blob: 718bb49b8fa10c4b8b2bb33755b0d4894b25043d [file] [log] [blame]
/*
* General purpose functions.
*
* Copyright 2000-2010 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#if (defined(__ELF__) && !defined(__linux__)) || defined(USE_DL)
#define _GNU_SOURCE
#include <dlfcn.h>
#include <link.h>
#endif
#include <ctype.h>
#include <errno.h>
#include <netdb.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/un.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#if (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 16))
#include <sys/auxv.h>
#endif
#include <import/eb32sctree.h>
#include <import/eb32tree.h>
#include <haproxy/api.h>
#include <haproxy/chunk.h>
#include <haproxy/dgram.h>
#include <haproxy/global.h>
#include <haproxy/hlua.h>
#include <haproxy/listener.h>
#include <haproxy/namespace.h>
#include <haproxy/net_helper.h>
#include <haproxy/protocol.h>
#include <haproxy/resolvers.h>
#include <haproxy/sock.h>
#include <haproxy/ssl_sock.h>
#include <haproxy/stream_interface.h>
#include <haproxy/task.h>
#include <haproxy/tools.h>
/* This macro returns false if the test __x is false. Many
* of the following parsing function must be abort the processing
* if it returns 0, so this macro is useful for writing light code.
*/
#define RET0_UNLESS(__x) do { if (!(__x)) return 0; } while (0)
/* enough to store NB_ITOA_STR integers of :
* 2^64-1 = 18446744073709551615 or
* -2^63 = -9223372036854775808
*
* The HTML version needs room for adding the 25 characters
* '<span class="rls"></span>' around digits at positions 3N+1 in order
* to add spacing at up to 6 positions : 18 446 744 073 709 551 615
*/
THREAD_LOCAL char itoa_str[NB_ITOA_STR][171];
THREAD_LOCAL int itoa_idx = 0; /* index of next itoa_str to use */
/* sometimes we'll need to quote strings (eg: in stats), and we don't expect
* to quote strings larger than a max configuration line.
*/
THREAD_LOCAL char quoted_str[NB_QSTR][QSTR_SIZE + 1];
THREAD_LOCAL int quoted_idx = 0;
/* thread-local PRNG state. It's modified to start from a different sequence
* on all threads upon startup. It must not be used or anything beyond getting
* statistical values as it's 100% predictable.
*/
THREAD_LOCAL unsigned int statistical_prng_state = 2463534242U;
/*
* unsigned long long ASCII representation
*
* return the last char '\0' or NULL if no enough
* space in dst
*/
char *ulltoa(unsigned long long n, char *dst, size_t size)
{
int i = 0;
char *res;
switch(n) {
case 1ULL ... 9ULL:
i = 0;
break;
case 10ULL ... 99ULL:
i = 1;
break;
case 100ULL ... 999ULL:
i = 2;
break;
case 1000ULL ... 9999ULL:
i = 3;
break;
case 10000ULL ... 99999ULL:
i = 4;
break;
case 100000ULL ... 999999ULL:
i = 5;
break;
case 1000000ULL ... 9999999ULL:
i = 6;
break;
case 10000000ULL ... 99999999ULL:
i = 7;
break;
case 100000000ULL ... 999999999ULL:
i = 8;
break;
case 1000000000ULL ... 9999999999ULL:
i = 9;
break;
case 10000000000ULL ... 99999999999ULL:
i = 10;
break;
case 100000000000ULL ... 999999999999ULL:
i = 11;
break;
case 1000000000000ULL ... 9999999999999ULL:
i = 12;
break;
case 10000000000000ULL ... 99999999999999ULL:
i = 13;
break;
case 100000000000000ULL ... 999999999999999ULL:
i = 14;
break;
case 1000000000000000ULL ... 9999999999999999ULL:
i = 15;
break;
case 10000000000000000ULL ... 99999999999999999ULL:
i = 16;
break;
case 100000000000000000ULL ... 999999999999999999ULL:
i = 17;
break;
case 1000000000000000000ULL ... 9999999999999999999ULL:
i = 18;
break;
case 10000000000000000000ULL ... ULLONG_MAX:
i = 19;
break;
}
if (i + 2 > size) // (i + 1) + '\0'
return NULL; // too long
res = dst + i + 1;
*res = '\0';
for (; i >= 0; i--) {
dst[i] = n % 10ULL + '0';
n /= 10ULL;
}
return res;
}
/*
* unsigned long ASCII representation
*
* return the last char '\0' or NULL if no enough
* space in dst
*/
char *ultoa_o(unsigned long n, char *dst, size_t size)
{
int i = 0;
char *res;
switch (n) {
case 0U ... 9UL:
i = 0;
break;
case 10U ... 99UL:
i = 1;
break;
case 100U ... 999UL:
i = 2;
break;
case 1000U ... 9999UL:
i = 3;
break;
case 10000U ... 99999UL:
i = 4;
break;
case 100000U ... 999999UL:
i = 5;
break;
case 1000000U ... 9999999UL:
i = 6;
break;
case 10000000U ... 99999999UL:
i = 7;
break;
case 100000000U ... 999999999UL:
i = 8;
break;
#if __WORDSIZE == 32
case 1000000000ULL ... ULONG_MAX:
i = 9;
break;
#elif __WORDSIZE == 64
case 1000000000ULL ... 9999999999UL:
i = 9;
break;
case 10000000000ULL ... 99999999999UL:
i = 10;
break;
case 100000000000ULL ... 999999999999UL:
i = 11;
break;
case 1000000000000ULL ... 9999999999999UL:
i = 12;
break;
case 10000000000000ULL ... 99999999999999UL:
i = 13;
break;
case 100000000000000ULL ... 999999999999999UL:
i = 14;
break;
case 1000000000000000ULL ... 9999999999999999UL:
i = 15;
break;
case 10000000000000000ULL ... 99999999999999999UL:
i = 16;
break;
case 100000000000000000ULL ... 999999999999999999UL:
i = 17;
break;
case 1000000000000000000ULL ... 9999999999999999999UL:
i = 18;
break;
case 10000000000000000000ULL ... ULONG_MAX:
i = 19;
break;
#endif
}
if (i + 2 > size) // (i + 1) + '\0'
return NULL; // too long
res = dst + i + 1;
*res = '\0';
for (; i >= 0; i--) {
dst[i] = n % 10U + '0';
n /= 10U;
}
return res;
}
/*
* signed long ASCII representation
*
* return the last char '\0' or NULL if no enough
* space in dst
*/
char *ltoa_o(long int n, char *dst, size_t size)
{
char *pos = dst;
if (n < 0) {
if (size < 3)
return NULL; // min size is '-' + digit + '\0' but another test in ultoa
*pos = '-';
pos++;
dst = ultoa_o(-n, pos, size - 1);
} else {
dst = ultoa_o(n, dst, size);
}
return dst;
}
/*
* signed long long ASCII representation
*
* return the last char '\0' or NULL if no enough
* space in dst
*/
char *lltoa(long long n, char *dst, size_t size)
{
char *pos = dst;
if (n < 0) {
if (size < 3)
return NULL; // min size is '-' + digit + '\0' but another test in ulltoa
*pos = '-';
pos++;
dst = ulltoa(-n, pos, size - 1);
} else {
dst = ulltoa(n, dst, size);
}
return dst;
}
/*
* write a ascii representation of a unsigned into dst,
* return a pointer to the last character
* Pad the ascii representation with '0', using size.
*/
char *utoa_pad(unsigned int n, char *dst, size_t size)
{
int i = 0;
char *ret;
switch(n) {
case 0U ... 9U:
i = 0;
break;
case 10U ... 99U:
i = 1;
break;
case 100U ... 999U:
i = 2;
break;
case 1000U ... 9999U:
i = 3;
break;
case 10000U ... 99999U:
i = 4;
break;
case 100000U ... 999999U:
i = 5;
break;
case 1000000U ... 9999999U:
i = 6;
break;
case 10000000U ... 99999999U:
i = 7;
break;
case 100000000U ... 999999999U:
i = 8;
break;
case 1000000000U ... 4294967295U:
i = 9;
break;
}
if (i + 2 > size) // (i + 1) + '\0'
return NULL; // too long
if (i < size)
i = size - 2; // padding - '\0'
ret = dst + i + 1;
*ret = '\0';
for (; i >= 0; i--) {
dst[i] = n % 10U + '0';
n /= 10U;
}
return ret;
}
/*
* copies at most <size-1> chars from <src> to <dst>. Last char is always
* set to 0, unless <size> is 0. The number of chars copied is returned
* (excluding the terminating zero).
* This code has been optimized for size and speed : on x86, it's 45 bytes
* long, uses only registers, and consumes only 4 cycles per char.
*/
int strlcpy2(char *dst, const char *src, int size)
{
char *orig = dst;
if (size) {
while (--size && (*dst = *src)) {
src++; dst++;
}
*dst = 0;
}
return dst - orig;
}
/*
* This function simply returns a locally allocated string containing
* the ascii representation for number 'n' in decimal.
*/
char *ultoa_r(unsigned long n, char *buffer, int size)
{
char *pos;
pos = buffer + size - 1;
*pos-- = '\0';
do {
*pos-- = '0' + n % 10;
n /= 10;
} while (n && pos >= buffer);
return pos + 1;
}
/*
* This function simply returns a locally allocated string containing
* the ascii representation for number 'n' in decimal.
*/
char *lltoa_r(long long int in, char *buffer, int size)
{
char *pos;
int neg = 0;
unsigned long long int n;
pos = buffer + size - 1;
*pos-- = '\0';
if (in < 0) {
neg = 1;
n = -in;
}
else
n = in;
do {
*pos-- = '0' + n % 10;
n /= 10;
} while (n && pos >= buffer);
if (neg && pos > buffer)
*pos-- = '-';
return pos + 1;
}
/*
* This function simply returns a locally allocated string containing
* the ascii representation for signed number 'n' in decimal.
*/
char *sltoa_r(long n, char *buffer, int size)
{
char *pos;
if (n >= 0)
return ultoa_r(n, buffer, size);
pos = ultoa_r(-n, buffer + 1, size - 1) - 1;
*pos = '-';
return pos;
}
/*
* This function simply returns a locally allocated string containing
* the ascii representation for number 'n' in decimal, formatted for
* HTML output with tags to create visual grouping by 3 digits. The
* output needs to support at least 171 characters.
*/
const char *ulltoh_r(unsigned long long n, char *buffer, int size)
{
char *start;
int digit = 0;
start = buffer + size;
*--start = '\0';
do {
if (digit == 3 && start >= buffer + 7)
memcpy(start -= 7, "</span>", 7);
if (start >= buffer + 1) {
*--start = '0' + n % 10;
n /= 10;
}
if (digit == 3 && start >= buffer + 18)
memcpy(start -= 18, "<span class=\"rls\">", 18);
if (digit++ == 3)
digit = 1;
} while (n && start > buffer);
return start;
}
/*
* This function simply returns a locally allocated string containing the ascii
* representation for number 'n' in decimal, unless n is 0 in which case it
* returns the alternate string (or an empty string if the alternate string is
* NULL). It use is intended for limits reported in reports, where it's
* desirable not to display anything if there is no limit. Warning! it shares
* the same vector as ultoa_r().
*/
const char *limit_r(unsigned long n, char *buffer, int size, const char *alt)
{
return (n) ? ultoa_r(n, buffer, size) : (alt ? alt : "");
}
/* Trims the first "%f" float in a string to its minimum number of digits after
* the decimal point by trimming trailing zeroes, even dropping the decimal
* point if not needed. The string is in <buffer> of length <len>, and the
* number is expected to start at or after position <num_start> (the first
* point appearing there is considered). A NUL character is always placed at
* the end if some trimming occurs. The new buffer length is returned.
*/
size_t flt_trim(char *buffer, size_t num_start, size_t len)
{
char *end = buffer + len;
char *p = buffer + num_start;
char *trim;
do {
if (p >= end)
return len;
trim = p++;
} while (*trim != '.');
/* For now <trim> is on the decimal point. Let's look for any other
* meaningful digit after it.
*/
while (p < end) {
if (*p++ != '0')
trim = p;
}
if (trim < end)
*trim = 0;
return trim - buffer;
}
/*
* This function simply returns a locally allocated string containing
* the ascii representation for number 'n' in decimal with useless trailing
* zeroes trimmed.
*/
char *ftoa_r(double n, char *buffer, int size)
{
flt_trim(buffer, 0, snprintf(buffer, size, "%f", n));
return buffer;
}
/* returns a locally allocated string containing the quoted encoding of the
* input string. The output may be truncated to QSTR_SIZE chars, but it is
* guaranteed that the string will always be properly terminated. Quotes are
* encoded by doubling them as is commonly done in CSV files. QSTR_SIZE must
* always be at least 4 chars.
*/
const char *qstr(const char *str)
{
char *ret = quoted_str[quoted_idx];
char *p, *end;
if (++quoted_idx >= NB_QSTR)
quoted_idx = 0;
p = ret;
end = ret + QSTR_SIZE;
*p++ = '"';
/* always keep 3 chars to support passing "" and the ending " */
while (*str && p < end - 3) {
if (*str == '"') {
*p++ = '"';
*p++ = '"';
}
else
*p++ = *str;
str++;
}
*p++ = '"';
return ret;
}
/*
* Returns non-zero if character <s> is a hex digit (0-9, a-f, A-F), else zero.
*
* It looks like this one would be a good candidate for inlining, but this is
* not interesting because it around 35 bytes long and often called multiple
* times within the same function.
*/
int ishex(char s)
{
s -= '0';
if ((unsigned char)s <= 9)
return 1;
s -= 'A' - '0';
if ((unsigned char)s <= 5)
return 1;
s -= 'a' - 'A';
if ((unsigned char)s <= 5)
return 1;
return 0;
}
/* rounds <i> down to the closest value having max 2 digits */
unsigned int round_2dig(unsigned int i)
{
unsigned int mul = 1;
while (i >= 100) {
i /= 10;
mul *= 10;
}
return i * mul;
}
/*
* Checks <name> for invalid characters. Valid chars are [A-Za-z0-9_:.-]. If an
* invalid character is found, a pointer to it is returned. If everything is
* fine, NULL is returned.
*/
const char *invalid_char(const char *name)
{
if (!*name)
return name;
while (*name) {
if (!isalnum((unsigned char)*name) && *name != '.' && *name != ':' &&
*name != '_' && *name != '-')
return name;
name++;
}
return NULL;
}
/*
* Checks <name> for invalid characters. Valid chars are [_.-] and those
* accepted by <f> function.
* If an invalid character is found, a pointer to it is returned.
* If everything is fine, NULL is returned.
*/
static inline const char *__invalid_char(const char *name, int (*f)(int)) {
if (!*name)
return name;
while (*name) {
if (!f((unsigned char)*name) && *name != '.' &&
*name != '_' && *name != '-')
return name;
name++;
}
return NULL;
}
/*
* Checks <name> for invalid characters. Valid chars are [A-Za-z0-9_.-].
* If an invalid character is found, a pointer to it is returned.
* If everything is fine, NULL is returned.
*/
const char *invalid_domainchar(const char *name) {
return __invalid_char(name, isalnum);
}
/*
* Checks <name> for invalid characters. Valid chars are [A-Za-z_.-].
* If an invalid character is found, a pointer to it is returned.
* If everything is fine, NULL is returned.
*/
const char *invalid_prefix_char(const char *name) {
return __invalid_char(name, isalnum);
}
/*
* converts <str> to a struct sockaddr_storage* provided by the caller. The
* caller must have zeroed <sa> first, and may have set sa->ss_family to force
* parse a specific address format. If the ss_family is 0 or AF_UNSPEC, then
* the function tries to guess the address family from the syntax. If the
* family is forced and the format doesn't match, an error is returned. The
* string is assumed to contain only an address, no port. The address can be a
* dotted IPv4 address, an IPv6 address, a host name, or empty or "*" to
* indicate INADDR_ANY. NULL is returned if the host part cannot be resolved.
* The return address will only have the address family and the address set,
* all other fields remain zero. The string is not supposed to be modified.
* The IPv6 '::' address is IN6ADDR_ANY. If <resolve> is non-zero, the hostname
* is resolved, otherwise only IP addresses are resolved, and anything else
* returns NULL. If the address contains a port, this one is preserved.
*/
struct sockaddr_storage *str2ip2(const char *str, struct sockaddr_storage *sa, int resolve)
{
struct hostent *he;
/* max IPv6 length, including brackets and terminating NULL */
char tmpip[48];
int port = get_host_port(sa);
/* check IPv6 with square brackets */
if (str[0] == '[') {
size_t iplength = strlen(str);
if (iplength < 4) {
/* minimal size is 4 when using brackets "[::]" */
goto fail;
}
else if (iplength >= sizeof(tmpip)) {
/* IPv6 literal can not be larger than tmpip */
goto fail;
}
else {
if (str[iplength - 1] != ']') {
/* if address started with bracket, it should end with bracket */
goto fail;
}
else {
memcpy(tmpip, str + 1, iplength - 2);
tmpip[iplength - 2] = '\0';
str = tmpip;
}
}
}
/* Any IPv6 address */
if (str[0] == ':' && str[1] == ':' && !str[2]) {
if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
sa->ss_family = AF_INET6;
else if (sa->ss_family != AF_INET6)
goto fail;
set_host_port(sa, port);
return sa;
}
/* Any address for the family, defaults to IPv4 */
if (!str[0] || (str[0] == '*' && !str[1])) {
if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
sa->ss_family = AF_INET;
set_host_port(sa, port);
return sa;
}
/* check for IPv6 first */
if ((!sa->ss_family || sa->ss_family == AF_UNSPEC || sa->ss_family == AF_INET6) &&
inet_pton(AF_INET6, str, &((struct sockaddr_in6 *)sa)->sin6_addr)) {
sa->ss_family = AF_INET6;
set_host_port(sa, port);
return sa;
}
/* then check for IPv4 */
if ((!sa->ss_family || sa->ss_family == AF_UNSPEC || sa->ss_family == AF_INET) &&
inet_pton(AF_INET, str, &((struct sockaddr_in *)sa)->sin_addr)) {
sa->ss_family = AF_INET;
set_host_port(sa, port);
return sa;
}
if (!resolve)
return NULL;
if (!resolv_hostname_validation(str, NULL))
return NULL;
#ifdef USE_GETADDRINFO
if (global.tune.options & GTUNE_USE_GAI) {
struct addrinfo hints, *result;
int success = 0;
memset(&result, 0, sizeof(result));
memset(&hints, 0, sizeof(hints));
hints.ai_family = sa->ss_family ? sa->ss_family : AF_UNSPEC;
hints.ai_socktype = SOCK_DGRAM;
hints.ai_flags = 0;
hints.ai_protocol = 0;
if (getaddrinfo(str, NULL, &hints, &result) == 0) {
if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
sa->ss_family = result->ai_family;
else if (sa->ss_family != result->ai_family) {
freeaddrinfo(result);
goto fail;
}
switch (result->ai_family) {
case AF_INET:
memcpy((struct sockaddr_in *)sa, result->ai_addr, result->ai_addrlen);
set_host_port(sa, port);
success = 1;
break;
case AF_INET6:
memcpy((struct sockaddr_in6 *)sa, result->ai_addr, result->ai_addrlen);
set_host_port(sa, port);
success = 1;
break;
}
}
if (result)
freeaddrinfo(result);
if (success)
return sa;
}
#endif
/* try to resolve an IPv4/IPv6 hostname */
he = gethostbyname(str);
if (he) {
if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
sa->ss_family = he->h_addrtype;
else if (sa->ss_family != he->h_addrtype)
goto fail;
switch (sa->ss_family) {
case AF_INET:
((struct sockaddr_in *)sa)->sin_addr = *(struct in_addr *) *(he->h_addr_list);
set_host_port(sa, port);
return sa;
case AF_INET6:
((struct sockaddr_in6 *)sa)->sin6_addr = *(struct in6_addr *) *(he->h_addr_list);
set_host_port(sa, port);
return sa;
}
}
/* unsupported address family */
fail:
return NULL;
}
/*
* Converts <str> to a locally allocated struct sockaddr_storage *, and a port
* range or offset consisting in two integers that the caller will have to
* check to find the relevant input format. The following format are supported :
*
* String format | address | port | low | high
* addr | <addr> | 0 | 0 | 0
* addr: | <addr> | 0 | 0 | 0
* addr:port | <addr> | <port> | <port> | <port>
* addr:pl-ph | <addr> | <pl> | <pl> | <ph>
* addr:+port | <addr> | <port> | 0 | <port>
* addr:-port | <addr> |-<port> | <port> | 0
*
* The detection of a port range or increment by the caller is made by
* comparing <low> and <high>. If both are equal, then port 0 means no port
* was specified. The caller may pass NULL for <low> and <high> if it is not
* interested in retrieving port ranges.
*
* Note that <addr> above may also be :
* - empty ("") => family will be AF_INET and address will be INADDR_ANY
* - "*" => family will be AF_INET and address will be INADDR_ANY
* - "::" => family will be AF_INET6 and address will be IN6ADDR_ANY
* - a host name => family and address will depend on host name resolving.
*
* A prefix may be passed in before the address above to force the family :
* - "ipv4@" => force address to resolve as IPv4 and fail if not possible.
* - "ipv6@" => force address to resolve as IPv6 and fail if not possible.
* - "unix@" => force address to be a path to a UNIX socket even if the
* path does not start with a '/'
* - 'abns@' -> force address to belong to the abstract namespace (Linux
* only). These sockets are just like Unix sockets but without
* the need for an underlying file system. The address is a
* string. Technically it's like a Unix socket with a zero in
* the first byte of the address.
* - "fd@" => an integer must follow, and is a file descriptor number.
*
* IPv6 addresses can be declared with or without square brackets. When using
* square brackets for IPv6 addresses, the port separator (colon) is optional.
* If not using square brackets, and in order to avoid any ambiguity with
* IPv6 addresses, the last colon ':' is mandatory even when no port is specified.
* NULL is returned if the address cannot be parsed. The <low> and <high> ports
* are always initialized if non-null, even for non-IP families.
*
* If <pfx> is non-null, it is used as a string prefix before any path-based
* address (typically the path to a unix socket).
*
* if <fqdn> is non-null, it will be filled with :
* - a pointer to the FQDN of the server name to resolve if there's one, and
* that the caller will have to free(),
* - NULL if there was an explicit address that doesn't require resolution.
*
* Hostnames are only resolved if <opts> has PA_O_RESOLVE. Otherwise <fqdn> is
* still honored so it is possible for the caller to know whether a resolution
* failed by clearing this flag and checking if <fqdn> was filled, indicating
* the need for a resolution.
*
* When a file descriptor is passed, its value is put into the s_addr part of
* the address when cast to sockaddr_in and the address family is
* AF_CUST_EXISTING_FD.
*
* The matching protocol will be set into <proto> if non-null.
*
* Any known file descriptor is also assigned to <fd> if non-null, otherwise it
* is forced to -1.
*/
struct sockaddr_storage *str2sa_range(const char *str, int *port, int *low, int *high, int *fd,
struct protocol **proto, char **err,
const char *pfx, char **fqdn, unsigned int opts)
{
static THREAD_LOCAL struct sockaddr_storage ss;
struct sockaddr_storage *ret = NULL;
struct protocol *new_proto = NULL;
char *back, *str2;
char *port1, *port2;
int portl, porth, porta;
int abstract = 0;
int new_fd = -1;
int sock_type, ctrl_type;
portl = porth = porta = 0;
if (fqdn)
*fqdn = NULL;
str2 = back = env_expand(strdup(str));
if (str2 == NULL) {
memprintf(err, "out of memory in '%s'\n", __FUNCTION__);
goto out;
}
if (!*str2) {
memprintf(err, "'%s' resolves to an empty address (environment variable missing?)\n", str);
goto out;
}
memset(&ss, 0, sizeof(ss));
/* prepare the default socket types */
if ((opts & (PA_O_STREAM|PA_O_DGRAM)) == PA_O_DGRAM ||
((opts & (PA_O_STREAM|PA_O_DGRAM)) == (PA_O_DGRAM|PA_O_STREAM) && (opts & PA_O_DEFAULT_DGRAM)))
sock_type = ctrl_type = SOCK_DGRAM;
else
sock_type = ctrl_type = SOCK_STREAM;
if (strncmp(str2, "stream+", 7) == 0) {
str2 += 7;
sock_type = ctrl_type = SOCK_STREAM;
}
else if (strncmp(str2, "dgram+", 6) == 0) {
str2 += 6;
sock_type = ctrl_type = SOCK_DGRAM;
}
if (strncmp(str2, "unix@", 5) == 0) {
str2 += 5;
abstract = 0;
ss.ss_family = AF_UNIX;
}
else if (strncmp(str2, "uxdg@", 5) == 0) {
str2 += 5;
abstract = 0;
ss.ss_family = AF_UNIX;
sock_type = ctrl_type = SOCK_DGRAM;
}
else if (strncmp(str2, "uxst@", 5) == 0) {
str2 += 5;
abstract = 0;
ss.ss_family = AF_UNIX;
sock_type = ctrl_type = SOCK_STREAM;
}
else if (strncmp(str2, "abns@", 5) == 0) {
str2 += 5;
abstract = 1;
ss.ss_family = AF_UNIX;
}
else if (strncmp(str2, "ip@", 3) == 0) {
str2 += 3;
ss.ss_family = AF_UNSPEC;
}
else if (strncmp(str2, "ipv4@", 5) == 0) {
str2 += 5;
ss.ss_family = AF_INET;
}
else if (strncmp(str2, "ipv6@", 5) == 0) {
str2 += 5;
ss.ss_family = AF_INET6;
}
else if (strncmp(str2, "tcp4@", 5) == 0) {
str2 += 5;
ss.ss_family = AF_INET;
sock_type = ctrl_type = SOCK_STREAM;
}
else if (strncmp(str2, "udp4@", 5) == 0) {
str2 += 5;
ss.ss_family = AF_INET;
sock_type = ctrl_type = SOCK_DGRAM;
}
else if (strncmp(str2, "tcp6@", 5) == 0) {
str2 += 5;
ss.ss_family = AF_INET6;
sock_type = ctrl_type = SOCK_STREAM;
}
else if (strncmp(str2, "udp6@", 5) == 0) {
str2 += 5;
ss.ss_family = AF_INET6;
sock_type = ctrl_type = SOCK_DGRAM;
}
else if (strncmp(str2, "tcp@", 4) == 0) {
str2 += 4;
ss.ss_family = AF_UNSPEC;
sock_type = ctrl_type = SOCK_STREAM;
}
else if (strncmp(str2, "udp@", 4) == 0) {
str2 += 4;
ss.ss_family = AF_UNSPEC;
sock_type = ctrl_type = SOCK_DGRAM;
}
else if (strncmp(str2, "quic4@", 6) == 0) {
str2 += 6;
ss.ss_family = AF_INET;
sock_type = SOCK_DGRAM;
ctrl_type = SOCK_STREAM;
}
else if (strncmp(str2, "quic6@", 6) == 0) {
str2 += 6;
ss.ss_family = AF_INET6;
sock_type = SOCK_DGRAM;
ctrl_type = SOCK_STREAM;
}
else if (strncmp(str2, "fd@", 3) == 0) {
str2 += 3;
ss.ss_family = AF_CUST_EXISTING_FD;
}
else if (strncmp(str2, "sockpair@", 9) == 0) {
str2 += 9;
ss.ss_family = AF_CUST_SOCKPAIR;
}
else if (*str2 == '/') {
ss.ss_family = AF_UNIX;
}
else
ss.ss_family = AF_UNSPEC;
if (ss.ss_family == AF_CUST_SOCKPAIR) {
struct sockaddr_storage ss2;
socklen_t addr_len;
char *endptr;
new_fd = strtol(str2, &endptr, 10);
if (!*str2 || new_fd < 0 || *endptr) {
memprintf(err, "file descriptor '%s' is not a valid integer in '%s'\n", str2, str);
goto out;
}
/* just verify that it's a socket */
addr_len = sizeof(ss2);
if (getsockname(new_fd, (struct sockaddr *)&ss2, &addr_len) == -1) {
memprintf(err, "cannot use file descriptor '%d' : %s.\n", new_fd, strerror(errno));
goto out;
}
((struct sockaddr_in *)&ss)->sin_addr.s_addr = new_fd;
((struct sockaddr_in *)&ss)->sin_port = 0;
}
else if (ss.ss_family == AF_CUST_EXISTING_FD) {
char *endptr;
new_fd = strtol(str2, &endptr, 10);
if (!*str2 || new_fd < 0 || *endptr) {
memprintf(err, "file descriptor '%s' is not a valid integer in '%s'\n", str2, str);
goto out;
}
if (opts & PA_O_SOCKET_FD) {
socklen_t addr_len;
int type;
addr_len = sizeof(ss);
if (getsockname(new_fd, (struct sockaddr *)&ss, &addr_len) == -1) {
memprintf(err, "cannot use file descriptor '%d' : %s.\n", new_fd, strerror(errno));
goto out;
}
addr_len = sizeof(type);
if (getsockopt(new_fd, SOL_SOCKET, SO_TYPE, &type, &addr_len) != 0 ||
(type == SOCK_STREAM) != (sock_type == SOCK_STREAM)) {
memprintf(err, "socket on file descriptor '%d' is of the wrong type.\n", new_fd);
goto out;
}
porta = portl = porth = get_host_port(&ss);
} else if (opts & PA_O_RAW_FD) {
((struct sockaddr_in *)&ss)->sin_addr.s_addr = new_fd;
((struct sockaddr_in *)&ss)->sin_port = 0;
} else {
memprintf(err, "a file descriptor is not acceptable here in '%s'\n", str);
goto out;
}
}
else if (ss.ss_family == AF_UNIX) {
struct sockaddr_un *un = (struct sockaddr_un *)&ss;
int prefix_path_len;
int max_path_len;
int adr_len;
/* complete unix socket path name during startup or soft-restart is
* <unix_bind_prefix><path>.<pid>.<bak|tmp>
*/
prefix_path_len = (pfx && !abstract) ? strlen(pfx) : 0;
max_path_len = (sizeof(un->sun_path) - 1) -
(abstract ? 0 : prefix_path_len + 1 + 5 + 1 + 3);
adr_len = strlen(str2);
if (adr_len > max_path_len) {
memprintf(err, "socket path '%s' too long (max %d)\n", str, max_path_len);
goto out;
}
/* when abstract==1, we skip the first zero and copy all bytes except the trailing zero */
memset(un->sun_path, 0, sizeof(un->sun_path));
if (prefix_path_len)
memcpy(un->sun_path, pfx, prefix_path_len);
memcpy(un->sun_path + prefix_path_len + abstract, str2, adr_len + 1 - abstract);
}
else { /* IPv4 and IPv6 */
char *end = str2 + strlen(str2);
char *chr;
/* search for : or ] whatever comes first */
for (chr = end-1; chr > str2; chr--) {
if (*chr == ']' || *chr == ':')
break;
}
if (*chr == ':') {
/* Found a colon before a closing-bracket, must be a port separator.
* This guarantee backward compatibility.
*/
if (!(opts & PA_O_PORT_OK)) {
memprintf(err, "port specification not permitted here in '%s'", str);
goto out;
}
*chr++ = '\0';
port1 = chr;
}
else {
/* Either no colon and no closing-bracket
* or directly ending with a closing-bracket.
* However, no port.
*/
if (opts & PA_O_PORT_MAND) {
memprintf(err, "missing port specification in '%s'", str);
goto out;
}
port1 = "";
}
if (isdigit((unsigned char)*port1)) { /* single port or range */
port2 = strchr(port1, '-');
if (port2) {
if (!(opts & PA_O_PORT_RANGE)) {
memprintf(err, "port range not permitted here in '%s'", str);
goto out;
}
*port2++ = '\0';
}
else
port2 = port1;
portl = atoi(port1);
porth = atoi(port2);
if (portl < !!(opts & PA_O_PORT_MAND) || portl > 65535) {
memprintf(err, "invalid port '%s'", port1);
goto out;
}
if (porth < !!(opts & PA_O_PORT_MAND) || porth > 65535) {
memprintf(err, "invalid port '%s'", port2);
goto out;
}
if (portl > porth) {
memprintf(err, "invalid port range '%d-%d'", portl, porth);
goto out;
}
porta = portl;
}
else if (*port1 == '-') { /* negative offset */
if (!(opts & PA_O_PORT_OFS)) {
memprintf(err, "port offset not permitted here in '%s'", str);
goto out;
}
portl = atoi(port1 + 1);
porta = -portl;
}
else if (*port1 == '+') { /* positive offset */
if (!(opts & PA_O_PORT_OFS)) {
memprintf(err, "port offset not permitted here in '%s'", str);
goto out;
}
porth = atoi(port1 + 1);
porta = porth;
}
else if (*port1) { /* other any unexpected char */
memprintf(err, "invalid character '%c' in port number '%s' in '%s'\n", *port1, port1, str);
goto out;
}
else if (opts & PA_O_PORT_MAND) {
memprintf(err, "missing port specification in '%s'", str);
goto out;
}
/* first try to parse the IP without resolving. If it fails, it
* tells us we need to keep a copy of the FQDN to resolve later
* and to enable DNS. In this case we can proceed if <fqdn> is
* set or if PA_O_RESOLVE is set, otherwise it's an error.
*/
if (str2ip2(str2, &ss, 0) == NULL) {
if ((!(opts & PA_O_RESOLVE) && !fqdn) ||
((opts & PA_O_RESOLVE) && str2ip2(str2, &ss, 1) == NULL)) {
memprintf(err, "invalid address: '%s' in '%s'\n", str2, str);
goto out;
}
if (fqdn) {
if (str2 != back)
memmove(back, str2, strlen(str2) + 1);
*fqdn = back;
back = NULL;
}
}
set_host_port(&ss, porta);
}
if (ctrl_type == SOCK_STREAM && !(opts & PA_O_STREAM)) {
memprintf(err, "stream-type socket not acceptable in '%s'\n", str);
goto out;
}
else if (ctrl_type == SOCK_DGRAM && !(opts & PA_O_DGRAM)) {
memprintf(err, "dgram-type socket not acceptable in '%s'\n", str);
goto out;
}
if (proto || (opts & PA_O_CONNECT)) {
/* Note: if the caller asks for a proto, we must find one,
* except if we inherit from a raw FD (family == AF_CUST_EXISTING_FD)
* orif we return with an fqdn that will resolve later,
* in which case the address is not known yet (this is only
* for servers actually).
*/
new_proto = protocol_lookup(ss.ss_family,
sock_type == SOCK_DGRAM,
ctrl_type == SOCK_DGRAM);
if (!new_proto && (!fqdn || !*fqdn) && (ss.ss_family != AF_CUST_EXISTING_FD)) {
memprintf(err, "unsupported protocol family %d for address '%s'", ss.ss_family, str);
goto out;
}
if ((opts & PA_O_CONNECT) && new_proto && !new_proto->connect) {
memprintf(err, "connect() not supported for this protocol family %d used by address '%s'", ss.ss_family, str);
goto out;
}
}
ret = &ss;
out:
if (port)
*port = porta;
if (low)
*low = portl;
if (high)
*high = porth;
if (fd)
*fd = new_fd;
if (proto)
*proto = new_proto;
free(back);
return ret;
}
/* converts <addr> and <port> into a string representation of the address and port. This is sort
* of an inverse of str2sa_range, with some restrictions. The supported families are AF_INET,
* AF_INET6, AF_UNIX, and AF_CUST_SOCKPAIR. If the family is unsopported NULL is returned.
* If map_ports is true, then the sign of the port is included in the output, to indicate it is
* relative to the incoming port. AF_INET and AF_INET6 will be in the form "<addr>:<port>".
* AF_UNIX will either be just the path (if using a pathname) or "abns@<path>" if it is abstract.
* AF_CUST_SOCKPAIR will be of the form "sockpair@<fd>".
*
* The returned char* is allocated, and it is the responsibility of the caller to free it.
*/
char * sa2str(const struct sockaddr_storage *addr, int port, int map_ports)
{
char buffer[INET6_ADDRSTRLEN];
char *out = NULL;
const void *ptr;
const char *path;
switch (addr->ss_family) {
case AF_INET:
ptr = &((struct sockaddr_in *)addr)->sin_addr;
break;
case AF_INET6:
ptr = &((struct sockaddr_in6 *)addr)->sin6_addr;
break;
case AF_UNIX:
path = ((struct sockaddr_un *)addr)->sun_path;
if (path[0] == '\0') {
const int max_length = sizeof(struct sockaddr_un) - offsetof(struct sockaddr_un, sun_path) - 1;
return memprintf(&out, "abns@%.*s", max_length, path+1);
} else {
return strdup(path);
}
case AF_CUST_SOCKPAIR:
return memprintf(&out, "sockpair@%d", ((struct sockaddr_in *)addr)->sin_addr.s_addr);
default:
return NULL;
}
inet_ntop(addr->ss_family, ptr, buffer, get_addr_len(addr));
if (map_ports)
return memprintf(&out, "%s:%+d", buffer, port);
else
return memprintf(&out, "%s:%d", buffer, port);
}
/* converts <str> to a struct in_addr containing a network mask. It can be
* passed in dotted form (255.255.255.0) or in CIDR form (24). It returns 1
* if the conversion succeeds otherwise zero.
*/
int str2mask(const char *str, struct in_addr *mask)
{
if (strchr(str, '.') != NULL) { /* dotted notation */
if (!inet_pton(AF_INET, str, mask))
return 0;
}
else { /* mask length */
char *err;
unsigned long len = strtol(str, &err, 10);
if (!*str || (err && *err) || (unsigned)len > 32)
return 0;
len2mask4(len, mask);
}
return 1;
}
/* converts <str> to a struct in6_addr containing a network mask. It can be
* passed in quadruplet form (ffff:ffff::) or in CIDR form (64). It returns 1
* if the conversion succeeds otherwise zero.
*/
int str2mask6(const char *str, struct in6_addr *mask)
{
if (strchr(str, ':') != NULL) { /* quadruplet notation */
if (!inet_pton(AF_INET6, str, mask))
return 0;
}
else { /* mask length */
char *err;
unsigned long len = strtol(str, &err, 10);
if (!*str || (err && *err) || (unsigned)len > 128)
return 0;
len2mask6(len, mask);
}
return 1;
}
/* convert <cidr> to struct in_addr <mask>. It returns 1 if the conversion
* succeeds otherwise zero.
*/
int cidr2dotted(int cidr, struct in_addr *mask) {
if (cidr < 0 || cidr > 32)
return 0;
mask->s_addr = cidr ? htonl(~0UL << (32 - cidr)) : 0;
return 1;
}
/* Convert mask from bit length form to in_addr form.
* This function never fails.
*/
void len2mask4(int len, struct in_addr *addr)
{
if (len >= 32) {
addr->s_addr = 0xffffffff;
return;
}
if (len <= 0) {
addr->s_addr = 0x00000000;
return;
}
addr->s_addr = 0xffffffff << (32 - len);
addr->s_addr = htonl(addr->s_addr);
}
/* Convert mask from bit length form to in6_addr form.
* This function never fails.
*/
void len2mask6(int len, struct in6_addr *addr)
{
len2mask4(len, (struct in_addr *)&addr->s6_addr[0]); /* msb */
len -= 32;
len2mask4(len, (struct in_addr *)&addr->s6_addr[4]);
len -= 32;
len2mask4(len, (struct in_addr *)&addr->s6_addr[8]);
len -= 32;
len2mask4(len, (struct in_addr *)&addr->s6_addr[12]); /* lsb */
}
/*
* converts <str> to two struct in_addr* which must be pre-allocated.
* The format is "addr[/mask]", where "addr" cannot be empty, and mask
* is optional and either in the dotted or CIDR notation.
* Note: "addr" can also be a hostname. Returns 1 if OK, 0 if error.
*/
int str2net(const char *str, int resolve, struct in_addr *addr, struct in_addr *mask)
{
__label__ out_free, out_err;
char *c, *s;
int ret_val;
s = strdup(str);
if (!s)
return 0;
memset(mask, 0, sizeof(*mask));
memset(addr, 0, sizeof(*addr));
if ((c = strrchr(s, '/')) != NULL) {
*c++ = '\0';
/* c points to the mask */
if (!str2mask(c, mask))
goto out_err;
}
else {
mask->s_addr = ~0U;
}
if (!inet_pton(AF_INET, s, addr)) {
struct hostent *he;
if (!resolve)
goto out_err;
if ((he = gethostbyname(s)) == NULL) {
goto out_err;
}
else
*addr = *(struct in_addr *) *(he->h_addr_list);
}
ret_val = 1;
out_free:
free(s);
return ret_val;
out_err:
ret_val = 0;
goto out_free;
}
/*
* converts <str> to two struct in6_addr* which must be pre-allocated.
* The format is "addr[/mask]", where "addr" cannot be empty, and mask
* is an optional number of bits (128 being the default).
* Returns 1 if OK, 0 if error.
*/
int str62net(const char *str, struct in6_addr *addr, unsigned char *mask)
{
char *c, *s;
int ret_val = 0;
char *err;
unsigned long len = 128;
s = strdup(str);
if (!s)
return 0;
memset(mask, 0, sizeof(*mask));
memset(addr, 0, sizeof(*addr));
if ((c = strrchr(s, '/')) != NULL) {
*c++ = '\0'; /* c points to the mask */
if (!*c)
goto out_free;
len = strtoul(c, &err, 10);
if ((err && *err) || (unsigned)len > 128)
goto out_free;
}
*mask = len; /* OK we have a valid mask in <len> */
if (!inet_pton(AF_INET6, s, addr))
goto out_free;
ret_val = 1;
out_free:
free(s);
return ret_val;
}
/*
* Parse IPv4 address found in url. Return the number of bytes parsed. It
* expects exactly 4 numbers between 0 and 255 delimited by dots, and returns
* zero in case of mismatch.
*/
int url2ipv4(const char *addr, struct in_addr *dst)
{
int saw_digit, octets, ch;
u_char tmp[4], *tp;
const char *cp = addr;
saw_digit = 0;
octets = 0;
*(tp = tmp) = 0;
while (*addr) {
unsigned char digit = (ch = *addr) - '0';
if (digit > 9 && ch != '.')
break;
addr++;
if (digit <= 9) {
u_int new = *tp * 10 + digit;
if (new > 255)
return 0;
*tp = new;
if (!saw_digit) {
if (++octets > 4)
return 0;
saw_digit = 1;
}
} else if (ch == '.' && saw_digit) {
if (octets == 4)
return 0;
*++tp = 0;
saw_digit = 0;
} else
return 0;
}
if (octets < 4)
return 0;
memcpy(&dst->s_addr, tmp, 4);
return addr - cp;
}
/*
* Resolve destination server from URL. Convert <str> to a sockaddr_storage.
* <out> contain the code of the detected scheme, the start and length of
* the hostname. Actually only http and https are supported. <out> can be NULL.
* This function returns the consumed length. It is useful if you parse complete
* url like http://host:port/path, because the consumed length corresponds to
* the first character of the path. If the conversion fails, it returns -1.
*
* This function tries to resolve the DNS name if haproxy is in starting mode.
* So, this function may be used during the configuration parsing.
*/
int url2sa(const char *url, int ulen, struct sockaddr_storage *addr, struct split_url *out)
{
const char *curr = url, *cp = url;
const char *end;
int ret, url_code = 0;
unsigned long long int http_code = 0;
int default_port;
struct hostent *he;
char *p;
/* Firstly, try to find :// pattern */
while (curr < url+ulen && url_code != 0x3a2f2f) {
url_code = ((url_code & 0xffff) << 8);
url_code += (unsigned char)*curr++;
}
/* Secondly, if :// pattern is found, verify parsed stuff
* before pattern is matching our http pattern.
* If so parse ip address and port in uri.
*
* WARNING: Current code doesn't support dynamic async dns resolver.
*/
if (url_code != 0x3a2f2f)
return -1;
/* Copy scheme, and utrn to lower case. */
while (cp < curr - 3)
http_code = (http_code << 8) + *cp++;
http_code |= 0x2020202020202020ULL; /* Turn everything to lower case */
/* HTTP or HTTPS url matching */
if (http_code == 0x2020202068747470ULL) {
default_port = 80;
if (out)
out->scheme = SCH_HTTP;
}
else if (http_code == 0x2020206874747073ULL) {
default_port = 443;
if (out)
out->scheme = SCH_HTTPS;
}
else
return -1;
/* If the next char is '[', the host address is IPv6. */
if (*curr == '[') {
curr++;
/* Check trash size */
if (trash.size < ulen)
return -1;
/* Look for ']' and copy the address in a trash buffer. */
p = trash.area;
for (end = curr;
end < url + ulen && *end != ']';
end++, p++)
*p = *end;
if (*end != ']')
return -1;
*p = '\0';
/* Update out. */
if (out) {
out->host = curr;
out->host_len = end - curr;
}
/* Try IPv6 decoding. */
if (!inet_pton(AF_INET6, trash.area, &((struct sockaddr_in6 *)addr)->sin6_addr))
return -1;
end++;
/* Decode port. */
if (*end == ':') {
end++;
default_port = read_uint(&end, url + ulen);
}
((struct sockaddr_in6 *)addr)->sin6_port = htons(default_port);
((struct sockaddr_in6 *)addr)->sin6_family = AF_INET6;
return end - url;
}
else {
/* We are looking for IP address. If you want to parse and
* resolve hostname found in url, you can use str2sa_range(), but
* be warned this can slow down global daemon performances
* while handling lagging dns responses.
*/
ret = url2ipv4(curr, &((struct sockaddr_in *)addr)->sin_addr);
if (ret) {
/* Update out. */
if (out) {
out->host = curr;
out->host_len = ret;
}
curr += ret;
/* Decode port. */
if (*curr == ':') {
curr++;
default_port = read_uint(&curr, url + ulen);
}
((struct sockaddr_in *)addr)->sin_port = htons(default_port);
/* Set family. */
((struct sockaddr_in *)addr)->sin_family = AF_INET;
return curr - url;
}
else if (global.mode & MODE_STARTING) {
/* The IPv4 and IPv6 decoding fails, maybe the url contain name. Try to execute
* synchronous DNS request only if HAProxy is in the start state.
*/
/* look for : or / or end */
for (end = curr;
end < url + ulen && *end != '/' && *end != ':';
end++);
memcpy(trash.area, curr, end - curr);
trash.area[end - curr] = '\0';
/* try to resolve an IPv4/IPv6 hostname */
he = gethostbyname(trash.area);
if (!he)
return -1;
/* Update out. */
if (out) {
out->host = curr;
out->host_len = end - curr;
}
/* Decode port. */
if (*end == ':') {
end++;
default_port = read_uint(&end, url + ulen);
}
/* Copy IP address, set port and family. */
switch (he->h_addrtype) {
case AF_INET:
((struct sockaddr_in *)addr)->sin_addr = *(struct in_addr *) *(he->h_addr_list);
((struct sockaddr_in *)addr)->sin_port = htons(default_port);
((struct sockaddr_in *)addr)->sin_family = AF_INET;
return end - url;
case AF_INET6:
((struct sockaddr_in6 *)addr)->sin6_addr = *(struct in6_addr *) *(he->h_addr_list);
((struct sockaddr_in6 *)addr)->sin6_port = htons(default_port);
((struct sockaddr_in6 *)addr)->sin6_family = AF_INET6;
return end - url;
}
}
}
return -1;
}
/* Tries to convert a sockaddr_storage address to text form. Upon success, the
* address family is returned so that it's easy for the caller to adapt to the
* output format. Zero is returned if the address family is not supported. -1
* is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are
* supported.
*/
int addr_to_str(const struct sockaddr_storage *addr, char *str, int size)
{
const void *ptr;
if (size < 5)
return 0;
*str = '\0';
switch (addr->ss_family) {
case AF_INET:
ptr = &((struct sockaddr_in *)addr)->sin_addr;
break;
case AF_INET6:
ptr = &((struct sockaddr_in6 *)addr)->sin6_addr;
break;
case AF_UNIX:
memcpy(str, "unix", 5);
return addr->ss_family;
default:
return 0;
}
if (inet_ntop(addr->ss_family, ptr, str, size))
return addr->ss_family;
/* failed */
return -1;
}
/* Tries to convert a sockaddr_storage port to text form. Upon success, the
* address family is returned so that it's easy for the caller to adapt to the
* output format. Zero is returned if the address family is not supported. -1
* is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are
* supported.
*/
int port_to_str(const struct sockaddr_storage *addr, char *str, int size)
{
uint16_t port;
if (size < 6)
return 0;
*str = '\0';
switch (addr->ss_family) {
case AF_INET:
port = ((struct sockaddr_in *)addr)->sin_port;
break;
case AF_INET6:
port = ((struct sockaddr_in6 *)addr)->sin6_port;
break;
case AF_UNIX:
memcpy(str, "unix", 5);
return addr->ss_family;
default:
return 0;
}
snprintf(str, size, "%u", ntohs(port));
return addr->ss_family;
}
/* check if the given address is local to the system or not. It will return
* -1 when it's not possible to know, 0 when the address is not local, 1 when
* it is. We don't want to iterate over all interfaces for this (and it is not
* portable). So instead we try to bind in UDP to this address on a free non
* privileged port and to connect to the same address, port 0 (connect doesn't
* care). If it succeeds, we own the address. Note that non-inet addresses are
* considered local since they're most likely AF_UNIX.
*/
int addr_is_local(const struct netns_entry *ns,
const struct sockaddr_storage *orig)
{
struct sockaddr_storage addr;
int result;
int fd;
if (!is_inet_addr(orig))
return 1;
memcpy(&addr, orig, sizeof(addr));
set_host_port(&addr, 0);
fd = my_socketat(ns, addr.ss_family, SOCK_DGRAM, IPPROTO_UDP);
if (fd < 0)
return -1;
result = -1;
if (bind(fd, (struct sockaddr *)&addr, get_addr_len(&addr)) == 0) {
if (connect(fd, (struct sockaddr *)&addr, get_addr_len(&addr)) == -1)
result = 0; // fail, non-local address
else
result = 1; // success, local address
}
else {
if (errno == EADDRNOTAVAIL)
result = 0; // definitely not local :-)
}
close(fd);
return result;
}
/* will try to encode the string <string> replacing all characters tagged in
* <map> with the hexadecimal representation of their ASCII-code (2 digits)
* prefixed by <escape>, and will store the result between <start> (included)
* and <stop> (excluded), and will always terminate the string with a '\0'
* before <stop>. The position of the '\0' is returned if the conversion
* completes. If bytes are missing between <start> and <stop>, then the
* conversion will be incomplete and truncated. If <stop> <= <start>, the '\0'
* cannot even be stored so we return <start> without writing the 0.
* The input string must also be zero-terminated.
*/
const char hextab[16] = "0123456789ABCDEF";
char *encode_string(char *start, char *stop,
const char escape, const long *map,
const char *string)
{
if (start < stop) {
stop--; /* reserve one byte for the final '\0' */
while (start < stop && *string != '\0') {
if (!ha_bit_test((unsigned char)(*string), map))
*start++ = *string;
else {
if (start + 3 >= stop)
break;
*start++ = escape;
*start++ = hextab[(*string >> 4) & 15];
*start++ = hextab[*string & 15];
}
string++;
}
*start = '\0';
}
return start;
}
/*
* Same behavior as encode_string() above, except that it encodes chunk
* <chunk> instead of a string.
*/
char *encode_chunk(char *start, char *stop,
const char escape, const long *map,
const struct buffer *chunk)
{
char *str = chunk->area;
char *end = chunk->area + chunk->data;
if (start < stop) {
stop--; /* reserve one byte for the final '\0' */
while (start < stop && str < end) {
if (!ha_bit_test((unsigned char)(*str), map))
*start++ = *str;
else {
if (start + 3 >= stop)
break;
*start++ = escape;
*start++ = hextab[(*str >> 4) & 15];
*start++ = hextab[*str & 15];
}
str++;
}
*start = '\0';
}
return start;
}
/*
* Tries to prefix characters tagged in the <map> with the <escape>
* character. The input <string> must be zero-terminated. The result will
* be stored between <start> (included) and <stop> (excluded). This
* function will always try to terminate the resulting string with a '\0'
* before <stop>, and will return its position if the conversion
* completes.
*/
char *escape_string(char *start, char *stop,
const char escape, const long *map,
const char *string)
{
if (start < stop) {
stop--; /* reserve one byte for the final '\0' */
while (start < stop && *string != '\0') {
if (!ha_bit_test((unsigned char)(*string), map))
*start++ = *string;
else {
if (start + 2 >= stop)
break;
*start++ = escape;
*start++ = *string;
}
string++;
}
*start = '\0';
}
return start;
}
/*
* Tries to prefix characters tagged in the <map> with the <escape>
* character. <chunk> contains the input to be escaped. The result will be
* stored between <start> (included) and <stop> (excluded). The function
* will always try to terminate the resulting string with a '\0' before
* <stop>, and will return its position if the conversion completes.
*/
char *escape_chunk(char *start, char *stop,
const char escape, const long *map,
const struct buffer *chunk)
{
char *str = chunk->area;
char *end = chunk->area + chunk->data;
if (start < stop) {
stop--; /* reserve one byte for the final '\0' */
while (start < stop && str < end) {
if (!ha_bit_test((unsigned char)(*str), map))
*start++ = *str;
else {
if (start + 2 >= stop)
break;
*start++ = escape;
*start++ = *str;
}
str++;
}
*start = '\0';
}
return start;
}
/* Check a string for using it in a CSV output format. If the string contains
* one of the following four char <">, <,>, CR or LF, the string is
* encapsulated between <"> and the <"> are escaped by a <""> sequence.
* <str> is the input string to be escaped. The function assumes that
* the input string is null-terminated.
*
* If <quote> is 0, the result is returned escaped but without double quote.
* It is useful if the escaped string is used between double quotes in the
* format.
*
* printf("..., \"%s\", ...\r\n", csv_enc(str, 0, &trash));
*
* If <quote> is 1, the converter puts the quotes only if any reserved character
* is present. If <quote> is 2, the converter always puts the quotes.
*
* <output> is a struct buffer used for storing the output string.
*
* The function returns the converted string on its output. If an error
* occurs, the function returns an empty string. This type of output is useful
* for using the function directly as printf() argument.
*
* If the output buffer is too short to contain the input string, the result
* is truncated.
*
* This function appends the encoding to the existing output chunk, and it
* guarantees that it starts immediately at the first available character of
* the chunk. Please use csv_enc() instead if you want to replace the output
* chunk.
*/
const char *csv_enc_append(const char *str, int quote, struct buffer *output)
{
char *end = output->area + output->size;
char *out = output->area + output->data;
char *ptr = out;
if (quote == 1) {
/* automatic quoting: first verify if we'll have to quote the string */
if (!strpbrk(str, "\n\r,\""))
quote = 0;
}
if (quote)
*ptr++ = '"';
while (*str && ptr < end - 2) { /* -2 for reserving space for <"> and \0. */
*ptr = *str;
if (*str == '"') {
ptr++;
if (ptr >= end - 2) {
ptr--;
break;
}
*ptr = '"';
}
ptr++;
str++;
}
if (quote)
*ptr++ = '"';
*ptr = '\0';
output->data = ptr - output->area;
return out;
}
/* Decode an URL-encoded string in-place. The resulting string might
* be shorter. If some forbidden characters are found, the conversion is
* aborted, the string is truncated before the issue and a negative value is
* returned, otherwise the operation returns the length of the decoded string.
* If the 'in_form' argument is non-nul the string is assumed to be part of
* an "application/x-www-form-urlencoded" encoded string, and the '+' will be
* turned to a space. If it's zero, this will only be done after a question
* mark ('?').
*/
int url_decode(char *string, int in_form)
{
char *in, *out;
int ret = -1;
in = string;
out = string;
while (*in) {
switch (*in) {
case '+' :
*out++ = in_form ? ' ' : *in;
break;
case '%' :
if (!ishex(in[1]) || !ishex(in[2]))
goto end;
*out++ = (hex2i(in[1]) << 4) + hex2i(in[2]);
in += 2;
break;
case '?':
in_form = 1;
/* fall through */
default:
*out++ = *in;
break;
}
in++;
}
ret = out - string; /* success */
end:
*out = 0;
return ret;
}
unsigned int str2ui(const char *s)
{
return __str2ui(s);
}
unsigned int str2uic(const char *s)
{
return __str2uic(s);
}
unsigned int strl2ui(const char *s, int len)
{
return __strl2ui(s, len);
}
unsigned int strl2uic(const char *s, int len)
{
return __strl2uic(s, len);
}
unsigned int read_uint(const char **s, const char *end)
{
return __read_uint(s, end);
}
/* This function reads an unsigned integer from the string pointed to by <s> and
* returns it. The <s> pointer is adjusted to point to the first unread char. The
* function automatically stops at <end>. If the number overflows, the 2^64-1
* value is returned.
*/
unsigned long long int read_uint64(const char **s, const char *end)
{
const char *ptr = *s;
unsigned long long int i = 0, tmp;
unsigned int j;
while (ptr < end) {
/* read next char */
j = *ptr - '0';
if (j > 9)
goto read_uint64_end;
/* add char to the number and check overflow. */
tmp = i * 10;
if (tmp / 10 != i) {
i = ULLONG_MAX;
goto read_uint64_eat;
}
if (ULLONG_MAX - tmp < j) {
i = ULLONG_MAX;
goto read_uint64_eat;
}
i = tmp + j;
ptr++;
}
read_uint64_eat:
/* eat each numeric char */
while (ptr < end) {
if ((unsigned int)(*ptr - '0') > 9)
break;
ptr++;
}
read_uint64_end:
*s = ptr;
return i;
}
/* This function reads an integer from the string pointed to by <s> and returns
* it. The <s> pointer is adjusted to point to the first unread char. The function
* automatically stops at <end>. Il the number is bigger than 2^63-2, the 2^63-1
* value is returned. If the number is lowest than -2^63-1, the -2^63 value is
* returned.
*/
long long int read_int64(const char **s, const char *end)
{
unsigned long long int i = 0;
int neg = 0;
/* Look for minus char. */
if (**s == '-') {
neg = 1;
(*s)++;
}
else if (**s == '+')
(*s)++;
/* convert as positive number. */
i = read_uint64(s, end);
if (neg) {
if (i > 0x8000000000000000ULL)
return LLONG_MIN;
return -i;
}
if (i > 0x7fffffffffffffffULL)
return LLONG_MAX;
return i;
}
/* This one is 7 times faster than strtol() on athlon with checks.
* It returns the value of the number composed of all valid digits read,
* and can process negative numbers too.
*/
int strl2ic(const char *s, int len)
{
int i = 0;
int j, k;
if (len > 0) {
if (*s != '-') {
/* positive number */
while (len-- > 0) {
j = (*s++) - '0';
k = i * 10;
if (j > 9)
break;
i = k + j;
}
} else {
/* negative number */
s++;
while (--len > 0) {
j = (*s++) - '0';
k = i * 10;
if (j > 9)
break;
i = k - j;
}
}
}
return i;
}
/* This function reads exactly <len> chars from <s> and converts them to a
* signed integer which it stores into <ret>. It accurately detects any error
* (truncated string, invalid chars, overflows). It is meant to be used in
* applications designed for hostile environments. It returns zero when the
* number has successfully been converted, non-zero otherwise. When an error
* is returned, the <ret> value is left untouched. It is yet 5 to 40 times
* faster than strtol().
*/
int strl2irc(const char *s, int len, int *ret)
{
int i = 0;
int j;
if (!len)
return 1;
if (*s != '-') {
/* positive number */
while (len-- > 0) {
j = (*s++) - '0';
if (j > 9) return 1; /* invalid char */
if (i > INT_MAX / 10) return 1; /* check for multiply overflow */
i = i * 10;
if (i + j < i) return 1; /* check for addition overflow */
i = i + j;
}
} else {
/* negative number */
s++;
while (--len > 0) {
j = (*s++) - '0';
if (j > 9) return 1; /* invalid char */
if (i < INT_MIN / 10) return 1; /* check for multiply overflow */
i = i * 10;
if (i - j > i) return 1; /* check for subtract overflow */
i = i - j;
}
}
*ret = i;
return 0;
}
/* This function reads exactly <len> chars from <s> and converts them to a
* signed integer which it stores into <ret>. It accurately detects any error
* (truncated string, invalid chars, overflows). It is meant to be used in
* applications designed for hostile environments. It returns zero when the
* number has successfully been converted, non-zero otherwise. When an error
* is returned, the <ret> value is left untouched. It is about 3 times slower
* than strl2irc().
*/
int strl2llrc(const char *s, int len, long long *ret)
{
long long i = 0;
int j;
if (!len)
return 1;
if (*s != '-') {
/* positive number */
while (len-- > 0) {
j = (*s++) - '0';
if (j > 9) return 1; /* invalid char */
if (i > LLONG_MAX / 10LL) return 1; /* check for multiply overflow */
i = i * 10LL;
if (i + j < i) return 1; /* check for addition overflow */
i = i + j;
}
} else {
/* negative number */
s++;
while (--len > 0) {
j = (*s++) - '0';
if (j > 9) return 1; /* invalid char */
if (i < LLONG_MIN / 10LL) return 1; /* check for multiply overflow */
i = i * 10LL;
if (i - j > i) return 1; /* check for subtract overflow */
i = i - j;
}
}
*ret = i;
return 0;
}
/* This function is used with pat_parse_dotted_ver(). It converts a string
* composed by two number separated by a dot. Each part must contain in 16 bits
* because internally they will be represented as a 32-bit quantity stored in
* a 64-bit integer. It returns zero when the number has successfully been
* converted, non-zero otherwise. When an error is returned, the <ret> value
* is left untouched.
*
* "1.3" -> 0x0000000000010003
* "65535.65535" -> 0x00000000ffffffff
*/
int strl2llrc_dotted(const char *text, int len, long long *ret)
{
const char *end = &text[len];
const char *p;
long long major, minor;
/* Look for dot. */
for (p = text; p < end; p++)
if (*p == '.')
break;
/* Convert major. */
if (strl2llrc(text, p - text, &major) != 0)
return 1;
/* Check major. */
if (major >= 65536)
return 1;
/* Convert minor. */
minor = 0;
if (p < end)
if (strl2llrc(p + 1, end - (p + 1), &minor) != 0)
return 1;
/* Check minor. */
if (minor >= 65536)
return 1;
/* Compose value. */
*ret = (major << 16) | (minor & 0xffff);
return 0;
}
/* This function parses a time value optionally followed by a unit suffix among
* "d", "h", "m", "s", "ms" or "us". It converts the value into the unit
* expected by the caller. The computation does its best to avoid overflows.
* The value is returned in <ret> if everything is fine, and a NULL is returned
* by the function. In case of error, a pointer to the error is returned and
* <ret> is left untouched. Values are automatically rounded up when needed.
* Values resulting in values larger than or equal to 2^31 after conversion are
* reported as an overflow as value PARSE_TIME_OVER. Non-null values resulting
* in an underflow are reported as an underflow as value PARSE_TIME_UNDER.
*/
const char *parse_time_err(const char *text, unsigned *ret, unsigned unit_flags)
{
unsigned long long imult, idiv;
unsigned long long omult, odiv;
unsigned long long value, result;
const char *str = text;
if (!isdigit((unsigned char)*text))
return text;
omult = odiv = 1;
switch (unit_flags & TIME_UNIT_MASK) {
case TIME_UNIT_US: omult = 1000000; break;
case TIME_UNIT_MS: omult = 1000; break;
case TIME_UNIT_S: break;
case TIME_UNIT_MIN: odiv = 60; break;
case TIME_UNIT_HOUR: odiv = 3600; break;
case TIME_UNIT_DAY: odiv = 86400; break;
default: break;
}
value = 0;
while (1) {
unsigned int j;
j = *text - '0';
if (j > 9)
break;
text++;
value *= 10;
value += j;
}
imult = idiv = 1;
switch (*text) {
case '\0': /* no unit = default unit */
imult = omult = idiv = odiv = 1;
goto end;
case 's': /* second = unscaled unit */
break;
case 'u': /* microsecond : "us" */
if (text[1] == 's') {
idiv = 1000000;
text++;
break;
}
return text;
case 'm': /* millisecond : "ms" or minute: "m" */
if (text[1] == 's') {
idiv = 1000;
text++;
} else
imult = 60;
break;
case 'h': /* hour : "h" */
imult = 3600;
break;
case 'd': /* day : "d" */
imult = 86400;
break;
default:
return text;
break;
}
if (*(++text) != '\0') {
ha_warning("unexpected character '%c' after the timer value '%s', only "
"(us=microseconds,ms=milliseconds,s=seconds,m=minutes,h=hours,d=days) are supported."
" This will be reported as an error in next versions.\n", *text, str);
}
end:
if (omult % idiv == 0) { omult /= idiv; idiv = 1; }
if (idiv % omult == 0) { idiv /= omult; omult = 1; }
if (imult % odiv == 0) { imult /= odiv; odiv = 1; }
if (odiv % imult == 0) { odiv /= imult; imult = 1; }
result = (value * (imult * omult) + (idiv * odiv - 1)) / (idiv * odiv);
if (result >= 0x80000000)
return PARSE_TIME_OVER;
if (!result && value)
return PARSE_TIME_UNDER;
*ret = result;
return NULL;
}
/* this function converts the string starting at <text> to an unsigned int
* stored in <ret>. If an error is detected, the pointer to the unexpected
* character is returned. If the conversion is successful, NULL is returned.
*/
const char *parse_size_err(const char *text, unsigned *ret) {
unsigned value = 0;
if (!isdigit((unsigned char)*text))
return text;
while (1) {
unsigned int j;
j = *text - '0';
if (j > 9)
break;
if (value > ~0U / 10)
return text;
value *= 10;
if (value > (value + j))
return text;
value += j;
text++;
}
switch (*text) {
case '\0':
break;
case 'K':
case 'k':
if (value > ~0U >> 10)
return text;
value = value << 10;
break;
case 'M':
case 'm':
if (value > ~0U >> 20)
return text;
value = value << 20;
break;
case 'G':
case 'g':
if (value > ~0U >> 30)
return text;
value = value << 30;
break;
default:
return text;
}
if (*text != '\0' && *++text != '\0')
return text;
*ret = value;
return NULL;
}
/*
* Parse binary string written in hexadecimal (source) and store the decoded
* result into binstr and set binstrlen to the length of binstr. Memory for
* binstr is allocated by the function. In case of error, returns 0 with an
* error message in err. In success case, it returns the consumed length.
*/
int parse_binary(const char *source, char **binstr, int *binstrlen, char **err)
{
int len;
const char *p = source;
int i,j;
int alloc;
len = strlen(source);
if (len % 2) {
memprintf(err, "an even number of hex digit is expected");
return 0;
}
len = len >> 1;
if (!*binstr) {
*binstr = calloc(len, sizeof(**binstr));
if (!*binstr) {
memprintf(err, "out of memory while loading string pattern");
return 0;
}
alloc = 1;
}
else {
if (*binstrlen < len) {
memprintf(err, "no space available in the buffer. expect %d, provides %d",
len, *binstrlen);
return 0;
}
alloc = 0;
}
*binstrlen = len;
i = j = 0;
while (j < len) {
if (!ishex(p[i++]))
goto bad_input;
if (!ishex(p[i++]))
goto bad_input;
(*binstr)[j++] = (hex2i(p[i-2]) << 4) + hex2i(p[i-1]);
}
return len << 1;
bad_input:
memprintf(err, "an hex digit is expected (found '%c')", p[i-1]);
if (alloc)
ha_free(binstr);
return 0;
}
/* copies at most <n> characters from <src> and always terminates with '\0' */
char *my_strndup(const char *src, int n)
{
int len = 0;
char *ret;
while (len < n && src[len])
len++;
ret = malloc(len + 1);
if (!ret)
return ret;
memcpy(ret, src, len);
ret[len] = '\0';
return ret;
}
/*
* search needle in haystack
* returns the pointer if found, returns NULL otherwise
*/
const void *my_memmem(const void *haystack, size_t haystacklen, const void *needle, size_t needlelen)
{
const void *c = NULL;
unsigned char f;
if ((haystack == NULL) || (needle == NULL) || (haystacklen < needlelen))
return NULL;
f = *(char *)needle;
c = haystack;
while ((c = memchr(c, f, haystacklen - (c - haystack))) != NULL) {
if ((haystacklen - (c - haystack)) < needlelen)
return NULL;
if (memcmp(c, needle, needlelen) == 0)
return c;
++c;
}
return NULL;
}
/* get length of the initial segment consisting entirely of bytes in <accept> */
size_t my_memspn(const void *str, size_t len, const void *accept, size_t acceptlen)
{
size_t ret = 0;
while (ret < len && memchr(accept, *((int *)str), acceptlen)) {
str++;
ret++;
}
return ret;
}
/* get length of the initial segment consisting entirely of bytes not in <rejcet> */
size_t my_memcspn(const void *str, size_t len, const void *reject, size_t rejectlen)
{
size_t ret = 0;
while (ret < len) {
if(memchr(reject, *((int *)str), rejectlen))
return ret;
str++;
ret++;
}
return ret;
}
/* This function returns the first unused key greater than or equal to <key> in
* ID tree <root>. Zero is returned if no place is found.
*/
unsigned int get_next_id(struct eb_root *root, unsigned int key)
{
struct eb32_node *used;
do {
used = eb32_lookup_ge(root, key);
if (!used || used->key > key)
return key; /* key is available */
key++;
} while (key);
return key;
}
/* dump the full tree to <file> in DOT format for debugging purposes. Will
* optionally highlight node <subj> if found, depending on operation <op> :
* 0 : nothing
* >0 : insertion, node/leaf are surrounded in red
* <0 : removal, node/leaf are dashed with no background
* Will optionally add "desc" as a label on the graph if set and non-null.
*/
void eb32sc_to_file(FILE *file, struct eb_root *root, const struct eb32sc_node *subj, int op, const char *desc)
{
struct eb32sc_node *node;
unsigned long scope = -1;
fprintf(file, "digraph ebtree {\n");
if (desc && *desc) {
fprintf(file,
" fontname=\"fixed\";\n"
" fontsize=8;\n"
" label=\"%s\";\n", desc);
}
fprintf(file,
" node [fontname=\"fixed\" fontsize=8 shape=\"box\" style=\"filled\" color=\"black\" fillcolor=\"white\"];\n"
" edge [fontname=\"fixed\" fontsize=8 style=\"solid\" color=\"magenta\" dir=\"forward\"];\n"
" \"%lx_n\" [label=\"root\\n%lx\"]\n", (long)eb_root_to_node(root), (long)root
);
fprintf(file, " \"%lx_n\" -> \"%lx_%c\" [taillabel=\"L\"];\n",
(long)eb_root_to_node(root),
(long)eb_root_to_node(eb_clrtag(root->b[0])),
eb_gettag(root->b[0]) == EB_LEAF ? 'l' : 'n');
node = eb32sc_first(root, scope);
while (node) {
if (node->node.node_p) {
/* node part is used */
fprintf(file, " \"%lx_n\" [label=\"%lx\\nkey=%u\\nscope=%lx\\nbit=%d\" fillcolor=\"lightskyblue1\" %s];\n",
(long)node, (long)node, node->key, node->node_s, node->node.bit,
(node == subj) ? (op < 0 ? "color=\"red\" style=\"dashed\"" : op > 0 ? "color=\"red\"" : "") : "");
fprintf(file, " \"%lx_n\" -> \"%lx_n\" [taillabel=\"%c\"];\n",
(long)node,
(long)eb_root_to_node(eb_clrtag(node->node.node_p)),
eb_gettag(node->node.node_p) ? 'R' : 'L');
fprintf(file, " \"%lx_n\" -> \"%lx_%c\" [taillabel=\"L\"];\n",
(long)node,
(long)eb_root_to_node(eb_clrtag(node->node.branches.b[0])),
eb_gettag(node->node.branches.b[0]) == EB_LEAF ? 'l' : 'n');
fprintf(file, " \"%lx_n\" -> \"%lx_%c\" [taillabel=\"R\"];\n",
(long)node,
(long)eb_root_to_node(eb_clrtag(node->node.branches.b[1])),
eb_gettag(node->node.branches.b[1]) == EB_LEAF ? 'l' : 'n');
}
fprintf(file, " \"%lx_l\" [label=\"%lx\\nkey=%u\\nscope=%lx\\npfx=%u\" fillcolor=\"yellow\" %s];\n",
(long)node, (long)node, node->key, node->leaf_s, node->node.pfx,
(node == subj) ? (op < 0 ? "color=\"red\" style=\"dashed\"" : op > 0 ? "color=\"red\"" : "") : "");
fprintf(file, " \"%lx_l\" -> \"%lx_n\" [taillabel=\"%c\"];\n",
(long)node,
(long)eb_root_to_node(eb_clrtag(node->node.leaf_p)),
eb_gettag(node->node.leaf_p) ? 'R' : 'L');
node = eb32sc_next(node, scope);
}
fprintf(file, "}\n");
}
/* This function compares a sample word possibly followed by blanks to another
* clean word. The compare is case-insensitive. 1 is returned if both are equal,
* otherwise zero. This intends to be used when checking HTTP headers for some
* values. Note that it validates a word followed only by blanks but does not
* validate a word followed by blanks then other chars.
*/
int word_match(const char *sample, int slen, const char *word, int wlen)
{
if (slen < wlen)
return 0;
while (wlen) {
char c = *sample ^ *word;
if (c && c != ('A' ^ 'a'))
return 0;
sample++;
word++;
slen--;
wlen--;
}
while (slen) {
if (*sample != ' ' && *sample != '\t')
return 0;
sample++;
slen--;
}
return 1;
}
/* Converts any text-formatted IPv4 address to a host-order IPv4 address. It
* is particularly fast because it avoids expensive operations such as
* multiplies, which are optimized away at the end. It requires a properly
* formatted address though (3 points).
*/
unsigned int inetaddr_host(const char *text)
{
const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0';
register unsigned int dig100, dig10, dig1;
int s;
const char *p, *d;
dig1 = dig10 = dig100 = ascii_zero;
s = 24;
p = text;
while (1) {
if (((unsigned)(*p - '0')) <= 9) {
p++;
continue;
}
/* here, we have a complete byte between <text> and <p> (exclusive) */
if (p == text)
goto end;
d = p - 1;
dig1 |= (unsigned int)(*d << s);
if (d == text)
goto end;
d--;
dig10 |= (unsigned int)(*d << s);
if (d == text)
goto end;
d--;
dig100 |= (unsigned int)(*d << s);
end:
if (!s || *p != '.')
break;
s -= 8;
text = ++p;
}
dig100 -= ascii_zero;
dig10 -= ascii_zero;
dig1 -= ascii_zero;
return ((dig100 * 10) + dig10) * 10 + dig1;
}
/*
* Idem except the first unparsed character has to be passed in <stop>.
*/
unsigned int inetaddr_host_lim(const char *text, const char *stop)
{
const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0';
register unsigned int dig100, dig10, dig1;
int s;
const char *p, *d;
dig1 = dig10 = dig100 = ascii_zero;
s = 24;
p = text;
while (1) {
if (((unsigned)(*p - '0')) <= 9 && p < stop) {
p++;
continue;
}
/* here, we have a complete byte between <text> and <p> (exclusive) */
if (p == text)
goto end;
d = p - 1;
dig1 |= (unsigned int)(*d << s);
if (d == text)
goto end;
d--;
dig10 |= (unsigned int)(*d << s);
if (d == text)
goto end;
d--;
dig100 |= (unsigned int)(*d << s);
end:
if (!s || p == stop || *p != '.')
break;
s -= 8;
text = ++p;
}
dig100 -= ascii_zero;
dig10 -= ascii_zero;
dig1 -= ascii_zero;
return ((dig100 * 10) + dig10) * 10 + dig1;
}
/*
* Idem except the pointer to first unparsed byte is returned into <ret> which
* must not be NULL.
*/
unsigned int inetaddr_host_lim_ret(char *text, char *stop, char **ret)
{
const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0';
register unsigned int dig100, dig10, dig1;
int s;
char *p, *d;
dig1 = dig10 = dig100 = ascii_zero;
s = 24;
p = text;
while (1) {
if (((unsigned)(*p - '0')) <= 9 && p < stop) {
p++;
continue;
}
/* here, we have a complete byte between <text> and <p> (exclusive) */
if (p == text)
goto end;
d = p - 1;
dig1 |= (unsigned int)(*d << s);
if (d == text)
goto end;
d--;
dig10 |= (unsigned int)(*d << s);
if (d == text)
goto end;
d--;
dig100 |= (unsigned int)(*d << s);
end:
if (!s || p == stop || *p != '.')
break;
s -= 8;
text = ++p;
}
*ret = p;
dig100 -= ascii_zero;
dig10 -= ascii_zero;
dig1 -= ascii_zero;
return ((dig100 * 10) + dig10) * 10 + dig1;
}
/* Convert a fixed-length string to an IP address. Returns 0 in case of error,
* or the number of chars read in case of success. Maybe this could be replaced
* by one of the functions above. Also, apparently this function does not support
* hosts above 255 and requires exactly 4 octets.
* The destination is only modified on success.
*/
int buf2ip(const char *buf, size_t len, struct in_addr *dst)
{
const char *addr;
int saw_digit, octets, ch;
u_char tmp[4], *tp;
const char *cp = buf;
saw_digit = 0;
octets = 0;
*(tp = tmp) = 0;
for (addr = buf; addr - buf < len; addr++) {
unsigned char digit = (ch = *addr) - '0';
if (digit > 9 && ch != '.')
break;
if (digit <= 9) {
u_int new = *tp * 10 + digit;
if (new > 255)
return 0;
*tp = new;
if (!saw_digit) {
if (++octets > 4)
return 0;
saw_digit = 1;
}
} else if (ch == '.' && saw_digit) {
if (octets == 4)
return 0;
*++tp = 0;
saw_digit = 0;
} else
return 0;
}
if (octets < 4)
return 0;
memcpy(&dst->s_addr, tmp, 4);
return addr - cp;
}
/* This function converts the string in <buf> of the len <len> to
* struct in6_addr <dst> which must be allocated by the caller.
* This function returns 1 in success case, otherwise zero.
* The destination is only modified on success.
*/
int buf2ip6(const char *buf, size_t len, struct in6_addr *dst)
{
char null_term_ip6[INET6_ADDRSTRLEN + 1];
struct in6_addr out;
if (len > INET6_ADDRSTRLEN)
return 0;
memcpy(null_term_ip6, buf, len);
null_term_ip6[len] = '\0';
if (!inet_pton(AF_INET6, null_term_ip6, &out))
return 0;
*dst = out;
return 1;
}
/* To be used to quote config arg positions. Returns the short string at <ptr>
* surrounded by simple quotes if <ptr> is valid and non-empty, or "end of line"
* if ptr is NULL or empty. The string is locally allocated.
*/
const char *quote_arg(const char *ptr)
{
static THREAD_LOCAL char val[32];
int i;
if (!ptr || !*ptr)
return "end of line";
val[0] = '\'';
for (i = 1; i < sizeof(val) - 2 && *ptr; i++)
val[i] = *ptr++;
val[i++] = '\'';
val[i] = '\0';
return val;
}
/* returns an operator among STD_OP_* for string <str> or < 0 if unknown */
int get_std_op(const char *str)
{
int ret = -1;
if (*str == 'e' && str[1] == 'q')
ret = STD_OP_EQ;
else if (*str == 'n' && str[1] == 'e')
ret = STD_OP_NE;
else if (*str == 'l') {
if (str[1] == 'e') ret = STD_OP_LE;
else if (str[1] == 't') ret = STD_OP_LT;
}
else if (*str == 'g') {
if (str[1] == 'e') ret = STD_OP_GE;
else if (str[1] == 't') ret = STD_OP_GT;
}
if (ret == -1 || str[2] != '\0')
return -1;
return ret;
}
/* hash a 32-bit integer to another 32-bit integer */
unsigned int full_hash(unsigned int a)
{
return __full_hash(a);
}
/* Return the bit position in mask <m> of the nth bit set of rank <r>, between
* 0 and LONGBITS-1 included, starting from the left. For example ranks 0,1,2,3
* for mask 0x55 will be 6, 4, 2 and 0 respectively. This algorithm is based on
* a popcount variant and is described here :
* https://graphics.stanford.edu/~seander/bithacks.html
*/
unsigned int mask_find_rank_bit(unsigned int r, unsigned long m)
{
unsigned long a, b, c, d;
unsigned int s;
unsigned int t;
a = m - ((m >> 1) & ~0UL/3);
b = (a & ~0UL/5) + ((a >> 2) & ~0UL/5);
c = (b + (b >> 4)) & ~0UL/0x11;
d = (c + (c >> 8)) & ~0UL/0x101;
r++; // make r be 1..64
t = 0;
s = LONGBITS;
if (s > 32) {
unsigned long d2 = (d >> 16) >> 16;
t = d2 + (d2 >> 16);
s -= ((t - r) & 256) >> 3; r -= (t & ((t - r) >> 8));
}
t = (d >> (s - 16)) & 0xff;
s -= ((t - r) & 256) >> 4; r -= (t & ((t - r) >> 8));
t = (c >> (s - 8)) & 0xf;
s -= ((t - r) & 256) >> 5; r -= (t & ((t - r) >> 8));
t = (b >> (s - 4)) & 0x7;
s -= ((t - r) & 256) >> 6; r -= (t & ((t - r) >> 8));
t = (a >> (s - 2)) & 0x3;
s -= ((t - r) & 256) >> 7; r -= (t & ((t - r) >> 8));
t = (m >> (s - 1)) & 0x1;
s -= ((t - r) & 256) >> 8;
return s - 1;
}
/* Same as mask_find_rank_bit() above but makes use of pre-computed bitmaps
* based on <m>, in <a..d>. These ones must be updated whenever <m> changes
* using mask_prep_rank_map() below.
*/
unsigned int mask_find_rank_bit_fast(unsigned int r, unsigned long m,
unsigned long a, unsigned long b,
unsigned long c, unsigned long d)
{
unsigned int s;
unsigned int t;
r++; // make r be 1..64
t = 0;
s = LONGBITS;
if (s > 32) {
unsigned long d2 = (d >> 16) >> 16;
t = d2 + (d2 >> 16);
s -= ((t - r) & 256) >> 3; r -= (t & ((t - r) >> 8));
}
t = (d >> (s - 16)) & 0xff;
s -= ((t - r) & 256) >> 4; r -= (t & ((t - r) >> 8));
t = (c >> (s - 8)) & 0xf;
s -= ((t - r) & 256) >> 5; r -= (t & ((t - r) >> 8));
t = (b >> (s - 4)) & 0x7;
s -= ((t - r) & 256) >> 6; r -= (t & ((t - r) >> 8));
t = (a >> (s - 2)) & 0x3;
s -= ((t - r) & 256) >> 7; r -= (t & ((t - r) >> 8));
t = (m >> (s - 1)) & 0x1;
s -= ((t - r) & 256) >> 8;
return s - 1;
}
/* Prepare the bitmaps used by the fast implementation of the find_rank_bit()
* above.
*/
void mask_prep_rank_map(unsigned long m,
unsigned long *a, unsigned long *b,
unsigned long *c, unsigned long *d)
{
*a = m - ((m >> 1) & ~0UL/3);
*b = (*a & ~0UL/5) + ((*a >> 2) & ~0UL/5);
*c = (*b + (*b >> 4)) & ~0UL/0x11;
*d = (*c + (*c >> 8)) & ~0UL/0x101;
}
/* Return non-zero if IPv4 address is part of the network,
* otherwise zero. Note that <addr> may not necessarily be aligned
* while the two other ones must.
*/
int in_net_ipv4(const void *addr, const struct in_addr *mask, const struct in_addr *net)
{
struct in_addr addr_copy;
memcpy(&addr_copy, addr, sizeof(addr_copy));
return((addr_copy.s_addr & mask->s_addr) == (net->s_addr & mask->s_addr));
}
/* Return non-zero if IPv6 address is part of the network,
* otherwise zero. Note that <addr> may not necessarily be aligned
* while the two other ones must.
*/
int in_net_ipv6(const void *addr, const struct in6_addr *mask, const struct in6_addr *net)
{
int i;
struct in6_addr addr_copy;
memcpy(&addr_copy, addr, sizeof(addr_copy));
for (i = 0; i < sizeof(struct in6_addr) / sizeof(int); i++)
if (((((int *)&addr_copy)[i] & ((int *)mask)[i])) !=
(((int *)net)[i] & ((int *)mask)[i]))
return 0;
return 1;
}
/* RFC 4291 prefix */
const char rfc4291_pfx[] = { 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xFF, 0xFF };
/* Map IPv4 address on IPv6 address, as specified in RFC 3513.
* Input and output may overlap.
*/
void v4tov6(struct in6_addr *sin6_addr, struct in_addr *sin_addr)
{
struct in_addr tmp_addr;
tmp_addr.s_addr = sin_addr->s_addr;
memcpy(sin6_addr->s6_addr, rfc4291_pfx, sizeof(rfc4291_pfx));
memcpy(sin6_addr->s6_addr+12, &tmp_addr.s_addr, 4);
}
/* Map IPv6 address on IPv4 address, as specified in RFC 3513.
* Return true if conversion is possible and false otherwise.
*/
int v6tov4(struct in_addr *sin_addr, struct in6_addr *sin6_addr)
{
if (memcmp(sin6_addr->s6_addr, rfc4291_pfx, sizeof(rfc4291_pfx)) == 0) {
memcpy(&(sin_addr->s_addr), &(sin6_addr->s6_addr[12]),
sizeof(struct in_addr));
return 1;
}
return 0;
}
/* compare two struct sockaddr_storage and return:
* 0 (true) if the addr is the same in both
* 1 (false) if the addr is not the same in both
* -1 (unable) if one of the addr is not AF_INET*
*/
int ipcmp(struct sockaddr_storage *ss1, struct sockaddr_storage *ss2)
{
if ((ss1->ss_family != AF_INET) && (ss1->ss_family != AF_INET6))
return -1;
if ((ss2->ss_family != AF_INET) && (ss2->ss_family != AF_INET6))
return -1;
if (ss1->ss_family != ss2->ss_family)
return 1;
switch (ss1->ss_family) {
case AF_INET:
return memcmp(&((struct sockaddr_in *)ss1)->sin_addr,
&((struct sockaddr_in *)ss2)->sin_addr,
sizeof(struct in_addr)) != 0;
case AF_INET6:
return memcmp(&((struct sockaddr_in6 *)ss1)->sin6_addr,
&((struct sockaddr_in6 *)ss2)->sin6_addr,
sizeof(struct in6_addr)) != 0;
}
return 1;
}
/* compare a struct sockaddr_storage to a struct net_addr and return :
* 0 (true) if <addr> is matching <net>
* 1 (false) if <addr> is not matching <net>
* -1 (unable) if <addr> or <net> is not AF_INET*
*/
int ipcmp2net(const struct sockaddr_storage *addr, const struct net_addr *net)
{
if ((addr->ss_family != AF_INET) && (addr->ss_family != AF_INET6))
return -1;
if ((net->family != AF_INET) && (net->family != AF_INET6))
return -1;
if (addr->ss_family != net->family)
return 1;
if (addr->ss_family == AF_INET &&
(((struct sockaddr_in *)addr)->sin_addr.s_addr & net->addr.v4.mask.s_addr) == net->addr.v4.ip.s_addr)
return 0;
else {
const struct in6_addr *addr6 = &(((const struct sockaddr_in6*)addr)->sin6_addr);
const struct in6_addr *nip6 = &net->addr.v6.ip;
const struct in6_addr *nmask6 = &net->addr.v6.mask;
if ((read_u32(&addr6->s6_addr[0]) & read_u32(&nmask6->s6_addr[0])) == read_u32(&nip6->s6_addr[0]) &&
(read_u32(&addr6->s6_addr[4]) & read_u32(&nmask6->s6_addr[4])) == read_u32(&nip6->s6_addr[4]) &&
(read_u32(&addr6->s6_addr[8]) & read_u32(&nmask6->s6_addr[8])) == read_u32(&nip6->s6_addr[8]) &&
(read_u32(&addr6->s6_addr[12]) & read_u32(&nmask6->s6_addr[12])) == read_u32(&nip6->s6_addr[12]))
return 0;
}
return 1;
}
/* copy IP address from <source> into <dest>
* The caller must allocate and clear <dest> before calling.
* The source must be in either AF_INET or AF_INET6 family, or the destination
* address will be undefined. If the destination address used to hold a port,
* it is preserved, so that this function can be used to switch to another
* address family with no risk. Returns a pointer to the destination.
*/
struct sockaddr_storage *ipcpy(struct sockaddr_storage *source, struct sockaddr_storage *dest)
{
int prev_port;
prev_port = get_net_port(dest);
memset(dest, 0, sizeof(*dest));
dest->ss_family = source->ss_family;
/* copy new addr and apply it */
switch (source->ss_family) {
case AF_INET:
((struct sockaddr_in *)dest)->sin_addr.s_addr = ((struct sockaddr_in *)source)->sin_addr.s_addr;
((struct sockaddr_in *)dest)->sin_port = prev_port;
break;
case AF_INET6:
memcpy(((struct sockaddr_in6 *)dest)->sin6_addr.s6_addr, ((struct sockaddr_in6 *)source)->sin6_addr.s6_addr, sizeof(struct in6_addr));
((struct sockaddr_in6 *)dest)->sin6_port = prev_port;
break;
}
return dest;
}
char *human_time(int t, short hz_div) {
static char rv[sizeof("24855d23h")+1]; // longest of "23h59m" and "59m59s"
char *p = rv;
char *end = rv + sizeof(rv);
int cnt=2; // print two numbers
if (unlikely(t < 0 || hz_div <= 0)) {
snprintf(p, end - p, "?");
return rv;
}
if (unlikely(hz_div > 1))
t /= hz_div;
if (t >= DAY) {
p += snprintf(p, end - p, "%dd", t / DAY);
cnt--;
}
if (cnt && t % DAY / HOUR) {
p += snprintf(p, end - p, "%dh", t % DAY / HOUR);
cnt--;
}
if (cnt && t % HOUR / MINUTE) {
p += snprintf(p, end - p, "%dm", t % HOUR / MINUTE);
cnt--;
}
if ((cnt && t % MINUTE) || !t) // also display '0s'
p += snprintf(p, end - p, "%ds", t % MINUTE / SEC);
return rv;
}
const char *monthname[12] = {
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
};
/* date2str_log: write a date in the format :
* sprintf(str, "%02d/%s/%04d:%02d:%02d:%02d.%03d",
* tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
* tm.tm_hour, tm.tm_min, tm.tm_sec, (int)date.tv_usec/1000);
*
* without using sprintf. return a pointer to the last char written (\0) or
* NULL if there isn't enough space.
*/
char *date2str_log(char *dst, const struct tm *tm, const struct timeval *date, size_t size)
{
if (size < 25) /* the size is fixed: 24 chars + \0 */
return NULL;
dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day
if (!dst)
return NULL;
*dst++ = '/';
memcpy(dst, monthname[tm->tm_mon], 3); // month
dst += 3;
*dst++ = '/';
dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year
if (!dst)
return NULL;
*dst++ = ':';
dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour
if (!dst)
return NULL;
*dst++ = ':';
dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes
if (!dst)
return NULL;
*dst++ = ':';
dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes
if (!dst)
return NULL;
*dst++ = '.';
dst = utoa_pad((unsigned int)(date->tv_usec/1000)%1000, dst, 4); // milliseconds
if (!dst)
return NULL;
*dst = '\0';
return dst;
}
/* Base year used to compute leap years */
#define TM_YEAR_BASE 1900
/* Return the difference in seconds between two times (leap seconds are ignored).
* Retrieved from glibc 2.18 source code.
*/
static int my_tm_diff(const struct tm *a, const struct tm *b)
{
/* Compute intervening leap days correctly even if year is negative.
* Take care to avoid int overflow in leap day calculations,
* but it's OK to assume that A and B are close to each other.
*/
int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
int a100 = a4 / 25 - (a4 % 25 < 0);
int b100 = b4 / 25 - (b4 % 25 < 0);
int a400 = a100 >> 2;
int b400 = b100 >> 2;
int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
int years = a->tm_year - b->tm_year;
int days = (365 * years + intervening_leap_days
+ (a->tm_yday - b->tm_yday));
return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
+ (a->tm_min - b->tm_min))
+ (a->tm_sec - b->tm_sec));
}
/* Return the GMT offset for a specific local time.
* Both t and tm must represent the same time.
* The string returned has the same format as returned by strftime(... "%z", tm).
* Offsets are kept in an internal cache for better performances.
*/
const char *get_gmt_offset(time_t t, struct tm *tm)
{
/* Cache offsets from GMT (depending on whether DST is active or not) */
static THREAD_LOCAL char gmt_offsets[2][5+1] = { "", "" };
char *gmt_offset;
struct tm tm_gmt;
int diff;
int isdst = tm->tm_isdst;
/* Pretend DST not active if its status is unknown */
if (isdst < 0)
isdst = 0;
/* Fetch the offset and initialize it if needed */
gmt_offset = gmt_offsets[isdst & 0x01];
if (unlikely(!*gmt_offset)) {
get_gmtime(t, &tm_gmt);
diff = my_tm_diff(tm, &tm_gmt);
if (diff < 0) {
diff = -diff;
*gmt_offset = '-';
} else {
*gmt_offset = '+';
}
diff %= 86400U;
diff /= 60; /* Convert to minutes */
snprintf(gmt_offset+1, 4+1, "%02d%02d", diff/60, diff%60);
}
return gmt_offset;
}
/* gmt2str_log: write a date in the format :
* "%02d/%s/%04d:%02d:%02d:%02d +0000" without using snprintf
* return a pointer to the last char written (\0) or
* NULL if there isn't enough space.
*/
char *gmt2str_log(char *dst, struct tm *tm, size_t size)
{
if (size < 27) /* the size is fixed: 26 chars + \0 */
return NULL;
dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day
if (!dst)
return NULL;
*dst++ = '/';
memcpy(dst, monthname[tm->tm_mon], 3); // month
dst += 3;
*dst++ = '/';
dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year
if (!dst)
return NULL;
*dst++ = ':';
dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour
if (!dst)
return NULL;
*dst++ = ':';
dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes
if (!dst)
return NULL;
*dst++ = ':';
dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes
if (!dst)
return NULL;
*dst++ = ' ';
*dst++ = '+';
*dst++ = '0';
*dst++ = '0';
*dst++ = '0';
*dst++ = '0';
*dst = '\0';
return dst;
}
/* localdate2str_log: write a date in the format :
* "%02d/%s/%04d:%02d:%02d:%02d +0000(local timezone)" without using snprintf
* Both t and tm must represent the same time.
* return a pointer to the last char written (\0) or
* NULL if there isn't enough space.
*/
char *localdate2str_log(char *dst, time_t t, struct tm *tm, size_t size)
{
const char *gmt_offset;
if (size < 27) /* the size is fixed: 26 chars + \0 */
return NULL;
gmt_offset = get_gmt_offset(t, tm);
dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day
if (!dst)
return NULL;
*dst++ = '/';
memcpy(dst, monthname[tm->tm_mon], 3); // month
dst += 3;
*dst++ = '/';
dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year
if (!dst)
return NULL;
*dst++ = ':';
dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour
if (!dst)
return NULL;
*dst++ = ':';
dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes
if (!dst)
return NULL;
*dst++ = ':';
dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes
if (!dst)
return NULL;
*dst++ = ' ';
memcpy(dst, gmt_offset, 5); // Offset from local time to GMT
dst += 5;
*dst = '\0';
return dst;
}
/* Returns the number of seconds since 01/01/1970 0:0:0 GMT for GMT date <tm>.
* It is meant as a portable replacement for timegm() for use with valid inputs.
* Returns undefined results for invalid dates (eg: months out of range 0..11).
*/
time_t my_timegm(const struct tm *tm)
{
/* Each month has 28, 29, 30 or 31 days, or 28+N. The date in the year
* is thus (current month - 1)*28 + cumulated_N[month] to count the
* sum of the extra N days for elapsed months. The sum of all these N
* days doesn't exceed 30 for a complete year (366-12*28) so it fits
* in a 5-bit word. This means that with 60 bits we can represent a
* matrix of all these values at once, which is fast and efficient to
* access. The extra February day for leap years is not counted here.
*
* Jan : none = 0 (0)
* Feb : Jan = 3 (3)
* Mar : Jan..Feb = 3 (3 + 0)
* Apr : Jan..Mar = 6 (3 + 0 + 3)
* May : Jan..Apr = 8 (3 + 0 + 3 + 2)
* Jun : Jan..May = 11 (3 + 0 + 3 + 2 + 3)
* Jul : Jan..Jun = 13 (3 + 0 + 3 + 2 + 3 + 2)
* Aug : Jan..Jul = 16 (3 + 0 + 3 + 2 + 3 + 2 + 3)
* Sep : Jan..Aug = 19 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3)
* Oct : Jan..Sep = 21 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3 + 2)
* Nov : Jan..Oct = 24 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3 + 2 + 3)
* Dec : Jan..Nov = 26 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3 + 2 + 3 + 2)
*/
uint64_t extra =
( 0ULL << 0*5) + ( 3ULL << 1*5) + ( 3ULL << 2*5) + /* Jan, Feb, Mar, */
( 6ULL << 3*5) + ( 8ULL << 4*5) + (11ULL << 5*5) + /* Apr, May, Jun, */
(13ULL << 6*5) + (16ULL << 7*5) + (19ULL << 8*5) + /* Jul, Aug, Sep, */
(21ULL << 9*5) + (24ULL << 10*5) + (26ULL << 11*5); /* Oct, Nov, Dec, */
unsigned int y = tm->tm_year + 1900;
unsigned int m = tm->tm_mon;
unsigned long days = 0;
/* days since 1/1/1970 for full years */
days += days_since_zero(y) - days_since_zero(1970);
/* days for full months in the current year */
days += 28 * m + ((extra >> (m * 5)) & 0x1f);
/* count + 1 after March for leap years. A leap year is a year multiple
* of 4, unless it's multiple of 100 without being multiple of 400. 2000
* is leap, 1900 isn't, 1904 is.
*/
if ((m > 1) && !(y & 3) && ((y % 100) || !(y % 400)))
days++;
days += tm->tm_mday - 1;
return days * 86400ULL + tm->tm_hour * 3600 + tm->tm_min * 60 + tm->tm_sec;
}
/* This function check a char. It returns true and updates
* <date> and <len> pointer to the new position if the
* character is found.
*/
static inline int parse_expect_char(const char **date, int *len, char c)
{
if (*len < 1 || **date != c)
return 0;
(*len)--;
(*date)++;
return 1;
}
/* This function expects a string <str> of len <l>. It return true and updates.
* <date> and <len> if the string matches, otherwise, it returns false.
*/
static inline int parse_strcmp(const char **date, int *len, char *str, int l)
{
if (*len < l || strncmp(*date, str, l) != 0)
return 0;
(*len) -= l;
(*date) += l;
return 1;
}
/* This macro converts 3 chars name in integer. */
#define STR2I3(__a, __b, __c) ((__a) * 65536 + (__b) * 256 + (__c))
/* day-name = %x4D.6F.6E ; "Mon", case-sensitive
* / %x54.75.65 ; "Tue", case-sensitive
* / %x57.65.64 ; "Wed", case-sensitive
* / %x54.68.75 ; "Thu", case-sensitive
* / %x46.72.69 ; "Fri", case-sensitive
* / %x53.61.74 ; "Sat", case-sensitive
* / %x53.75.6E ; "Sun", case-sensitive
*
* This array must be alphabetically sorted
*/
static inline int parse_http_dayname(const char **date, int *len, struct tm *tm)
{
if (*len < 3)
return 0;
switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) {
case STR2I3('M','o','n'): tm->tm_wday = 1; break;
case STR2I3('T','u','e'): tm->tm_wday = 2; break;
case STR2I3('W','e','d'): tm->tm_wday = 3; break;
case STR2I3('T','h','u'): tm->tm_wday = 4; break;
case STR2I3('F','r','i'): tm->tm_wday = 5; break;
case STR2I3('S','a','t'): tm->tm_wday = 6; break;
case STR2I3('S','u','n'): tm->tm_wday = 7; break;
default: return 0;
}
*len -= 3;
*date += 3;
return 1;
}
/* month = %x4A.61.6E ; "Jan", case-sensitive
* / %x46.65.62 ; "Feb", case-sensitive
* / %x4D.61.72 ; "Mar", case-sensitive
* / %x41.70.72 ; "Apr", case-sensitive
* / %x4D.61.79 ; "May", case-sensitive
* / %x4A.75.6E ; "Jun", case-sensitive
* / %x4A.75.6C ; "Jul", case-sensitive
* / %x41.75.67 ; "Aug", case-sensitive
* / %x53.65.70 ; "Sep", case-sensitive
* / %x4F.63.74 ; "Oct", case-sensitive
* / %x4E.6F.76 ; "Nov", case-sensitive
* / %x44.65.63 ; "Dec", case-sensitive
*
* This array must be alphabetically sorted
*/
static inline int parse_http_monthname(const char **date, int *len, struct tm *tm)
{
if (*len < 3)
return 0;
switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) {
case STR2I3('J','a','n'): tm->tm_mon = 0; break;
case STR2I3('F','e','b'): tm->tm_mon = 1; break;
case STR2I3('M','a','r'): tm->tm_mon = 2; break;
case STR2I3('A','p','r'): tm->tm_mon = 3; break;
case STR2I3('M','a','y'): tm->tm_mon = 4; break;
case STR2I3('J','u','n'): tm->tm_mon = 5; break;
case STR2I3('J','u','l'): tm->tm_mon = 6; break;
case STR2I3('A','u','g'): tm->tm_mon = 7; break;
case STR2I3('S','e','p'): tm->tm_mon = 8; break;
case STR2I3('O','c','t'): tm->tm_mon = 9; break;
case STR2I3('N','o','v'): tm->tm_mon = 10; break;
case STR2I3('D','e','c'): tm->tm_mon = 11; break;
default: return 0;
}
*len -= 3;
*date += 3;
return 1;
}
/* day-name-l = %x4D.6F.6E.64.61.79 ; "Monday", case-sensitive
* / %x54.75.65.73.64.61.79 ; "Tuesday", case-sensitive
* / %x57.65.64.6E.65.73.64.61.79 ; "Wednesday", case-sensitive
* / %x54.68.75.72.73.64.61.79 ; "Thursday", case-sensitive
* / %x46.72.69.64.61.79 ; "Friday", case-sensitive
* / %x53.61.74.75.72.64.61.79 ; "Saturday", case-sensitive
* / %x53.75.6E.64.61.79 ; "Sunday", case-sensitive
*
* This array must be alphabetically sorted
*/
static inline int parse_http_ldayname(const char **date, int *len, struct tm *tm)
{
if (*len < 6) /* Minimum length. */
return 0;
switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) {
case STR2I3('M','o','n'):
RET0_UNLESS(parse_strcmp(date, len, "Monday", 6));
tm->tm_wday = 1;
return 1;
case STR2I3('T','u','e'):
RET0_UNLESS(parse_strcmp(date, len, "Tuesday", 7));
tm->tm_wday = 2;
return 1;
case STR2I3('W','e','d'):
RET0_UNLESS(parse_strcmp(date, len, "Wednesday", 9));
tm->tm_wday = 3;
return 1;
case STR2I3('T','h','u'):
RET0_UNLESS(parse_strcmp(date, len, "Thursday", 8));
tm->tm_wday = 4;
return 1;
case STR2I3('F','r','i'):
RET0_UNLESS(parse_strcmp(date, len, "Friday", 6));
tm->tm_wday = 5;
return 1;
case STR2I3('S','a','t'):
RET0_UNLESS(parse_strcmp(date, len, "Saturday", 8));
tm->tm_wday = 6;
return 1;
case STR2I3('S','u','n'):
RET0_UNLESS(parse_strcmp(date, len, "Sunday", 6));
tm->tm_wday = 7;
return 1;
}
return 0;
}
/* This function parses exactly 1 digit and returns the numeric value in "digit". */
static inline int parse_digit(const char **date, int *len, int *digit)
{
if (*len < 1 || **date < '0' || **date > '9')
return 0;
*digit = (**date - '0');
(*date)++;
(*len)--;
return 1;
}
/* This function parses exactly 2 digits and returns the numeric value in "digit". */
static inline int parse_2digit(const char **date, int *len, int *digit)
{
int value;
RET0_UNLESS(parse_digit(date, len, &value));
(*digit) = value * 10;
RET0_UNLESS(parse_digit(date, len, &value));
(*digit) += value;
return 1;
}
/* This function parses exactly 4 digits and returns the numeric value in "digit". */
static inline int parse_4digit(const char **date, int *len, int *digit)
{
int value;
RET0_UNLESS(parse_digit(date, len, &value));
(*digit) = value * 1000;
RET0_UNLESS(parse_digit(date, len, &value));
(*digit) += value * 100;
RET0_UNLESS(parse_digit(date, len, &value));
(*digit) += value * 10;
RET0_UNLESS(parse_digit(date, len, &value));
(*digit) += value;
return 1;
}
/* time-of-day = hour ":" minute ":" second
* ; 00:00:00 - 23:59:60 (leap second)
*
* hour = 2DIGIT
* minute = 2DIGIT
* second = 2DIGIT
*/
static inline int parse_http_time(const char **date, int *len, struct tm *tm)
{
RET0_UNLESS(parse_2digit(date, len, &tm->tm_hour)); /* hour 2DIGIT */
RET0_UNLESS(parse_expect_char(date, len, ':')); /* expect ":" */
RET0_UNLESS(parse_2digit(date, len, &tm->tm_min)); /* min 2DIGIT */
RET0_UNLESS(parse_expect_char(date, len, ':')); /* expect ":" */
RET0_UNLESS(parse_2digit(date, len, &tm->tm_sec)); /* sec 2DIGIT */
return 1;
}
/* From RFC7231
* https://tools.ietf.org/html/rfc7231#section-7.1.1.1
*
* IMF-fixdate = day-name "," SP date1 SP time-of-day SP GMT
* ; fixed length/zone/capitalization subset of the format
* ; see Section 3.3 of [RFC5322]
*
*
* date1 = day SP month SP year
* ; e.g., 02 Jun 1982
*
* day = 2DIGIT
* year = 4DIGIT
*
* GMT = %x47.4D.54 ; "GMT", case-sensitive
*
* time-of-day = hour ":" minute ":" second
* ; 00:00:00 - 23:59:60 (leap second)
*
* hour = 2DIGIT
* minute = 2DIGIT
* second = 2DIGIT
*
* DIGIT = decimal 0-9
*/
int parse_imf_date(const char *date, int len, struct tm *tm)
{
/* tm_gmtoff, if present, ought to be zero'ed */
memset(tm, 0, sizeof(*tm));
RET0_UNLESS(parse_http_dayname(&date, &len, tm)); /* day-name */
RET0_UNLESS(parse_expect_char(&date, &len, ',')); /* expect "," */
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday)); /* day 2DIGIT */
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
RET0_UNLESS(parse_http_monthname(&date, &len, tm)); /* Month */
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
RET0_UNLESS(parse_4digit(&date, &len, &tm->tm_year)); /* year = 4DIGIT */
tm->tm_year -= 1900;
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
RET0_UNLESS(parse_http_time(&date, &len, tm)); /* Parse time. */
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
RET0_UNLESS(parse_strcmp(&date, &len, "GMT", 3)); /* GMT = %x47.4D.54 ; "GMT", case-sensitive */
tm->tm_isdst = -1;
return 1;
}
/* From RFC7231
* https://tools.ietf.org/html/rfc7231#section-7.1.1.1
*
* rfc850-date = day-name-l "," SP date2 SP time-of-day SP GMT
* date2 = day "-" month "-" 2DIGIT
* ; e.g., 02-Jun-82
*
* day = 2DIGIT
*/
int parse_rfc850_date(const char *date, int len, struct tm *tm)
{
int year;
/* tm_gmtoff, if present, ought to be zero'ed */
memset(tm, 0, sizeof(*tm));
RET0_UNLESS(parse_http_ldayname(&date, &len, tm)); /* Read the day name */
RET0_UNLESS(parse_expect_char(&date, &len, ',')); /* expect "," */
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday)); /* day 2DIGIT */
RET0_UNLESS(parse_expect_char(&date, &len, '-')); /* expect "-" */
RET0_UNLESS(parse_http_monthname(&date, &len, tm)); /* Month */
RET0_UNLESS(parse_expect_char(&date, &len, '-')); /* expect "-" */
/* year = 2DIGIT
*
* Recipients of a timestamp value in rfc850-(*date) format, which uses a
* two-digit year, MUST interpret a timestamp that appears to be more
* than 50 years in the future as representing the most recent year in
* the past that had the same last two digits.
*/
RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_year));
/* expect SP */
if (!parse_expect_char(&date, &len, ' ')) {
/* Maybe we have the date with 4 digits. */
RET0_UNLESS(parse_2digit(&date, &len, &year));
tm->tm_year = (tm->tm_year * 100 + year) - 1900;
/* expect SP */
RET0_UNLESS(parse_expect_char(&date, &len, ' '));
} else {
/* I fix 60 as pivot: >60: +1900, <60: +2000. Note that the
* tm_year is the number of year since 1900, so for +1900, we
* do nothing, and for +2000, we add 100.
*/
if (tm->tm_year <= 60)
tm->tm_year += 100;
}
RET0_UNLESS(parse_http_time(&date, &len, tm)); /* Parse time. */
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
RET0_UNLESS(parse_strcmp(&date, &len, "GMT", 3)); /* GMT = %x47.4D.54 ; "GMT", case-sensitive */
tm->tm_isdst = -1;
return 1;
}
/* From RFC7231
* https://tools.ietf.org/html/rfc7231#section-7.1.1.1
*
* asctime-date = day-name SP date3 SP time-of-day SP year
* date3 = month SP ( 2DIGIT / ( SP 1DIGIT ))
* ; e.g., Jun 2
*
* HTTP-date is case sensitive. A sender MUST NOT generate additional
* whitespace in an HTTP-date beyond that specifically included as SP in
* the grammar.
*/
int parse_asctime_date(const char *date, int len, struct tm *tm)
{
/* tm_gmtoff, if present, ought to be zero'ed */
memset(tm, 0, sizeof(*tm));
RET0_UNLESS(parse_http_dayname(&date, &len, tm)); /* day-name */
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
RET0_UNLESS(parse_http_monthname(&date, &len, tm)); /* expect month */
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
/* expect SP and 1DIGIT or 2DIGIT */
if (parse_expect_char(&date, &len, ' '))
RET0_UNLESS(parse_digit(&date, &len, &tm->tm_mday));
else
RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday));
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
RET0_UNLESS(parse_http_time(&date, &len, tm)); /* Parse time. */
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
RET0_UNLESS(parse_4digit(&date, &len, &tm->tm_year)); /* year = 4DIGIT */
tm->tm_year -= 1900;
tm->tm_isdst = -1;
return 1;
}
/* From RFC7231
* https://tools.ietf.org/html/rfc7231#section-7.1.1.1
*
* HTTP-date = IMF-fixdate / obs-date
* obs-date = rfc850-date / asctime-date
*
* parses an HTTP date in the RFC format and is accepted
* alternatives. <date> is the strinf containing the date,
* len is the len of the string. <tm> is filled with the
* parsed time. We must considers this time as GMT.
*/
int parse_http_date(const char *date, int len, struct tm *tm)
{
if (parse_imf_date(date, len, tm))
return 1;
if (parse_rfc850_date(date, len, tm))
return 1;
if (parse_asctime_date(date, len, tm))
return 1;
return 0;
}
/* print the time <ns> in a short form (exactly 7 chars) at the end of buffer
* <out>. "-" is printed if the value is zero, "inf" if larger than 1000 years.
* It returns the new buffer length, or 0 if it doesn't fit. The value will be
* surrounded by <pfx> and <sfx> respectively if not NULL.
*/
int print_time_short(struct buffer *out, const char *pfx, uint64_t ns, const char *sfx)
{
double val = ns; // 52 bits of mantissa keep ns accuracy over 52 days
const char *unit;
if (!pfx)
pfx = "";
if (!sfx)
sfx = "";
do {
unit = " - "; if (val <= 0.0) break;
unit = "ns"; if (val < 1000.0) break;
unit = "us"; val /= 1000.0; if (val < 1000.0) break;
unit = "ms"; val /= 1000.0; if (val < 1000.0) break;
unit = "s "; val /= 1000.0; if (val < 60.0) break;
unit = "m "; val /= 60.0; if (val < 60.0) break;
unit = "h "; val /= 60.0; if (val < 24.0) break;
unit = "d "; val /= 24.0; if (val < 365.0) break;
unit = "yr"; val /= 365.0; if (val < 1000.0) break;
unit = " inf "; val = 0.0; break;
} while (0);
if (val <= 0.0)
return chunk_appendf(out, "%s%7s%s", pfx, unit, sfx);
else if (val < 10.0)
return chunk_appendf(out, "%s%1.3f%s%s", pfx, val, unit, sfx);
else if (val < 100.0)
return chunk_appendf(out, "%s%2.2f%s%s", pfx, val, unit, sfx);
else
return chunk_appendf(out, "%s%3.1f%s%s", pfx, val, unit, sfx);
}
/* Dynamically allocates a string of the proper length to hold the formatted
* output. NULL is returned on error. The caller is responsible for freeing the
* memory area using free(). The resulting string is returned in <out> if the
* pointer is not NULL. A previous version of <out> might be used to build the
* new string, and it will be freed before returning if it is not NULL, which
* makes it possible to build complex strings from iterative calls without
* having to care about freeing intermediate values, as in the example below :
*
* memprintf(&err, "invalid argument: '%s'", arg);
* ...
* memprintf(&err, "parser said : <%s>\n", *err);
* ...
* free(*err);
*
* This means that <err> must be initialized to NULL before first invocation.
* The return value also holds the allocated string, which eases error checking
* and immediate consumption. If the output pointer is not used, NULL must be
* passed instead and it will be ignored. The returned message will then also
* be NULL so that the caller does not have to bother with freeing anything.
*
* It is also convenient to use it without any free except the last one :
* err = NULL;
* if (!fct1(err)) report(*err);
* if (!fct2(err)) report(*err);
* if (!fct3(err)) report(*err);
* free(*err);
*
* memprintf relies on memvprintf. This last version can be called from any
* function with variadic arguments.
*/
char *memvprintf(char **out, const char *format, va_list orig_args)
{
va_list args;
char *ret = NULL;
int allocated = 0;
int needed = 0;
if (!out)
return NULL;
do {
char buf1;
/* vsnprintf() will return the required length even when the
* target buffer is NULL. We do this in a loop just in case
* intermediate evaluations get wrong.
*/
va_copy(args, orig_args);
needed = vsnprintf(ret ? ret : &buf1, allocated, format, args);
va_end(args);
if (needed < allocated) {
/* Note: on Solaris 8, the first iteration always
* returns -1 if allocated is zero, so we force a
* retry.
*/
if (!allocated)
needed = 0;
else
break;
}
allocated = needed + 1;
ret = my_realloc2(ret, allocated);
} while (ret);
if (needed < 0) {
/* an error was encountered */
ha_free(&ret);
}
if (out) {
free(*out);
*out = ret;
}
return ret;
}
char *memprintf(char **out, const char *format, ...)
{
va_list args;
char *ret = NULL;
va_start(args, format);
ret = memvprintf(out, format, args);
va_end(args);
return ret;
}
/* Used to add <level> spaces before each line of <out>, unless there is only one line.
* The input argument is automatically freed and reassigned. The result will have to be
* freed by the caller. It also supports being passed a NULL which results in the same
* output.
* Example of use :
* parse(cmd, &err); (callee: memprintf(&err, ...))
* fprintf(stderr, "Parser said: %s\n", indent_error(&err));
* free(err);
*/
char *indent_msg(char **out, int level)
{
char *ret, *in, *p;
int needed = 0;
int lf = 0;
int lastlf = 0;
int len;
if (!out || !*out)
return NULL;
in = *out - 1;
while ((in = strchr(in + 1, '\n')) != NULL) {
lastlf = in - *out;
lf++;
}
if (!lf) /* single line, no LF, return it as-is */
return *out;
len = strlen(*out);
if (lf == 1 && lastlf == len - 1) {
/* single line, LF at end, strip it and return as-is */
(*out)[lastlf] = 0;
return *out;
}
/* OK now we have at least one LF, we need to process the whole string
* as a multi-line string. What we'll do :
* - prefix with an LF if there is none
* - add <level> spaces before each line
* This means at most ( 1 + level + (len-lf) + lf*<1+level) ) =
* 1 + level + len + lf * level = 1 + level * (lf + 1) + len.
*/
needed = 1 + level * (lf + 1) + len + 1;
p = ret = malloc(needed);
in = *out;
/* skip initial LFs */
while (*in == '\n')
in++;
/* copy each line, prefixed with LF and <level> spaces, and without the trailing LF */
while (*in) {
*p++ = '\n';
memset(p, ' ', level);
p += level;
do {
*p++ = *in++;
} while (*in && *in != '\n');
if (*in)
in++;
}
*p = 0;
free(*out);
*out = ret;
return ret;
}
/* makes a copy of message <in> into <out>, with each line prefixed with <pfx>
* and end of lines replaced with <eol> if not 0. The first line to indent has
* to be indicated in <first> (starts at zero), so that it is possible to skip
* indenting the first line if it has to be appended after an existing message.
* Empty strings are never indented, and NULL strings are considered empty both
* for <in> and <pfx>. It returns non-zero if an EOL was appended as the last
* character, non-zero otherwise.
*/
int append_prefixed_str(struct buffer *out, const char *in, const char *pfx, char eol, int first)
{
int bol, lf;
int pfxlen = pfx ? strlen(pfx) : 0;
if (!in)
return 0;
bol = 1;
lf = 0;
while (*in) {
if (bol && pfxlen) {
if (first > 0)
first--;
else
b_putblk(out, pfx, pfxlen);
bol = 0;
}
lf = (*in == '\n');
bol |= lf;
b_putchr(out, (lf && eol) ? eol : *in);
in++;
}
return lf;
}
/* removes environment variable <name> from the environment as found in
* environ. This is only provided as an alternative for systems without
* unsetenv() (old Solaris and AIX versions). THIS IS NOT THREAD SAFE.
* The principle is to scan environ for each occurrence of variable name
* <name> and to replace the matching pointers with the last pointer of
* the array (since variables are not ordered).
* It always returns 0 (success).
*/
int my_unsetenv(const char *name)
{
extern char **environ;
char **p = environ;
int vars;
int next;
int len;
len = strlen(name);
for (vars = 0; p[vars]; vars++)
;
next = 0;
while (next < vars) {
if (strncmp(p[next], name, len) != 0 || p[next][len] != '=') {
next++;
continue;
}
if (next < vars - 1)
p[next] = p[vars - 1];
p[--vars] = NULL;
}
return 0;
}
/* Convert occurrences of environment variables in the input string to their
* corresponding value. A variable is identified as a series of alphanumeric
* characters or underscores following a '$' sign. The <in> string must be
* free()able. NULL returns NULL. The resulting string might be reallocated if
* some expansion is made. Variable names may also be enclosed into braces if
* needed (eg: to concatenate alphanum characters).
*/
char *env_expand(char *in)
{
char *txt_beg;
char *out;
char *txt_end;
char *var_beg;
char *var_end;
char *value;
char *next;
int out_len;
int val_len;
if (!in)
return in;
value = out = NULL;
out_len = 0;
txt_beg = in;
do {
/* look for next '$' sign in <in> */
for (txt_end = txt_beg; *txt_end && *txt_end != '$'; txt_end++);
if (!*txt_end && !out) /* end and no expansion performed */
return in;
val_len = 0;
next = txt_end;
if (*txt_end == '$') {
char save;
var_beg = txt_end + 1;
if (*var_beg == '{')
var_beg++;
var_end = var_beg;
while (isalnum((unsigned char)*var_end) || *var_end == '_') {
var_end++;
}
next = var_end;
if (*var_end == '}' && (var_beg > txt_end + 1))
next++;
/* get value of the variable name at this location */
save = *var_end;
*var_end = '\0';
value = getenv(var_beg);
*var_end = save;
val_len = value ? strlen(value) : 0;
}
out = my_realloc2(out, out_len + (txt_end - txt_beg) + val_len + 1);
if (txt_end > txt_beg) {
memcpy(out + out_len, txt_beg, txt_end - txt_beg);
out_len += txt_end - txt_beg;
}
if (val_len) {
memcpy(out + out_len, value, val_len);
out_len += val_len;
}
out[out_len] = 0;
txt_beg = next;
} while (*txt_beg);
/* here we know that <out> was allocated and that we don't need <in> anymore */
free(in);
return out;
}
/* same as strstr() but case-insensitive and with limit length */
const char *strnistr(const char *str1, int len_str1, const char *str2, int len_str2)
{
char *pptr, *sptr, *start;
unsigned int slen, plen;
unsigned int tmp1, tmp2;
if (str1 == NULL || len_str1 == 0) // search pattern into an empty string => search is not found
return NULL;
if (str2 == NULL || len_str2 == 0) // pattern is empty => every str1 match
return str1;
if (len_str1 < len_str2) // pattern is longer than string => search is not found
return NULL;
for (tmp1 = 0, start = (char *)str1, pptr = (char *)str2, slen = len_str1, plen = len_str2; slen >= plen; start++, slen--) {
while (toupper((unsigned char)*start) != toupper((unsigned char)*str2)) {
start++;
slen--;
tmp1++;
if (tmp1 >= len_str1)
return NULL;
/* if pattern longer than string */
if (slen < plen)
return NULL;
}
sptr = start;
pptr = (char *)str2;
tmp2 = 0;
while (toupper((unsigned char)*sptr) == toupper((unsigned char)*pptr)) {
sptr++;
pptr++;
tmp2++;
if (*pptr == '\0' || tmp2 == len_str2) /* end of pattern found */
return start;
if (*sptr == '\0' || tmp2 == len_str1) /* end of string found and the pattern is not fully found */
return NULL;
}
}
return NULL;
}
/* This function read the next valid utf8 char.
* <s> is the byte srray to be decode, <len> is its length.
* The function returns decoded char encoded like this:
* The 4 msb are the return code (UTF8_CODE_*), the 4 lsb
* are the length read. The decoded character is stored in <c>.
*/
unsigned char utf8_next(const char *s, int len, unsigned int *c)
{
const unsigned char *p = (unsigned char *)s;
int dec;
unsigned char code = UTF8_CODE_OK;
if (len < 1)
return UTF8_CODE_OK;
/* Check the type of UTF8 sequence
*
* 0... .... 0x00 <= x <= 0x7f : 1 byte: ascii char
* 10.. .... 0x80 <= x <= 0xbf : invalid sequence
* 110. .... 0xc0 <= x <= 0xdf : 2 bytes
* 1110 .... 0xe0 <= x <= 0xef : 3 bytes
* 1111 0... 0xf0 <= x <= 0xf7 : 4 bytes
* 1111 10.. 0xf8 <= x <= 0xfb : 5 bytes
* 1111 110. 0xfc <= x <= 0xfd : 6 bytes
* 1111 111. 0xfe <= x <= 0xff : invalid sequence
*/
switch (*p) {
case 0x00 ... 0x7f:
*c = *p;
return UTF8_CODE_OK | 1;
case 0x80 ... 0xbf:
*c = *p;
return UTF8_CODE_BADSEQ | 1;
case 0xc0 ... 0xdf:
if (len < 2) {
*c = *p;
return UTF8_CODE_BADSEQ | 1;
}
*c = *p & 0x1f;
dec = 1;
break;
case 0xe0 ... 0xef:
if (len < 3) {
*c = *p;
return UTF8_CODE_BADSEQ | 1;
}
*c = *p & 0x0f;
dec = 2;
break;
case 0xf0 ... 0xf7:
if (len < 4) {
*c = *p;
return UTF8_CODE_BADSEQ | 1;
}
*c = *p & 0x07;
dec = 3;
break;
case 0xf8 ... 0xfb:
if (len < 5) {
*c = *p;
return UTF8_CODE_BADSEQ | 1;
}
*c = *p & 0x03;
dec = 4;
break;
case 0xfc ... 0xfd:
if (len < 6) {
*c = *p;
return UTF8_CODE_BADSEQ | 1;
}
*c = *p & 0x01;
dec = 5;
break;
case 0xfe ... 0xff:
default:
*c = *p;
return UTF8_CODE_BADSEQ | 1;
}
p++;
while (dec > 0) {
/* need 0x10 for the 2 first bits */
if ( ( *p & 0xc0 ) != 0x80 )
return UTF8_CODE_BADSEQ | ((p-(unsigned char *)s)&0xffff);
/* add data at char */
*c = ( *c << 6 ) | ( *p & 0x3f );
dec--;
p++;
}
/* Check ovelong encoding.
* 1 byte : 5 + 6 : 11 : 0x80 ... 0x7ff
* 2 bytes : 4 + 6 + 6 : 16 : 0x800 ... 0xffff
* 3 bytes : 3 + 6 + 6 + 6 : 21 : 0x10000 ... 0x1fffff
*/
if (( *c <= 0x7f && (p-(unsigned char *)s) > 1) ||
(*c >= 0x80 && *c <= 0x7ff && (p-(unsigned char *)s) > 2) ||
(*c >= 0x800 && *c <= 0xffff && (p-(unsigned char *)s) > 3) ||
(*c >= 0x10000 && *c <= 0x1fffff && (p-(unsigned char *)s) > 4))
code |= UTF8_CODE_OVERLONG;
/* Check invalid UTF8 range. */
if ((*c >= 0xd800 && *c <= 0xdfff) ||
(*c >= 0xfffe && *c <= 0xffff))
code |= UTF8_CODE_INVRANGE;
return code | ((p-(unsigned char *)s)&0x0f);
}
/* append a copy of string <str> (in a wordlist) at the end of the list <li>
* On failure : return 0 and <err> filled with an error message.
* The caller is responsible for freeing the <err> and <str> copy
* memory area using free()
*/
int list_append_word(struct list *li, const char *str, char **err)
{
struct wordlist *wl;
wl = calloc(1, sizeof(*wl));
if (!wl) {
memprintf(err, "out of memory");
goto fail_wl;
}
wl->s = strdup(str);
if (!wl->s) {
memprintf(err, "out of memory");
goto fail_wl_s;
}
LIST_APPEND(li, &wl->list);
return 1;
fail_wl_s:
free(wl->s);
fail_wl:
free(wl);
return 0;
}
/* indicates if a memory location may safely be read or not. The trick consists
* in performing a harmless syscall using this location as an input and letting
* the operating system report whether it's OK or not. For this we have the
* stat() syscall, which will return EFAULT when the memory location supposed
* to contain the file name is not readable. If it is readable it will then
* either return 0 if the area contains an existing file name, or -1 with
* another code. This must not be abused, and some audit systems might detect
* this as abnormal activity. It's used only for unsafe dumps.
*/
int may_access(const void *ptr)
{
struct stat buf;
if (stat(ptr, &buf) == 0)
return 1;
if (errno == EFAULT)
return 0;
return 1;
}
/* print a string of text buffer to <out>. The format is :
* Non-printable chars \t, \n, \r and \e are * encoded in C format.
* Other non-printable chars are encoded "\xHH". Space, '\', and '=' are also escaped.
* Print stopped if null char or <bsize> is reached, or if no more place in the chunk.
*/
int dump_text(struct buffer *out, const char *buf, int bsize)
{
unsigned char c;
int ptr = 0;
while (buf[ptr] && ptr < bsize) {
c = buf[ptr];
if (isprint((unsigned char)c) && isascii((unsigned char)c) && c != '\\' && c != ' ' && c != '=') {
if (out->data > out->size - 1)
break;
out->area[out->data++] = c;
}
else if (c == '\t' || c == '\n' || c == '\r' || c == '\e' || c == '\\' || c == ' ' || c == '=') {
if (out->data > out->size - 2)
break;
out->area[out->data++] = '\\';
switch (c) {
case ' ': c = ' '; break;
case '\t': c = 't'; break;
case '\n': c = 'n'; break;
case '\r': c = 'r'; break;
case '\e': c = 'e'; break;
case '\\': c = '\\'; break;
case '=': c = '='; break;
}
out->area[out->data++] = c;
}
else {
if (out->data > out->size - 4)
break;
out->area[out->data++] = '\\';
out->area[out->data++] = 'x';
out->area[out->data++] = hextab[(c >> 4) & 0xF];
out->area[out->data++] = hextab[c & 0xF];
}
ptr++;
}
return ptr;
}
/* print a buffer in hexa.
* Print stopped if <bsize> is reached, or if no more place in the chunk.
*/
int dump_binary(struct buffer *out, const char *buf, int bsize)
{
unsigned char c;
int ptr = 0;
while (ptr < bsize) {
c = buf[ptr];
if (out->data > out->size - 2)
break;
out->area[out->data++] = hextab[(c >> 4) & 0xF];
out->area[out->data++] = hextab[c & 0xF];
ptr++;
}
return ptr;
}
/* Appends into buffer <out> a hex dump of memory area <buf> for <len> bytes,
* prepending each line with prefix <pfx>. The output is *not* initialized.
* The output will not wrap pas the buffer's end so it is more optimal if the
* caller makes sure the buffer is aligned first. A trailing zero will always
* be appended (and not counted) if there is room for it. The caller must make
* sure that the area is dumpable first. If <unsafe> is non-null, the memory
* locations are checked first for being readable.
*/
void dump_hex(struct buffer *out, const char *pfx, const void *buf, int len, int unsafe)
{
const unsigned char *d = buf;
int i, j, start;
d = (const unsigned char *)(((unsigned long)buf) & -16);
start = ((unsigned long)buf) & 15;
for (i = 0; i < start + len; i += 16) {
chunk_appendf(out, (sizeof(void *) == 4) ? "%s%8p: " : "%s%16p: ", pfx, d + i);
// 0: unchecked, 1: checked safe, 2: danger
unsafe = !!unsafe;
if (unsafe && !may_access(d + i))
unsafe = 2;
for (j = 0; j < 16; j++) {
if ((i + j < start) || (i + j >= start + len))
chunk_strcat(out, "'' ");
else if (unsafe > 1)
chunk_strcat(out, "** ");
else
chunk_appendf(out, "%02x ", d[i + j]);
if (j == 7)
chunk_strcat(out, "- ");
}
chunk_strcat(out, " ");
for (j = 0; j < 16; j++) {
if ((i + j < start) || (i + j >= start + len))
chunk_strcat(out, "'");
else if (unsafe > 1)
chunk_strcat(out, "*");
else if (isprint((unsigned char)d[i + j]))
chunk_appendf(out, "%c", d[i + j]);
else
chunk_strcat(out, ".");
}
chunk_strcat(out, "\n");
}
}
/* dumps <pfx> followed by <n> bytes from <addr> in hex form into buffer <buf>
* enclosed in brackets after the address itself, formatted on 14 chars
* including the "0x" prefix. This is meant to be used as a prefix for code
* areas. For example:
* "0x7f10b6557690 [48 c7 c0 0f 00 00 00 0f]"
* It relies on may_access() to know if the bytes are dumpable, otherwise "--"
* is emitted. A NULL <pfx> will be considered empty.
*/
void dump_addr_and_bytes(struct buffer *buf, const char *pfx, const void *addr, int n)
{
int ok = 0;
int i;
chunk_appendf(buf, "%s%#14lx [", pfx ? pfx : "", (long)addr);
for (i = 0; i < n; i++) {
if (i == 0 || (((long)(addr + i) ^ (long)(addr)) & 4096))
ok = may_access(addr + i);
if (ok)
chunk_appendf(buf, "%02x%s", ((uint8_t*)addr)[i], (i<n-1) ? " " : "]");
else
chunk_appendf(buf, "--%s", (i<n-1) ? " " : "]");
}
}
/* print a line of text buffer (limited to 70 bytes) to <out>. The format is :
* <2 spaces> <offset=5 digits> <space or plus> <space> <70 chars max> <\n>
* which is 60 chars per line. Non-printable chars \t, \n, \r and \e are
* encoded in C format. Other non-printable chars are encoded "\xHH". Original
* lines are respected within the limit of 70 output chars. Lines that are
* continuation of a previous truncated line begin with "+" instead of " "
* after the offset. The new pointer is returned.
*/
int dump_text_line(struct buffer *out, const char *buf, int bsize, int len,
int *line, int ptr)
{
int end;
unsigned char c;
end = out->data + 80;
if (end > out->size)
return ptr;
chunk_appendf(out, " %05d%c ", ptr, (ptr == *line) ? ' ' : '+');
while (ptr < len && ptr < bsize) {
c = buf[ptr];
if (isprint((unsigned char)c) && isascii((unsigned char)c) && c != '\\') {
if (out->data > end - 2)
break;
out->area[out->data++] = c;
} else if (c == '\t' || c == '\n' || c == '\r' || c == '\e' || c == '\\') {
if (out->data > end - 3)
break;
out->area[out->data++] = '\\';
switch (c) {
case '\t': c = 't'; break;
case '\n': c = 'n'; break;
case '\r': c = 'r'; break;
case '\e': c = 'e'; break;
case '\\': c = '\\'; break;
}
out->area[out->data++] = c;
} else {
if (out->data > end - 5)
break;
out->area[out->data++] = '\\';
out->area[out->data++] = 'x';
out->area[out->data++] = hextab[(c >> 4) & 0xF];
out->area[out->data++] = hextab[c & 0xF];
}
if (buf[ptr++] == '\n') {
/* we had a line break, let's return now */
out->area[out->data++] = '\n';
*line = ptr;
return ptr;
}
}
/* we have an incomplete line, we return it as-is */
out->area[out->data++] = '\n';
return ptr;
}
/* displays a <len> long memory block at <buf>, assuming first byte of <buf>
* has address <baseaddr>. String <pfx> may be placed as a prefix in front of
* each line. It may be NULL if unused. The output is emitted to file <out>.
*/
void debug_hexdump(FILE *out, const char *pfx, const char *buf,
unsigned int baseaddr, int len)
{
unsigned int i;
int b, j;
for (i = 0; i < (len + (baseaddr & 15)); i += 16) {
b = i - (baseaddr & 15);
fprintf(out, "%s%08x: ", pfx ? pfx : "", i + (baseaddr & ~15));
for (j = 0; j < 8; j++) {
if (b + j >= 0 && b + j < len)
fprintf(out, "%02x ", (unsigned char)buf[b + j]);
else
fprintf(out, " ");
}
if (b + j >= 0 && b + j < len)
fputc('-', out);
else
fputc(' ', out);
for (j = 8; j < 16; j++) {
if (b + j >= 0 && b + j < len)
fprintf(out, " %02x", (unsigned char)buf[b + j]);
else
fprintf(out, " ");
}
fprintf(out, " ");
for (j = 0; j < 16; j++) {
if (b + j >= 0 && b + j < len) {
if (isprint((unsigned char)buf[b + j]))
fputc((unsigned char)buf[b + j], out);
else
fputc('.', out);
}
else
fputc(' ', out);
}
fputc('\n', out);
}
}
/* Tries to report the executable path name on platforms supporting this. If
* not found or not possible, returns NULL.
*/
const char *get_exec_path()
{
const char *ret = NULL;
#if (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 16))
long execfn = getauxval(AT_EXECFN);
if (execfn && execfn != ENOENT)
ret = (const char *)execfn;
#endif
return ret;
}
#if (defined(__ELF__) && !defined(__linux__)) || defined(USE_DL)
/* calls dladdr() or dladdr1() on <addr> and <dli>. If dladdr1 is available,
* also returns the symbol size in <size>, otherwise returns 0 there.
*/
static int dladdr_and_size(const void *addr, Dl_info *dli, size_t *size)
{
int ret;
#if (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 3)) // most detailed one
const ElfW(Sym) *sym;
ret = dladdr1(addr, dli, (void **)&sym, RTLD_DL_SYMENT);
if (ret)
*size = sym ? sym->st_size : 0;
#else
ret = dladdr(addr, dli);
*size = 0;
#endif
return ret;
}
/* Tries to retrieve the address of the first occurrence symbol <name>.
* Note that NULL in return is not always an error as a symbol may have that
* address in special situations.
*/
void *get_sym_curr_addr(const char *name)
{
void *ptr = NULL;
#ifdef RTLD_DEFAULT
ptr = dlsym(RTLD_DEFAULT, name);
#endif
return ptr;
}
/* Tries to retrieve the address of the next occurrence of symbol <name>
* Note that NULL in return is not always an error as a symbol may have that
* address in special situations.
*/
void *get_sym_next_addr(const char *name)
{
void *ptr = NULL;
#ifdef RTLD_NEXT
ptr = dlsym(RTLD_NEXT, name);
#endif
return ptr;
}
#else /* elf & linux & dl */
/* no possible resolving on other platforms at the moment */
void *get_sym_curr_addr(const char *name)
{
return NULL;
}
void *get_sym_next_addr(const char *name)
{
return NULL;
}
#endif /* elf & linux & dl */
/* Tries to append to buffer <buf> some indications about the symbol at address
* <addr> using the following form:
* lib:+0xoffset (unresolvable address from lib's base)
* main+0xoffset (unresolvable address from main (+/-))
* lib:main+0xoffset (unresolvable lib address from main (+/-))
* name (resolved exact exec address)
* lib:name (resolved exact lib address)
* name+0xoffset/0xsize (resolved address within exec symbol)
* lib:name+0xoffset/0xsize (resolved address within lib symbol)
*
* The file name (lib or executable) is limited to what lies between the last
* '/' and the first following '.'. An optional prefix <pfx> is prepended before
* the output if not null. The file is not dumped when it's the same as the one
* that contains the "main" symbol, or when __ELF__ && USE_DL are not set.
*
* The symbol's base address is returned, or NULL when unresolved, in order to
* allow the caller to match it against known ones.
*/
const void *resolve_sym_name(struct buffer *buf, const char *pfx, const void *addr)
{
const struct {
const void *func;
const char *name;
} fcts[] = {
{ .func = process_stream, .name = "process_stream" },
{ .func = task_run_applet, .name = "task_run_applet" },
{ .func = si_cs_io_cb, .name = "si_cs_io_cb" },
{ .func = sock_conn_iocb, .name = "sock_conn_iocb" },
{ .func = dgram_fd_handler, .name = "dgram_fd_handler" },
{ .func = listener_accept, .name = "listener_accept" },
{ .func = manage_global_listener_queue, .name = "manage_global_listener_queue" },
{ .func = poller_pipe_io_handler, .name = "poller_pipe_io_handler" },
{ .func = mworker_accept_wrapper, .name = "mworker_accept_wrapper" },
{ .func = session_expire_embryonic, .name = "session_expire_embryonic" },
#ifdef USE_THREAD
{ .func = accept_queue_process, .name = "accept_queue_process" },
#endif
#ifdef USE_LUA
{ .func = hlua_process_task, .name = "hlua_process_task" },
#endif
#ifdef SSL_MODE_ASYNC
{ .func = ssl_async_fd_free, .name = "ssl_async_fd_free" },
{ .func = ssl_async_fd_handler, .name = "ssl_async_fd_handler" },
#endif
};
#if (defined(__ELF__) && !defined(__linux__)) || defined(USE_DL)
Dl_info dli, dli_main;
size_t size;
const char *fname, *p;
#endif
int i;
if (pfx)
chunk_appendf(buf, "%s", pfx);
for (i = 0; i < sizeof(fcts) / sizeof(fcts[0]); i++) {
if (addr == fcts[i].func) {
chunk_appendf(buf, "%s", fcts[i].name);
return addr;
}
}
#if (defined(__ELF__) && !defined(__linux__)) || defined(USE_DL)
/* Now let's try to be smarter */
if (!dladdr_and_size(addr, &dli, &size))
goto unknown;
/* 1. prefix the library name if it's not the same object as the one
* that contains the main function. The name is picked between last '/'
* and first following '.'.
*/
if (!dladdr(main, &dli_main))
dli_main.dli_fbase = NULL;
if (dli_main.dli_fbase != dli.dli_fbase) {
fname = dli.dli_fname;
p = strrchr(fname, '/');
if (p++)
fname = p;
p = strchr(fname, '.');
if (!p)
p = fname + strlen(fname);
chunk_appendf(buf, "%.*s:", (int)(long)(p - fname), fname);
}
/* 2. symbol name */
if (dli.dli_sname) {
/* known, dump it and return symbol's address (exact or relative) */
chunk_appendf(buf, "%s", dli.dli_sname);
if (addr != dli.dli_saddr) {
chunk_appendf(buf, "+%#lx", (long)(addr - dli.dli_saddr));
if (size)
chunk_appendf(buf, "/%#lx", (long)size);
}
return dli.dli_saddr;
}
else if (dli_main.dli_fbase != dli.dli_fbase) {
/* unresolved symbol from a known library, report relative offset */
chunk_appendf(buf, "+%#lx", (long)(addr - dli.dli_fbase));
return NULL;
}
#endif /* __ELF__ && !__linux__ || USE_DL */
unknown:
/* unresolved symbol from the main file, report relative offset to main */
if ((void*)addr < (void*)main)
chunk_appendf(buf, "main-%#lx", (long)((void*)main - addr));
else
chunk_appendf(buf, "main+%#lx", (long)(addr - (void*)main));
return NULL;
}
/*
* Allocate an array of unsigned int with <nums> as address from <str> string
* made of integer separated by dot characters.
*
* First, initializes the value with <sz> as address to 0 and initializes the
* array with <nums> as address to NULL. Then allocates the array with <nums> as
* address updating <sz> pointed value to the size of this array.
*
* Returns 1 if succeeded, 0 if not.
*/
int parse_dotted_uints(const char *str, unsigned int **nums, size_t *sz)
{
unsigned int *n;
const char *s, *end;
s = str;
*sz = 0;
end = str + strlen(str);
*nums = n = NULL;
while (1) {
unsigned int r;
if (s >= end)
break;
r = read_uint(&s, end);
/* Expected characters after having read an uint: '\0' or '.',
* if '.', must not be terminal.
*/
if (*s != '\0'&& (*s++ != '.' || s == end)) {
free(n);
return 0;
}
n = my_realloc2(n, (*sz + 1) * sizeof *n);
if (!n)
return 0;
n[(*sz)++] = r;
}
*nums = n;
return 1;
}
/* returns the number of bytes needed to encode <v> as a varint. An inline
* version exists for use with constants (__varint_bytes()).
*/
int varint_bytes(uint64_t v)
{
int len = 1;
if (v >= 240) {
v = (v - 240) >> 4;
while (1) {
len++;
if (v < 128)
break;
v = (v - 128) >> 7;
}
}
return len;
}
/* Random number generator state, see below */
static uint64_t ha_random_state[2] ALIGNED(2*sizeof(uint64_t));
/* This is a thread-safe implementation of xoroshiro128** described below:
* http://prng.di.unimi.it/
* It features a 2^128 long sequence, returns 64 high-quality bits on each call,
* supports fast jumps and passes all common quality tests. It is thread-safe,
* uses a double-cas on 64-bit architectures supporting it, and falls back to a
* local lock on other ones.
*/
uint64_t ha_random64()
{
uint64_t old[2] ALIGNED(2*sizeof(uint64_t));
uint64_t new[2] ALIGNED(2*sizeof(uint64_t));
#if defined(USE_THREAD) && (!defined(HA_CAS_IS_8B) || !defined(HA_HAVE_CAS_DW))
static HA_SPINLOCK_T rand_lock;
HA_SPIN_LOCK(OTHER_LOCK, &rand_lock);
#endif
old[0] = ha_random_state[0];
old[1] = ha_random_state[1];
#if defined(USE_THREAD) && defined(HA_CAS_IS_8B) && defined(HA_HAVE_CAS_DW)
do {
#endif
new[1] = old[0] ^ old[1];
new[0] = rotl64(old[0], 24) ^ new[1] ^ (new[1] << 16); // a, b
new[1] = rotl64(new[1], 37); // c
#if defined(USE_THREAD) && defined(HA_CAS_IS_8B) && defined(HA_HAVE_CAS_DW)
} while (unlikely(!_HA_ATOMIC_DWCAS(ha_random_state, old, new)));
#else
ha_random_state[0] = new[0];
ha_random_state[1] = new[1];
#if defined(USE_THREAD)
HA_SPIN_UNLOCK(OTHER_LOCK, &rand_lock);
#endif
#endif
return rotl64(old[0] * 5, 7) * 9;
}
/* seeds the random state using up to <len> bytes from <seed>, starting with
* the first non-zero byte.
*/
void ha_random_seed(const unsigned char *seed, size_t len)
{
size_t pos;
/* the seed must not be all zeroes, so we pre-fill it with alternating
* bits and overwrite part of them with the block starting at the first
* non-zero byte from the seed.
*/
memset(ha_random_state, 0x55, sizeof(ha_random_state));
for (pos = 0; pos < len; pos++)
if (seed[pos] != 0)
break;
if (pos == len)
return;
seed += pos;
len -= pos;
if (len > sizeof(ha_random_state))
len = sizeof(ha_random_state);
memcpy(ha_random_state, seed, len);
}
/* This causes a jump to (dist * 2^96) places in the pseudo-random sequence,
* and is equivalent to calling ha_random64() as many times. It is used to
* provide non-overlapping sequences of 2^96 numbers (~7*10^28) to up to 2^32
* different generators (i.e. different processes after a fork). The <dist>
* argument is the distance to jump to and is used in a loop so it rather not
* be too large if the processing time is a concern.
*
* BEWARE: this function is NOT thread-safe and must not be called during
* concurrent accesses to ha_random64().
*/
void ha_random_jump96(uint32_t dist)
{
while (dist--) {
uint64_t s0 = 0;
uint64_t s1 = 0;
int b;
for (b = 0; b < 64; b++) {
if ((0xd2a98b26625eee7bULL >> b) & 1) {
s0 ^= ha_random_state[0];
s1 ^= ha_random_state[1];
}
ha_random64();
}
for (b = 0; b < 64; b++) {
if ((0xdddf9b1090aa7ac1ULL >> b) & 1) {
s0 ^= ha_random_state[0];
s1 ^= ha_random_state[1];
}
ha_random64();
}
ha_random_state[0] = s0;
ha_random_state[1] = s1;
}
}
/* Generates an RFC4122 UUID into chunk <output> which must be at least 37
* bytes large.
*/
void ha_generate_uuid(struct buffer *output)
{
uint32_t rnd[4];
uint64_t last;
last = ha_random64();
rnd[0] = last;
rnd[1] = last >> 32;
last = ha_random64();
rnd[2] = last;
rnd[3] = last >> 32;
chunk_printf(output, "%8.8x-%4.4x-%4.4x-%4.4x-%12.12llx",
rnd[0],
rnd[1] & 0xFFFF,
((rnd[1] >> 16u) & 0xFFF) | 0x4000, // highest 4 bits indicate the uuid version
(rnd[2] & 0x3FFF) | 0x8000, // the highest 2 bits indicate the UUID variant (10),
(long long)((rnd[2] >> 14u) | ((uint64_t) rnd[3] << 18u)) & 0xFFFFFFFFFFFFull);
}
/* only used by parse_line() below. It supports writing in place provided that
* <in> is updated to the next location before calling it. In that case, the
* char at <in> may be overwritten.
*/
#define EMIT_CHAR(x) \
do { \
char __c = (char)(x); \
if ((opts & PARSE_OPT_INPLACE) && out+outpos > in) \
err |= PARSE_ERR_OVERLAP; \
if (outpos >= outmax) \
err |= PARSE_ERR_TOOLARGE; \
if (!err) \
out[outpos] = __c; \
outpos++; \
} while (0)
/* Parse <in>, copy it into <out> split into isolated words whose pointers
* are put in <args>. If more than <outlen> bytes have to be emitted, the
* extraneous ones are not emitted but <outlen> is updated so that the caller
* knows how much to realloc. Similarly, <args> are not updated beyond <nbargs>
* but the returned <nbargs> indicates how many were found. All trailing args
* up to <nbargs> point to the trailing zero, and as long as <nbargs> is > 0,
* it is guaranteed that at least one arg will point to the zero. It is safe
* to call it with a NULL <args> if <nbargs> is 0.
*
* <out> may overlap with <in> provided that it never goes further, in which
* case the parser will accept to perform in-place parsing and unquoting/
* unescaping but only if environment variables do not lead to expansion that
* causes overlapping, otherwise the input string being destroyed, the error
* will not be recoverable. Note that even during out-of-place <in> will
* experience temporary modifications in-place for variable resolution and must
* be writable, and will also receive zeroes to delimit words when using
* in-place copy. Parsing options <opts> taken from PARSE_OPT_*. Return value
* is zero on success otherwise a bitwise-or of PARSE_ERR_*. Upon error, the
* starting point of the first invalid character sequence or unmatched
* quote/brace is reported in <errptr> if not NULL. When using in-place parsing
* error reporting might be difficult since zeroes will have been inserted into
* the string. One solution for the caller may consist in replacing all args
* delimiters with spaces in this case.
*/
uint32_t parse_line(char *in, char *out, size_t *outlen, char **args, int *nbargs, uint32_t opts, char **errptr)
{
char *quote = NULL;
char *brace = NULL;
char *word_expand = NULL;
unsigned char hex1, hex2;
size_t outmax = *outlen;
int argsmax = *nbargs - 1;
size_t outpos = 0;
int squote = 0;
int dquote = 0;
int arg = 0;
uint32_t err = 0;
*nbargs = 0;
*outlen = 0;
/* argsmax may be -1 here, protecting args[] from any write */
if (arg < argsmax)
args[arg] = out;
while (1) {
if (*in >= '-' && *in != '\\') {
/* speedup: directly send all regular chars starting
* with '-', '.', '/', alnum etc...
*/
EMIT_CHAR(*in++);
continue;
}
else if (*in == '\0' || *in == '\n' || *in == '\r') {
/* end of line */
break;
}
else if (*in == '#' && (opts & PARSE_OPT_SHARP) && !squote && !dquote) {
/* comment */
break;
}
else if (*in == '"' && !squote && (opts & PARSE_OPT_DQUOTE)) { /* double quote outside single quotes */
if (dquote) {
dquote = 0;
quote = NULL;
}
else {
dquote = 1;
quote = in;
}
in++;
continue;
}
else if (*in == '\'' && !dquote && (opts & PARSE_OPT_SQUOTE)) { /* single quote outside double quotes */
if (squote) {
squote = 0;
quote = NULL;
}
else {
squote = 1;
quote = in;
}
in++;
continue;
}
else if (*in == '\\' && !squote && (opts & PARSE_OPT_BKSLASH)) {
/* first, we'll replace \\, \<space>, \#, \r, \n, \t, \xXX with their
* C equivalent value but only when they have a special meaning and within
* double quotes for some of them. Other combinations left unchanged (eg: \1).
*/
char tosend = *in;
switch (in[1]) {
case ' ':
case '\\':
tosend = in[1];
in++;
break;
case 't':
tosend = '\t';
in++;
break;
case 'n':
tosend = '\n';
in++;
break;
case 'r':
tosend = '\r';
in++;
break;
case '#':
/* escaping of "#" only if comments are supported */
if (opts & PARSE_OPT_SHARP)
in++;
tosend = *in;
break;
case '\'':
/* escaping of "'" only outside single quotes and only if single quotes are supported */
if (opts & PARSE_OPT_SQUOTE && !squote)
in++;
tosend = *in;
break;
case '"':
/* escaping of '"' only outside single quotes and only if double quotes are supported */
if (opts & PARSE_OPT_DQUOTE && !squote)
in++;
tosend = *in;
break;
case '$':
/* escaping of '$' only inside double quotes and only if env supported */
if (opts & PARSE_OPT_ENV && dquote)
in++;
tosend = *in;
break;
case 'x':
if (!ishex(in[2]) || !ishex(in[3])) {
/* invalid or incomplete hex sequence */
err |= PARSE_ERR_HEX;
if (errptr)
*errptr = in;
goto leave;
}
hex1 = toupper((unsigned char)in[2]) - '0';
hex2 = toupper((unsigned char)in[3]) - '0';
if (hex1 > 9) hex1 -= 'A' - '9' - 1;
if (hex2 > 9) hex2 -= 'A' - '9' - 1;
tosend = (hex1 << 4) + hex2;
in += 3;
break;
default:
/* other combinations are not escape sequences */
break;
}
in++;
EMIT_CHAR(tosend);
}
else if (isspace((unsigned char)*in) && !squote && !dquote) {
/* a non-escaped space is an argument separator */
while (isspace((unsigned char)*in))
in++;
EMIT_CHAR(0);
arg++;
if (arg < argsmax)
args[arg] = out + outpos;
else
err |= PARSE_ERR_TOOMANY;
}
else if (*in == '$' && (opts & PARSE_OPT_ENV) && (dquote || !(opts & PARSE_OPT_DQUOTE))) {
/* environment variables are evaluated anywhere, or only
* inside double quotes if they are supported.
*/
char *var_name;
char save_char;
const char *value;
in++;
if (*in == '{')
brace = in++;
if (!isalpha((unsigned char)*in) && *in != '_' && *in != '.') {
/* unacceptable character in variable name */
err |= PARSE_ERR_VARNAME;
if (errptr)
*errptr = in;
goto leave;
}
var_name = in;
if (*in == '.')
in++;
while (isalnum((unsigned char)*in) || *in == '_')
in++;
save_char = *in;
*in = '\0';
if (unlikely(*var_name == '.')) {
/* internal pseudo-variables */
if (strcmp(var_name, ".LINE") == 0)
value = ultoa(global.cfg_curr_line);
else if (strcmp(var_name, ".FILE") == 0)
value = global.cfg_curr_file;
else if (strcmp(var_name, ".SECTION") == 0)
value = global.cfg_curr_section;
else {
/* unsupported internal variable name */
err |= PARSE_ERR_VARNAME;
if (errptr)
*errptr = var_name;
goto leave;
}
} else {
value = getenv(var_name);
}
*in = save_char;
/* support for '[*]' sequence to force word expansion,
* only available inside braces */
if (*in == '[' && brace && (opts & PARSE_OPT_WORD_EXPAND)) {
word_expand = in++;
if (*in++ != '*' || *in++ != ']') {
err |= PARSE_ERR_WRONG_EXPAND;
if (errptr)
*errptr = word_expand;
goto leave;
}
}
if (brace) {
if (*in != '}') {
/* unmatched brace */
err |= PARSE_ERR_BRACE;
if (errptr)
*errptr = brace;
goto leave;
}
in++;
brace = NULL;
}
if (value) {
while (*value) {
/* expand as individual parameters on a space character */
if (word_expand && isspace((unsigned char)*value)) {
EMIT_CHAR(0);
++arg;
if (arg < argsmax)
args[arg] = out + outpos;
else
err |= PARSE_ERR_TOOMANY;
/* skip consecutive spaces */
while (isspace((unsigned char)*++value))
;
} else {
EMIT_CHAR(*value++);
}
}
}
word_expand = NULL;
}
else {
/* any other regular char */
EMIT_CHAR(*in++);
}
}
/* end of output string */
EMIT_CHAR(0);
arg++;
if (quote) {
/* unmatched quote */
err |= PARSE_ERR_QUOTE;
if (errptr)
*errptr = quote;
goto leave;
}
leave:
*nbargs = arg;
*outlen = outpos;
/* empty all trailing args by making them point to the trailing zero,
* at least the last one in any case.
*/
if (arg > argsmax)
arg = argsmax;
while (arg >= 0 && arg <= argsmax)
args[arg++] = out + outpos - 1;
return err;
}
#undef EMIT_CHAR
/* This is used to sanitize an input line that's about to be used for error reporting.
* It will adjust <line> to print approximately <width> chars around <pos>, trying to
* preserve the beginning, with leading or trailing "..." when the line is truncated.
* If non-printable chars are present in the output. It returns the new offset <pos>
* in the modified line. Non-printable characters are replaced with '?'. <width> must
* be at least 6 to support two "..." otherwise the result is undefined. The line
* itself must have at least 7 chars allocated for the same reason.
*/
size_t sanitize_for_printing(char *line, size_t pos, size_t width)
{
size_t shift = 0;
char *out = line;
char *in = line;
char *end = line + width;
if (pos >= width) {
/* if we have to shift, we'll be out of context, so let's
* try to put <pos> at the center of width.
*/
shift = pos - width / 2;
in += shift + 3;
end = out + width - 3;
out[0] = out[1] = out[2] = '.';
out += 3;
}
while (out < end && *in) {
if (isspace((unsigned char)*in))
*out++ = ' ';
else if (isprint((unsigned char)*in))
*out++ = *in;
else
*out++ = '?';
in++;
}
if (end < line + width) {
out[0] = out[1] = out[2] = '.';
out += 3;
}
*out++ = 0;
return pos - shift;
}
/* Update array <fp> with the fingerprint of word <word> by counting the
* transitions between characters. <fp> is a 1024-entries array indexed as
* 32*from+to. Positions for 'from' and 'to' are:
* 1..26=letter, 27=digit, 28=other/begin/end.
* Row "from=0" is used to mark the character's presence. Others unused.
*/
void update_word_fingerprint(uint8_t *fp, const char *word)
{
const char *p;
int from, to;
int c;
from = 28; // begin
for (p = word; *p; p++) {
c = tolower(*p);
switch(c) {
case 'a'...'z': to = c - 'a' + 1; break;
case 'A'...'Z': to = tolower(c) - 'a' + 1; break;
case '0'...'9': to = 27; break;
default: to = 28; break;
}
fp[to] = 1;
fp[32 * from + to]++;
from = to;
}
to = 28; // end
fp[32 * from + to]++;
}
/* Initialize array <fp> with the fingerprint of word <word> by counting the
* transitions between characters. <fp> is a 1024-entries array indexed as
* 32*from+to. Positions for 'from' and 'to' are:
* 0..25=letter, 26=digit, 27=other, 28=begin, 29=end, others unused.
*/
void make_word_fingerprint(uint8_t *fp, const char *word)
{
memset(fp, 0, 1024);
update_word_fingerprint(fp, word);
}
/* Return the distance between two word fingerprints created by function
* make_word_fingerprint(). It's a positive integer calculated as the sum of
* the differences between each location.
*/
int word_fingerprint_distance(const uint8_t *fp1, const uint8_t *fp2)
{
int i, k, dist = 0;
for (i = 0; i < 1024; i++) {
k = (int)fp1[i] - (int)fp2[i];
dist += abs(k);
}
return dist;
}
static int init_tools_per_thread()
{
/* Let's make each thread start from a different position */
statistical_prng_state += tid * MAX_THREADS;
if (!statistical_prng_state)
statistical_prng_state++;
return 1;
}
REGISTER_PER_THREAD_INIT(init_tools_per_thread);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/