
//fprintf(stderr,"2: c=%d, s=%d\n", c, s);
fd_delete(t->srv_fd);
if (t->srv)
t->srv->cur_sess--;
if (t->res_sw == RES_SILENT)
conn_err = SN_ERR_SRVTO; // it was a connect timeout.
else
conn_err = SN_ERR_SRVCL; // it was an asynchronous connect error.
/* ensure that we have enough retries left */
if (srv_count_retry_down(t, conn_err))
return 1;
do {
/* Now we will try to either reconnect to the same server or
* connect to another server. If the connection gets queued
* because all servers are saturated, then we will go back to
* the SV_STIDLE state.
*/
if (srv_retryable_connect(t)) {
t->logs.t_queue = tv_diff(&t->logs.tv_accept, &now);
return t->srv_state != SV_STCONN;
}
/* we need to redispatch the connection to another server */
if (srv_redispatch_connect(t))
return t->srv_state != SV_STCONN;
} while (1);
}
else { /* no error or write 0 */
t->logs.t_connect = tv_diff(&t->logs.tv_accept, &now);
//fprintf(stderr,"3: c=%d, s=%d\n", c, s);
if (req->l == 0) /* nothing to write */ {
FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&t->swexpire);
} else /* need the right to write */ {
FD_SET(t->srv_fd, StaticWriteEvent);
if (t->proxy->srvtimeout) {
tv_delayfrom(&t->swexpire, &now, t->proxy->srvtimeout);
/* FIXME: to prevent the server from expiring read timeouts during writes,
* we refresh it. */
t->srexpire = t->swexpire;
}
else
tv_eternity(&t->swexpire);
}
if (t->proxy->mode == PR_MODE_TCP) { /* let's allow immediate data connection in this case */
FD_SET(t->srv_fd, StaticReadEvent);
if (t->proxy->srvtimeout)
tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout);
else
tv_eternity(&t->srexpire);
t->srv_state = SV_STDATA;
if (t->srv)
t->srv->cum_sess++;
rep->rlim = rep->data + BUFSIZE; /* no rewrite needed */
/* if the user wants to log as soon as possible, without counting
bytes from the server, then this is the right moment. */
if (t->proxy->to_log && !(t->logs.logwait & LW_BYTES)) {
t->logs.t_close = t->logs.t_connect; /* to get a valid end date */
sess_log(t);
}
}
else {
t->srv_state = SV_STHEADERS;
if (t->srv)
t->srv->cum_sess++;
rep->rlim = rep->data + BUFSIZE - MAXREWRITE; /* rewrite needed */
}
tv_eternity(&t->cnexpire);
return 1;
}
}
else if (s == SV_STHEADERS) { /* receiving server headers */
/* now parse the partial (or complete) headers */
while (rep->lr < rep->r) { /* this loop only sees one header at each iteration */
char *ptr;
int delete_header;
ptr = rep->lr;
/* look for the end of the current header */
while (ptr < rep->r && *ptr != '\n' && *ptr != '\r')
ptr++;
if (ptr == rep->h) {
int line, len;
/* we can only get here after an end of headers */
/* first, we'll block if security checks have caught nasty things */
if (t->flags & SN_CACHEABLE) {
if ((t->flags & SN_CACHE_COOK) &&
(t->flags & SN_SCK_ANY) &&
(t->proxy->options & PR_O_CHK_CACHE)) {
/* we're in presence of a cacheable response containing
* a set-cookie header. We'll block it as requested by
* the 'checkcache' option, and send an alert.
*/
tv_eternity(&t->srexpire);
tv_eternity(&t->swexpire);
fd_delete(t->srv_fd);
if (t->srv) {
t->srv->cur_sess--;
t->srv->failed_secu++;
}
t->proxy->failed_secu++;
t->srv_state = SV_STCLOSE;
t->logs.status = 502;
client_return(t, t->proxy->errmsg.len502, t->proxy->errmsg.msg502);
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_PRXCOND;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_H;
Alert("Blocking cacheable cookie in response from instance %s, server %s.\n", t->proxy->id, t->srv->id);
send_log(t->proxy, LOG_ALERT, "Blocking cacheable cookie in response from instance %s, server %s.\n", t->proxy->id, t->srv->id);
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->proxy))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
}
/* next, we'll block if an 'rspideny' or 'rspdeny' filter matched */
if (t->flags & SN_SVDENY) {
tv_eternity(&t->srexpire);
tv_eternity(&t->swexpire);
fd_delete(t->srv_fd);
if (t->srv) {
t->srv->cur_sess--;
t->srv->failed_secu++;
}
t->proxy->failed_secu++;
t->srv_state = SV_STCLOSE;
t->logs.status = 502;
client_return(t, t->proxy->errmsg.len502, t->proxy->errmsg.msg502);
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_PRXCOND;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_H;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->proxy))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
/* we'll have something else to do here : add new headers ... */
if ((t->srv) && !(t->flags & SN_DIRECT) && (t->proxy->options & PR_O_COOK_INS) &&
(!(t->proxy->options & PR_O_COOK_POST) || (t->flags & SN_POST))) {
/* the server is known, it's not the one the client requested, we have to
* insert a set-cookie here, except if we want to insert only on POST
* requests and this one isn't. Note that servers which don't have cookies
* (eg: some backup servers) will return a full cookie removal request.
*/
len = sprintf(trash, "Set-Cookie: %s=%s; path=/\r\n",
t->proxy->cookie_name,
t->srv->cookie ? t->srv->cookie : "; Expires=Thu, 01-Jan-1970 00:00:01 GMT");
t->flags |= SN_SCK_INSERTED;
/* Here, we will tell an eventual cache on the client side that we don't
* want it to cache this reply because HTTP/1.0 caches also cache cookies !
* Some caches understand the correct form: 'no-cache="set-cookie"', but
* others don't (eg: apache <= 1.3.26). So we use 'private' instead.
*/
if (t->proxy->options & PR_O_COOK_NOC)
//len += sprintf(newhdr + len, "Cache-control: no-cache=\"set-cookie\"\r\n");
len += sprintf(trash + len, "Cache-control: private\r\n");
if (rep->data + rep->l < rep->h)
/* The data has been stolen, we will crash cleanly instead of corrupting memory */
*(int *)0 = 0;
buffer_replace2(rep, rep->h, rep->h, trash, len);
}
/* headers to be added */
for (line = 0; line < t->proxy->nb_rspadd; line++) {
len = sprintf(trash, "%s\r\n", t->proxy->rsp_add[line]);
buffer_replace2(rep, rep->h, rep->h, trash, len);
}
/* add a "connection: close" line if needed */
if (t->proxy->options & PR_O_HTTP_CLOSE)
buffer_replace2(rep, rep->h, rep->h, "Connection: close\r\n", 19);
t->srv_state = SV_STDATA;
rep->rlim = rep->data + BUFSIZE; /* no more rewrite needed */
t->logs.t_data = tv_diff(&t->logs.tv_accept, &now);
/* client connection already closed or option 'httpclose' required :
* we close the server's outgoing connection right now.
*/
if ((req->l == 0) &&
(c == CL_STSHUTR || c == CL_STCLOSE || t->proxy->options & PR_O_FORCE_CLO)) {
FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&t->swexpire);
/* We must ensure that the read part is still alive when switching
* to shutw */
FD_SET(t->srv_fd, StaticReadEvent);
if (t->proxy->srvtimeout)
tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout);
shutdown(t->srv_fd, SHUT_WR);
t->srv_state = SV_STSHUTW;
}
/* if the user wants to log as soon as possible, without counting
bytes from the server, then this is the right moment. */
if (t->proxy->to_log && !(t->logs.logwait & LW_BYTES)) {
t->logs.t_close = t->logs.t_data; /* to get a valid end date */
t->logs.bytes = rep->h - rep->data;
sess_log(t);
}
break;
}
/* to get a complete header line, we need the ending \r\n, \n\r, \r or \n too */
if (ptr > rep->r - 2) {
/* this is a partial header, let's wait for more to come */
rep->lr = ptr;
break;
}
// fprintf(stderr,"h=%p, ptr=%p, lr=%p, r=%p, *h=", rep->h, ptr, rep->lr, rep->r);
// write(2, rep->h, ptr - rep->h); fprintf(stderr,"\n");
/* now we know that *ptr is either \r or \n,
* and that there are at least 1 char after it.
*/
if ((ptr[0] == ptr[1]) || (ptr[1] != '\r' && ptr[1] != '\n'))
rep->lr = ptr + 1; /* \r\r, \n\n, \r[^\n], \n[^\r] */
else
rep->lr = ptr + 2; /* \r\n or \n\r */
/*
* now we know that we have a full header ; we can do whatever
* we want with these pointers :
* rep->h = beginning of header
* ptr = end of header (first \r or \n)
* rep->lr = beginning of next line (next rep->h)
* rep->r = end of data (not used at this stage)
*/
if (t->logs.status == -1) {
t->logs.logwait &= ~LW_RESP;
t->logs.status = atoi(rep->h + 9);
switch (t->logs.status) {
case 200:
case 203:
case 206:
case 300:
case 301:
case 410:
/* RFC2616 @13.4:
* "A response received with a status code of
* 200, 203, 206, 300, 301 or 410 MAY be stored
* by a cache (...) unless a cache-control
* directive prohibits caching."
*
* RFC2616 @9.5: POST method :
* "Responses to this method are not cacheable,
* unless the response includes appropriate
* Cache-Control or Expires header fields."
*/
if (!(t->flags & SN_POST) && (t->proxy->options & PR_O_CHK_CACHE))
t->flags |= SN_CACHEABLE | SN_CACHE_COOK;
break;
default:
break;
}
}
else if (t->logs.logwait & LW_RSPHDR) {
struct cap_hdr *h;
int len;
for (h = t->proxy->rsp_cap; h; h = h->next) {
if ((h->namelen + 2 <= ptr - rep->h) &&
(rep->h[h->namelen] == ':') &&
(strncasecmp(rep->h, h->name, h->namelen) == 0)) {
if (t->rsp_cap[h->index] == NULL)
t->rsp_cap[h->index] = pool_alloc_from(h->pool, h->len + 1);
len = ptr - (rep->h + h->namelen + 2);
if (len > h->len)
len = h->len;
memcpy(t->rsp_cap[h->index], rep->h + h->namelen + 2, len);
t->rsp_cap[h->index][len]=0;
}
}
}
delete_header = 0;
if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) {
int len, max;
len = sprintf(trash, "%08x:%s.srvhdr[%04x:%04x]: ", t->uniq_id, t->proxy->id, (unsigned short)t->cli_fd, (unsigned short)t->srv_fd);
max = ptr - rep->h;
UBOUND(max, sizeof(trash) - len - 1);
len += strlcpy2(trash + len, rep->h, max + 1);
trash[len++] = '\n';
write(1, trash, len);
}
/* remove "connection: " if needed */
if (!delete_header && (t->proxy->options & PR_O_HTTP_CLOSE)
&& (strncasecmp(rep->h, "Connection: ", 12) == 0)) {
delete_header = 1;
}
/* try headers regexps */
if (!delete_header && t->proxy->rsp_exp != NULL
&& !(t->flags & SN_SVDENY)) {
struct hdr_exp *exp;
char term;
term = *ptr;
*ptr = '\0';
exp = t->proxy->rsp_exp;
do {
if (regexec(exp->preg, rep->h, MAX_MATCH, pmatch, 0) == 0) {
switch (exp->action) {
case ACT_ALLOW:
if (!(t->flags & SN_SVDENY))
t->flags |= SN_SVALLOW;
break;
case ACT_REPLACE:
if (!(t->flags & SN_SVDENY)) {
int len = exp_replace(trash, rep->h, exp->replace, pmatch);
ptr += buffer_replace2(rep, rep->h, ptr, trash, len);
}
break;
case ACT_REMOVE:
if (!(t->flags & SN_SVDENY))
delete_header = 1;
break;
case ACT_DENY:
if (!(t->flags & SN_SVALLOW))
t->flags |= SN_SVDENY;
break;
case ACT_PASS: /* we simply don't deny this one */
break;
}
break;
}
} while ((exp = exp->next) != NULL);
*ptr = term; /* restore the string terminator */
}
/* check for cache-control: or pragma: headers */
if (!delete_header && (t->flags & SN_CACHEABLE)) {
if (strncasecmp(rep->h, "Pragma: no-cache", 16) == 0)
t->flags &= ~SN_CACHEABLE & ~SN_CACHE_COOK;
else if (strncasecmp(rep->h, "Cache-control: ", 15) == 0) {
if (strncasecmp(rep->h + 15, "no-cache", 8) == 0) {
if (rep->h + 23 == ptr || rep->h[23] == ',')
t->flags &= ~SN_CACHEABLE & ~SN_CACHE_COOK;
else {
if (strncasecmp(rep->h + 23, "=\"set-cookie", 12) == 0
&& (rep->h[35] == '"' || rep->h[35] == ','))
t->flags &= ~SN_CACHE_COOK;
}
} else if ((strncasecmp(rep->h + 15, "private", 7) == 0 &&
(rep->h + 22 == ptr || rep->h[22] == ','))
|| (strncasecmp(rep->h + 15, "no-store", 8) == 0 &&
(rep->h + 23 == ptr || rep->h[23] == ','))) {
t->flags &= ~SN_CACHEABLE & ~SN_CACHE_COOK;
} else if (strncasecmp(rep->h + 15, "max-age=0", 9) == 0 &&
(rep->h + 24 == ptr || rep->h[24] == ',')) {
t->flags &= ~SN_CACHEABLE & ~SN_CACHE_COOK;
} else if (strncasecmp(rep->h + 15, "s-maxage=0", 10) == 0 &&
(rep->h + 25 == ptr || rep->h[25] == ',')) {
t->flags &= ~SN_CACHEABLE & ~SN_CACHE_COOK;
} else if (strncasecmp(rep->h + 15, "public", 6) == 0 &&
(rep->h + 21 == ptr || rep->h[21] == ',')) {
t->flags |= SN_CACHEABLE | SN_CACHE_COOK;
}
}
}
/* check for server cookies */
if (!delete_header /*&& (t->proxy->options & PR_O_COOK_ANY)*/
&& (t->proxy->cookie_name != NULL || t->proxy->capture_name != NULL || t->proxy->appsession_name !=NULL)
&& (strncasecmp(rep->h, "Set-Cookie: ", 12) == 0)) {
char *p1, *p2, *p3, *p4;
t->flags |= SN_SCK_ANY;
p1 = rep->h + 12; /* first char after 'Set-Cookie: ' */
while (p1 < ptr) { /* in fact, we'll break after the first cookie */
while (p1 < ptr && (isspace((int)*p1)))
p1++;
if (p1 == ptr || *p1 == ';') /* end of cookie */
break;
/* p1 is at the beginning of the cookie name */
p2 = p1;
while (p2 < ptr && *p2 != '=' && *p2 != ';')
p2++;
if (p2 == ptr || *p2 == ';') /* next cookie */
break;
p3 = p2 + 1; /* skips the '=' sign */
if (p3 == ptr)
break;
p4 = p3;
while (p4 < ptr && !isspace((int)*p4) && *p4 != ';')
p4++;
/* here, we have the cookie name between p1 and p2,
* and its value between p3 and p4.
* we can process it.
*/
/* first, let's see if we want to capture it */
if (t->proxy->capture_name != NULL &&
t->logs.srv_cookie == NULL &&
(p4 - p1 >= t->proxy->capture_namelen) &&
memcmp(p1, t->proxy->capture_name, t->proxy->capture_namelen) == 0) {
int log_len = p4 - p1;
if ((t->logs.srv_cookie = pool_alloc(capture)) == NULL) {
Alert("HTTP logging : out of memory.\n");
}
if (log_len > t->proxy->capture_len)
log_len = t->proxy->capture_len;
memcpy(t->logs.srv_cookie, p1, log_len);
t->logs.srv_cookie[log_len] = 0;
}
if ((p2 - p1 == t->proxy->cookie_len) && (t->proxy->cookie_name != NULL) &&
(memcmp(p1, t->proxy->cookie_name, p2 - p1) == 0)) {
/* Cool... it's the right one */
t->flags |= SN_SCK_SEEN;
/* If the cookie is in insert mode on a known server, we'll delete
* this occurrence because we'll insert another one later.
* We'll delete it too if the "indirect" option is set and we're in
* a direct access. */
if (((t->srv) && (t->proxy->options & PR_O_COOK_INS)) ||
((t->flags & SN_DIRECT) && (t->proxy->options & PR_O_COOK_IND))) {
/* this header must be deleted */
delete_header = 1;
t->flags |= SN_SCK_DELETED;
}
else if ((t->srv) && (t->proxy->options & PR_O_COOK_RW)) {
/* replace bytes p3->p4 with the cookie name associated
* with this server since we know it.
*/
buffer_replace2(rep, p3, p4, t->srv->cookie, t->srv->cklen);
t->flags |= SN_SCK_INSERTED | SN_SCK_DELETED;
}
else if ((t->srv) && (t->proxy->options & PR_O_COOK_PFX)) {
/* insert the cookie name associated with this server
* before existing cookie, and insert a delimitor between them..
*/
buffer_replace2(rep, p3, p3, t->srv->cookie, t->srv->cklen + 1);
p3[t->srv->cklen] = COOKIE_DELIM;
t->flags |= SN_SCK_INSERTED | SN_SCK_DELETED;
}
break;
}
/* first, let's see if the cookie is our appcookie*/
if ((t->proxy->appsession_name != NULL) &&
(memcmp(p1, t->proxy->appsession_name, p2 - p1) == 0)) {
/* Cool... it's the right one */
size_t server_id_len = strlen(t->srv->id) + 1;
asession_temp = &local_asession;
if ((asession_temp->sessid = pool_alloc_from(apools.sessid, apools.ses_msize)) == NULL) {
Alert("Not enought Memory process_srv():asession->sessid:malloc().\n");
send_log(t->proxy, LOG_ALERT, "Not enought Memory process_srv():asession->sessid:malloc().\n");
}
memcpy(asession_temp->sessid, p3, t->proxy->appsession_len);
asession_temp->sessid[t->proxy->appsession_len] = 0;
asession_temp->serverid = NULL;
/* only do insert, if lookup fails */
if (chtbl_lookup(&(t->proxy->htbl_proxy), (void *) &asession_temp) != 0) {
if ((asession_temp = pool_alloc(appsess)) == NULL) {
Alert("Not enought Memory process_srv():asession:calloc().\n");
send_log(t->proxy, LOG_ALERT, "Not enought Memory process_srv():asession:calloc().\n");
return 0;
}
asession_temp->sessid = local_asession.sessid;
asession_temp->serverid = local_asession.serverid;
chtbl_insert(&(t->proxy->htbl_proxy), (void *) asession_temp);
}/* end if (chtbl_lookup()) */
else {
/* free wasted memory */
pool_free_to(apools.sessid, local_asession.sessid);
} /* end else from if (chtbl_lookup()) */
if (asession_temp->serverid == NULL) {
if ((asession_temp->serverid = pool_alloc_from(apools.serverid, apools.ser_msize)) == NULL) {
Alert("Not enought Memory process_srv():asession->sessid:malloc().\n");
send_log(t->proxy, LOG_ALERT, "Not enought Memory process_srv():asession->sessid:malloc().\n");
}
asession_temp->serverid[0] = '\0';
}
if (asession_temp->serverid[0] == '\0')
memcpy(asession_temp->serverid,t->srv->id,server_id_len);
tv_delayfrom(&asession_temp->expire, &now, t->proxy->appsession_timeout);
#if defined(DEBUG_HASH)
print_table(&(t->proxy->htbl_proxy));
#endif
break;
}/* end if ((t->proxy->appsession_name != NULL) ... */
else {
// fprintf(stderr,"Ignoring unknown cookie : ");
// write(2, p1, p2-p1);
// fprintf(stderr," = ");
// write(2, p3, p4-p3);
// fprintf(stderr,"\n");
}
break; /* we don't want to loop again since there cannot be another cookie on the same line */
} /* we're now at the end of the cookie value */
} /* end of cookie processing */
/* check for any set-cookie in case we check for cacheability */
if (!delete_header && !(t->flags & SN_SCK_ANY) &&
(t->proxy->options & PR_O_CHK_CACHE) &&
(strncasecmp(rep->h, "Set-Cookie: ", 12) == 0)) {
t->flags |= SN_SCK_ANY;
}
/* let's look if we have to delete this header */
if (delete_header && !(t->flags & SN_SVDENY))
buffer_replace2(rep, rep->h, rep->lr, "", 0);
rep->h = rep->lr;
} /* while (rep->lr < rep->r) */
/* end of header processing (even if incomplete) */
if ((rep->l < rep->rlim - rep->data) && ! FD_ISSET(t->srv_fd, StaticReadEvent)) {
/* fd in StaticReadEvent was disabled, perhaps because of a previous buffer
* full. We cannot loop here since event_srv_read will disable it only if
* rep->l == rlim-data
*/
FD_SET(t->srv_fd, StaticReadEvent);
if (t->proxy->srvtimeout)
tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout);
else
tv_eternity(&t->srexpire);
}
/* read error, write error */
if (t->res_sw == RES_ERROR || t->res_sr == RES_ERROR) {
tv_eternity(&t->srexpire);
tv_eternity(&t->swexpire);
fd_delete(t->srv_fd);
if (t->srv) {
t->srv->cur_sess--;
t->srv->failed_resp++;
}
t->proxy->failed_resp++;
t->srv_state = SV_STCLOSE;
t->logs.status = 502;
client_return(t, t->proxy->errmsg.len502, t->proxy->errmsg.msg502);
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVCL;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_H;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->proxy))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
/* end of client write or end of server read.
* since we are in header mode, if there's no space left for headers, we
* won't be able to free more later, so the session will never terminate.
*/
else if (t->res_sr == RES_NULL || c == CL_STSHUTW || c == CL_STCLOSE || rep->l >= rep->rlim - rep->data) {
FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&t->srexpire);
shutdown(t->srv_fd, SHUT_RD);
t->srv_state = SV_STSHUTR;
//fprintf(stderr,"%p:%s(%d), c=%d, s=%d\n", t, __FUNCTION__, __LINE__, t->cli_state, t->cli_state);
return 1;
}
/* read timeout : return a 504 to the client.
*/
else if (FD_ISSET(t->srv_fd, StaticReadEvent) && tv_cmp2_ms(&t->srexpire, &now) <= 0) {
tv_eternity(&t->srexpire);
tv_eternity(&t->swexpire);
fd_delete(t->srv_fd);
if (t->srv) {
t->srv->cur_sess--;
t->srv->failed_resp++;
}
t->proxy->failed_resp++;
t->srv_state = SV_STCLOSE;
t->logs.status = 504;
client_return(t, t->proxy->errmsg.len504, t->proxy->errmsg.msg504);
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVTO;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_H;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->proxy))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
/* last client read and buffer empty */
/* FIXME!!! here, we don't want to switch to SHUTW if the
* client shuts read too early, because we may still have
* some work to do on the headers.
* The side-effect is that if the client completely closes its
* connection during SV_STHEADER, the connection to the server
* is kept until a response comes back or the timeout is reached.
*/
else if ((/*c == CL_STSHUTR ||*/ c == CL_STCLOSE) && (req->l == 0)) {
FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&t->swexpire);
/* We must ensure that the read part is still alive when switching
* to shutw */
FD_SET(t->srv_fd, StaticReadEvent);
if (t->proxy->srvtimeout)
tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout);
shutdown(t->srv_fd, SHUT_WR);
t->srv_state = SV_STSHUTW;
return 1;
}
/* write timeout */
/* FIXME!!! here, we don't want to switch to SHUTW if the
* client shuts read too early, because we may still have
* some work to do on the headers.
*/
else if (FD_ISSET(t->srv_fd, StaticWriteEvent) && tv_cmp2_ms(&t->swexpire, &now) <= 0) {
FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&t->swexpire);
shutdown(t->srv_fd, SHUT_WR);
/* We must ensure that the read part is still alive when switching
* to shutw */
FD_SET(t->srv_fd, StaticReadEvent);
if (t->proxy->srvtimeout)
tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout);
/* We must ensure that the read part is still alive when switching
* to shutw */
FD_SET(t->srv_fd, StaticReadEvent);
if (t->proxy->srvtimeout)
tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout);
t->srv_state = SV_STSHUTW;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVTO;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_H;
return 1;
}
if (req->l == 0) {
if (FD_ISSET(t->srv_fd, StaticWriteEvent)) {
FD_CLR(t->srv_fd, StaticWriteEvent); /* stop writing */
tv_eternity(&t->swexpire);
}
}
else { /* client buffer not empty */
if (! FD_ISSET(t->srv_fd, StaticWriteEvent)) {
FD_SET(t->srv_fd, StaticWriteEvent); /* restart writing */
if (t->proxy->srvtimeout) {
tv_delayfrom(&t->swexpire, &now, t->proxy->srvtimeout);
/* FIXME: to prevent the server from expiring read timeouts during writes,
* we refresh it. */
t->srexpire = t->swexpire;
}
else
tv_eternity(&t->swexpire);
}
}
/* be nice with the client side which would like to send a complete header
* FIXME: COMPLETELY BUGGY !!! not all headers may be processed because the client
* would read all remaining data at once ! The client should not write past rep->lr
* when the server is in header state.
*/
//return header_processed;
return t->srv_state != SV_STHEADERS;
}
else if (s == SV_STDATA) {
/* read or write error */
if (t->res_sw == RES_ERROR || t->res_sr == RES_ERROR) {
tv_eternity(&t->srexpire);
tv_eternity(&t->swexpire);
fd_delete(t->srv_fd);
if (t->srv) {
t->srv->cur_sess--;
t->srv->failed_resp++;
}
t->proxy->failed_resp++;
t->srv_state = SV_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVCL;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_D;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->proxy))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
/* last read, or end of client write */
else if (t->res_sr == RES_NULL || c == CL_STSHUTW || c == CL_STCLOSE) {
FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&t->srexpire);
shutdown(t->srv_fd, SHUT_RD);
t->srv_state = SV_STSHUTR;
//fprintf(stderr,"%p:%s(%d), c=%d, s=%d\n", t, __FUNCTION__, __LINE__, t->cli_state, t->cli_state);
return 1;
}
/* end of client read and no more data to send */
else if ((c == CL_STSHUTR || c == CL_STCLOSE) && (req->l == 0)) {
FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&t->swexpire);
shutdown(t->srv_fd, SHUT_WR);
/* We must ensure that the read part is still alive when switching
* to shutw */
FD_SET(t->srv_fd, StaticReadEvent);
if (t->proxy->srvtimeout)
tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout);
t->srv_state = SV_STSHUTW;
return 1;
}
/* read timeout */
else if (tv_cmp2_ms(&t->srexpire, &now) <= 0) {
FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&t->srexpire);
shutdown(t->srv_fd, SHUT_RD);
t->srv_state = SV_STSHUTR;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVTO;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_D;
return 1;
}
/* write timeout */
else if (tv_cmp2_ms(&t->swexpire, &now) <= 0) {
FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&t->swexpire);
shutdown(t->srv_fd, SHUT_WR);
/* We must ensure that the read part is still alive when switching
* to shutw */
FD_SET(t->srv_fd, StaticReadEvent);
if (t->proxy->srvtimeout)
tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout);
t->srv_state = SV_STSHUTW;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVTO;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_D;
return 1;
}
/* recompute request time-outs */
if (req->l == 0) {
if (FD_ISSET(t->srv_fd, StaticWriteEvent)) {
FD_CLR(t->srv_fd, StaticWriteEvent); /* stop writing */
tv_eternity(&t->swexpire);
}
}
else { /* buffer not empty, there are still data to be transferred */
if (! FD_ISSET(t->srv_fd, StaticWriteEvent)) {
FD_SET(t->srv_fd, StaticWriteEvent); /* restart writing */
if (t->proxy->srvtimeout) {
tv_delayfrom(&t->swexpire, &now, t->proxy->srvtimeout);
/* FIXME: to prevent the server from expiring read timeouts during writes,
* we refresh it. */
t->srexpire = t->swexpire;
}
else
tv_eternity(&t->swexpire);
}
}
/* recompute response time-outs */
if (rep->l == BUFSIZE) { /* no room to read more data */
if (FD_ISSET(t->srv_fd, StaticReadEvent)) {
FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&t->srexpire);
}
}
else {
if (! FD_ISSET(t->srv_fd, StaticReadEvent)) {
FD_SET(t->srv_fd, StaticReadEvent);
if (t->proxy->srvtimeout)
tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout);
else
tv_eternity(&t->srexpire);
}
}
return 0; /* other cases change nothing */
}
else if (s == SV_STSHUTR) {
if (t->res_sw == RES_ERROR) {
//FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&t->swexpire);
fd_delete(t->srv_fd);
if (t->srv) {
t->srv->cur_sess--;
t->srv->failed_resp++;
}
t->proxy->failed_resp++;
//close(t->srv_fd);
t->srv_state = SV_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVCL;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_D;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->proxy))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
else if ((c == CL_STSHUTR || c == CL_STCLOSE) && (req->l == 0)) {
//FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&t->swexpire);
fd_delete(t->srv_fd);
if (t->srv)
t->srv->cur_sess--;
//close(t->srv_fd);
t->srv_state = SV_STCLOSE;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->proxy))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
else if (tv_cmp2_ms(&t->swexpire, &now) <= 0) {
//FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&t->swexpire);
fd_delete(t->srv_fd);
if (t->srv)
t->srv->cur_sess--;
//close(t->srv_fd);
t->srv_state = SV_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVTO;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_D;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->proxy))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
else if (req->l == 0) {
if (FD_ISSET(t->srv_fd, StaticWriteEvent)) {
FD_CLR(t->srv_fd, StaticWriteEvent); /* stop writing */
tv_eternity(&t->swexpire);
}
}
else { /* buffer not empty */
if (! FD_ISSET(t->srv_fd, StaticWriteEvent)) {
FD_SET(t->srv_fd, StaticWriteEvent); /* restart writing */
if (t->proxy->srvtimeout) {
tv_delayfrom(&t->swexpire, &now, t->proxy->srvtimeout);
/* FIXME: to prevent the server from expiring read timeouts during writes,
* we refresh it. */
t->srexpire = t->swexpire;
}
else
tv_eternity(&t->swexpire);
}
}
return 0;
}
else if (s == SV_STSHUTW) {
if (t->res_sr == RES_ERROR) {
//FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&t->srexpire);
fd_delete(t->srv_fd);
if (t->srv) {
t->srv->cur_sess--;
t->srv->failed_resp++;
}
t->proxy->failed_resp++;
//close(t->srv_fd);
t->srv_state = SV_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVCL;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_D;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->proxy))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
else if (t->res_sr == RES_NULL || c == CL_STSHUTW || c == CL_STCLOSE) {
//FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&t->srexpire);
fd_delete(t->srv_fd);
if (t->srv)
t->srv->cur_sess--;
//close(t->srv_fd);
t->srv_state = SV_STCLOSE;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->proxy))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
else if (tv_cmp2_ms(&t->srexpire, &now) <= 0) {
//FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&t->srexpire);
fd_delete(t->srv_fd);
if (t->srv)
t->srv->cur_sess--;
//close(t->srv_fd);
t->srv_state = SV_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVTO;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_D;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->proxy))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
else if (rep->l == BUFSIZE) { /* no room to read more data */
if (FD_ISSET(t->srv_fd, StaticReadEvent)) {
FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&t->srexpire);
}
}
else {
if (! FD_ISSET(t->srv_fd, StaticReadEvent)) {
FD_SET(t->srv_fd, StaticReadEvent);
if (t->proxy->srvtimeout)
tv_delayfrom(&t->srexpire, &now, t->proxy->srvtimeout);
else
tv_eternity(&t->srexpire);
}
}
return 0;
}
else { /* SV_STCLOSE : nothing to do */
if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) {
int len;
len = sprintf(trash, "%08x:%s.srvcls[%04x:%04x]\n", t->uniq_id, t->proxy->id, (unsigned short)t->cli_fd, (unsigned short)t->srv_fd);
write(1, trash, len);
}
return 0;
}
return 0;
}
/* Processes the client and server jobs of a session task, then
* puts it back to the wait queue in a clean state, or
* cleans up its resources if it must be deleted. Returns
* the time the task accepts to wait, or TIME_ETERNITY for
* infinity.
*/
int process_session(struct task *t) {
struct session *s = t->context;
int fsm_resync = 0;
do {
fsm_resync = 0;
//fprintf(stderr,"before_cli:cli=%d, srv=%d\n", s->cli_state, s->srv_state);
fsm_resync |= process_cli(s);
//fprintf(stderr,"cli/srv:cli=%d, srv=%d\n", s->cli_state, s->srv_state);
fsm_resync |= process_srv(s);
//fprintf(stderr,"after_srv:cli=%d, srv=%d\n", s->cli_state, s->srv_state);
} while (fsm_resync);
if (s->cli_state != CL_STCLOSE || s->srv_state != SV_STCLOSE) {
struct timeval min1, min2;
s->res_cw = s->res_cr = s->res_sw = s->res_sr = RES_SILENT;
tv_min(&min1, &s->crexpire, &s->cwexpire);
tv_min(&min2, &s->srexpire, &s->swexpire);
tv_min(&min1, &min1, &s->cnexpire);
tv_min(&t->expire, &min1, &min2);
/* restore t to its place in the task list */
task_queue(t);
#ifdef DEBUG_FULL
/* DEBUG code : this should never ever happen, otherwise it indicates
* that a task still has something to do and will provoke a quick loop.
*/
if (tv_remain2(&now, &t->expire) <= 0)
exit(100);
#endif
return tv_remain2(&now, &t->expire); /* nothing more to do */
}
s->proxy->nbconn--;
actconn--;
if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) {
int len;
len = sprintf(trash, "%08x:%s.closed[%04x:%04x]\n", s->uniq_id, s->proxy->id, (unsigned short)s->cli_fd, (unsigned short)s->srv_fd);
write(1, trash, len);
}
s->logs.t_close = tv_diff(&s->logs.tv_accept, &now);
if (s->rep != NULL)
s->logs.bytes = s->rep->total;
/* let's do a final log if we need it */
if (s->logs.logwait && (!(s->proxy->options & PR_O_NULLNOLOG) || s->req->total))
sess_log(s);
/* the task MUST not be in the run queue anymore */
task_delete(t);
session_free(s);
task_free(t);
return TIME_ETERNITY; /* rest in peace for eternity */
}
/* Sets server <s> down, notifies by all available means, recounts the
* remaining servers on the proxy and transfers queued sessions whenever
* possible to other servers.
*/
void set_server_down(struct server *s) {
struct pendconn *pc, *pc_bck, *pc_end;
struct session *sess;
int xferred;
s->state &= ~SRV_RUNNING;
if (s->health == s->rise) {
recount_servers(s->proxy);
recalc_server_map(s->proxy);
/* we might have sessions queued on this server and waiting for
* a connection. Those which are redispatchable will be queued
* to another server or to the proxy itself.
*/
xferred = 0;
FOREACH_ITEM_SAFE(pc, pc_bck, &s->pendconns, pc_end, struct pendconn *, list) {
sess = pc->sess;
if ((sess->proxy->options & PR_O_REDISP)) {
/* The REDISP option was specified. We will ignore
* cookie and force to balance or use the dispatcher.
*/
sess->flags &= ~(SN_DIRECT | SN_ASSIGNED | SN_ADDR_SET);
sess->srv = NULL; /* it's left to the dispatcher to choose a server */
if ((sess->flags & SN_CK_MASK) == SN_CK_VALID) {
sess->flags &= ~SN_CK_MASK;
sess->flags |= SN_CK_DOWN;
}
pendconn_free(pc);
task_wakeup(&rq, sess->task);
xferred++;
}
}
sprintf(trash, "%sServer %s/%s is DOWN. %d active and %d backup servers left.%s"
" %d sessions active, %d requeued, %d remaining in queue.\n",
s->state & SRV_BACKUP ? "Backup " : "",
s->proxy->id, s->id, s->proxy->srv_act, s->proxy->srv_bck,
(s->proxy->srv_bck && !s->proxy->srv_act) ? " Running on backup." : "",
s->cur_sess, xferred, s->nbpend);
Warning("%s", trash);
send_log(s->proxy, LOG_ALERT, "%s", trash);
if (s->proxy->srv_bck == 0 && s->proxy->srv_act == 0) {
Alert("Proxy %s has no server available !\n", s->proxy->id);
send_log(s->proxy, LOG_EMERG, "Proxy %s has no server available !\n", s->proxy->id);
}
s->down_trans++;
}
s->health = 0; /* failure */
}
/*
* manages a server health-check. Returns
* the time the task accepts to wait, or TIME_ETERNITY for infinity.
*/
int process_chk(struct task *t) {
struct server *s = t->context;
struct sockaddr_in sa;
int fd;
//fprintf(stderr, "process_chk: task=%p\n", t);
new_chk:
fd = s->curfd;
if (fd < 0) { /* no check currently running */
//fprintf(stderr, "process_chk: 2\n");
if (tv_cmp2_ms(&t->expire, &now) > 0) { /* not good time yet */
task_queue(t); /* restore t to its place in the task list */
return tv_remain2(&now, &t->expire);
}
/* we don't send any health-checks when the proxy is stopped or when
* the server should not be checked.
*/
if (!(s->state & SRV_CHECKED) || s->proxy->state == PR_STSTOPPED) {
while (tv_cmp2_ms(&t->expire, &now) <= 0)
tv_delayfrom(&t->expire, &t->expire, s->inter);
task_queue(t); /* restore t to its place in the task list */
return tv_remain2(&now, &t->expire);
}
/* we'll initiate a new check */
s->result = 0; /* no result yet */
if ((fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) != -1) {
if ((fd < global.maxsock) &&
(fcntl(fd, F_SETFL, O_NONBLOCK) != -1) &&
(setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *) &one, sizeof(one)) != -1)) {
//fprintf(stderr, "process_chk: 3\n");
/* we'll connect to the check port on the server */
sa = s->addr;
sa.sin_port = htons(s->check_port);
/* allow specific binding :
* - server-specific at first
* - proxy-specific next
*/
if (s->state & SRV_BIND_SRC) {
setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *) &one, sizeof(one));
if (bind(fd, (struct sockaddr *)&s->source_addr, sizeof(s->source_addr)) == -1) {
Alert("Cannot bind to source address before connect() for server %s/%s. Aborting.\n",
s->proxy->id, s->id);
s->result = -1;
}
}
else if (s->proxy->options & PR_O_BIND_SRC) {
setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *) &one, sizeof(one));
if (bind(fd, (struct sockaddr *)&s->proxy->source_addr, sizeof(s->proxy->source_addr)) == -1) {
Alert("Cannot bind to source address before connect() for proxy %s. Aborting.\n",
s->proxy->id);
s->result = -1;
}
}
if (!s->result) {
if ((connect(fd, (struct sockaddr *)&sa, sizeof(sa)) != -1) || (errno == EINPROGRESS)) {
/* OK, connection in progress or established */
//fprintf(stderr, "process_chk: 4\n");
s->curfd = fd; /* that's how we know a test is in progress ;-) */
fdtab[fd].owner = t;
fdtab[fd].read = &event_srv_chk_r;
fdtab[fd].write = &event_srv_chk_w;
fdtab[fd].state = FD_STCONN; /* connection in progress */
FD_SET(fd, StaticWriteEvent); /* for connect status */
#ifdef DEBUG_FULL
assert (!FD_ISSET(fd, StaticReadEvent));
#endif
fd_insert(fd);
/* FIXME: we allow up to <inter> for a connection to establish, but we should use another parameter */
tv_delayfrom(&t->expire, &now, s->inter);
task_queue(t); /* restore t to its place in the task list */
return tv_remain(&now, &t->expire);
}
else if (errno != EALREADY && errno != EISCONN && errno != EAGAIN) {
s->result = -1; /* a real error */
}
}
}
close(fd); /* socket creation error */
}
if (!s->result) { /* nothing done */
//fprintf(stderr, "process_chk: 6\n");
while (tv_cmp2_ms(&t->expire, &now) <= 0)
tv_delayfrom(&t->expire, &t->expire, s->inter);
goto new_chk; /* may be we should initialize a new check */
}
/* here, we have seen a failure */
if (s->health > s->rise) {
s->health--; /* still good */
s->failed_checks++;
}
else
set_server_down(s);
//fprintf(stderr, "process_chk: 7\n");
/* FIXME: we allow up to <inter> for a connection to establish, but we should use another parameter */
while (tv_cmp2_ms(&t->expire, &now) <= 0)
tv_delayfrom(&t->expire, &t->expire, s->inter);
goto new_chk;
}
else {
//fprintf(stderr, "process_chk: 8\n");
/* there was a test running */
if (s->result > 0) { /* good server detected */
//fprintf(stderr, "process_chk: 9\n");
s->health++; /* was bad, stays for a while */
if (s->health >= s->rise) {
s->state |= SRV_RUNNING;
if (s->health == s->rise) {
int xferred;
recount_servers(s->proxy);
recalc_server_map(s->proxy);
/* check if we can handle some connections queued at the proxy. We
* will take as many as we can handle.
*/
for (xferred = 0; !s->maxconn || xferred < srv_dynamic_maxconn(s); xferred++) {
struct session *sess;
struct pendconn *p;
p = pendconn_from_px(s->proxy);
if (!p)
break;
p->sess->srv = s;
sess = p->sess;
pendconn_free(p);
task_wakeup(&rq, sess->task);
}
sprintf(trash,
"%sServer %s/%s is UP. %d active and %d backup servers online.%s"
" %d sessions requeued, %d total in queue.\n",
s->state & SRV_BACKUP ? "Backup " : "",
s->proxy->id, s->id, s->proxy->srv_act, s->proxy->srv_bck,
(s->proxy->srv_bck && !s->proxy->srv_act) ? " Running on backup." : "",
xferred, s->nbpend);
Warning("%s", trash);
send_log(s->proxy, LOG_NOTICE, "%s", trash);
}
s->health = s->rise + s->fall - 1; /* OK now */
}
s->curfd = -1; /* no check running anymore */
//FD_CLR(fd, StaticWriteEvent);
fd_delete(fd);
while (tv_cmp2_ms(&t->expire, &now) <= 0)
tv_delayfrom(&t->expire, &t->expire, s->inter);
goto new_chk;
}
else if (s->result < 0 || tv_cmp2_ms(&t->expire, &now) <= 0) {
//fprintf(stderr, "process_chk: 10\n");
/* failure or timeout detected */
if (s->health > s->rise) {
s->health--; /* still good */
s->failed_checks++;
}
else
set_server_down(s);
s->curfd = -1;
//FD_CLR(fd, StaticWriteEvent);
fd_delete(fd);
while (tv_cmp2_ms(&t->expire, &now) <= 0)
tv_delayfrom(&t->expire, &t->expire, s->inter);
goto new_chk;
}
/* if result is 0 and there's no timeout, we have to wait again */
}
//fprintf(stderr, "process_chk: 11\n");
s->result = 0;
task_queue(t); /* restore t to its place in the task list */
return tv_remain2(&now, &t->expire);
}
/*
* Manages a server's connection queue. If woken up, will try to dequeue as
* many pending sessions as possible, and wake them up. The task has nothing
* else to do, so it always returns TIME_ETERNITY.
*/
int process_srv_queue(struct task *t) {
struct server *s = (struct server*)t->context;
struct proxy *p = s->proxy;
int xferred;
/* First, check if we can handle some connections queued at the proxy. We
* will take as many as we can handle.
*/
for (xferred = 0; s->cur_sess + xferred < srv_dynamic_maxconn(s); xferred++) {
struct session *sess;
sess = pendconn_get_next_sess(s, p);
if (sess == NULL)
break;
task_wakeup(&rq, sess->task);
}
return TIME_ETERNITY;
}
#if STATTIME > 0
int stats(void);
#endif
/*
* This does 4 things :
* - wake up all expired tasks
* - call all runnable tasks
* - call maintain_proxies() to enable/disable the listeners
* - return the delay till next event in ms, -1 = wait indefinitely
* Note: this part should be rewritten with the O(ln(n)) scheduler.
*
*/
int process_runnable_tasks() {
int next_time;
int time2;
struct task *t, *tnext;
next_time = TIME_ETERNITY; /* set the timer to wait eternally first */
/* look for expired tasks and add them to the run queue.
*/
tnext = ((struct task *)LIST_HEAD(wait_queue[0]))->next;
while ((t = tnext) != LIST_HEAD(wait_queue[0])) { /* we haven't looped ? */
tnext = t->next;
if (t->state & TASK_RUNNING)
continue;
if (tv_iseternity(&t->expire))
continue;
/* wakeup expired entries. It doesn't matter if they are
* already running because of a previous event
*/
if (tv_cmp_ms(&t->expire, &now) <= 0) {
task_wakeup(&rq, t);
}
else {
/* first non-runnable task. Use its expiration date as an upper bound */
int temp_time = tv_remain(&now, &t->expire);
if (temp_time)
next_time = temp_time;
break;
}
}
/* process each task in the run queue now. Each task may be deleted
* since we only use the run queue's head. Note that any task can be
* woken up by any other task and it will be processed immediately
* after as it will be queued on the run queue's head.
*/
while ((t = rq) != NULL) {
int temp_time;
task_sleep(&rq, t);
temp_time = t->process(t);
next_time = MINTIME(temp_time, next_time);
}
/* maintain all proxies in a consistent state. This should quickly become a task */
time2 = maintain_proxies();
return MINTIME(time2, next_time);
}
#if defined(ENABLE_EPOLL)
/*
* Main epoll() loop.
*/
/* does 3 actions :
* 0 (POLL_LOOP_ACTION_INIT) : initializes necessary private structures
* 1 (POLL_LOOP_ACTION_RUN) : runs the loop
* 2 (POLL_LOOP_ACTION_CLEAN) : cleans up
*
* returns 0 if initialization failed, !0 otherwise.
*/
int epoll_loop(int action) {
int next_time;
int status;
int fd;
int fds, count;
int pr, pw, sr, sw;
unsigned rn, ro, wn, wo; /* read new, read old, write new, write old */
struct epoll_event ev;
/* private data */
static struct epoll_event *epoll_events = NULL;
static int epoll_fd;
if (action == POLL_LOOP_ACTION_INIT) {
epoll_fd = epoll_create(global.maxsock + 1);
if (epoll_fd < 0)
return 0;
else {
epoll_events = (struct epoll_event*)
calloc(1, sizeof(struct epoll_event) * global.maxsock);
PrevReadEvent = (fd_set *)
calloc(1, sizeof(fd_set) * (global.maxsock + FD_SETSIZE - 1) / FD_SETSIZE);
PrevWriteEvent = (fd_set *)
calloc(1, sizeof(fd_set) * (global.maxsock + FD_SETSIZE - 1) / FD_SETSIZE);
}
return 1;
}
else if (action == POLL_LOOP_ACTION_CLEAN) {
if (PrevWriteEvent) free(PrevWriteEvent);
if (PrevReadEvent) free(PrevReadEvent);
if (epoll_events) free(epoll_events);
close(epoll_fd);
epoll_fd = 0;
return 1;
}
/* OK, it's POLL_LOOP_ACTION_RUN */
tv_now(&now);
while (1) {
next_time = process_runnable_tasks();
/* stop when there's no connection left and we don't allow them anymore */
if (!actconn && listeners == 0)
break;
#if STATTIME > 0
{
int time2;
time2 = stats();
next_time = MINTIME(time2, next_time);
}
#endif
for (fds = 0; (fds << INTBITS) < maxfd; fds++) {
rn = ((int*)StaticReadEvent)[fds]; ro = ((int*)PrevReadEvent)[fds];
wn = ((int*)StaticWriteEvent)[fds]; wo = ((int*)PrevWriteEvent)[fds];
if ((ro^rn) | (wo^wn)) {
for (count = 0, fd = fds << INTBITS; count < (1<<INTBITS) && fd < maxfd; count++, fd++) {
#define FDSETS_ARE_INT_ALIGNED
#ifdef FDSETS_ARE_INT_ALIGNED
#define WE_REALLY_NOW_THAT_FDSETS_ARE_INTS
#ifdef WE_REALLY_NOW_THAT_FDSETS_ARE_INTS
pr = (ro >> count) & 1;
pw = (wo >> count) & 1;
sr = (rn >> count) & 1;
sw = (wn >> count) & 1;
#else
pr = FD_ISSET(fd&((1<<INTBITS)-1), (typeof(fd_set*))&ro);
pw = FD_ISSET(fd&((1<<INTBITS)-1), (typeof(fd_set*))&wo);
sr = FD_ISSET(fd&((1<<INTBITS)-1), (typeof(fd_set*))&rn);
sw = FD_ISSET(fd&((1<<INTBITS)-1), (typeof(fd_set*))&wn);
#endif
#else
pr = FD_ISSET(fd, PrevReadEvent);
pw = FD_ISSET(fd, PrevWriteEvent);
sr = FD_ISSET(fd, StaticReadEvent);
sw = FD_ISSET(fd, StaticWriteEvent);
#endif
if (!((sr^pr) | (sw^pw)))
continue;
ev.events = (sr ? EPOLLIN : 0) | (sw ? EPOLLOUT : 0);
ev.data.fd = fd;
#ifdef EPOLL_CTL_MOD_WORKAROUND
/* I encountered a rarely reproducible problem with
* EPOLL_CTL_MOD where a modified FD (systematically
* the one in epoll_events[0], fd#7) would sometimes
* be set EPOLL_OUT while asked for a read ! This is
* with the 2.4 epoll patch. The workaround is to
* delete then recreate in case of modification.
* This is in 2.4 up to epoll-lt-0.21 but not in 2.6
* nor RHEL kernels.
*/
if ((pr | pw) && fdtab[fd].state != FD_STCLOSE)
epoll_ctl(epoll_fd, EPOLL_CTL_DEL, fd, &ev);
if ((sr | sw))
epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fd, &ev);
#else
if ((pr | pw)) {
/* the file-descriptor already exists... */
if ((sr | sw)) {
/* ...and it will still exist */
if (epoll_ctl(epoll_fd, EPOLL_CTL_MOD, fd, &ev) < 0) {
// perror("epoll_ctl(MOD)");
// exit(1);
}
} else {
/* ...and it will be removed */
if (fdtab[fd].state != FD_STCLOSE &&
epoll_ctl(epoll_fd, EPOLL_CTL_DEL, fd, &ev) < 0) {
// perror("epoll_ctl(DEL)");
// exit(1);
}
}
} else {
/* the file-descriptor did not exist, let's add it */
if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fd, &ev) < 0) {
// perror("epoll_ctl(ADD)");
// exit(1);
}
}
#endif // EPOLL_CTL_MOD_WORKAROUND
}
((int*)PrevReadEvent)[fds] = rn;
((int*)PrevWriteEvent)[fds] = wn;
}
}
/* now let's wait for events */
status = epoll_wait(epoll_fd, epoll_events, maxfd, next_time);
tv_now(&now);
for (count = 0; count < status; count++) {
fd = epoll_events[count].data.fd;
if (FD_ISSET(fd, StaticReadEvent)) {
if (fdtab[fd].state == FD_STCLOSE)
continue;
if (epoll_events[count].events & ( EPOLLIN | EPOLLERR | EPOLLHUP ))
fdtab[fd].read(fd);
}
if (FD_ISSET(fd, StaticWriteEvent)) {
if (fdtab[fd].state == FD_STCLOSE)
continue;
if (epoll_events[count].events & ( EPOLLOUT | EPOLLERR | EPOLLHUP ))
fdtab[fd].write(fd);
}
}
}
return 1;
}
#endif
#if defined(ENABLE_POLL)
/*
* Main poll() loop.
*/
/* does 3 actions :
* 0 (POLL_LOOP_ACTION_INIT) : initializes necessary private structures
* 1 (POLL_LOOP_ACTION_RUN) : runs the loop
* 2 (POLL_LOOP_ACTION_CLEAN) : cleans up
*
* returns 0 if initialization failed, !0 otherwise.
*/
int poll_loop(int action) {
int next_time;
int status;
int fd, nbfd;
int fds, count;
int sr, sw;
unsigned rn, wn; /* read new, write new */
/* private data */
static struct pollfd *poll_events = NULL;
if (action == POLL_LOOP_ACTION_INIT) {
poll_events = (struct pollfd*)
calloc(1, sizeof(struct pollfd) * global.maxsock);
return 1;
}
else if (action == POLL_LOOP_ACTION_CLEAN) {
if (poll_events)
free(poll_events);
return 1;
}
/* OK, it's POLL_LOOP_ACTION_RUN */
tv_now(&now);
while (1) {
next_time = process_runnable_tasks();
/* stop when there's no connection left and we don't allow them anymore */
if (!actconn && listeners == 0)
break;
#if STATTIME > 0
{
int time2;
time2 = stats();
next_time = MINTIME(time2, next_time);
}
#endif
nbfd = 0;
for (fds = 0; (fds << INTBITS) < maxfd; fds++) {
rn = ((int*)StaticReadEvent)[fds];
wn = ((int*)StaticWriteEvent)[fds];
if ((rn|wn)) {
for (count = 0, fd = fds << INTBITS; count < (1<<INTBITS) && fd < maxfd; count++, fd++) {
#define FDSETS_ARE_INT_ALIGNED
#ifdef FDSETS_ARE_INT_ALIGNED
#define WE_REALLY_NOW_THAT_FDSETS_ARE_INTS
#ifdef WE_REALLY_NOW_THAT_FDSETS_ARE_INTS
sr = (rn >> count) & 1;
sw = (wn >> count) & 1;
#else
sr = FD_ISSET(fd&((1<<INTBITS)-1), (typeof(fd_set*))&rn);
sw = FD_ISSET(fd&((1<<INTBITS)-1), (typeof(fd_set*))&wn);
#endif
#else
sr = FD_ISSET(fd, StaticReadEvent);
sw = FD_ISSET(fd, StaticWriteEvent);
#endif
if ((sr|sw)) {
poll_events[nbfd].fd = fd;
poll_events[nbfd].events = (sr ? POLLIN : 0) | (sw ? POLLOUT : 0);
nbfd++;
}
}
}
}
/* now let's wait for events */
status = poll(poll_events, nbfd, next_time);
tv_now(&now);
for (count = 0; status > 0 && count < nbfd; count++) {
fd = poll_events[count].fd;
if (!(poll_events[count].revents & ( POLLOUT | POLLIN | POLLERR | POLLHUP )))
continue;
/* ok, we found one active fd */
status--;
if (FD_ISSET(fd, StaticReadEvent)) {
if (fdtab[fd].state == FD_STCLOSE)
continue;
if (poll_events[count].revents & ( POLLIN | POLLERR | POLLHUP ))
fdtab[fd].read(fd);
}
if (FD_ISSET(fd, StaticWriteEvent)) {
if (fdtab[fd].state == FD_STCLOSE)
continue;
if (poll_events[count].revents & ( POLLOUT | POLLERR | POLLHUP ))
fdtab[fd].write(fd);
}
}
}
return 1;
}
#endif
/*
* Main select() loop.
*/
/* does 3 actions :
* 0 (POLL_LOOP_ACTION_INIT) : initializes necessary private structures
* 1 (POLL_LOOP_ACTION_RUN) : runs the loop
* 2 (POLL_LOOP_ACTION_CLEAN) : cleans up
*
* returns 0 if initialization failed, !0 otherwise.
*/
int select_loop(int action) {
int next_time;
int status;
int fd,i;
struct timeval delta;
int readnotnull, writenotnull;
static fd_set *ReadEvent = NULL, *WriteEvent = NULL;
if (action == POLL_LOOP_ACTION_INIT) {
ReadEvent = (fd_set *)
calloc(1, sizeof(fd_set) * (global.maxsock + FD_SETSIZE - 1) / FD_SETSIZE);
WriteEvent = (fd_set *)
calloc(1, sizeof(fd_set) * (global.maxsock + FD_SETSIZE - 1) / FD_SETSIZE);
return 1;
}
else if (action == POLL_LOOP_ACTION_CLEAN) {
if (WriteEvent) free(WriteEvent);
if (ReadEvent) free(ReadEvent);
return 1;
}
/* OK, it's POLL_LOOP_ACTION_RUN */
tv_now(&now);
while (1) {
next_time = process_runnable_tasks();
/* stop when there's no connection left and we don't allow them anymore */
if (!actconn && listeners == 0)
break;
#if STATTIME > 0
{
int time2;
time2 = stats();
next_time = MINTIME(time2, next_time);
}
#endif
if (next_time > 0) { /* FIXME */
/* Convert to timeval */
/* to avoid eventual select loops due to timer precision */
next_time += SCHEDULER_RESOLUTION;
delta.tv_sec = next_time / 1000;
delta.tv_usec = (next_time % 1000) * 1000;
}
else if (next_time == 0) { /* allow select to return immediately when needed */
delta.tv_sec = delta.tv_usec = 0;
}
/* let's restore fdset state */
readnotnull = 0; writenotnull = 0;
for (i = 0; i < (maxfd + FD_SETSIZE - 1)/(8*sizeof(int)); i++) {
readnotnull |= (*(((int*)ReadEvent)+i) = *(((int*)StaticReadEvent)+i)) != 0;
writenotnull |= (*(((int*)WriteEvent)+i) = *(((int*)StaticWriteEvent)+i)) != 0;
}
// /* just a verification code, needs to be removed for performance */
// for (i=0; i<maxfd; i++) {
// if (FD_ISSET(i, ReadEvent) != FD_ISSET(i, StaticReadEvent))
// abort();
// if (FD_ISSET(i, WriteEvent) != FD_ISSET(i, StaticWriteEvent))
// abort();
//
// }
status = select(maxfd,
readnotnull ? ReadEvent : NULL,
writenotnull ? WriteEvent : NULL,
NULL,
(next_time >= 0) ? &delta : NULL);
/* this is an experiment on the separation of the select work */
// status = (readnotnull ? select(maxfd, ReadEvent, NULL, NULL, (next_time >= 0) ? &delta : NULL) : 0);
// status |= (writenotnull ? select(maxfd, NULL, WriteEvent, NULL, (next_time >= 0) ? &delta : NULL) : 0);
tv_now(&now);
if (status > 0) { /* must proceed with events */
int fds;
char count;
for (fds = 0; (fds << INTBITS) < maxfd; fds++)
if ((((int *)(ReadEvent))[fds] | ((int *)(WriteEvent))[fds]) != 0)
for (count = 1<<INTBITS, fd = fds << INTBITS; count && fd < maxfd; count--, fd++) {
/* if we specify read first, the accepts and zero reads will be
* seen first. Moreover, system buffers will be flushed faster.
*/
if (FD_ISSET(fd, ReadEvent)) {
if (fdtab[fd].state == FD_STCLOSE)
continue;
fdtab[fd].read(fd);
}
if (FD_ISSET(fd, WriteEvent)) {
if (fdtab[fd].state == FD_STCLOSE)
continue;
fdtab[fd].write(fd);
}
}
}
else {
// fprintf(stderr,"select returned %d, maxfd=%d\n", status, maxfd);
}
}
return 1;
}
#if STATTIME > 0
/*
* Display proxy statistics regularly. It is designed to be called from the
* select_loop().
*/
int stats(void) {
static int lines;
static struct timeval nextevt;
static struct timeval lastevt;
static struct timeval starttime = {0,0};
unsigned long totaltime, deltatime;
int ret;
if (tv_cmp(&now, &nextevt) > 0) {
deltatime = (tv_diff(&lastevt, &now)?:1);
totaltime = (tv_diff(&starttime, &now)?:1);
if (global.mode & MODE_STATS) {
if ((lines++ % 16 == 0) && !(global.mode & MODE_LOG))
qfprintf(stderr,
"\n active total tsknew tskgood tskleft tskrght tsknsch tsklsch tskrsch\n");
if (lines>1) {
qfprintf(stderr,"%07d %07d %07d %07d %07d %07d %07d %07d %07d\n",
actconn, totalconn,
stats_tsk_new, stats_tsk_good,
stats_tsk_left, stats_tsk_right,
stats_tsk_nsrch, stats_tsk_lsrch, stats_tsk_rsrch);
}
}
tv_delayfrom(&nextevt, &now, STATTIME);
lastevt=now;
}
ret = tv_remain(&now, &nextevt);
return ret;
}
#endif
/*
* this function enables proxies when there are enough free sessions,
* or stops them when the table is full. It is designed to be called from the
* select_loop(). It returns the time left before next expiration event
* during stop time, TIME_ETERNITY otherwise.
*/
static int maintain_proxies(void) {
struct proxy *p;
struct listener *l;
int tleft; /* time left */
p = proxy;
tleft = TIME_ETERNITY; /* infinite time */
/* if there are enough free sessions, we'll activate proxies */
if (actconn < global.maxconn) {
while (p) {
if (p->nbconn < p->maxconn) {
if (p->state == PR_STIDLE) {
for (l = p->listen; l != NULL; l = l->next) {
FD_SET(l->fd, StaticReadEvent);
}
p->state = PR_STRUN;
}
}
else {
if (p->state == PR_STRUN) {
for (l = p->listen; l != NULL; l = l->next) {
FD_CLR(l->fd, StaticReadEvent);
}
p->state = PR_STIDLE;
}
}
p = p->next;
}
}
else { /* block all proxies */
while (p) {
if (p->state == PR_STRUN) {
for (l = p->listen; l != NULL; l = l->next) {
FD_CLR(l->fd, StaticReadEvent);
}
p->state = PR_STIDLE;
}
p = p->next;
}
}
if (stopping) {
p = proxy;
while (p) {
if (p->state != PR_STSTOPPED) {
int t;
t = tv_remain2(&now, &p->stop_time);
if (t == 0) {
Warning("Proxy %s stopped.\n", p->id);
send_log(p, LOG_WARNING, "Proxy %s stopped.\n", p->id);
for (l = p->listen; l != NULL; l = l->next) {
fd_delete(l->fd);
listeners--;
}
p->state = PR_STSTOPPED;
}
else {
tleft = MINTIME(t, tleft);
}
}
p = p->next;
}
}
return tleft;
}
/*
* this function disables health-check servers so that the process will quickly be ignored
* by load balancers. Note that if a proxy was already in the PAUSED state, then its grace
* time will not be used since it would already not listen anymore to the socket.
*/
static void soft_stop(void) {
struct proxy *p;
stopping = 1;
p = proxy;
tv_now(&now); /* else, the old time before select will be used */
while (p) {
if (p->state != PR_STSTOPPED) {
Warning("Stopping proxy %s in %d ms.\n", p->id, p->grace);
send_log(p, LOG_WARNING, "Stopping proxy %s in %d ms.\n", p->id, p->grace);
tv_delayfrom(&p->stop_time, &now, p->grace);
}
p = p->next;
}
}
/*
* Linux unbinds the listen socket after a SHUT_RD, and ignores SHUT_WR.
* Solaris refuses either shutdown().
* OpenBSD ignores SHUT_RD but closes upon SHUT_WR and refuses to rebind.
* So a common validation path involves SHUT_WR && listen && SHUT_RD.
* If disabling at least one listener returns an error, then the proxy
* state is set to PR_STERROR because we don't know how to resume from this.
*/
static void pause_proxy(struct proxy *p) {
struct listener *l;
for (l = p->listen; l != NULL; l = l->next) {
if (shutdown(l->fd, SHUT_WR) == 0 && listen(l->fd, p->maxconn) == 0 &&
shutdown(l->fd, SHUT_RD) == 0) {
FD_CLR(l->fd, StaticReadEvent);
if (p->state != PR_STERROR)
p->state = PR_STPAUSED;
}
else
p->state = PR_STERROR;
}
}
/*
* This function temporarily disables listening so that another new instance
* can start listening. It is designed to be called upon reception of a
* SIGTTOU, after which either a SIGUSR1 can be sent to completely stop
* the proxy, or a SIGTTIN can be sent to listen again.
*/
static void pause_proxies(void) {
int err;
struct proxy *p;
err = 0;
p = proxy;
tv_now(&now); /* else, the old time before select will be used */
while (p) {
if (p->state != PR_STERROR && p->state != PR_STSTOPPED && p->state != PR_STPAUSED) {
Warning("Pausing proxy %s.\n", p->id);
send_log(p, LOG_WARNING, "Pausing proxy %s.\n", p->id);
pause_proxy(p);
if (p->state != PR_STPAUSED) {
err |= 1;
Warning("Proxy %s failed to enter pause mode.\n", p->id);
send_log(p, LOG_WARNING, "Proxy %s failed to enter pause mode.\n", p->id);
}
}
p = p->next;
}
if (err) {
Warning("Some proxies refused to pause, performing soft stop now.\n");
send_log(p, LOG_WARNING, "Some proxies refused to pause, performing soft stop now.\n");
soft_stop();
}
}
/*
* This function reactivates listening. This can be used after a call to
* sig_pause(), for example when a new instance has failed starting up.
* It is designed to be called upon reception of a SIGTTIN.
*/
static void listen_proxies(void) {
struct proxy *p;
struct listener *l;
p = proxy;
tv_now(&now); /* else, the old time before select will be used */
while (p) {
if (p->state == PR_STPAUSED) {
Warning("Enabling proxy %s.\n", p->id);
send_log(p, LOG_WARNING, "Enabling proxy %s.\n", p->id);
for (l = p->listen; l != NULL; l = l->next) {
if (listen(l->fd, p->maxconn) == 0) {
if (actconn < global.maxconn && p->nbconn < p->maxconn) {
FD_SET(l->fd, StaticReadEvent);
p->state = PR_STRUN;
}
else
p->state = PR_STIDLE;
} else {
int port;
if (l->addr.ss_family == AF_INET6)
port = ntohs(((struct sockaddr_in6 *)(&l->addr))->sin6_port);
else
port = ntohs(((struct sockaddr_in *)(&l->addr))->sin_port);
Warning("Port %d busy while trying to enable proxy %s.\n",
port, p->id);
send_log(p, LOG_WARNING, "Port %d busy while trying to enable proxy %s.\n",
port, p->id);
/* Another port might have been enabled. Let's stop everything. */
pause_proxy(p);
break;
}
}
}
p = p->next;
}
}
/*
* upon SIGUSR1, let's have a soft stop.
*/
void sig_soft_stop(int sig) {
soft_stop();
signal(sig, SIG_IGN);
}
/*
* upon SIGTTOU, we pause everything
*/
void sig_pause(int sig) {
pause_proxies();
signal(sig, sig_pause);
}
/*
* upon SIGTTIN, let's have a soft stop.
*/
void sig_listen(int sig) {
listen_proxies();
signal(sig, sig_listen);
}
/*
* this function dumps every server's state when the process receives SIGHUP.
*/
void sig_dump_state(int sig) {
struct proxy *p = proxy;
Warning("SIGHUP received, dumping servers states.\n");
while (p) {
struct server *s = p->srv;
send_log(p, LOG_NOTICE, "SIGHUP received, dumping servers states for proxy %s.\n", p->id);
while (s) {
snprintf(trash, sizeof(trash),
"SIGHUP: Server %s/%s is %s. Conn: %d act, %d pend, %d tot.",
p->id, s->id,
(s->state & SRV_RUNNING) ? "UP" : "DOWN",
s->cur_sess, s->nbpend, s->cum_sess);
Warning("%s\n", trash);
send_log(p, LOG_NOTICE, "%s\n", trash);
s = s->next;
}
if (p->srv_act == 0) {
snprintf(trash, sizeof(trash),
"SIGHUP: Proxy %s %s ! Conn: %d act, %d pend (%d unass), %d tot.",
p->id,
(p->srv_bck) ? "is running on backup servers" : "has no server available",
p->nbconn, p->totpend, p->nbpend, p->cum_conn);
} else {
snprintf(trash, sizeof(trash),
"SIGHUP: Proxy %s has %d active servers and %d backup servers available."
" Conn: %d act, %d pend (%d unass), %d tot.",
p->id, p->srv_act, p->srv_bck,
p->nbconn, p->totpend, p->nbpend, p->cum_conn);
}
Warning("%s\n", trash);
send_log(p, LOG_NOTICE, "%s\n", trash);
p = p->next;
}
signal(sig, sig_dump_state);
}
void dump(int sig) {
struct task *t, *tnext;
struct session *s;
tnext = ((struct task *)LIST_HEAD(wait_queue[0]))->next;
while ((t = tnext) != LIST_HEAD(wait_queue[0])) { /* we haven't looped ? */
tnext = t->next;
s = t->context;
qfprintf(stderr,"[dump] wq: task %p, still %ld ms, "
"cli=%d, srv=%d, cr=%d, cw=%d, sr=%d, sw=%d, "
"req=%d, rep=%d, clifd=%d\n",
s, tv_remain(&now, &t->expire),
s->cli_state,
s->srv_state,
FD_ISSET(s->cli_fd, StaticReadEvent),
FD_ISSET(s->cli_fd, StaticWriteEvent),
FD_ISSET(s->srv_fd, StaticReadEvent),
FD_ISSET(s->srv_fd, StaticWriteEvent),
s->req->l, s->rep?s->rep->l:0, s->cli_fd
);
}
}
#ifdef DEBUG_MEMORY
static void fast_stop(void)
{
struct proxy *p;
p = proxy;
while (p) {
p->grace = 0;
p = p->next;
}
soft_stop();
}
void sig_int(int sig) {
/* This would normally be a hard stop,
but we want to be sure about deallocation,
and so on, so we do a soft stop with
0 GRACE time
*/
fast_stop();
/* If we are killed twice, we decide to die*/
signal(sig, SIG_DFL);
}
void sig_term(int sig) {
/* This would normally be a hard stop,
but we want to be sure about deallocation,
and so on, so we do a soft stop with
0 GRACE time
*/
fast_stop();
/* If we are killed twice, we decide to die*/
signal(sig, SIG_DFL);
}
#endif
/* returns the pointer to an error in the replacement string, or NULL if OK */
char *chain_regex(struct hdr_exp **head, regex_t *preg, int action, char *replace) {
struct hdr_exp *exp;
if (replace != NULL) {
char *err;
err = check_replace_string(replace);
if (err)
return err;
}
while (*head != NULL)
head = &(*head)->next;
exp = calloc(1, sizeof(struct hdr_exp));
exp->preg = preg;
exp->replace = replace;
exp->action = action;
*head = exp;
return NULL;
}
/*
* parse a line in a <global> section. Returns 0 if OK, -1 if error.
*/
int cfg_parse_global(char *file, int linenum, char **args) {
if (!strcmp(args[0], "global")) { /* new section */
/* no option, nothing special to do */
return 0;
}
else if (!strcmp(args[0], "daemon")) {
global.mode |= MODE_DAEMON;
}
else if (!strcmp(args[0], "debug")) {
global.mode |= MODE_DEBUG;
}
else if (!strcmp(args[0], "noepoll")) {
cfg_polling_mechanism &= ~POLL_USE_EPOLL;
}
else if (!strcmp(args[0], "nopoll")) {
cfg_polling_mechanism &= ~POLL_USE_POLL;
}
else if (!strcmp(args[0], "quiet")) {
global.mode |= MODE_QUIET;
}
else if (!strcmp(args[0], "stats")) {
global.mode |= MODE_STATS;
}
else if (!strcmp(args[0], "uid")) {
if (global.uid != 0) {
Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", file, linenum, args[0]);
return 0;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects an integer argument.\n", file, linenum, args[0]);
return -1;
}
global.uid = atol(args[1]);
}
else if (!strcmp(args[0], "gid")) {
if (global.gid != 0) {
Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", file, linenum, args[0]);
return 0;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects an integer argument.\n", file, linenum, args[0]);
return -1;
}
global.gid = atol(args[1]);
}
else if (!strcmp(args[0], "nbproc")) {
if (global.nbproc != 0) {
Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", file, linenum, args[0]);
return 0;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects an integer argument.\n", file, linenum, args[0]);
return -1;
}
global.nbproc = atol(args[1]);
}
else if (!strcmp(args[0], "maxconn")) {
if (global.maxconn != 0) {
Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", file, linenum, args[0]);
return 0;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects an integer argument.\n", file, linenum, args[0]);
return -1;
}
global.maxconn = atol(args[1]);
#ifdef SYSTEM_MAXCONN
if (global.maxconn > DEFAULT_MAXCONN && cfg_maxconn <= DEFAULT_MAXCONN) {
Alert("parsing [%s:%d] : maxconn value %d too high for this system.\nLimiting to %d. Please use '-n' to force the value.\n", file, linenum, global.maxconn, DEFAULT_MAXCONN);
global.maxconn = DEFAULT_MAXCONN;
}
#endif /* SYSTEM_MAXCONN */
}
else if (!strcmp(args[0], "ulimit-n")) {
if (global.rlimit_nofile != 0) {
Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", file, linenum, args[0]);
return 0;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects an integer argument.\n", file, linenum, args[0]);
return -1;
}
global.rlimit_nofile = atol(args[1]);
}
else if (!strcmp(args[0], "chroot")) {
if (global.chroot != NULL) {
Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", file, linenum, args[0]);
return 0;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects a directory as an argument.\n", file, linenum, args[0]);
return -1;
}
global.chroot = strdup(args[1]);
}
else if (!strcmp(args[0], "pidfile")) {
if (global.pidfile != NULL) {
Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", file, linenum, args[0]);
return 0;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects a file name as an argument.\n", file, linenum, args[0]);
return -1;
}
global.pidfile = strdup(args[1]);
}
else if (!strcmp(args[0], "log")) { /* syslog server address */
struct sockaddr_in *sa;
int facility, level;
if (*(args[1]) == 0 || *(args[2]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <address> and <facility> as arguments.\n", file, linenum, args[0]);
return -1;
}
for (facility = 0; facility < NB_LOG_FACILITIES; facility++)
if (!strcmp(log_facilities[facility], args[2]))
break;
if (facility >= NB_LOG_FACILITIES) {
Alert("parsing [%s:%d] : unknown log facility '%s'\n", file, linenum, args[2]);
exit(1);
}
level = 7; /* max syslog level = debug */
if (*(args[3])) {
while (level >= 0 && strcmp(log_levels[level], args[3]))
level--;
if (level < 0) {
Alert("parsing [%s:%d] : unknown optional log level '%s'\n", file, linenum, args[3]);
exit(1);
}
}
sa = str2sa(args[1]);
if (!sa->sin_port)
sa->sin_port = htons(SYSLOG_PORT);
if (global.logfac1 == -1) {
global.logsrv1 = *sa;
global.logfac1 = facility;
global.loglev1 = level;
}
else if (global.logfac2 == -1) {
global.logsrv2 = *sa;
global.logfac2 = facility;
global.loglev2 = level;
}
else {
Alert("parsing [%s:%d] : too many syslog servers\n", file, linenum);
return -1;
}
}
else {
Alert("parsing [%s:%d] : unknown keyword '%s' in '%s' section\n", file, linenum, args[0], "global");
return -1;
}
return 0;
}
void init_default_instance() {
memset(&defproxy, 0, sizeof(defproxy));
defproxy.mode = PR_MODE_TCP;
defproxy.state = PR_STNEW;
defproxy.maxconn = cfg_maxpconn;
defproxy.conn_retries = CONN_RETRIES;
defproxy.logfac1 = defproxy.logfac2 = -1; /* log disabled */
}
/*
* parse a line in a <listen> section. Returns 0 if OK, -1 if error.
*/
int cfg_parse_listen(char *file, int linenum, char **args) {
static struct proxy *curproxy = NULL;
struct server *newsrv = NULL;
char *err;
int rc;
if (!strcmp(args[0], "listen")) { /* new proxy */
if (!*args[1]) {
Alert("parsing [%s:%d] : '%s' expects an <id> argument and\n"
" optionnally supports [addr1]:port1[-end1]{,[addr]:port[-end]}...\n",
file, linenum, args[0]);
return -1;
}
if ((curproxy = (struct proxy *)calloc(1, sizeof(struct proxy))) == NULL) {
Alert("parsing [%s:%d] : out of memory.\n", file, linenum);
return -1;
}
curproxy->next = proxy;
proxy = curproxy;
LIST_INIT(&curproxy->pendconns);
curproxy->id = strdup(args[1]);
/* parse the listener address if any */
if (*args[2]) {
curproxy->listen = str2listener(args[2], curproxy->listen);
if (!curproxy->listen)
return -1;
global.maxsock++;
}
/* set default values */
curproxy->state = defproxy.state;
curproxy->maxconn = defproxy.maxconn;
curproxy->conn_retries = defproxy.conn_retries;
curproxy->options = defproxy.options;
if (defproxy.check_req)
curproxy->check_req = strdup(defproxy.check_req);
curproxy->check_len = defproxy.check_len;
if (defproxy.cookie_name)
curproxy->cookie_name = strdup(defproxy.cookie_name);
curproxy->cookie_len = defproxy.cookie_len;
if (defproxy.capture_name)
curproxy->capture_name = strdup(defproxy.capture_name);
curproxy->capture_namelen = defproxy.capture_namelen;
curproxy->capture_len = defproxy.capture_len;
if (defproxy.errmsg.msg400)
curproxy->errmsg.msg400 = strdup(defproxy.errmsg.msg400);
curproxy->errmsg.len400 = defproxy.errmsg.len400;
if (defproxy.errmsg.msg403)
curproxy->errmsg.msg403 = strdup(defproxy.errmsg.msg403);
curproxy->errmsg.len403 = defproxy.errmsg.len403;
if (defproxy.errmsg.msg408)
curproxy->errmsg.msg408 = strdup(defproxy.errmsg.msg408);
curproxy->errmsg.len408 = defproxy.errmsg.len408;
if (defproxy.errmsg.msg500)
curproxy->errmsg.msg500 = strdup(defproxy.errmsg.msg500);
curproxy->errmsg.len500 = defproxy.errmsg.len500;
if (defproxy.errmsg.msg502)
curproxy->errmsg.msg502 = strdup(defproxy.errmsg.msg502);
curproxy->errmsg.len502 = defproxy.errmsg.len502;
if (defproxy.errmsg.msg503)
curproxy->errmsg.msg503 = strdup(defproxy.errmsg.msg503);
curproxy->errmsg.len503 = defproxy.errmsg.len503;
if (defproxy.errmsg.msg504)
curproxy->errmsg.msg504 = strdup(defproxy.errmsg.msg504);
curproxy->errmsg.len504 = defproxy.errmsg.len504;
curproxy->clitimeout = defproxy.clitimeout;
curproxy->contimeout = defproxy.contimeout;
curproxy->srvtimeout = defproxy.srvtimeout;
curproxy->mode = defproxy.mode;
curproxy->logfac1 = defproxy.logfac1;
curproxy->logsrv1 = defproxy.logsrv1;
curproxy->loglev1 = defproxy.loglev1;
curproxy->logfac2 = defproxy.logfac2;
curproxy->logsrv2 = defproxy.logsrv2;
curproxy->loglev2 = defproxy.loglev2;
curproxy->to_log = defproxy.to_log & ~LW_COOKIE & ~LW_REQHDR & ~ LW_RSPHDR;
curproxy->grace = defproxy.grace;
curproxy->uri_auth = defproxy.uri_auth;
curproxy->source_addr = defproxy.source_addr;
curproxy->mon_net = defproxy.mon_net;
curproxy->mon_mask = defproxy.mon_mask;
return 0;
}
else if (!strcmp(args[0], "defaults")) { /* use this one to assign default values */
/* some variables may have already been initialized earlier */
if (defproxy.check_req) free(defproxy.check_req);
if (defproxy.cookie_name) free(defproxy.cookie_name);
if (defproxy.capture_name) free(defproxy.capture_name);
if (defproxy.errmsg.msg400) free(defproxy.errmsg.msg400);
if (defproxy.errmsg.msg403) free(defproxy.errmsg.msg403);
if (defproxy.errmsg.msg408) free(defproxy.errmsg.msg408);
if (defproxy.errmsg.msg500) free(defproxy.errmsg.msg500);
if (defproxy.errmsg.msg502) free(defproxy.errmsg.msg502);
if (defproxy.errmsg.msg503) free(defproxy.errmsg.msg503);
if (defproxy.errmsg.msg504) free(defproxy.errmsg.msg504);
/* we cannot free uri_auth because it might already be used */
init_default_instance();
curproxy = &defproxy;
return 0;
}
else if (curproxy == NULL) {
Alert("parsing [%s:%d] : 'listen' or 'defaults' expected.\n", file, linenum);
return -1;
}
if (!strcmp(args[0], "bind")) { /* new listen addresses */
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (strchr(args[1], ':') == NULL) {
Alert("parsing [%s:%d] : '%s' expects [addr1]:port1[-end1]{,[addr]:port[-end]}... as arguments.\n",
file, linenum, args[0]);
return -1;
}
curproxy->listen = str2listener(args[1], curproxy->listen);
if (!curproxy->listen)
return -1;
global.maxsock++;
return 0;
}
else if (!strcmp(args[0], "monitor-net")) { /* set the range of IPs to ignore */
if (!*args[1] || !str2net(args[1], &curproxy->mon_net, &curproxy->mon_mask)) {
Alert("parsing [%s:%d] : '%s' expects address[/mask].\n",
file, linenum, args[0]);
return -1;
}
/* flush useless bits */
curproxy->mon_net.s_addr &= curproxy->mon_mask.s_addr;
return 0;
}
else if (!strcmp(args[0], "mode")) { /* sets the proxy mode */
if (!strcmp(args[1], "http")) curproxy->mode = PR_MODE_HTTP;
else if (!strcmp(args[1], "tcp")) curproxy->mode = PR_MODE_TCP;
else if (!strcmp(args[1], "health")) curproxy->mode = PR_MODE_HEALTH;
else {
Alert("parsing [%s:%d] : unknown proxy mode '%s'.\n", file, linenum, args[1]);
return -1;
}
}
else if (!strcmp(args[0], "disabled")) { /* disables this proxy */
curproxy->state = PR_STSTOPPED;
}
else if (!strcmp(args[0], "enabled")) { /* enables this proxy (used to revert a disabled default) */
curproxy->state = PR_STNEW;
}
else if (!strcmp(args[0], "cookie")) { /* cookie name */
int cur_arg;
// if (curproxy == &defproxy) {
// Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
// return -1;
// }
if (curproxy->cookie_name != NULL) {
// Alert("parsing [%s:%d] : cookie name already specified. Continuing.\n",
// file, linenum);
// return 0;
free(curproxy->cookie_name);
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <cookie_name> as argument.\n",
file, linenum, args[0]);
return -1;
}
curproxy->cookie_name = strdup(args[1]);
curproxy->cookie_len = strlen(curproxy->cookie_name);
cur_arg = 2;
while (*(args[cur_arg])) {
if (!strcmp(args[cur_arg], "rewrite")) {
curproxy->options |= PR_O_COOK_RW;
}
else if (!strcmp(args[cur_arg], "indirect")) {
curproxy->options |= PR_O_COOK_IND;
}
else if (!strcmp(args[cur_arg], "insert")) {
curproxy->options |= PR_O_COOK_INS;
}
else if (!strcmp(args[cur_arg], "nocache")) {
curproxy->options |= PR_O_COOK_NOC;
}
else if (!strcmp(args[cur_arg], "postonly")) {
curproxy->options |= PR_O_COOK_POST;
}
else if (!strcmp(args[cur_arg], "prefix")) {
curproxy->options |= PR_O_COOK_PFX;
}
else {
Alert("parsing [%s:%d] : '%s' supports 'rewrite', 'insert', 'prefix', 'indirect', 'nocache' and 'postonly' options.\n",
file, linenum, args[0]);
return -1;
}
cur_arg++;
}
if (!POWEROF2(curproxy->options & (PR_O_COOK_RW|PR_O_COOK_IND))) {
Alert("parsing [%s:%d] : cookie 'rewrite' and 'indirect' modes are incompatible.\n",
file, linenum);
return -1;
}
if (!POWEROF2(curproxy->options & (PR_O_COOK_RW|PR_O_COOK_INS|PR_O_COOK_PFX))) {
Alert("parsing [%s:%d] : cookie 'rewrite', 'insert' and 'prefix' modes are incompatible.\n",
file, linenum);
return -1;
}
}/* end else if (!strcmp(args[0], "cookie")) */
else if (!strcmp(args[0], "appsession")) { /* cookie name */
// if (curproxy == &defproxy) {
// Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
// return -1;
// }
if (curproxy->appsession_name != NULL) {
// Alert("parsing [%s:%d] : cookie name already specified. Continuing.\n",
// file, linenum);
// return 0;
free(curproxy->appsession_name);
}
if (*(args[5]) == 0) {
Alert("parsing [%s:%d] : '%s' expects 'appsession' <cookie_name> 'len' <len> 'timeout' <timeout>.\n",
file, linenum, args[0]);
return -1;
}
have_appsession = 1;
curproxy->appsession_name = strdup(args[1]);
curproxy->appsession_name_len = strlen(curproxy->appsession_name);
curproxy->appsession_len = atoi(args[3]);
curproxy->appsession_timeout = atoi(args[5]);
rc = chtbl_init(&(curproxy->htbl_proxy), TBLSIZ, hashpjw, match_str, destroy);
if (rc) {
Alert("Error Init Appsession Hashtable.\n");
return -1;
}
} /* Url App Session */
else if (!strcmp(args[0], "capture")) {
if (!strcmp(args[1], "cookie")) { /* name of a cookie to capture */
// if (curproxy == &defproxy) {
// Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
// return -1;
// }
if (curproxy->capture_name != NULL) {
// Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n",
// file, linenum, args[0]);
// return 0;
free(curproxy->capture_name);
}
if (*(args[4]) == 0) {
Alert("parsing [%s:%d] : '%s' expects 'cookie' <cookie_name> 'len' <len>.\n",
file, linenum, args[0]);
return -1;
}
curproxy->capture_name = strdup(args[2]);
curproxy->capture_namelen = strlen(curproxy->capture_name);
curproxy->capture_len = atol(args[4]);
if (curproxy->capture_len >= CAPTURE_LEN) {
Warning("parsing [%s:%d] : truncating capture length to %d bytes.\n",
file, linenum, CAPTURE_LEN - 1);
curproxy->capture_len = CAPTURE_LEN - 1;
}
curproxy->to_log |= LW_COOKIE;
}
else if (!strcmp(args[1], "request") && !strcmp(args[2], "header")) {
struct cap_hdr *hdr;
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s %s' not allowed in 'defaults' section.\n", file, linenum, args[0], args[1]);
return -1;
}
if (*(args[3]) == 0 || strcmp(args[4], "len") != 0 || *(args[5]) == 0) {
Alert("parsing [%s:%d] : '%s %s' expects 'header' <header_name> 'len' <len>.\n",
file, linenum, args[0], args[1]);
return -1;
}
hdr = calloc(sizeof(struct cap_hdr), 1);
hdr->next = curproxy->req_cap;
hdr->name = strdup(args[3]);
hdr->namelen = strlen(args[3]);
hdr->len = atol(args[5]);
hdr->index = curproxy->nb_req_cap++;
curproxy->req_cap = hdr;
curproxy->to_log |= LW_REQHDR;
}
else if (!strcmp(args[1], "response") && !strcmp(args[2], "header")) {
struct cap_hdr *hdr;
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s %s' not allowed in 'defaults' section.\n", file, linenum, args[0], args[1]);
return -1;
}
if (*(args[3]) == 0 || strcmp(args[4], "len") != 0 || *(args[5]) == 0) {
Alert("parsing [%s:%d] : '%s %s' expects 'header' <header_name> 'len' <len>.\n",
file, linenum, args[0], args[1]);
return -1;
}
hdr = calloc(sizeof(struct cap_hdr), 1);
hdr->next = curproxy->rsp_cap;
hdr->name = strdup(args[3]);
hdr->namelen = strlen(args[3]);
hdr->len = atol(args[5]);
hdr->index = curproxy->nb_rsp_cap++;
curproxy->rsp_cap = hdr;
curproxy->to_log |= LW_RSPHDR;
}
else {
Alert("parsing [%s:%d] : '%s' expects 'cookie' or 'request header' or 'response header'.\n",
file, linenum, args[0]);
return -1;
}
}
else if (!strcmp(args[0], "contimeout")) { /* connect timeout */
if (curproxy->contimeout != defproxy.contimeout) {
Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", file, linenum, args[0]);
return 0;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects an integer <time_in_ms> as argument.\n",
file, linenum, args[0]);
return -1;
}
curproxy->contimeout = atol(args[1]);
}
else if (!strcmp(args[0], "clitimeout")) { /* client timeout */
if (curproxy->clitimeout != defproxy.clitimeout) {
Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n",
file, linenum, args[0]);
return 0;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects an integer <time_in_ms> as argument.\n",
file, linenum, args[0]);
return -1;
}
curproxy->clitimeout = atol(args[1]);
}
else if (!strcmp(args[0], "srvtimeout")) { /* server timeout */
if (curproxy->srvtimeout != defproxy.srvtimeout) {
Alert("parsing [%s:%d] : '%s' already specified. Continuing.\n", file, linenum, args[0]);
return 0;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects an integer <time_in_ms> as argument.\n",
file, linenum, args[0]);
return -1;
}
curproxy->srvtimeout = atol(args[1]);
}
else if (!strcmp(args[0], "retries")) { /* connection retries */
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects an integer argument (dispatch counts for one).\n",
file, linenum, args[0]);
return -1;
}
curproxy->conn_retries = atol(args[1]);
}
else if (!strcmp(args[0], "stats")) {
if (curproxy != &defproxy && curproxy->uri_auth == defproxy.uri_auth)
curproxy->uri_auth = NULL; /* we must detach from the default config */
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects 'uri', 'realm', 'auth', 'scope' or 'enable'.\n", file, linenum, args[0]);
return -1;
} else if (!strcmp(args[1], "uri")) {
if (*(args[2]) == 0) {
Alert("parsing [%s:%d] : 'uri' needs an URI prefix.\n", file, linenum);
return -1;
} else if (!stats_set_uri(&curproxy->uri_auth, args[2])) {
Alert("parsing [%s:%d] : out of memory.\n", file, linenum);
return -1;
}
} else if (!strcmp(args[1], "realm")) {
if (*(args[2]) == 0) {
Alert("parsing [%s:%d] : 'realm' needs an realm name.\n", file, linenum);
return -1;
} else if (!stats_set_realm(&curproxy->uri_auth, args[2])) {
Alert("parsing [%s:%d] : out of memory.\n", file, linenum);
return -1;
}
} else if (!strcmp(args[1], "auth")) {
if (*(args[2]) == 0) {
Alert("parsing [%s:%d] : 'auth' needs a user:password account.\n", file, linenum);
return -1;
} else if (!stats_add_auth(&curproxy->uri_auth, args[2])) {
Alert("parsing [%s:%d] : out of memory.\n", file, linenum);
return -1;
}
} else if (!strcmp(args[1], "scope")) {
if (*(args[2]) == 0) {
Alert("parsing [%s:%d] : 'scope' needs a proxy name.\n", file, linenum);
return -1;
} else if (!stats_add_scope(&curproxy->uri_auth, args[2])) {
Alert("parsing [%s:%d] : out of memory.\n", file, linenum);
return -1;
}
} else if (!strcmp(args[1], "enable")) {
if (!stats_check_init_uri_auth(&curproxy->uri_auth)) {
Alert("parsing [%s:%d] : out of memory.\n", file, linenum);
return -1;
}
} else {
Alert("parsing [%s:%d] : unknown stats parameter '%s' (expects 'uri', 'realm', 'auth' or 'enable').\n",
file, linenum, args[0]);
return -1;
}
}
else if (!strcmp(args[0], "option")) {
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects an option name.\n", file, linenum, args[0]);
return -1;
}
if (!strcmp(args[1], "redispatch"))
/* enable reconnections to dispatch */
curproxy->options |= PR_O_REDISP;
#ifdef TPROXY
else if (!strcmp(args[1], "transparent"))
/* enable transparent proxy connections */
curproxy->options |= PR_O_TRANSP;
#endif
else if (!strcmp(args[1], "keepalive"))
/* enable keep-alive */
curproxy->options |= PR_O_KEEPALIVE;
else if (!strcmp(args[1], "forwardfor"))
/* insert x-forwarded-for field */
curproxy->options |= PR_O_FWDFOR;
else if (!strcmp(args[1], "logasap"))
/* log as soon as possible, without waiting for the session to complete */
curproxy->options |= PR_O_LOGASAP;
else if (!strcmp(args[1], "abortonclose"))
/* abort connection if client closes during queue or connect() */
curproxy->options |= PR_O_ABRT_CLOSE;
else if (!strcmp(args[1], "httpclose"))
/* force connection: close in both directions in HTTP mode */
curproxy->options |= PR_O_HTTP_CLOSE;
else if (!strcmp(args[1], "forceclose"))
/* force connection: close in both directions in HTTP mode and enforce end of session */
curproxy->options |= PR_O_FORCE_CLO | PR_O_HTTP_CLOSE;
else if (!strcmp(args[1], "checkcache"))
/* require examination of cacheability of the 'set-cookie' field */
curproxy->options |= PR_O_CHK_CACHE;
else if (!strcmp(args[1], "httplog"))
/* generate a complete HTTP log */
curproxy->to_log |= LW_DATE | LW_CLIP | LW_SVID | LW_REQ | LW_PXID | LW_RESP | LW_BYTES;
else if (!strcmp(args[1], "tcplog"))
/* generate a detailed TCP log */
curproxy->to_log |= LW_DATE | LW_CLIP | LW_SVID | LW_PXID | LW_BYTES;
else if (!strcmp(args[1], "dontlognull")) {
/* don't log empty requests */
curproxy->options |= PR_O_NULLNOLOG;
}
else if (!strcmp(args[1], "tcpka")) {
/* enable TCP keep-alives on client and server sessions */
curproxy->options |= PR_O_TCP_CLI_KA | PR_O_TCP_SRV_KA;
}
else if (!strcmp(args[1], "clitcpka")) {
/* enable TCP keep-alives on client sessions */
curproxy->options |= PR_O_TCP_CLI_KA;
}
else if (!strcmp(args[1], "srvtcpka")) {
/* enable TCP keep-alives on server sessions */
curproxy->options |= PR_O_TCP_SRV_KA;
}
else if (!strcmp(args[1], "allbackups")) {
/* Use all backup servers simultaneously */
curproxy->options |= PR_O_USE_ALL_BK;
}
else if (!strcmp(args[1], "httpchk")) {
/* use HTTP request to check servers' health */
if (curproxy->check_req != NULL) {
free(curproxy->check_req);
}
curproxy->options |= PR_O_HTTP_CHK;
if (!*args[2]) { /* no argument */
curproxy->check_req = strdup(DEF_CHECK_REQ); /* default request */
curproxy->check_len = strlen(DEF_CHECK_REQ);
} else if (!*args[3]) { /* one argument : URI */
int reqlen = strlen(args[2]) + strlen("OPTIONS / HTTP/1.0\r\n\r\n");
curproxy->check_req = (char *)malloc(reqlen);
curproxy->check_len = snprintf(curproxy->check_req, reqlen,
"OPTIONS %s HTTP/1.0\r\n\r\n", args[2]); /* URI to use */
} else { /* more arguments : METHOD URI [HTTP_VER] */
int reqlen = strlen(args[2]) + strlen(args[3]) + 3 + strlen("\r\n\r\n");
if (*args[4])
reqlen += strlen(args[4]);
else
reqlen += strlen("HTTP/1.0");
curproxy->check_req = (char *)malloc(reqlen);
curproxy->check_len = snprintf(curproxy->check_req, reqlen,
"%s %s %s\r\n\r\n", args[2], args[3], *args[4]?args[4]:"HTTP/1.0");
}
}
else if (!strcmp(args[1], "persist")) {
/* persist on using the server specified by the cookie, even when it's down */
curproxy->options |= PR_O_PERSIST;
}
else {
Alert("parsing [%s:%d] : unknown option '%s'.\n", file, linenum, args[1]);
return -1;
}
return 0;
}
else if (!strcmp(args[0], "redispatch") || !strcmp(args[0], "redisp")) {
/* enable reconnections to dispatch */
curproxy->options |= PR_O_REDISP;
}
#ifdef TPROXY
else if (!strcmp(args[0], "transparent")) {
/* enable transparent proxy connections */
curproxy->options |= PR_O_TRANSP;
}
#endif
else if (!strcmp(args[0], "maxconn")) { /* maxconn */
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects an integer argument.\n", file, linenum, args[0]);
return -1;
}
curproxy->maxconn = atol(args[1]);
}
else if (!strcmp(args[0], "grace")) { /* grace time (ms) */
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects a time in milliseconds.\n", file, linenum, args[0]);
return -1;
}
curproxy->grace = atol(args[1]);
}
else if (!strcmp(args[0], "dispatch")) { /* dispatch address */
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (strchr(args[1], ':') == NULL) {
Alert("parsing [%s:%d] : '%s' expects <addr:port> as argument.\n", file, linenum, args[0]);
return -1;
}
curproxy->dispatch_addr = *str2sa(args[1]);
}
else if (!strcmp(args[0], "balance")) { /* set balancing with optional algorithm */
if (*(args[1])) {
if (!strcmp(args[1], "roundrobin")) {
curproxy->options |= PR_O_BALANCE_RR;
}
else if (!strcmp(args[1], "source")) {
curproxy->options |= PR_O_BALANCE_SH;
}
else {
Alert("parsing [%s:%d] : '%s' only supports 'roundrobin' and 'source' options.\n", file, linenum, args[0]);
return -1;
}
}
else /* if no option is set, use round-robin by default */
curproxy->options |= PR_O_BALANCE_RR;
}
else if (!strcmp(args[0], "server")) { /* server address */
int cur_arg;
char *rport;
char *raddr;
short realport;
int do_check;
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (!*args[2]) {
Alert("parsing [%s:%d] : '%s' expects <name> and <addr>[:<port>] as arguments.\n",
file, linenum, args[0]);
return -1;
}
if ((newsrv = (struct server *)calloc(1, sizeof(struct server))) == NULL) {
Alert("parsing [%s:%d] : out of memory.\n", file, linenum);
return -1;
}
/* the servers are linked backwards first */
newsrv->next = curproxy->srv;
curproxy->srv = newsrv;
newsrv->proxy = curproxy;
LIST_INIT(&newsrv->pendconns);
do_check = 0;
newsrv->state = SRV_RUNNING; /* early server setup */
newsrv->id = strdup(args[1]);
/* several ways to check the port component :
* - IP => port=+0, relative
* - IP: => port=+0, relative
* - IP:N => port=N, absolute
* - IP:+N => port=+N, relative
* - IP:-N => port=-N, relative
*/
raddr = strdup(args[2]);
rport = strchr(raddr, ':');
if (rport) {
*rport++ = 0;
realport = atol(rport);
if (!isdigit((int)*rport))
newsrv->state |= SRV_MAPPORTS;
} else {
realport = 0;
newsrv->state |= SRV_MAPPORTS;
}
newsrv->addr = *str2sa(raddr);
newsrv->addr.sin_port = htons(realport);
free(raddr);
newsrv->curfd = -1; /* no health-check in progress */
newsrv->inter = DEF_CHKINTR;
newsrv->rise = DEF_RISETIME;
newsrv->fall = DEF_FALLTIME;
newsrv->health = newsrv->rise; /* up, but will fall down at first failure */
cur_arg = 3;
while (*args[cur_arg]) {
if (!strcmp(args[cur_arg], "cookie")) {
newsrv->cookie = strdup(args[cur_arg + 1]);
newsrv->cklen = strlen(args[cur_arg + 1]);
cur_arg += 2;
}
else if (!strcmp(args[cur_arg], "rise")) {
newsrv->rise = atol(args[cur_arg + 1]);
newsrv->health = newsrv->rise;
cur_arg += 2;
}
else if (!strcmp(args[cur_arg], "fall")) {
newsrv->fall = atol(args[cur_arg + 1]);
cur_arg += 2;
}
else if (!strcmp(args[cur_arg], "inter")) {
newsrv->inter = atol(args[cur_arg + 1]);
cur_arg += 2;
}
else if (!strcmp(args[cur_arg], "port")) {
newsrv->check_port = atol(args[cur_arg + 1]);
cur_arg += 2;
}
else if (!strcmp(args[cur_arg], "backup")) {
newsrv->state |= SRV_BACKUP;
cur_arg ++;
}
else if (!strcmp(args[cur_arg], "weight")) {
int w;
w = atol(args[cur_arg + 1]);
if (w < 1 || w > 256) {
Alert("parsing [%s:%d] : weight of server %s is not within 1 and 256 (%d).\n",
file, linenum, newsrv->id, w);
return -1;
}
newsrv->uweight = w - 1;
cur_arg += 2;
}
else if (!strcmp(args[cur_arg], "minconn")) {
newsrv->minconn = atol(args[cur_arg + 1]);
cur_arg += 2;
}
else if (!strcmp(args[cur_arg], "maxconn")) {
newsrv->maxconn = atol(args[cur_arg + 1]);
cur_arg += 2;
}
else if (!strcmp(args[cur_arg], "check")) {
global.maxsock++;
do_check = 1;
cur_arg += 1;
}
else if (!strcmp(args[cur_arg], "source")) { /* address to which we bind when connecting */
if (!*args[cur_arg + 1]) {
Alert("parsing [%s:%d] : '%s' expects <addr>[:<port>] as argument.\n",
file, linenum, "source");
return -1;
}
newsrv->state |= SRV_BIND_SRC;
newsrv->source_addr = *str2sa(args[cur_arg + 1]);
cur_arg += 2;
}
else {
Alert("parsing [%s:%d] : server %s only supports options 'backup', 'cookie', 'check', 'inter', 'rise', 'fall', 'port', 'source', 'minconn', 'maxconn' and 'weight'.\n",
file, linenum, newsrv->id);
return -1;
}
}
if (do_check) {
if (!newsrv->check_port && !(newsrv->state & SRV_MAPPORTS))
newsrv->check_port = realport; /* by default */
if (!newsrv->check_port) {
Alert("parsing [%s:%d] : server %s has neither service port nor check port. Check has been disabled.\n",
file, linenum, newsrv->id);
return -1;
}
newsrv->state |= SRV_CHECKED;
}
if (newsrv->state & SRV_BACKUP)
curproxy->srv_bck++;
else
curproxy->srv_act++;
}
else if (!strcmp(args[0], "log")) { /* syslog server address */
struct sockaddr_in *sa;
int facility;
if (*(args[1]) && *(args[2]) == 0 && !strcmp(args[1], "global")) {
curproxy->logfac1 = global.logfac1;
curproxy->logsrv1 = global.logsrv1;
curproxy->loglev1 = global.loglev1;
curproxy->logfac2 = global.logfac2;
curproxy->logsrv2 = global.logsrv2;
curproxy->loglev2 = global.loglev2;
}
else if (*(args[1]) && *(args[2])) {
int level;
for (facility = 0; facility < NB_LOG_FACILITIES; facility++)
if (!strcmp(log_facilities[facility], args[2]))
break;
if (facility >= NB_LOG_FACILITIES) {
Alert("parsing [%s:%d] : unknown log facility '%s'\n", file, linenum, args[2]);
exit(1);
}
level = 7; /* max syslog level = debug */
if (*(args[3])) {
while (level >= 0 && strcmp(log_levels[level], args[3]))
level--;
if (level < 0) {
Alert("parsing [%s:%d] : unknown optional log level '%s'\n", file, linenum, args[3]);
exit(1);
}
}
sa = str2sa(args[1]);
if (!sa->sin_port)
sa->sin_port = htons(SYSLOG_PORT);
if (curproxy->logfac1 == -1) {
curproxy->logsrv1 = *sa;
curproxy->logfac1 = facility;
curproxy->loglev1 = level;
}
else if (curproxy->logfac2 == -1) {
curproxy->logsrv2 = *sa;
curproxy->logfac2 = facility;
curproxy->loglev2 = level;
}
else {
Alert("parsing [%s:%d] : too many syslog servers\n", file, linenum);
return -1;
}
}
else {
Alert("parsing [%s:%d] : 'log' expects either <address[:port]> and <facility> or 'global' as arguments.\n",
file, linenum);
return -1;
}
}
else if (!strcmp(args[0], "source")) { /* address to which we bind when connecting */
if (!*args[1]) {
Alert("parsing [%s:%d] : '%s' expects <addr>[:<port>] as argument.\n",
file, linenum, "source");
return -1;
}
curproxy->source_addr = *str2sa(args[1]);
curproxy->options |= PR_O_BIND_SRC;
}
else if (!strcmp(args[0], "cliexp") || !strcmp(args[0], "reqrep")) { /* replace request header from a regex */
regex_t *preg;
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (*(args[1]) == 0 || *(args[2]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <search> and <replace> as arguments.\n",
file, linenum, args[0]);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED) != 0) {
Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]);
return -1;
}
err = chain_regex(&curproxy->req_exp, preg, ACT_REPLACE, strdup(args[2]));
if (err) {
Alert("parsing [%s:%d] : invalid character or unterminated sequence in replacement string near '%c'.\n",
file, linenum, *err);
return -1;
}
}
else if (!strcmp(args[0], "reqdel")) { /* delete request header from a regex */
regex_t *preg;
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <regex> as an argument.\n", file, linenum, args[0]);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED) != 0) {
Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]);
return -1;
}
chain_regex(&curproxy->req_exp, preg, ACT_REMOVE, NULL);
}
else if (!strcmp(args[0], "reqdeny")) { /* deny a request if a header matches this regex */
regex_t *preg;
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <regex> as an argument.\n", file, linenum, args[0]);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED) != 0) {
Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]);
return -1;
}
chain_regex(&curproxy->req_exp, preg, ACT_DENY, NULL);
}
else if (!strcmp(args[0], "reqpass")) { /* pass this header without allowing or denying the request */
regex_t *preg;
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <regex> as an argument.\n", file, linenum, args[0]);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED) != 0) {
Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]);
return -1;
}
chain_regex(&curproxy->req_exp, preg, ACT_PASS, NULL);
}
else if (!strcmp(args[0], "reqallow")) { /* allow a request if a header matches this regex */
regex_t *preg;
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <regex> as an argument.\n", file, linenum, args[0]);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED) != 0) {
Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]);
return -1;
}
chain_regex(&curproxy->req_exp, preg, ACT_ALLOW, NULL);
}
else if (!strcmp(args[0], "reqirep")) { /* replace request header from a regex, ignoring case */
regex_t *preg;
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (*(args[1]) == 0 || *(args[2]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <search> and <replace> as arguments.\n",
file, linenum, args[0]);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED | REG_ICASE) != 0) {
Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]);
return -1;
}
err = chain_regex(&curproxy->req_exp, preg, ACT_REPLACE, strdup(args[2]));
if (err) {
Alert("parsing [%s:%d] : invalid character or unterminated sequence in replacement string near '%c'.\n",
file, linenum, *err);
return -1;
}
}
else if (!strcmp(args[0], "reqidel")) { /* delete request header from a regex ignoring case */
regex_t *preg;
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <regex> as an argument.\n", file, linenum, args[0]);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED | REG_ICASE) != 0) {
Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]);
return -1;
}
chain_regex(&curproxy->req_exp, preg, ACT_REMOVE, NULL);
}
else if (!strcmp(args[0], "reqideny")) { /* deny a request if a header matches this regex ignoring case */
regex_t *preg;
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <regex> as an argument.\n", file, linenum, args[0]);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED | REG_ICASE) != 0) {
Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]);
return -1;
}
chain_regex(&curproxy->req_exp, preg, ACT_DENY, NULL);
}
else if (!strcmp(args[0], "reqipass")) { /* pass this header without allowing or denying the request */
regex_t *preg;
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <regex> as an argument.\n", file, linenum, args[0]);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED | REG_ICASE) != 0) {
Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]);
return -1;
}
chain_regex(&curproxy->req_exp, preg, ACT_PASS, NULL);
}
else if (!strcmp(args[0], "reqiallow")) { /* allow a request if a header matches this regex ignoring case */
regex_t *preg;
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <regex> as an argument.\n", file, linenum, args[0]);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED | REG_ICASE) != 0) {
Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]);
return -1;
}
chain_regex(&curproxy->req_exp, preg, ACT_ALLOW, NULL);
}
else if (!strcmp(args[0], "reqadd")) { /* add request header */
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (curproxy->nb_reqadd >= MAX_NEWHDR) {
Alert("parsing [%s:%d] : too many '%s'. Continuing.\n", file, linenum, args[0]);
return 0;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <header> as an argument.\n", file, linenum, args[0]);
return -1;
}
curproxy->req_add[curproxy->nb_reqadd++] = strdup(args[1]);
}
else if (!strcmp(args[0], "srvexp") || !strcmp(args[0], "rsprep")) { /* replace response header from a regex */
regex_t *preg;
if (*(args[1]) == 0 || *(args[2]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <search> and <replace> as arguments.\n",
file, linenum, args[0]);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED) != 0) {
Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]);
return -1;
}
err = chain_regex(&curproxy->rsp_exp, preg, ACT_REPLACE, strdup(args[2]));
if (err) {
Alert("parsing [%s:%d] : invalid character or unterminated sequence in replacement string near '%c'.\n",
file, linenum, *err);
return -1;
}
}
else if (!strcmp(args[0], "rspdel")) { /* delete response header from a regex */
regex_t *preg;
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <search> as an argument.\n", file, linenum, args[0]);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED) != 0) {
Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]);
return -1;
}
err = chain_regex(&curproxy->rsp_exp, preg, ACT_REMOVE, strdup(args[2]));
if (err) {
Alert("parsing [%s:%d] : invalid character or unterminated sequence in replacement string near '%c'.\n",
file, linenum, *err);
return -1;
}
}
else if (!strcmp(args[0], "rspdeny")) { /* block response header from a regex */
regex_t *preg;
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <search> as an argument.\n", file, linenum, args[0]);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED) != 0) {
Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]);
return -1;
}
err = chain_regex(&curproxy->rsp_exp, preg, ACT_DENY, strdup(args[2]));
if (err) {
Alert("parsing [%s:%d] : invalid character or unterminated sequence in replacement string near '%c'.\n",
file, linenum, *err);
return -1;
}
}
else if (!strcmp(args[0], "rspirep")) { /* replace response header from a regex ignoring case */
regex_t *preg;
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (*(args[1]) == 0 || *(args[2]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <search> and <replace> as arguments.\n",
file, linenum, args[0]);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED | REG_ICASE) != 0) {
Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]);
return -1;
}
err = chain_regex(&curproxy->rsp_exp, preg, ACT_REPLACE, strdup(args[2]));
if (err) {
Alert("parsing [%s:%d] : invalid character or unterminated sequence in replacement string near '%c'.\n",
file, linenum, *err);
return -1;
}
}
else if (!strcmp(args[0], "rspidel")) { /* delete response header from a regex ignoring case */
regex_t *preg;
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <search> as an argument.\n", file, linenum, args[0]);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED | REG_ICASE) != 0) {
Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]);
return -1;
}
err = chain_regex(&curproxy->rsp_exp, preg, ACT_REMOVE, strdup(args[2]));
if (err) {
Alert("parsing [%s:%d] : invalid character or unterminated sequence in replacement string near '%c'.\n",
file, linenum, *err);
return -1;
}
}
else if (!strcmp(args[0], "rspideny")) { /* block response header from a regex ignoring case */
regex_t *preg;
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <search> as an argument.\n", file, linenum, args[0]);
return -1;
}
preg = calloc(1, sizeof(regex_t));
if (regcomp(preg, args[1], REG_EXTENDED | REG_ICASE) != 0) {
Alert("parsing [%s:%d] : bad regular expression '%s'.\n", file, linenum, args[1]);
return -1;
}
err = chain_regex(&curproxy->rsp_exp, preg, ACT_DENY, strdup(args[2]));
if (err) {
Alert("parsing [%s:%d] : invalid character or unterminated sequence in replacement string near '%c'.\n",
file, linenum, *err);
return -1;
}
}
else if (!strcmp(args[0], "rspadd")) { /* add response header */
if (curproxy == &defproxy) {
Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
return -1;
}
if (curproxy->nb_rspadd >= MAX_NEWHDR) {
Alert("parsing [%s:%d] : too many '%s'. Continuing.\n", file, linenum, args[0]);
return 0;
}
if (*(args[1]) == 0) {
Alert("parsing [%s:%d] : '%s' expects <header> as an argument.\n", file, linenum, args[0]);
return -1;
}
curproxy->rsp_add[curproxy->nb_rspadd++] = strdup(args[1]);
}
else if (!strcmp(args[0], "errorloc") ||
!strcmp(args[0], "errorloc302") ||
!strcmp(args[0], "errorloc303")) { /* error location */
int errnum, errlen;
char *err;
// if (curproxy == &defproxy) {
// Alert("parsing [%s:%d] : '%s' not allowed in 'defaults' section.\n", file, linenum, args[0]);
// return -1;
// }
if (*(args[2]) == 0) {
Alert("parsing [%s:%d] : <errorloc> expects <error> and <url> as arguments.\n", file, linenum);
return -1;
}
errnum = atol(args[1]);
if (!strcmp(args[0], "errorloc303")) {
err = malloc(strlen(HTTP_303) + strlen(args[2]) + 5);
errlen = sprintf(err, "%s%s\r\n\r\n", HTTP_303, args[2]);
} else {
err = malloc(strlen(HTTP_302) + strlen(args[2]) + 5);
errlen = sprintf(err, "%s%s\r\n\r\n", HTTP_302, args[2]);
}
if (errnum == 400) {
if (curproxy->errmsg.msg400) {
//Warning("parsing [%s:%d] : error %d already defined.\n", file, linenum, errnum);
free(curproxy->errmsg.msg400);
}
curproxy->errmsg.msg400 = err;
curproxy->errmsg.len400 = errlen;
}
else if (errnum == 403) {
if (curproxy->errmsg.msg403) {
//Warning("parsing [%s:%d] : error %d already defined.\n", file, linenum, errnum);
free(curproxy->errmsg.msg403);
}
curproxy->errmsg.msg403 = err;
curproxy->errmsg.len403 = errlen;
}
else if (errnum == 408) {
if (curproxy->errmsg.msg408) {
//Warning("parsing [%s:%d] : error %d already defined.\n", file, linenum, errnum);
free(curproxy->errmsg.msg408);
}
curproxy->errmsg.msg408 = err;
curproxy->errmsg.len408 = errlen;
}
else if (errnum == 500) {
if (curproxy->errmsg.msg500) {
//Warning("parsing [%s:%d] : error %d already defined.\n", file, linenum, errnum);
free(curproxy->errmsg.msg500);
}
curproxy->errmsg.msg500 = err;
curproxy->errmsg.len500 = errlen;
}
else if (errnum == 502) {
if (curproxy->errmsg.msg502) {
//Warning("parsing [%s:%d] : error %d already defined.\n", file, linenum, errnum);
free(curproxy->errmsg.msg502);
}
curproxy->errmsg.msg502 = err;
curproxy->errmsg.len502 = errlen;
}
else if (errnum == 503) {
if (curproxy->errmsg.msg503) {
//Warning("parsing [%s:%d] : error %d already defined.\n", file, linenum, errnum);
free(curproxy->errmsg.msg503);
}
curproxy->errmsg.msg503 = err;
curproxy->errmsg.len503 = errlen;
}
else if (errnum == 504) {
if (curproxy->errmsg.msg504) {
//Warning("parsing [%s:%d] : error %d already defined.\n", file, linenum, errnum);
free(curproxy->errmsg.msg504);
}
curproxy->errmsg.msg504 = err;
curproxy->errmsg.len504 = errlen;
}
else {
Warning("parsing [%s:%d] : error %d relocation will be ignored.\n", file, linenum, errnum);
free(err);
}
}
else {
Alert("parsing [%s:%d] : unknown keyword '%s' in '%s' section\n", file, linenum, args[0], "listen");
return -1;
}
return 0;
}
/*
* This function reads and parses the configuration file given in the argument.
* returns 0 if OK, -1 if error.
*/
int readcfgfile(char *file) {
char thisline[256];
char *line;
FILE *f;
int linenum = 0;
char *end;
char *args[MAX_LINE_ARGS];
int arg;
int cfgerr = 0;
int nbchk, mininter;
int confsect = CFG_NONE;
struct proxy *curproxy = NULL;
struct server *newsrv = NULL;
if ((f=fopen(file,"r")) == NULL)
return -1;
init_default_instance();
while (fgets(line = thisline, sizeof(thisline), f) != NULL) {
linenum++;
end = line + strlen(line);
/* skip leading spaces */
while (isspace((int)*line))
line++;
arg = 0;
args[arg] = line;
while (*line && arg < MAX_LINE_ARGS) {
/* first, we'll replace \\, \<space>, \#, \r, \n, \t, \xXX with their
* C equivalent value. Other combinations left unchanged (eg: \1).
*/
if (*line == '\\') {
int skip = 0;
if (line[1] == ' ' || line[1] == '\\' || line[1] == '#') {
*line = line[1];
skip = 1;
}
else if (line[1] == 'r') {
*line = '\r';
skip = 1;
}
else if (line[1] == 'n') {
*line = '\n';
skip = 1;
}
else if (line[1] == 't') {
*line = '\t';
skip = 1;
}
else if (line[1] == 'x') {
if ((line + 3 < end ) && ishex(line[2]) && ishex(line[3])) {
unsigned char hex1, hex2;
hex1 = toupper(line[2]) - '0';
hex2 = toupper(line[3]) - '0';
if (hex1 > 9) hex1 -= 'A' - '9' - 1;
if (hex2 > 9) hex2 -= 'A' - '9' - 1;
*line = (hex1<<4) + hex2;
skip = 3;
}
else {
Alert("parsing [%s:%d] : invalid or incomplete '\\x' sequence in '%s'.\n", file, linenum, args[0]);
return -1;
}
}
if (skip) {
memmove(line + 1, line + 1 + skip, end - (line + skip + 1));
end -= skip;
}
line++;
}
else if (*line == '#' || *line == '\n' || *line == '\r') {
/* end of string, end of loop */
*line = 0;
break;
}
else if (isspace((int)*line)) {
/* a non-escaped space is an argument separator */
*line++ = 0;
while (isspace((int)*line))
line++;
args[++arg] = line;
}
else {
line++;
}
}
/* empty line */
if (!**args)
continue;
/* zero out remaining args */
while (++arg < MAX_LINE_ARGS) {
args[arg] = line;
}
if (!strcmp(args[0], "listen") || !strcmp(args[0], "defaults")) /* new proxy */
confsect = CFG_LISTEN;
else if (!strcmp(args[0], "global")) /* global config */
confsect = CFG_GLOBAL;
/* else it's a section keyword */
switch (confsect) {
case CFG_LISTEN:
if (cfg_parse_listen(file, linenum, args) < 0)
return -1;
break;
case CFG_GLOBAL:
if (cfg_parse_global(file, linenum, args) < 0)
return -1;
break;
default:
Alert("parsing [%s:%d] : unknown keyword '%s' out of section.\n", file, linenum, args[0]);
return -1;
}
}
fclose(f);
/*
* Now, check for the integrity of all that we have collected.
*/
/* will be needed further to delay some tasks */
tv_now(&now);
if ((curproxy = proxy) == NULL) {
Alert("parsing %s : no <listen> line. Nothing to do !\n",
file);
return -1;
}
while (curproxy != NULL) {
if (curproxy->state == PR_STSTOPPED) {
curproxy = curproxy->next;
continue;
}
if (curproxy->listen == NULL) {
Alert("parsing %s : listener %s has no listen address. Please either specify a valid address on the <listen> line, or use the <bind> keyword.\n", file, curproxy->id);
cfgerr++;
}
else if ((curproxy->mode != PR_MODE_HEALTH) &&
!(curproxy->options & (PR_O_TRANSP | PR_O_BALANCE)) &&
(*(int *)&curproxy->dispatch_addr.sin_addr == 0)) {
Alert("parsing %s : listener %s has no dispatch address and is not in transparent or balance mode.\n",
file, curproxy->id);
cfgerr++;
}
else if ((curproxy->mode != PR_MODE_HEALTH) && (curproxy->options & PR_O_BALANCE)) {
if (curproxy->options & PR_O_TRANSP) {
Alert("parsing %s : listener %s cannot use both transparent and balance mode.\n",
file, curproxy->id);
cfgerr++;
}
#ifdef WE_DONT_SUPPORT_SERVERLESS_LISTENERS
else if (curproxy->srv == NULL) {
Alert("parsing %s : listener %s needs at least 1 server in balance mode.\n",
file, curproxy->id);
cfgerr++;
}
#endif
else if (*(int *)&curproxy->dispatch_addr.sin_addr != 0) {
Warning("parsing %s : dispatch address of listener %s will be ignored in balance mode.\n",
file, curproxy->id);
}
}
else if (curproxy->mode == PR_MODE_TCP || curproxy->mode == PR_MODE_HEALTH) { /* TCP PROXY or HEALTH CHECK */
if (curproxy->cookie_name != NULL) {
Warning("parsing %s : cookie will be ignored for listener %s.\n",
file, curproxy->id);
}
if ((newsrv = curproxy->srv) != NULL) {
Warning("parsing %s : servers will be ignored for listener %s.\n",
file, curproxy->id);
}
if (curproxy->rsp_exp != NULL) {
Warning("parsing %s : server regular expressions will be ignored for listener %s.\n",
file, curproxy->id);
}
if (curproxy->req_exp != NULL) {
Warning("parsing %s : client regular expressions will be ignored for listener %s.\n",
file, curproxy->id);
}
}
else if (curproxy->mode == PR_MODE_HTTP) { /* HTTP PROXY */
if ((curproxy->cookie_name != NULL) && ((newsrv = curproxy->srv) == NULL)) {
Alert("parsing %s : HTTP proxy %s has a cookie but no server list !\n",
file, curproxy->id);
cfgerr++;
}
}
/* first, we will invert the servers list order */
newsrv = NULL;
while (curproxy->srv) {
struct server *next;
next = curproxy->srv->next;
curproxy->srv->next = newsrv;
newsrv = curproxy->srv;
if (!next)
break;
curproxy->srv = next;
}
/* now, newsrv == curproxy->srv */
if (newsrv) {
struct server *srv;
int pgcd;
int act, bck;
/* We will factor the weights to reduce the table,
* using Euclide's largest common divisor algorithm
*/
pgcd = newsrv->uweight + 1;
for (srv = newsrv->next; srv && pgcd > 1; srv = srv->next) {
int t, w;
w = srv->uweight + 1;
while (w) {
t = pgcd % w;
pgcd = w;
w = t;
}
}
act = bck = 0;
for (srv = newsrv; srv; srv = srv->next) {
srv->eweight = ((srv->uweight + 1) / pgcd) - 1;
if (srv->state & SRV_BACKUP)
bck += srv->eweight + 1;
else
act += srv->eweight + 1;
}
/* this is the largest map we will ever need for this servers list */
if (act < bck)
act = bck;
curproxy->srv_map = (struct server **)calloc(act, sizeof(struct server *));
/* recounts servers and their weights */
recount_servers(curproxy);
recalc_server_map(curproxy);
}
if (curproxy->options & PR_O_LOGASAP)
curproxy->to_log &= ~LW_BYTES;
if (curproxy->errmsg.msg400 == NULL) {
curproxy->errmsg.msg400 = (char *)HTTP_400;
curproxy->errmsg.len400 = strlen(HTTP_400);
}
if (curproxy->errmsg.msg403 == NULL) {
curproxy->errmsg.msg403 = (char *)HTTP_403;
curproxy->errmsg.len403 = strlen(HTTP_403);
}
if (curproxy->errmsg.msg408 == NULL) {
curproxy->errmsg.msg408 = (char *)HTTP_408;
curproxy->errmsg.len408 = strlen(HTTP_408);
}
if (curproxy->errmsg.msg500 == NULL) {
curproxy->errmsg.msg500 = (char *)HTTP_500;
curproxy->errmsg.len500 = strlen(HTTP_500);
}
if (curproxy->errmsg.msg502 == NULL) {
curproxy->errmsg.msg502 = (char *)HTTP_502;
curproxy->errmsg.len502 = strlen(HTTP_502);
}
if (curproxy->errmsg.msg503 == NULL) {
curproxy->errmsg.msg503 = (char *)HTTP_503;
curproxy->errmsg.len503 = strlen(HTTP_503);
}
if (curproxy->errmsg.msg504 == NULL) {
curproxy->errmsg.msg504 = (char *)HTTP_504;
curproxy->errmsg.len504 = strlen(HTTP_504);
}
/*
* If this server supports a maxconn parameter, it needs a dedicated
* tasks to fill the emptied slots when a connection leaves.
*/
newsrv = curproxy->srv;
while (newsrv != NULL) {
if (newsrv->minconn && !newsrv->maxconn) {
/* only 'minconn' was specified. Let's turn this into maxconn */
newsrv->maxconn = newsrv->minconn;
newsrv->minconn = 0;
}
if (newsrv->maxconn > 0) {
struct task *t;
if ((t = pool_alloc(task)) == NULL) {
Alert("parsing [%s:%d] : out of memory.\n", file, linenum);
return -1;
}
t->next = t->prev = t->rqnext = NULL; /* task not in run queue yet */
t->wq = LIST_HEAD(wait_queue[1]); /* already assigned to the eternity queue */
t->state = TASK_IDLE;
t->process = process_srv_queue;
t->context = newsrv;
newsrv->queue_mgt = t;
/* never run it unless specifically woken up */
tv_eternity(&t->expire);
task_queue(t);
}
newsrv = newsrv->next;
}
/* now we'll start this proxy's health checks if any */
/* 1- count the checkers to run simultaneously */
nbchk = 0;
mininter = 0;
newsrv = curproxy->srv;
while (newsrv != NULL) {
if (newsrv->state & SRV_CHECKED) {
if (!mininter || mininter > newsrv->inter)
mininter = newsrv->inter;
nbchk++;
}
newsrv = newsrv->next;
}
/* 2- start them as far as possible from each others while respecting
* their own intervals. For this, we will start them after their own
* interval added to the min interval divided by the number of servers,
* weighted by the server's position in the list.
*/
if (nbchk > 0) {
struct task *t;
int srvpos;
newsrv = curproxy->srv;
srvpos = 0;
while (newsrv != NULL) {
/* should this server be checked ? */
if (newsrv->state & SRV_CHECKED) {
if ((t = pool_alloc(task)) == NULL) {
Alert("parsing [%s:%d] : out of memory.\n", file, linenum);
return -1;
}
t->next = t->prev = t->rqnext = NULL; /* task not in run queue yet */
t->wq = LIST_HEAD(wait_queue[0]); /* but already has a wait queue assigned */
t->state = TASK_IDLE;
t->process = process_chk;
t->context = newsrv;
/* check this every ms */
tv_delayfrom(&t->expire, &now,
newsrv->inter + mininter * srvpos / nbchk);
task_queue(t);
//task_wakeup(&rq, t);
srvpos++;
}
newsrv = newsrv->next;
}
}
curproxy = curproxy->next;
}
if (cfgerr > 0) {
Alert("Errors found in configuration file, aborting.\n");
return -1;
}
else
return 0;
}
/*
* This function initializes all the necessary variables. It only returns
* if everything is OK. If something fails, it exits.
*/
void init(int argc, char **argv) {
int i;
int arg_mode = 0; /* MODE_DEBUG, ... */
char *old_argv = *argv;
char *tmp;
char *cfg_pidfile = NULL;
if (1<<INTBITS != sizeof(int)*8) {
fprintf(stderr,
"Error: wrong architecture. Recompile so that sizeof(int)=%d\n",
(int)(sizeof(int)*8));
exit(1);
}
#ifdef HAPROXY_MEMMAX
global.rlimit_memmax = HAPROXY_MEMMAX;
#endif
/* initialize the libc's localtime structures once for all so that we
* won't be missing memory if we want to send alerts under OOM conditions.
*/
tv_now(&now);
localtime(&now.tv_sec);
start_date = now;
/* initialize the log header encoding map : '{|}"#' should be encoded with
* '#' as prefix, as well as non-printable characters ( <32 or >= 127 ).
* URL encoding only requires '"', '#' to be encoded as well as non-
* printable characters above.
*/
memset(hdr_encode_map, 0, sizeof(hdr_encode_map));
memset(url_encode_map, 0, sizeof(url_encode_map));
for (i = 0; i < 32; i++) {
FD_SET(i, hdr_encode_map);
FD_SET(i, url_encode_map);
}
for (i = 127; i < 256; i++) {
FD_SET(i, hdr_encode_map);
FD_SET(i, url_encode_map);
}
tmp = "\"#{|}";
while (*tmp) {
FD_SET(*tmp, hdr_encode_map);
tmp++;
}
tmp = "\"#";
while (*tmp) {
FD_SET(*tmp, url_encode_map);
tmp++;
}
cfg_polling_mechanism = POLL_USE_SELECT; /* select() is always available */
#if defined(ENABLE_POLL)
cfg_polling_mechanism |= POLL_USE_POLL;
#endif
#if defined(ENABLE_EPOLL)
cfg_polling_mechanism |= POLL_USE_EPOLL;
#endif
pid = getpid();
progname = *argv;
while ((tmp = strchr(progname, '/')) != NULL)
progname = tmp + 1;
argc--; argv++;
while (argc > 0) {
char *flag;
if (**argv == '-') {
flag = *argv+1;
/* 1 arg */
if (*flag == 'v') {
display_version();
exit(0);
}
#if defined(ENABLE_EPOLL)
else if (*flag == 'd' && flag[1] == 'e')
cfg_polling_mechanism &= ~POLL_USE_EPOLL;
#endif
#if defined(ENABLE_POLL)
else if (*flag == 'd' && flag[1] == 'p')
cfg_polling_mechanism &= ~POLL_USE_POLL;
#endif
else if (*flag == 'V')
arg_mode |= MODE_VERBOSE;
else if (*flag == 'd' && flag[1] == 'b')
arg_mode |= MODE_FOREGROUND;
else if (*flag == 'd')
arg_mode |= MODE_DEBUG;
else if (*flag == 'c')
arg_mode |= MODE_CHECK;
else if (*flag == 'D')
arg_mode |= MODE_DAEMON | MODE_QUIET;
else if (*flag == 'q')
arg_mode |= MODE_QUIET;
else if (*flag == 's' && (flag[1] == 'f' || flag[1] == 't')) {
/* list of pids to finish ('f') or terminate ('t') */
if (flag[1] == 'f')
oldpids_sig = SIGUSR1; /* finish then exit */
else
oldpids_sig = SIGTERM; /* terminate immediately */
argv++; argc--;
if (argc > 0) {
oldpids = calloc(argc, sizeof(int));
while (argc > 0) {
oldpids[nb_oldpids] = atol(*argv);
if (oldpids[nb_oldpids] <= 0)
usage(old_argv);
argc--; argv++;
nb_oldpids++;
}
}
}
#if STATTIME > 0
else if (*flag == 's')
arg_mode |= MODE_STATS;
else if (*flag == 'l')
arg_mode |= MODE_LOG;
#endif
else { /* >=2 args */
argv++; argc--;
if (argc == 0)
usage(old_argv);
switch (*flag) {
case 'n' : cfg_maxconn = atol(*argv); break;
case 'm' : global.rlimit_memmax = atol(*argv); break;
case 'N' : cfg_maxpconn = atol(*argv); break;
case 'f' : cfg_cfgfile = *argv; break;
case 'p' : cfg_pidfile = *argv; break;
default: usage(old_argv);
}
}
}
else
usage(old_argv);
argv++; argc--;
}
global.mode = MODE_STARTING | /* during startup, we want most of the alerts */
(arg_mode & (MODE_DAEMON | MODE_FOREGROUND | MODE_VERBOSE
| MODE_QUIET | MODE_CHECK | MODE_DEBUG));
if (!cfg_cfgfile)
usage(old_argv);
gethostname(hostname, MAX_HOSTNAME_LEN);
have_appsession = 0;
global.maxsock = 10; /* reserve 10 fds ; will be incremented by socket eaters */
if (readcfgfile(cfg_cfgfile) < 0) {
Alert("Error reading configuration file : %s\n", cfg_cfgfile);
exit(1);
}
if (have_appsession)
appsession_init();
if (global.mode & MODE_CHECK) {
qfprintf(stdout, "Configuration file is valid : %s\n", cfg_cfgfile);
exit(0);
}
if (cfg_maxconn > 0)
global.maxconn = cfg_maxconn;
if (cfg_pidfile) {
if (global.pidfile)
free(global.pidfile);
global.pidfile = strdup(cfg_pidfile);
}
if (global.maxconn == 0)
global.maxconn = DEFAULT_MAXCONN;
global.maxsock += global.maxconn * 2; /* each connection needs two sockets */
if (arg_mode & (MODE_DEBUG | MODE_FOREGROUND)) {
/* command line debug mode inhibits configuration mode */
global.mode &= ~(MODE_DAEMON | MODE_QUIET);
}
global.mode |= (arg_mode & (MODE_DAEMON | MODE_FOREGROUND | MODE_QUIET |
MODE_VERBOSE | MODE_DEBUG | MODE_STATS | MODE_LOG));
if ((global.mode & MODE_DEBUG) && (global.mode & (MODE_DAEMON | MODE_QUIET))) {
Warning("<debug> mode incompatible with <quiet> and <daemon>. Keeping <debug> only.\n");
global.mode &= ~(MODE_DAEMON | MODE_QUIET);
}
if ((global.nbproc > 1) && !(global.mode & MODE_DAEMON)) {
if (!(global.mode & (MODE_FOREGROUND | MODE_DEBUG)))
Warning("<nbproc> is only meaningful in daemon mode. Setting limit to 1 process.\n");
global.nbproc = 1;
}
if (global.nbproc < 1)
global.nbproc = 1;
StaticReadEvent = (fd_set *)calloc(1,
sizeof(fd_set) *
(global.maxsock + FD_SETSIZE - 1) / FD_SETSIZE);
StaticWriteEvent = (fd_set *)calloc(1,
sizeof(fd_set) *
(global.maxsock + FD_SETSIZE - 1) / FD_SETSIZE);
fdtab = (struct fdtab *)calloc(1,
sizeof(struct fdtab) * (global.maxsock));
for (i = 0; i < global.maxsock; i++) {
fdtab[i].state = FD_STCLOSE;
}
}
/*
* this function starts all the proxies. Its return value is composed from
* ERR_NONE, ERR_RETRYABLE and ERR_FATAL. Retryable errors will only be printed
* if <verbose> is not zero.
*/
int start_proxies(int verbose) {
struct proxy *curproxy;
struct listener *listener;
int err = ERR_NONE;
int fd, pxerr;
for (curproxy = proxy; curproxy != NULL; curproxy = curproxy->next) {
if (curproxy->state != PR_STNEW)
continue; /* already initialized */
pxerr = 0;
for (listener = curproxy->listen; listener != NULL; listener = listener->next) {
if (listener->fd != -1)
continue; /* already initialized */
if ((fd = socket(listener->addr.ss_family, SOCK_STREAM, IPPROTO_TCP)) == -1) {
if (verbose)
Alert("cannot create listening socket for proxy %s. Aborting.\n",
curproxy->id);
err |= ERR_RETRYABLE;
pxerr |= 1;
continue;
}
if (fd >= global.maxsock) {
Alert("socket(): not enough free sockets for proxy %s. Raise -n argument. Aborting.\n",
curproxy->id);
close(fd);
err |= ERR_FATAL;
pxerr |= 1;
break;
}
if ((fcntl(fd, F_SETFL, O_NONBLOCK) == -1) ||
(setsockopt(fd, IPPROTO_TCP, TCP_NODELAY,
(char *) &one, sizeof(one)) == -1)) {
Alert("cannot make socket non-blocking for proxy %s. Aborting.\n",
curproxy->id);
close(fd);
err |= ERR_FATAL;
pxerr |= 1;
break;
}
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *) &one, sizeof(one)) == -1) {
Alert("cannot do so_reuseaddr for proxy %s. Continuing.\n",
curproxy->id);
}
#ifdef SO_REUSEPORT
/* OpenBSD supports this. As it's present in old libc versions of Linux,
* it might return an error that we will silently ignore.
*/
setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, (char *) &one, sizeof(one));
#endif
if (bind(fd,
(struct sockaddr *)&listener->addr,
listener->addr.ss_family == AF_INET6 ?
sizeof(struct sockaddr_in6) :
sizeof(struct sockaddr_in)) == -1) {
if (verbose)
Alert("cannot bind socket for proxy %s. Aborting.\n",
curproxy->id);
close(fd);
err |= ERR_RETRYABLE;
pxerr |= 1;
continue;
}
if (listen(fd, curproxy->maxconn) == -1) {
if (verbose)
Alert("cannot listen to socket for proxy %s. Aborting.\n",
curproxy->id);
close(fd);
err |= ERR_RETRYABLE;
pxerr |= 1;
continue;
}
/* the socket is ready */
listener->fd = fd;
/* the function for the accept() event */
fdtab[fd].read = &event_accept;
fdtab[fd].write = NULL; /* never called */
fdtab[fd].owner = (struct task *)curproxy; /* reference the proxy instead of a task */
fdtab[fd].state = FD_STLISTEN;
FD_SET(fd, StaticReadEvent);
fd_insert(fd);
listeners++;
}
if (!pxerr) {
curproxy->state = PR_STRUN;
send_log(curproxy, LOG_NOTICE, "Proxy %s started.\n", curproxy->id);
}
}
return err;
}
int match_str(const void *key1, const void *key2) {
appsess *temp1,*temp2;
temp1 = (appsess *)key1;
temp2 = (appsess *)key2;
//fprintf(stdout,">>>>>>>>>>>>>>temp1->sessid :%s:\n",temp1->sessid);
//fprintf(stdout,">>>>>>>>>>>>>>temp2->sessid :%s:\n",temp2->sessid);
return (strcmp(temp1->sessid,temp2->sessid) == 0);
}/* end match_str */
void destroy(void *data) {
appsess *temp1;
//printf("destroy called\n");
temp1 = (appsess *)data;
if (temp1->sessid)
pool_free_to(apools.sessid, temp1->sessid);
if (temp1->serverid)
pool_free_to(apools.serverid, temp1->serverid);
pool_free(appsess, temp1);
} /* end destroy */
void appsession_cleanup( void )
{
struct proxy *p = proxy;
while(p) {
chtbl_destroy(&(p->htbl_proxy));
p = p->next;
}
}/* end appsession_cleanup() */
void pool_destroy(void **pool)
{
void *temp, *next;
next = pool;
while (next) {
temp = next;
next = *(void **)temp;
free(temp);
}
}/* end pool_destroy() */
void deinit(void) {
struct proxy *p = proxy;
struct cap_hdr *h,*h_next;
struct server *s,*s_next;
struct listener *l,*l_next;
while (p) {
if (p->id)
free(p->id);
if (p->check_req)
free(p->check_req);
if (p->cookie_name)
free(p->cookie_name);
if (p->capture_name)
free(p->capture_name);
/* only strup if the user have set in config.
When should we free it?!
if (p->errmsg.msg400) free(p->errmsg.msg400);
if (p->errmsg.msg403) free(p->errmsg.msg403);
if (p->errmsg.msg408) free(p->errmsg.msg408);
if (p->errmsg.msg500) free(p->errmsg.msg500);
if (p->errmsg.msg502) free(p->errmsg.msg502);
if (p->errmsg.msg503) free(p->errmsg.msg503);
if (p->errmsg.msg504) free(p->errmsg.msg504);
*/
if (p->appsession_name)
free(p->appsession_name);
h = p->req_cap;
while (h) {
h_next = h->next;
if (h->name)
free(h->name);
pool_destroy(h->pool);
free(h);
h = h_next;
}/* end while(h) */
h = p->rsp_cap;
while (h) {
h_next = h->next;
if (h->name)
free(h->name);
pool_destroy(h->pool);
free(h);
h = h_next;
}/* end while(h) */
s = p->srv;
while (s) {
s_next = s->next;
if (s->id)
free(s->id);
if (s->cookie)
free(s->cookie);
free(s);
s = s_next;
}/* end while(s) */
l = p->listen;
while (l) {
l_next = l->next;
free(l);
l = l_next;
}/* end while(l) */
pool_destroy((void **) p->req_cap_pool);
pool_destroy((void **) p->rsp_cap_pool);
p = p->next;
}/* end while(p) */
if (global.chroot) free(global.chroot);
if (global.pidfile) free(global.pidfile);
if (StaticReadEvent) free(StaticReadEvent);
if (StaticWriteEvent) free(StaticWriteEvent);
if (fdtab) free(fdtab);
pool_destroy(pool_session);
pool_destroy(pool_buffer);
pool_destroy(pool_fdtab);
pool_destroy(pool_requri);
pool_destroy(pool_task);
pool_destroy(pool_capture);
pool_destroy(pool_appsess);
if (have_appsession) {
pool_destroy(apools.serverid);
pool_destroy(apools.sessid);
}
} /* end deinit() */
/* sends the signal <sig> to all pids found in <oldpids> */
static void tell_old_pids(int sig) {
int p;
for (p = 0; p < nb_oldpids; p++)
kill(oldpids[p], sig);
}
int main(int argc, char **argv) {
int err, retry;
struct rlimit limit;
FILE *pidfile = NULL;
init(argc, argv);
signal(SIGQUIT, dump);
signal(SIGUSR1, sig_soft_stop);
signal(SIGHUP, sig_dump_state);
#ifdef DEBUG_MEMORY
signal(SIGINT, sig_int);
signal(SIGTERM, sig_term);
#endif
/* on very high loads, a sigpipe sometimes happen just between the
* getsockopt() which tells "it's OK to write", and the following write :-(
*/
#ifndef MSG_NOSIGNAL
signal(SIGPIPE, SIG_IGN);
#endif
/* We will loop at most 100 times with 10 ms delay each time.
* That's at most 1 second. We only send a signal to old pids
* if we cannot grab at least one port.
*/
retry = MAX_START_RETRIES;
err = ERR_NONE;
while (retry >= 0) {
struct timeval w;
err = start_proxies(retry == 0 || nb_oldpids == 0);
if (err != ERR_RETRYABLE)
break;
if (nb_oldpids == 0)
break;
/* FIXME-20060514: Solaris and OpenBSD do not support shutdown() on
* listening sockets. So on those platforms, it would be wiser to
* simply send SIGUSR1, which will not be undoable.
*/
tell_old_pids(SIGTTOU);
/* give some time to old processes to stop listening */
w.tv_sec = 0;
w.tv_usec = 10*1000;
select(0, NULL, NULL, NULL, &w);
retry--;
}
/* Note: start_proxies() sends an alert when it fails. */
if (err != ERR_NONE) {
if (retry != MAX_START_RETRIES && nb_oldpids)
tell_old_pids(SIGTTIN);
exit(1);
}
if (listeners == 0) {
Alert("[%s.main()] No enabled listener found (check the <listen> keywords) ! Exiting.\n", argv[0]);
/* Note: we don't have to send anything to the old pids because we
* never stopped them. */
exit(1);
}
/* prepare pause/play signals */
signal(SIGTTOU, sig_pause);
signal(SIGTTIN, sig_listen);
if (global.mode & MODE_DAEMON) {
global.mode &= ~MODE_VERBOSE;
global.mode |= MODE_QUIET;
}
/* MODE_QUIET can inhibit alerts and warnings below this line */
global.mode &= ~MODE_STARTING;
if ((global.mode & MODE_QUIET) && !(global.mode & MODE_VERBOSE)) {
/* detach from the tty */
fclose(stdin); fclose(stdout); fclose(stderr);
close(0); close(1); close(2);
}
/* open log & pid files before the chroot */
if (global.mode & MODE_DAEMON && global.pidfile != NULL) {
int pidfd;
unlink(global.pidfile);
pidfd = open(global.pidfile, O_CREAT | O_WRONLY | O_TRUNC, 0644);
if (pidfd < 0) {
Alert("[%s.main()] Cannot create pidfile %s\n", argv[0], global.pidfile);
if (nb_oldpids)
tell_old_pids(SIGTTIN);
exit(1);
}
pidfile = fdopen(pidfd, "w");
}
/* chroot if needed */
if (global.chroot != NULL) {
if (chroot(global.chroot) == -1) {
Alert("[%s.main()] Cannot chroot(%s).\n", argv[0], global.chroot);
if (nb_oldpids)
tell_old_pids(SIGTTIN);
}
chdir("/");
}
/* ulimits */
if (!global.rlimit_nofile)
global.rlimit_nofile = global.maxsock;
if (global.rlimit_nofile) {
limit.rlim_cur = limit.rlim_max = global.rlimit_nofile;
if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
Warning("[%s.main()] Cannot raise FD limit to %d.\n", argv[0], global.rlimit_nofile);
}
}
if (global.rlimit_memmax) {
limit.rlim_cur = limit.rlim_max =
global.rlimit_memmax * 1048576 / global.nbproc;
#ifdef RLIMIT_AS
if (setrlimit(RLIMIT_AS, &limit) == -1) {
Warning("[%s.main()] Cannot fix MEM limit to %d megs.\n",
argv[0], global.rlimit_memmax);
}
#else
if (setrlimit(RLIMIT_DATA, &limit) == -1) {
Warning("[%s.main()] Cannot fix MEM limit to %d megs.\n",
argv[0], global.rlimit_memmax);
}
#endif
}
if (nb_oldpids)
tell_old_pids(oldpids_sig);
/* Note that any error at this stage will be fatal because we will not
* be able to restart the old pids.
*/
/* setgid / setuid */
if (global.gid && setgid(global.gid) == -1) {
Alert("[%s.main()] Cannot set gid %d.\n", argv[0], global.gid);
exit(1);
}
if (global.uid && setuid(global.uid) == -1) {
Alert("[%s.main()] Cannot set uid %d.\n", argv[0], global.uid);
exit(1);
}
/* check ulimits */
limit.rlim_cur = limit.rlim_max = 0;
getrlimit(RLIMIT_NOFILE, &limit);
if (limit.rlim_cur < global.maxsock) {
Warning("[%s.main()] FD limit (%d) too low for maxconn=%d/maxsock=%d. Please raise 'ulimit-n' to %d or more to avoid any trouble.\n",
argv[0], limit.rlim_cur, global.maxconn, global.maxsock, global.maxsock);
}
if (global.mode & MODE_DAEMON) {
int ret = 0;
int proc;
/* the father launches the required number of processes */
for (proc = 0; proc < global.nbproc; proc++) {
ret = fork();
if (ret < 0) {
Alert("[%s.main()] Cannot fork.\n", argv[0]);
if (nb_oldpids)
exit(1); /* there has been an error */
}
else if (ret == 0) /* child breaks here */
break;
if (pidfile != NULL) {
fprintf(pidfile, "%d\n", ret);
fflush(pidfile);
}
}
/* close the pidfile both in children and father */
if (pidfile != NULL)
fclose(pidfile);
free(global.pidfile);
if (proc == global.nbproc)
exit(0); /* parent must leave */
/* if we're NOT in QUIET mode, we should now close the 3 first FDs to ensure
* that we can detach from the TTY. We MUST NOT do it in other cases since
* it would have already be done, and 0-2 would have been affected to listening
* sockets
*/
if (!(global.mode & MODE_QUIET)) {
/* detach from the tty */
fclose(stdin); fclose(stdout); fclose(stderr);
close(0); close(1); close(2); /* close all fd's */
global.mode |= MODE_QUIET; /* ensure that we won't say anything from now */
}
pid = getpid(); /* update child's pid */
setsid();
}
#if defined(ENABLE_EPOLL)
if (cfg_polling_mechanism & POLL_USE_EPOLL) {
if (epoll_loop(POLL_LOOP_ACTION_INIT)) {
epoll_loop(POLL_LOOP_ACTION_RUN);
epoll_loop(POLL_LOOP_ACTION_CLEAN);
cfg_polling_mechanism &= POLL_USE_EPOLL;
}
else {
Warning("epoll() is not available. Using poll()/select() instead.\n");
cfg_polling_mechanism &= ~POLL_USE_EPOLL;
}
}
#endif
#if defined(ENABLE_POLL)
if (cfg_polling_mechanism & POLL_USE_POLL) {
if (poll_loop(POLL_LOOP_ACTION_INIT)) {
poll_loop(POLL_LOOP_ACTION_RUN);
poll_loop(POLL_LOOP_ACTION_CLEAN);
cfg_polling_mechanism &= POLL_USE_POLL;
}
else {
Warning("poll() is not available. Using select() instead.\n");
cfg_polling_mechanism &= ~POLL_USE_POLL;
}
}
#endif
if (cfg_polling_mechanism & POLL_USE_SELECT) {
if (select_loop(POLL_LOOP_ACTION_INIT)) {
select_loop(POLL_LOOP_ACTION_RUN);
select_loop(POLL_LOOP_ACTION_CLEAN);
cfg_polling_mechanism &= POLL_USE_SELECT;
}
}
/* Free all Hash Keys and all Hash elements */
appsession_cleanup();
/* Do some cleanup */
deinit();
exit(0);
}
#if defined(DEBUG_HASH)
static void print_table(const CHTbl *htbl) {
ListElmt *element;
int i;
appsess *asession;
/*****************************************************************************
* *
* Display the chained hash table. *
* *
*****************************************************************************/
fprintf(stdout, "Table size is %d\n", chtbl_size(htbl));
for (i = 0; i < TBLSIZ; i++) {
fprintf(stdout, "Bucket[%03d]\n", i);
for (element = list_head(&htbl->table[i]); element != NULL; element = list_next(element)) {
//fprintf(stdout, "%c", *(char *)list_data(element));
asession = (appsess *)list_data(element);
fprintf(stdout, "ELEM :%s:", asession->sessid);
fprintf(stdout, " Server :%s: \n", asession->serverid);
//fprintf(stdout, " Server request_count :%li:\n",asession->request_count);
}
fprintf(stdout, "\n");
}
return;
} /* end print_table */
#endif
static int appsession_init(void)
{
static int initialized = 0;
int idlen;
struct server *s;
struct proxy *p = proxy;
if (!initialized) {
if (!appsession_task_init()) {
apools.sessid = NULL;
apools.serverid = NULL;
apools.ser_waste = 0;
apools.ser_use = 0;
apools.ser_msize = sizeof(void *);
apools.ses_waste = 0;
apools.ses_use = 0;
apools.ses_msize = sizeof(void *);
while (p) {
s = p->srv;
if (apools.ses_msize < p->appsession_len)
apools.ses_msize = p->appsession_len;
while (s) {
idlen = strlen(s->id);
if (apools.ser_msize < idlen)
apools.ser_msize = idlen;
s = s->next;
}
p = p->next;
}
apools.ser_msize ++; /* we use strings, so reserve space for '\0' */
apools.ses_msize ++;
}
else {
fprintf(stderr, "appsession_task_init failed\n");
return -1;
}
initialized ++;
}
return 0;
}
static int appsession_task_init(void)
{
static int initialized = 0;
struct task *t;
if (!initialized) {
if ((t = pool_alloc(task)) == NULL)
return -1;
t->next = t->prev = t->rqnext = NULL;
t->wq = LIST_HEAD(wait_queue[0]);
t->state = TASK_IDLE;
t->context = NULL;
tv_delayfrom(&t->expire, &now, TBLCHKINT);
task_queue(t);
t->process = appsession_refresh;
initialized ++;
}
return 0;
}
static int appsession_refresh(struct task *t) {
struct proxy *p = proxy;
CHTbl *htbl;
ListElmt *element, *last;
int i;
appsess *asession;
void *data;
while (p) {
if (p->appsession_name != NULL) {
htbl = &p->htbl_proxy;
/* if we ever give up the use of TBLSIZ, we need to change this */
for (i = 0; i < TBLSIZ; i++) {
last = NULL;
for (element = list_head(&htbl->table[i]); element != NULL; element = list_next(element)) {
asession = (appsess *)list_data(element);
if (tv_cmp2_ms(&asession->expire, &now) <= 0) {
if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) {
int len;
/*
on Linux NULL pointers are catched by sprintf, on solaris -> segfault
*/
len = sprintf(trash, "appsession_refresh: cleaning up expired Session '%s' on Server %s\n",
asession->sessid, asession->serverid?asession->serverid:"(null)");
write(1, trash, len);
}
/* delete the expired element from within the hash table */
if ((list_rem_next(&htbl->table[i], last, (void **)&data) == 0)
&& (htbl->table[i].destroy != NULL)) {
htbl->table[i].destroy(data);
}
if (last == NULL) {/* patient lost his head, get a new one */
element = list_head(&htbl->table[i]);
if (element == NULL) break; /* no heads left, go to next patient */
}
else
element = last;
}/* end if (tv_cmp2_ms(&asession->expire, &now) <= 0) */
else
last = element;
}/* end for (element = list_head(&htbl->table[i]); element != NULL; element = list_next(element)) */
}
}
p = p->next;
}
tv_delayfrom(&t->expire, &now, TBLCHKINT); /* check expiration every 5 seconds */
return TBLCHKINT;
} /* end appsession_refresh */
/*
* Local variables:
* c-indent-level: 4
* c-basic-offset: 4
* End:
*/