blob: 715dcc7c16ff97215f62e66d6f1f89d64446637d [file] [log] [blame]
/*
* HTTP protocol analyzer
*
* Copyright (C) 2018 HAProxy Technologies, Christopher Faulet <cfaulet@haproxy.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <common/base64.h>
#include <common/config.h>
#include <common/debug.h>
#include <common/htx.h>
#include <common/uri_auth.h>
#include <types/capture.h>
#include <proto/acl.h>
#include <proto/action.h>
#include <proto/channel.h>
#include <proto/checks.h>
#include <proto/connection.h>
#include <proto/filters.h>
#include <proto/http_htx.h>
#include <proto/log.h>
#include <proto/pattern.h>
#include <proto/http_ana.h>
#include <proto/proxy.h>
#include <proto/server.h>
#include <proto/stream.h>
#include <proto/stream_interface.h>
#include <proto/stats.h>
#include <proto/vars.h>
extern const char *stat_status_codes[];
struct pool_head *pool_head_requri = NULL;
struct pool_head *pool_head_capture = NULL;
static void http_end_request(struct stream *s);
static void http_end_response(struct stream *s);
static void http_capture_headers(struct htx *htx, char **cap, struct cap_hdr *cap_hdr);
static int http_del_hdr_value(char *start, char *end, char **from, char *next);
static size_t http_fmt_req_line(const struct htx_sl *sl, char *str, size_t len);
static void http_debug_stline(const char *dir, struct stream *s, const struct htx_sl *sl);
static void http_debug_hdr(const char *dir, struct stream *s, const struct ist n, const struct ist v);
static enum rule_result http_req_get_intercept_rule(struct proxy *px, struct list *rules, struct stream *s, int *deny_status);
static enum rule_result http_res_get_intercept_rule(struct proxy *px, struct list *rules, struct stream *s);
static void http_manage_client_side_cookies(struct stream *s, struct channel *req);
static void http_manage_server_side_cookies(struct stream *s, struct channel *res);
static int http_stats_check_uri(struct stream *s, struct http_txn *txn, struct proxy *backend);
static int http_handle_stats(struct stream *s, struct channel *req);
static int http_handle_expect_hdr(struct stream *s, struct htx *htx, struct http_msg *msg);
static int http_reply_100_continue(struct stream *s);
static int http_reply_40x_unauthorized(struct stream *s, const char *auth_realm);
/* This stream analyser waits for a complete HTTP request. It returns 1 if the
* processing can continue on next analysers, or zero if it either needs more
* data or wants to immediately abort the request (eg: timeout, error, ...). It
* is tied to AN_REQ_WAIT_HTTP and may may remove itself from s->req.analysers
* when it has nothing left to do, and may remove any analyser when it wants to
* abort.
*/
int http_wait_for_request(struct stream *s, struct channel *req, int an_bit)
{
/*
* We will analyze a complete HTTP request to check the its syntax.
*
* Once the start line and all headers are received, we may perform a
* capture of the error (if any), and we will set a few fields. We also
* check for monitor-uri, logging and finally headers capture.
*/
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &txn->req;
struct htx *htx;
struct htx_sl *sl;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
ci_data(req),
req->analysers);
htx = htxbuf(&req->buf);
/* Parsing errors are caught here */
if (htx->flags & (HTX_FL_PARSING_ERROR|HTX_FL_PROCESSING_ERROR)) {
stream_inc_http_req_ctr(s);
stream_inc_http_err_ctr(s);
proxy_inc_fe_req_ctr(sess->fe);
if (htx->flags & HTX_FL_PARSING_ERROR)
goto return_bad_req;
else
goto return_int_err;
}
/* we're speaking HTTP here, so let's speak HTTP to the client */
s->srv_error = http_return_srv_error;
/* If there is data available for analysis, log the end of the idle time. */
if (c_data(req) && s->logs.t_idle == -1) {
const struct cs_info *csinfo = si_get_cs_info(objt_cs(s->si[0].end));
s->logs.t_idle = ((csinfo)
? csinfo->t_idle
: tv_ms_elapsed(&s->logs.tv_accept, &now) - s->logs.t_handshake);
}
/*
* Now we quickly check if we have found a full valid request.
* If not so, we check the FD and buffer states before leaving.
* A full request is indicated by the fact that we have seen
* the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid
* requests are checked first. When waiting for a second request
* on a keep-alive stream, if we encounter and error, close, t/o,
* we note the error in the stream flags but don't set any state.
* Since the error will be noted there, it will not be counted by
* process_stream() as a frontend error.
* Last, we may increase some tracked counters' http request errors on
* the cases that are deliberately the client's fault. For instance,
* a timeout or connection reset is not counted as an error. However
* a bad request is.
*/
if (unlikely(htx_is_empty(htx) || htx->first == -1)) {
if (htx->flags & HTX_FL_UPGRADE)
goto failed_keep_alive;
/* 1: have we encountered a read error ? */
if (req->flags & CF_READ_ERROR) {
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
if (txn->flags & TX_WAIT_NEXT_RQ)
goto failed_keep_alive;
if (sess->fe->options & PR_O_IGNORE_PRB)
goto failed_keep_alive;
stream_inc_http_err_ctr(s);
stream_inc_http_req_ctr(s);
proxy_inc_fe_req_ctr(sess->fe);
_HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
if (sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
txn->status = 400;
http_reply_and_close(s, txn->status, NULL);
req->analysers &= AN_REQ_FLT_END;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
return 0;
}
/* 2: has the read timeout expired ? */
else if (req->flags & CF_READ_TIMEOUT || tick_is_expired(req->analyse_exp, now_ms)) {
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLITO;
if (txn->flags & TX_WAIT_NEXT_RQ)
goto failed_keep_alive;
if (sess->fe->options & PR_O_IGNORE_PRB)
goto failed_keep_alive;
stream_inc_http_err_ctr(s);
stream_inc_http_req_ctr(s);
proxy_inc_fe_req_ctr(sess->fe);
_HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
if (sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
txn->status = 408;
http_reply_and_close(s, txn->status, http_error_message(s));
req->analysers &= AN_REQ_FLT_END;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
return 0;
}
/* 3: have we encountered a close ? */
else if (req->flags & CF_SHUTR) {
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
if (txn->flags & TX_WAIT_NEXT_RQ)
goto failed_keep_alive;
if (sess->fe->options & PR_O_IGNORE_PRB)
goto failed_keep_alive;
stream_inc_http_err_ctr(s);
stream_inc_http_req_ctr(s);
proxy_inc_fe_req_ctr(sess->fe);
_HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
if (sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
txn->status = 400;
http_reply_and_close(s, txn->status, http_error_message(s));
req->analysers &= AN_REQ_FLT_END;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
return 0;
}
channel_dont_connect(req);
req->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */
s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */
if (sess->listener->options & LI_O_NOQUICKACK && htx_is_not_empty(htx) &&
objt_conn(sess->origin) && conn_ctrl_ready(__objt_conn(sess->origin))) {
/* We need more data, we have to re-enable quick-ack in case we
* previously disabled it, otherwise we might cause the client
* to delay next data.
*/
conn_set_quickack(objt_conn(sess->origin), 1);
}
if ((req->flags & CF_READ_PARTIAL) && (txn->flags & TX_WAIT_NEXT_RQ)) {
/* If the client starts to talk, let's fall back to
* request timeout processing.
*/
txn->flags &= ~TX_WAIT_NEXT_RQ;
req->analyse_exp = TICK_ETERNITY;
}
/* just set the request timeout once at the beginning of the request */
if (!tick_isset(req->analyse_exp)) {
if ((txn->flags & TX_WAIT_NEXT_RQ) && tick_isset(s->be->timeout.httpka))
req->analyse_exp = tick_add(now_ms, s->be->timeout.httpka);
else
req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq);
}
/* we're not ready yet */
return 0;
failed_keep_alive:
/* Here we process low-level errors for keep-alive requests. In
* short, if the request is not the first one and it experiences
* a timeout, read error or shutdown, we just silently close so
* that the client can try again.
*/
txn->status = 0;
msg->msg_state = HTTP_MSG_RQBEFORE;
req->analysers &= AN_REQ_FLT_END;
s->logs.logwait = 0;
s->logs.level = 0;
s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */
http_reply_and_close(s, txn->status, NULL);
return 0;
}
msg->msg_state = HTTP_MSG_BODY;
stream_inc_http_req_ctr(s);
proxy_inc_fe_req_ctr(sess->fe); /* one more valid request for this FE */
/* kill the pending keep-alive timeout */
txn->flags &= ~TX_WAIT_NEXT_RQ;
req->analyse_exp = TICK_ETERNITY;
BUG_ON(htx_get_first_type(htx) != HTX_BLK_REQ_SL);
sl = http_get_stline(htx);
/* 0: we might have to print this header in debug mode */
if (unlikely((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) {
int32_t pos;
http_debug_stline("clireq", s, sl);
for (pos = htx_get_first(htx); pos != -1; pos = htx_get_next(htx, pos)) {
struct htx_blk *blk = htx_get_blk(htx, pos);
enum htx_blk_type type = htx_get_blk_type(blk);
if (type == HTX_BLK_EOH)
break;
if (type != HTX_BLK_HDR)
continue;
http_debug_hdr("clihdr", s,
htx_get_blk_name(htx, blk),
htx_get_blk_value(htx, blk));
}
}
/*
* 1: identify the method and the version. Also set HTTP flags
*/
txn->meth = sl->info.req.meth;
if (sl->flags & HTX_SL_F_VER_11)
msg->flags |= HTTP_MSGF_VER_11;
msg->flags |= HTTP_MSGF_XFER_LEN;
msg->flags |= ((sl->flags & HTX_SL_F_CLEN) ? HTTP_MSGF_CNT_LEN : HTTP_MSGF_TE_CHNK);
if (sl->flags & HTX_SL_F_BODYLESS)
msg->flags |= HTTP_MSGF_BODYLESS;
/* we can make use of server redirect on GET and HEAD */
if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD)
s->flags |= SF_REDIRECTABLE;
else if (txn->meth == HTTP_METH_OTHER && isteqi(htx_sl_req_meth(sl), ist("PRI"))) {
/* PRI is reserved for the HTTP/2 preface */
goto return_bad_req;
}
/*
* 2: check if the URI matches the monitor_uri.
* We have to do this for every request which gets in, because
* the monitor-uri is defined by the frontend.
*/
if (unlikely((sess->fe->monitor_uri_len != 0) &&
isteqi(htx_sl_req_uri(sl), ist2(sess->fe->monitor_uri, sess->fe->monitor_uri_len)))) {
/*
* We have found the monitor URI
*/
struct acl_cond *cond;
s->flags |= SF_MONITOR;
_HA_ATOMIC_ADD(&sess->fe->fe_counters.intercepted_req, 1);
/* Check if we want to fail this monitor request or not */
list_for_each_entry(cond, &sess->fe->mon_fail_cond, list) {
int ret = acl_exec_cond(cond, sess->fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (cond->pol == ACL_COND_UNLESS)
ret = !ret;
if (ret) {
/* we fail this request, let's return 503 service unavail */
txn->status = 503;
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */
goto return_prx_cond;
}
}
/* nothing to fail, let's reply normally */
txn->status = 200;
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */
goto return_prx_cond;
}
/*
* 3: Maybe we have to copy the original REQURI for the logs ?
* Note: we cannot log anymore if the request has been
* classified as invalid.
*/
if (unlikely(s->logs.logwait & LW_REQ)) {
/* we have a complete HTTP request that we must log */
if ((txn->uri = pool_alloc(pool_head_requri)) != NULL) {
size_t len;
len = http_fmt_req_line(sl, txn->uri, global.tune.requri_len - 1);
txn->uri[len] = 0;
if (!(s->logs.logwait &= ~(LW_REQ|LW_INIT)))
s->do_log(s);
} else {
ha_alert("HTTP logging : out of memory.\n");
}
}
/* if the frontend has "option http-use-proxy-header", we'll check if
* we have what looks like a proxied connection instead of a connection,
* and in this case set the TX_USE_PX_CONN flag to use Proxy-connection.
* Note that this is *not* RFC-compliant, however browsers and proxies
* happen to do that despite being non-standard :-(
* We consider that a request not beginning with either '/' or '*' is
* a proxied connection, which covers both "scheme://location" and
* CONNECT ip:port.
*/
if ((sess->fe->options2 & PR_O2_USE_PXHDR) &&
*HTX_SL_REQ_UPTR(sl) != '/' && *HTX_SL_REQ_UPTR(sl) != '*')
txn->flags |= TX_USE_PX_CONN;
/* 5: we may need to capture headers */
if (unlikely((s->logs.logwait & LW_REQHDR) && s->req_cap))
http_capture_headers(htx, s->req_cap, sess->fe->req_cap);
/* we may have to wait for the request's body */
if (s->be->options & PR_O_WREQ_BODY)
req->analysers |= AN_REQ_HTTP_BODY;
/*
* RFC7234#4:
* A cache MUST write through requests with methods
* that are unsafe (Section 4.2.1 of [RFC7231]) to
* the origin server; i.e., a cache is not allowed
* to generate a reply to such a request before
* having forwarded the request and having received
* a corresponding response.
*
* RFC7231#4.2.1:
* Of the request methods defined by this
* specification, the GET, HEAD, OPTIONS, and TRACE
* methods are defined to be safe.
*/
if (likely(txn->meth == HTTP_METH_GET ||
txn->meth == HTTP_METH_HEAD ||
txn->meth == HTTP_METH_OPTIONS ||
txn->meth == HTTP_METH_TRACE))
txn->flags |= TX_CACHEABLE | TX_CACHE_COOK;
/* end of job, return OK */
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
return 1;
return_int_err:
txn->status = 500;
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_INTERNAL;
_HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
if (sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
goto return_prx_cond;
return_bad_req:
txn->status = 400;
_HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
if (sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
/* fall through */
return_prx_cond:
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
req->analysers &= AN_REQ_FLT_END;
req->analyse_exp = TICK_ETERNITY;
return 0;
}
/* This stream analyser runs all HTTP request processing which is common to
* frontends and backends, which means blocking ACLs, filters, connection-close,
* reqadd, stats and redirects. This is performed for the designated proxy.
* It returns 1 if the processing can continue on next analysers, or zero if it
* either needs more data or wants to immediately abort the request (eg: deny,
* error, ...).
*/
int http_process_req_common(struct stream *s, struct channel *req, int an_bit, struct proxy *px)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &txn->req;
struct htx *htx;
struct redirect_rule *rule;
enum rule_result verdict;
int deny_status = HTTP_ERR_403;
struct connection *conn = objt_conn(sess->origin);
if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
/* we need more data */
goto return_prx_yield;
}
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
ci_data(req),
req->analysers);
htx = htxbuf(&req->buf);
/* just in case we have some per-backend tracking. Only called the first
* execution of the analyser. */
if (!s->current_rule || s->current_rule_list != &px->http_req_rules)
stream_inc_be_http_req_ctr(s);
/* evaluate http-request rules */
if (!LIST_ISEMPTY(&px->http_req_rules)) {
verdict = http_req_get_intercept_rule(px, &px->http_req_rules, s, &deny_status);
switch (verdict) {
case HTTP_RULE_RES_YIELD: /* some data miss, call the function later. */
goto return_prx_yield;
case HTTP_RULE_RES_CONT:
case HTTP_RULE_RES_STOP: /* nothing to do */
break;
case HTTP_RULE_RES_DENY: /* deny or tarpit */
if (txn->flags & TX_CLTARPIT)
goto tarpit;
goto deny;
case HTTP_RULE_RES_ABRT: /* abort request, response already sent. Eg: auth */
goto return_prx_cond;
case HTTP_RULE_RES_DONE: /* OK, but terminate request processing (eg: redirect) */
goto done;
case HTTP_RULE_RES_BADREQ: /* failed with a bad request */
goto return_bad_req;
}
}
if (conn && (conn->flags & CO_FL_EARLY_DATA) &&
(conn->flags & (CO_FL_EARLY_SSL_HS | CO_FL_HANDSHAKE))) {
struct http_hdr_ctx ctx;
ctx.blk = NULL;
if (!http_find_header(htx, ist("Early-Data"), &ctx, 0)) {
if (unlikely(!http_add_header(htx, ist("Early-Data"), ist("1"))))
goto return_bad_req;
}
}
/* OK at this stage, we know that the request was accepted according to
* the http-request rules, we can check for the stats. Note that the
* URI is detected *before* the req* rules in order not to be affected
* by a possible reqrep, while they are processed *after* so that a
* reqdeny can still block them. This clearly needs to change in 1.6!
*/
if (!s->target && http_stats_check_uri(s, txn, px)) {
s->target = &http_stats_applet.obj_type;
if (unlikely(!si_register_handler(&s->si[1], objt_applet(s->target)))) {
txn->status = 500;
s->logs.tv_request = now;
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_RESOURCE;
goto return_prx_cond;
}
/* parse the whole stats request and extract the relevant information */
http_handle_stats(s, req);
verdict = http_req_get_intercept_rule(px, &px->uri_auth->http_req_rules, s, &deny_status);
/* not all actions implemented: deny, allow, auth */
if (verdict == HTTP_RULE_RES_DENY) /* stats http-request deny */
goto deny;
if (verdict == HTTP_RULE_RES_ABRT) /* stats auth / stats http-request auth */
goto return_prx_cond;
}
/* Proceed with the applets now. */
if (unlikely(objt_applet(s->target))) {
if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */
_HA_ATOMIC_ADD(&sess->fe->fe_counters.intercepted_req, 1);
if (http_handle_expect_hdr(s, htx, msg) == -1)
goto return_bad_req;
if (!(s->flags & SF_ERR_MASK)) // this is not really an error but it is
s->flags |= SF_ERR_LOCAL; // to mark that it comes from the proxy
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
/* enable the minimally required analyzers to handle keep-alive and compression on the HTTP response */
req->analysers &= (AN_REQ_HTTP_BODY | AN_REQ_FLT_HTTP_HDRS | AN_REQ_FLT_END);
req->analysers &= ~AN_REQ_FLT_XFER_DATA;
req->analysers |= AN_REQ_HTTP_XFER_BODY;
req->flags |= CF_SEND_DONTWAIT;
s->flags |= SF_ASSIGNED;
goto done;
}
/* check whether we have some ACLs set to redirect this request */
list_for_each_entry(rule, &px->redirect_rules, list) {
if (rule->cond) {
int ret;
ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
if (!ret)
continue;
}
if (!http_apply_redirect_rule(rule, s, txn))
goto return_bad_req;
goto done;
}
/* POST requests may be accompanied with an "Expect: 100-Continue" header.
* If this happens, then the data will not come immediately, so we must
* send all what we have without waiting. Note that due to the small gain
* in waiting for the body of the request, it's easier to simply put the
* CF_SEND_DONTWAIT flag any time. It's a one-shot flag so it will remove
* itself once used.
*/
req->flags |= CF_SEND_DONTWAIT;
done: /* done with this analyser, continue with next ones that the calling
* points will have set, if any.
*/
req->analyse_exp = TICK_ETERNITY;
done_without_exp: /* done with this analyser, but dont reset the analyse_exp. */
req->analysers &= ~an_bit;
return 1;
tarpit:
/* Allow cookie logging
*/
if (s->be->cookie_name || sess->fe->capture_name)
http_manage_client_side_cookies(s, req);
/* When a connection is tarpitted, we use the tarpit timeout,
* which may be the same as the connect timeout if unspecified.
* If unset, then set it to zero because we really want it to
* eventually expire. We build the tarpit as an analyser.
*/
channel_htx_erase(&s->req, htx);
/* wipe the request out so that we can drop the connection early
* if the client closes first.
*/
channel_dont_connect(req);
txn->status = http_err_codes[deny_status];
req->analysers &= AN_REQ_FLT_END; /* remove switching rules etc... */
req->analysers |= AN_REQ_HTTP_TARPIT;
req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.tarpit);
if (!req->analyse_exp)
req->analyse_exp = tick_add(now_ms, 0);
stream_inc_http_err_ctr(s);
_HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_req, 1);
if (sess->fe != s->be)
_HA_ATOMIC_ADD(&s->be->be_counters.denied_req, 1);
if (sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->denied_req, 1);
goto done_without_exp;
deny: /* this request was blocked (denied) */
/* Allow cookie logging
*/
if (s->be->cookie_name || sess->fe->capture_name)
http_manage_client_side_cookies(s, req);
txn->flags |= TX_CLDENY;
txn->status = http_err_codes[deny_status];
s->logs.tv_request = now;
http_reply_and_close(s, txn->status, http_error_message(s));
stream_inc_http_err_ctr(s);
_HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_req, 1);
if (sess->fe != s->be)
_HA_ATOMIC_ADD(&s->be->be_counters.denied_req, 1);
if (sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->denied_req, 1);
goto return_prx_cond;
return_bad_req:
txn->status = 400;
http_reply_and_close(s, txn->status, http_error_message(s));
_HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
if (sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
return_prx_cond:
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
req->analysers &= AN_REQ_FLT_END;
req->analyse_exp = TICK_ETERNITY;
return 0;
return_prx_yield:
channel_dont_connect(req);
return 0;
}
/* This function performs all the processing enabled for the current request.
* It returns 1 if the processing can continue on next analysers, or zero if it
* needs more data, encounters an error, or wants to immediately abort the
* request. It relies on buffers flags, and updates s->req.analysers.
*/
int http_process_request(struct stream *s, struct channel *req, int an_bit)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &txn->req;
struct htx *htx;
struct connection *cli_conn = objt_conn(strm_sess(s)->origin);
if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
/* we need more data */
channel_dont_connect(req);
return 0;
}
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
ci_data(req),
req->analysers);
/*
* Right now, we know that we have processed the entire headers
* and that unwanted requests have been filtered out. We can do
* whatever we want with the remaining request. Also, now we
* may have separate values for ->fe, ->be.
*/
htx = htxbuf(&req->buf);
/*
* If HTTP PROXY is set we simply get remote server address parsing
* incoming request.
*/
if ((s->be->options & PR_O_HTTP_PROXY) && !(s->flags & SF_ADDR_SET)) {
struct htx_sl *sl;
struct ist uri, path;
if (!sockaddr_alloc(&s->target_addr)) {
txn->status = 500;
req->analysers &= AN_REQ_FLT_END;
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_RESOURCE;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
return 0;
}
sl = http_get_stline(htx);
uri = htx_sl_req_uri(sl);
path = http_get_path(uri);
if (url2sa(uri.ptr, uri.len - path.len, s->target_addr, NULL) == -1)
goto return_bad_req;
s->target = &s->be->obj_type;
s->flags |= SF_ADDR_SET | SF_ASSIGNED;
/* if the path was found, we have to remove everything between
* uri.ptr and path.ptr (excluded). If it was not found, we need
* to replace from all the uri by a single "/".
*
* Instead of rewritting the whole start line, we just update
* the star-line URI. Some space will be lost but it should be
* insignificant.
*/
istcpy(&uri, (path.len ? path : ist("/")), uri.len);
}
/*
* 7: Now we can work with the cookies.
* Note that doing so might move headers in the request, but
* the fields will stay coherent and the URI will not move.
* This should only be performed in the backend.
*/
if (s->be->cookie_name || sess->fe->capture_name)
http_manage_client_side_cookies(s, req);
/* add unique-id if "header-unique-id" is specified */
if (!LIST_ISEMPTY(&sess->fe->format_unique_id) && !s->unique_id) {
if ((s->unique_id = pool_alloc(pool_head_uniqueid)) == NULL)
goto return_bad_req;
s->unique_id[0] = '\0';
build_logline(s, s->unique_id, UNIQUEID_LEN, &sess->fe->format_unique_id);
}
if (sess->fe->header_unique_id && s->unique_id) {
struct ist n = ist2(sess->fe->header_unique_id, strlen(sess->fe->header_unique_id));
struct ist v = ist2(s->unique_id, strlen(s->unique_id));
if (unlikely(!http_add_header(htx, n, v)))
goto return_bad_req;
}
/*
* 9: add X-Forwarded-For if either the frontend or the backend
* asks for it.
*/
if ((sess->fe->options | s->be->options) & PR_O_FWDFOR) {
struct http_hdr_ctx ctx = { .blk = NULL };
struct ist hdr = ist2(s->be->fwdfor_hdr_len ? s->be->fwdfor_hdr_name : sess->fe->fwdfor_hdr_name,
s->be->fwdfor_hdr_len ? s->be->fwdfor_hdr_len : sess->fe->fwdfor_hdr_len);
if (!((sess->fe->options | s->be->options) & PR_O_FF_ALWAYS) &&
http_find_header(htx, hdr, &ctx, 0)) {
/* The header is set to be added only if none is present
* and we found it, so don't do anything.
*/
}
else if (cli_conn && conn_get_src(cli_conn) && cli_conn->src->ss_family == AF_INET) {
/* Add an X-Forwarded-For header unless the source IP is
* in the 'except' network range.
*/
if ((!sess->fe->except_mask.s_addr ||
(((struct sockaddr_in *)cli_conn->src)->sin_addr.s_addr & sess->fe->except_mask.s_addr)
!= sess->fe->except_net.s_addr) &&
(!s->be->except_mask.s_addr ||
(((struct sockaddr_in *)cli_conn->src)->sin_addr.s_addr & s->be->except_mask.s_addr)
!= s->be->except_net.s_addr)) {
unsigned char *pn = (unsigned char *)&((struct sockaddr_in *)cli_conn->src)->sin_addr;
/* Note: we rely on the backend to get the header name to be used for
* x-forwarded-for, because the header is really meant for the backends.
* However, if the backend did not specify any option, we have to rely
* on the frontend's header name.
*/
chunk_printf(&trash, "%d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]);
if (unlikely(!http_add_header(htx, hdr, ist2(trash.area, trash.data))))
goto return_bad_req;
}
}
else if (cli_conn && conn_get_src(cli_conn) && cli_conn->src->ss_family == AF_INET6) {
/* FIXME: for the sake of completeness, we should also support
* 'except' here, although it is mostly useless in this case.
*/
char pn[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6,
(const void *)&((struct sockaddr_in6 *)(cli_conn->src))->sin6_addr,
pn, sizeof(pn));
/* Note: we rely on the backend to get the header name to be used for
* x-forwarded-for, because the header is really meant for the backends.
* However, if the backend did not specify any option, we have to rely
* on the frontend's header name.
*/
chunk_printf(&trash, "%s", pn);
if (unlikely(!http_add_header(htx, hdr, ist2(trash.area, trash.data))))
goto return_bad_req;
}
}
/*
* 10: add X-Original-To if either the frontend or the backend
* asks for it.
*/
if ((sess->fe->options | s->be->options) & PR_O_ORGTO) {
/* FIXME: don't know if IPv6 can handle that case too. */
if (cli_conn && conn_get_src(cli_conn) && cli_conn->src->ss_family == AF_INET && conn_get_dst(cli_conn)) {
/* Add an X-Original-To header unless the destination IP is
* in the 'except' network range.
*/
if (cli_conn->dst->ss_family == AF_INET &&
((!sess->fe->except_mask_to.s_addr ||
(((struct sockaddr_in *)cli_conn->dst)->sin_addr.s_addr & sess->fe->except_mask_to.s_addr)
!= sess->fe->except_to.s_addr) &&
(!s->be->except_mask_to.s_addr ||
(((struct sockaddr_in *)cli_conn->dst)->sin_addr.s_addr & s->be->except_mask_to.s_addr)
!= s->be->except_to.s_addr))) {
struct ist hdr;
unsigned char *pn = (unsigned char *)&((struct sockaddr_in *)cli_conn->dst)->sin_addr;
/* Note: we rely on the backend to get the header name to be used for
* x-original-to, because the header is really meant for the backends.
* However, if the backend did not specify any option, we have to rely
* on the frontend's header name.
*/
if (s->be->orgto_hdr_len)
hdr = ist2(s->be->orgto_hdr_name, s->be->orgto_hdr_len);
else
hdr = ist2(sess->fe->orgto_hdr_name, sess->fe->orgto_hdr_len);
chunk_printf(&trash, "%d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]);
if (unlikely(!http_add_header(htx, hdr, ist2(trash.area, trash.data))))
goto return_bad_req;
}
}
}
/* If we have no server assigned yet and we're balancing on url_param
* with a POST request, we may be interested in checking the body for
* that parameter. This will be done in another analyser.
*/
if (!(s->flags & (SF_ASSIGNED|SF_DIRECT)) &&
s->txn->meth == HTTP_METH_POST &&
(s->be->lbprm.algo & BE_LB_ALGO) == BE_LB_ALGO_PH) {
channel_dont_connect(req);
req->analysers |= AN_REQ_HTTP_BODY;
}
req->analysers &= ~AN_REQ_FLT_XFER_DATA;
req->analysers |= AN_REQ_HTTP_XFER_BODY;
/* We expect some data from the client. Unless we know for sure
* we already have a full request, we have to re-enable quick-ack
* in case we previously disabled it, otherwise we might cause
* the client to delay further data.
*/
if ((sess->listener->options & LI_O_NOQUICKACK) &&
(htx_get_tail_type(htx) != HTX_BLK_EOM))
conn_set_quickack(cli_conn, 1);
/*************************************************************
* OK, that's finished for the headers. We have done what we *
* could. Let's switch to the DATA state. *
************************************************************/
req->analyse_exp = TICK_ETERNITY;
req->analysers &= ~an_bit;
s->logs.tv_request = now;
/* OK let's go on with the BODY now */
return 1;
return_bad_req: /* let's centralize all bad requests */
txn->status = 400;
req->analysers &= AN_REQ_FLT_END;
http_reply_and_close(s, txn->status, http_error_message(s));
_HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
if (sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
return 0;
}
/* This function is an analyser which processes the HTTP tarpit. It always
* returns zero, at the beginning because it prevents any other processing
* from occurring, and at the end because it terminates the request.
*/
int http_process_tarpit(struct stream *s, struct channel *req, int an_bit)
{
struct http_txn *txn = s->txn;
/* This connection is being tarpitted. The CLIENT side has
* already set the connect expiration date to the right
* timeout. We just have to check that the client is still
* there and that the timeout has not expired.
*/
channel_dont_connect(req);
if ((req->flags & (CF_SHUTR|CF_READ_ERROR)) == 0 &&
!tick_is_expired(req->analyse_exp, now_ms))
return 0;
/* We will set the queue timer to the time spent, just for
* logging purposes. We fake a 500 server error, so that the
* attacker will not suspect his connection has been tarpitted.
* It will not cause trouble to the logs because we can exclude
* the tarpitted connections by filtering on the 'PT' status flags.
*/
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
if (!(req->flags & CF_READ_ERROR))
http_reply_and_close(s, txn->status, http_error_message(s));
req->analysers &= AN_REQ_FLT_END;
req->analyse_exp = TICK_ETERNITY;
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_T;
return 0;
}
/* This function is an analyser which waits for the HTTP request body. It waits
* for either the buffer to be full, or the full advertised contents to have
* reached the buffer. It must only be called after the standard HTTP request
* processing has occurred, because it expects the request to be parsed and will
* look for the Expect header. It may send a 100-Continue interim response. It
* takes in input any state starting from HTTP_MSG_BODY and leaves with one of
* HTTP_MSG_CHK_SIZE, HTTP_MSG_DATA or HTTP_MSG_TRAILERS. It returns zero if it
* needs to read more data, or 1 once it has completed its analysis.
*/
int http_wait_for_request_body(struct stream *s, struct channel *req, int an_bit)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &s->txn->req;
struct htx *htx;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
ci_data(req),
req->analysers);
htx = htxbuf(&req->buf);
if (htx->flags & HTX_FL_PARSING_ERROR)
goto return_bad_req;
if (htx->flags & HTX_FL_PROCESSING_ERROR)
goto return_int_err;
if (msg->msg_state < HTTP_MSG_BODY)
goto missing_data;
/* We have to parse the HTTP request body to find any required data.
* "balance url_param check_post" should have been the only way to get
* into this. We were brought here after HTTP header analysis, so all
* related structures are ready.
*/
if (msg->msg_state < HTTP_MSG_DATA) {
if (http_handle_expect_hdr(s, htx, msg) == -1)
goto return_bad_req;
}
msg->msg_state = HTTP_MSG_DATA;
/* Now we're in HTTP_MSG_DATA. We just need to know if all data have
* been received or if the buffer is full.
*/
if (htx_get_tail_type(htx) > HTX_BLK_DATA ||
channel_htx_full(req, htx, global.tune.maxrewrite))
goto http_end;
missing_data:
if ((req->flags & CF_READ_TIMEOUT) || tick_is_expired(req->analyse_exp, now_ms)) {
txn->status = 408;
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLITO;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_D;
goto return_err_msg;
}
/* we get here if we need to wait for more data */
if (!(req->flags & (CF_SHUTR | CF_READ_ERROR))) {
/* Not enough data. We'll re-use the http-request
* timeout here. Ideally, we should set the timeout
* relative to the accept() date. We just set the
* request timeout once at the beginning of the
* request.
*/
channel_dont_connect(req);
if (!tick_isset(req->analyse_exp))
req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq);
return 0;
}
http_end:
/* The situation will not evolve, so let's give up on the analysis. */
s->logs.tv_request = now; /* update the request timer to reflect full request */
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
return 1;
return_int_err:
txn->status = 500;
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_INTERNAL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
goto return_err_msg;
return_bad_req: /* let's centralize all bad requests */
txn->status = 400;
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
/* fall through */
return_err_msg:
http_reply_and_close(s, txn->status, http_error_message(s));
req->analysers &= AN_REQ_FLT_END;
_HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
if (sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
return 0;
}
/* This function is an analyser which forwards request body (including chunk
* sizes if any). It is called as soon as we must forward, even if we forward
* zero byte. The only situation where it must not be called is when we're in
* tunnel mode and we want to forward till the close. It's used both to forward
* remaining data and to resync after end of body. It expects the msg_state to
* be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to
* read more data, or 1 once we can go on with next request or end the stream.
* When in MSG_DATA or MSG_TRAILERS, it will automatically forward chunk_len
* bytes of pending data + the headers if not already done.
*/
int http_request_forward_body(struct stream *s, struct channel *req, int an_bit)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &txn->req;
struct htx *htx;
short status = 0;
int ret;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
ci_data(req),
req->analysers);
htx = htxbuf(&req->buf);
if (htx->flags & HTX_FL_PARSING_ERROR)
goto return_bad_req;
if (htx->flags & HTX_FL_PROCESSING_ERROR)
goto return_int_err;
if ((req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) ||
((req->flags & CF_SHUTW) && (req->to_forward || co_data(req)))) {
/* Output closed while we were sending data. We must abort and
* wake the other side up.
*/
/* Don't abort yet if we had L7 retries activated and it
* was a write error, we may recover.
*/
if (!(req->flags & (CF_READ_ERROR | CF_READ_TIMEOUT)) &&
(s->si[1].flags & SI_FL_L7_RETRY))
return 0;
msg->msg_state = HTTP_MSG_ERROR;
http_end_request(s);
http_end_response(s);
return 1;
}
/* Note that we don't have to send 100-continue back because we don't
* need the data to complete our job, and it's up to the server to
* decide whether to return 100, 417 or anything else in return of
* an "Expect: 100-continue" header.
*/
if (msg->msg_state == HTTP_MSG_BODY)
msg->msg_state = HTTP_MSG_DATA;
/* in most states, we should abort in case of early close */
channel_auto_close(req);
if (req->to_forward) {
if (req->to_forward == CHN_INFINITE_FORWARD) {
if (req->flags & (CF_SHUTR|CF_EOI)) {
msg->msg_state = HTTP_MSG_DONE;
req->to_forward = 0;
goto done;
}
}
else {
/* We can't process the buffer's contents yet */
req->flags |= CF_WAKE_WRITE;
goto missing_data_or_waiting;
}
}
if (msg->msg_state >= HTTP_MSG_DONE)
goto done;
/* Forward input data. We get it by removing all outgoing data not
* forwarded yet from HTX data size. If there are some data filters, we
* let them decide the amount of data to forward.
*/
if (HAS_REQ_DATA_FILTERS(s)) {
ret = flt_http_payload(s, msg, htx->data);
if (ret < 0)
goto return_bad_req;
c_adv(req, ret);
}
else {
c_adv(req, htx->data - co_data(req));
if (msg->flags & HTTP_MSGF_XFER_LEN)
channel_htx_forward_forever(req, htx);
}
if (txn->meth == HTTP_METH_CONNECT) {
msg->msg_state = HTTP_MSG_TUNNEL;
goto done;
}
/* Check if the end-of-message is reached and if so, switch the message
* in HTTP_MSG_ENDING state. Then if all data was marked to be
* forwarded, set the state to HTTP_MSG_DONE.
*/
if (htx_get_tail_type(htx) != HTX_BLK_EOM)
goto missing_data_or_waiting;
msg->msg_state = HTTP_MSG_ENDING;
if (htx->data != co_data(req))
goto missing_data_or_waiting;
msg->msg_state = HTTP_MSG_DONE;
req->to_forward = 0;
done:
/* other states, DONE...TUNNEL */
/* we don't want to forward closes on DONE except in tunnel mode. */
if (!(txn->flags & TX_CON_WANT_TUN))
channel_dont_close(req);
if (HAS_REQ_DATA_FILTERS(s)) {
ret = flt_http_end(s, msg);
if (ret <= 0) {
if (!ret)
goto missing_data_or_waiting;
goto return_bad_req;
}
}
http_end_request(s);
if (!(req->analysers & an_bit)) {
http_end_response(s);
if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
if (req->flags & CF_SHUTW) {
/* request errors are most likely due to the
* server aborting the transfer. */
goto return_srv_abort;
}
goto return_bad_req;
}
return 1;
}
/* If "option abortonclose" is set on the backend, we want to monitor
* the client's connection and forward any shutdown notification to the
* server, which will decide whether to close or to go on processing the
* request. We only do that in tunnel mode, and not in other modes since
* it can be abused to exhaust source ports. */
if (s->be->options & PR_O_ABRT_CLOSE) {
channel_auto_read(req);
if ((req->flags & (CF_SHUTR|CF_READ_NULL)) && !(txn->flags & TX_CON_WANT_TUN))
s->si[1].flags |= SI_FL_NOLINGER;
channel_auto_close(req);
}
else if (s->txn->meth == HTTP_METH_POST) {
/* POST requests may require to read extra CRLF sent by broken
* browsers and which could cause an RST to be sent upon close
* on some systems (eg: Linux). */
channel_auto_read(req);
}
return 0;
missing_data_or_waiting:
/* stop waiting for data if the input is closed before the end */
if (msg->msg_state < HTTP_MSG_ENDING && req->flags & CF_SHUTR)
goto return_cli_abort;
waiting:
/* waiting for the last bits to leave the buffer */
if (req->flags & CF_SHUTW)
goto return_srv_abort;
/* When TE: chunked is used, we need to get there again to parse remaining
* chunks even if the client has closed, so we don't want to set CF_DONTCLOSE.
* And when content-length is used, we never want to let the possible
* shutdown be forwarded to the other side, as the state machine will
* take care of it once the client responds. It's also important to
* prevent TIME_WAITs from accumulating on the backend side, and for
* HTTP/2 where the last frame comes with a shutdown.
*/
if (msg->flags & HTTP_MSGF_XFER_LEN)
channel_dont_close(req);
/* We know that more data are expected, but we couldn't send more that
* what we did. So we always set the CF_EXPECT_MORE flag so that the
* system knows it must not set a PUSH on this first part. Interactive
* modes are already handled by the stream sock layer. We must not do
* this in content-length mode because it could present the MSG_MORE
* flag with the last block of forwarded data, which would cause an
* additional delay to be observed by the receiver.
*/
if (msg->flags & HTTP_MSGF_TE_CHNK)
req->flags |= CF_EXPECT_MORE;
return 0;
return_cli_abort:
_HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1);
_HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1);
if (objt_server(s->target))
_HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
status = 400;
goto return_error;
return_srv_abort:
_HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1);
_HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1);
if (objt_server(s->target))
_HA_ATOMIC_ADD(&objt_server(s->target)->counters.srv_aborts, 1);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_SRVCL;
status = 502;
goto return_error;
return_int_err:
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_INTERNAL;
status = 500;
goto return_error;
return_bad_req:
_HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
if (sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
status = 400;
return_error:
if (txn->status > 0) {
/* Note: we don't send any error if some data were already sent */
http_reply_and_close(s, txn->status, NULL);
} else {
txn->status = status;
http_reply_and_close(s, txn->status, http_error_message(s));
}
req->analysers &= AN_REQ_FLT_END;
s->res.analysers &= AN_RES_FLT_END; /* we're in data phase, we want to abort both directions */
if (!(s->flags & SF_FINST_MASK))
s->flags |= ((txn->rsp.msg_state < HTTP_MSG_ERROR) ? SF_FINST_H : SF_FINST_D);
return 0;
}
/* Reset the stream and the backend stream_interface to a situation suitable for attemption connection */
/* Returns 0 if we can attempt to retry, -1 otherwise */
static __inline int do_l7_retry(struct stream *s, struct stream_interface *si)
{
struct channel *req, *res;
int co_data;
si->conn_retries--;
if (si->conn_retries < 0)
return -1;
if (objt_server(s->target))
_HA_ATOMIC_ADD(&__objt_server(s->target)->counters.retries, 1);
_HA_ATOMIC_ADD(&s->be->be_counters.retries, 1);
req = &s->req;
res = &s->res;
/* Remove any write error from the request, and read error from the response */
req->flags &= ~(CF_WRITE_ERROR | CF_WRITE_TIMEOUT | CF_SHUTW | CF_SHUTW_NOW);
res->flags &= ~(CF_READ_ERROR | CF_READ_TIMEOUT | CF_SHUTR | CF_EOI | CF_READ_NULL | CF_SHUTR_NOW);
res->analysers = 0;
si->flags &= ~(SI_FL_ERR | SI_FL_EXP | SI_FL_RXBLK_SHUT);
stream_choose_redispatch(s);
si->exp = TICK_ETERNITY;
res->rex = TICK_ETERNITY;
res->to_forward = 0;
res->analyse_exp = TICK_ETERNITY;
res->total = 0;
s->flags &= ~(SF_ERR_SRVTO | SF_ERR_SRVCL);
si_release_endpoint(&s->si[1]);
b_free(&req->buf);
/* Swap the L7 buffer with the channel buffer */
/* We know we stored the co_data as b_data, so get it there */
co_data = b_data(&si->l7_buffer);
b_set_data(&si->l7_buffer, b_size(&si->l7_buffer));
b_xfer(&req->buf, &si->l7_buffer, b_data(&si->l7_buffer));
co_set_data(req, co_data);
b_reset(&res->buf);
co_set_data(res, 0);
return 0;
}
/* This stream analyser waits for a complete HTTP response. It returns 1 if the
* processing can continue on next analysers, or zero if it either needs more
* data or wants to immediately abort the response (eg: timeout, error, ...). It
* is tied to AN_RES_WAIT_HTTP and may may remove itself from s->res.analysers
* when it has nothing left to do, and may remove any analyser when it wants to
* abort.
*/
int http_wait_for_response(struct stream *s, struct channel *rep, int an_bit)
{
/*
* We will analyze a complete HTTP response to check the its syntax.
*
* Once the start line and all headers are received, we may perform a
* capture of the error (if any), and we will set a few fields. We also
* logging and finally headers capture.
*/
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &txn->rsp;
struct htx *htx;
struct stream_interface *si_b = &s->si[1];
struct connection *srv_conn;
struct htx_sl *sl;
int n;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n",
now_ms, __FUNCTION__,
s,
rep,
rep->rex, rep->wex,
rep->flags,
ci_data(rep),
rep->analysers);
htx = htxbuf(&rep->buf);
/* Parsing errors are caught here */
if (htx->flags & HTX_FL_PARSING_ERROR)
goto return_bad_res;
if (htx->flags & HTX_FL_PROCESSING_ERROR)
goto return_int_err;
/*
* Now we quickly check if we have found a full valid response.
* If not so, we check the FD and buffer states before leaving.
* A full response is indicated by the fact that we have seen
* the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid
* responses are checked first.
*
* Depending on whether the client is still there or not, we
* may send an error response back or not. Note that normally
* we should only check for HTTP status there, and check I/O
* errors somewhere else.
*/
next_one:
if (unlikely(htx_is_empty(htx) || htx->first == -1)) {
/* 1: have we encountered a read error ? */
if (rep->flags & CF_READ_ERROR) {
struct connection *conn = NULL;
if (objt_cs(s->si[1].end))
conn = objt_cs(s->si[1].end)->conn;
if (si_b->flags & SI_FL_L7_RETRY &&
(!conn || conn->err_code != CO_ER_SSL_EARLY_FAILED)) {
/* If we arrive here, then CF_READ_ERROR was
* set by si_cs_recv() because we matched a
* status, overwise it would have removed
* the SI_FL_L7_RETRY flag, so it's ok not
* to check s->be->retry_type.
*/
if (co_data(rep) || do_l7_retry(s, si_b) == 0)
return 0;
}
if (txn->flags & TX_NOT_FIRST)
goto abort_keep_alive;
_HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
if (objt_server(s->target)) {
_HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1);
health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_READ_ERROR);
}
rep->analysers &= AN_RES_FLT_END;
txn->status = 502;
/* Check to see if the server refused the early data.
* If so, just send a 425
*/
if (conn->err_code == CO_ER_SSL_EARLY_FAILED) {
if ((s->be->retry_type & PR_RE_EARLY_ERROR) &&
(si_b->flags & SI_FL_L7_RETRY) &&
do_l7_retry(s, si_b) == 0)
return 0;
txn->status = 425;
}
s->si[1].flags |= SI_FL_NOLINGER;
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_SRVCL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
return 0;
}
/* 2: read timeout : return a 504 to the client. */
else if (rep->flags & CF_READ_TIMEOUT) {
if ((si_b->flags & SI_FL_L7_RETRY) &&
(s->be->retry_type & PR_RE_TIMEOUT)) {
if (co_data(rep) || do_l7_retry(s, si_b) == 0)
return 0;
}
_HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
if (objt_server(s->target)) {
_HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1);
health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_READ_TIMEOUT);
}
rep->analysers &= AN_RES_FLT_END;
txn->status = 504;
s->si[1].flags |= SI_FL_NOLINGER;
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_SRVTO;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
return 0;
}
/* 3: client abort with an abortonclose */
else if ((rep->flags & CF_SHUTR) && ((s->req.flags & (CF_SHUTR|CF_SHUTW)) == (CF_SHUTR|CF_SHUTW))) {
_HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1);
_HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1);
if (objt_server(s->target))
_HA_ATOMIC_ADD(&__objt_server(s->target)->counters.cli_aborts, 1);
rep->analysers &= AN_RES_FLT_END;
txn->status = 400;
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
/* process_stream() will take care of the error */
return 0;
}
/* 4: close from server, capture the response if the server has started to respond */
else if (rep->flags & CF_SHUTR) {
if ((si_b->flags & SI_FL_L7_RETRY) &&
(s->be->retry_type & PR_RE_DISCONNECTED)) {
if (co_data(rep) || do_l7_retry(s, si_b) == 0)
return 0;
}
if (txn->flags & TX_NOT_FIRST)
goto abort_keep_alive;
_HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
if (objt_server(s->target)) {
_HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1);
health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_BROKEN_PIPE);
}
rep->analysers &= AN_RES_FLT_END;
txn->status = 502;
s->si[1].flags |= SI_FL_NOLINGER;
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_SRVCL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
return 0;
}
/* 5: write error to client (we don't send any message then) */
else if (rep->flags & CF_WRITE_ERROR) {
if (txn->flags & TX_NOT_FIRST)
goto abort_keep_alive;
_HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
rep->analysers &= AN_RES_FLT_END;
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
/* process_stream() will take care of the error */
return 0;
}
channel_dont_close(rep);
rep->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */
return 0;
}
/* More interesting part now : we know that we have a complete
* response which at least looks like HTTP. We have an indicator
* of each header's length, so we can parse them quickly.
*/
msg->msg_state = HTTP_MSG_BODY;
BUG_ON(htx_get_first_type(htx) != HTX_BLK_RES_SL);
sl = http_get_stline(htx);
/* 0: we might have to print this header in debug mode */
if (unlikely((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) {
int32_t pos;
http_debug_stline("srvrep", s, sl);
for (pos = htx_get_first(htx); pos != -1; pos = htx_get_next(htx, pos)) {
struct htx_blk *blk = htx_get_blk(htx, pos);
enum htx_blk_type type = htx_get_blk_type(blk);
if (type == HTX_BLK_EOH)
break;
if (type != HTX_BLK_HDR)
continue;
http_debug_hdr("srvhdr", s,
htx_get_blk_name(htx, blk),
htx_get_blk_value(htx, blk));
}
}
/* 1: get the status code and the version. Also set HTTP flags */
txn->status = sl->info.res.status;
if (sl->flags & HTX_SL_F_VER_11)
msg->flags |= HTTP_MSGF_VER_11;
if (sl->flags & HTX_SL_F_XFER_LEN) {
msg->flags |= HTTP_MSGF_XFER_LEN;
msg->flags |= ((sl->flags & HTX_SL_F_CLEN) ? HTTP_MSGF_CNT_LEN : HTTP_MSGF_TE_CHNK);
if (sl->flags & HTX_SL_F_BODYLESS)
msg->flags |= HTTP_MSGF_BODYLESS;
}
n = txn->status / 100;
if (n < 1 || n > 5)
n = 0;
/* when the client triggers a 4xx from the server, it's most often due
* to a missing object or permission. These events should be tracked
* because if they happen often, it may indicate a brute force or a
* vulnerability scan.
*/
if (n == 4)
stream_inc_http_err_ctr(s);
if (objt_server(s->target))
_HA_ATOMIC_ADD(&__objt_server(s->target)->counters.p.http.rsp[n], 1);
/* Adjust server's health based on status code. Note: status codes 501
* and 505 are triggered on demand by client request, so we must not
* count them as server failures.
*/
if (objt_server(s->target)) {
if (txn->status >= 100 && (txn->status < 500 || txn->status == 501 || txn->status == 505))
health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_OK);
else
health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_STS);
}
/*
* We may be facing a 100-continue response, or any other informational
* 1xx response which is non-final, in which case this is not the right
* response, and we're waiting for the next one. Let's allow this response
* to go to the client and wait for the next one. There's an exception for
* 101 which is used later in the code to switch protocols.
*/
if (txn->status < 200 &&
(txn->status == 100 || txn->status >= 102)) {
FLT_STRM_CB(s, flt_http_reset(s, msg));
htx->first = channel_htx_fwd_headers(rep, htx);
msg->msg_state = HTTP_MSG_RPBEFORE;
msg->flags = 0;
txn->status = 0;
s->logs.t_data = -1; /* was not a response yet */
goto next_one;
}
/*
* 2: check for cacheability.
*/
switch (txn->status) {
case 200:
case 203:
case 204:
case 206:
case 300:
case 301:
case 404:
case 405:
case 410:
case 414:
case 501:
break;
default:
/* RFC7231#6.1:
* Responses with status codes that are defined as
* cacheable by default (e.g., 200, 203, 204, 206,
* 300, 301, 404, 405, 410, 414, and 501 in this
* specification) can be reused by a cache with
* heuristic expiration unless otherwise indicated
* by the method definition or explicit cache
* controls [RFC7234]; all other status codes are
* not cacheable by default.
*/
txn->flags &= ~(TX_CACHEABLE | TX_CACHE_COOK);
break;
}
/*
* 3: we may need to capture headers
*/
s->logs.logwait &= ~LW_RESP;
if (unlikely((s->logs.logwait & LW_RSPHDR) && s->res_cap))
http_capture_headers(htx, s->res_cap, sess->fe->rsp_cap);
/* Skip parsing if no content length is possible. */
if (unlikely((txn->meth == HTTP_METH_CONNECT && txn->status == 200) ||
txn->status == 101)) {
/* Either we've established an explicit tunnel, or we're
* switching the protocol. In both cases, we're very unlikely
* to understand the next protocols. We have to switch to tunnel
* mode, so that we transfer the request and responses then let
* this protocol pass unmodified. When we later implement specific
* parsers for such protocols, we'll want to check the Upgrade
* header which contains information about that protocol for
* responses with status 101 (eg: see RFC2817 about TLS).
*/
txn->flags |= TX_CON_WANT_TUN;
}
/* check for NTML authentication headers in 401 (WWW-Authenticate) and
* 407 (Proxy-Authenticate) responses and set the connection to private
*/
srv_conn = cs_conn(objt_cs(s->si[1].end));
if (srv_conn) {
struct ist hdr;
struct http_hdr_ctx ctx;
if (txn->status == 401)
hdr = ist("WWW-Authenticate");
else if (txn->status == 407)
hdr = ist("Proxy-Authenticate");
else
goto end;
ctx.blk = NULL;
while (http_find_header(htx, hdr, &ctx, 0)) {
if ((ctx.value.len >= 9 && word_match(ctx.value.ptr, ctx.value.len, "Negotiate", 9)) ||
(ctx.value.len >= 4 && word_match(ctx.value.ptr, ctx.value.len, "NTLM", 4))) {
sess->flags |= SESS_FL_PREFER_LAST;
srv_conn->flags |= CO_FL_PRIVATE;
}
}
}
end:
/* we want to have the response time before we start processing it */
s->logs.t_data = tv_ms_elapsed(&s->logs.tv_accept, &now);
/* end of job, return OK */
rep->analysers &= ~an_bit;
rep->analyse_exp = TICK_ETERNITY;
channel_auto_close(rep);
return 1;
return_int_err:
_HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
txn->status = 500;
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_INTERNAL;
goto return_error;
return_bad_res:
_HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
if (objt_server(s->target)) {
_HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1);
health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_HDRRSP);
}
if ((s->be->retry_type & PR_RE_JUNK_REQUEST) &&
(si_b->flags & SI_FL_L7_RETRY) &&
do_l7_retry(s, si_b) == 0)
return 0;
txn->status = 502;
/* fall through */
return_error:
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
s->si[1].flags |= SI_FL_NOLINGER;
rep->analysers &= AN_RES_FLT_END;
rep->analyse_exp = TICK_ETERNITY;
return 0;
abort_keep_alive:
/* A keep-alive request to the server failed on a network error.
* The client is required to retry. We need to close without returning
* any other information so that the client retries.
*/
txn->status = 0;
rep->analysers &= AN_RES_FLT_END;
s->req.analysers &= AN_REQ_FLT_END;
s->logs.logwait = 0;
s->logs.level = 0;
s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */
http_reply_and_close(s, txn->status, NULL);
return 0;
}
/* This function performs all the processing enabled for the current response.
* It normally returns 1 unless it wants to break. It relies on buffers flags,
* and updates s->res.analysers. It might make sense to explode it into several
* other functions. It works like process_request (see indications above).
*/
int http_process_res_common(struct stream *s, struct channel *rep, int an_bit, struct proxy *px)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &txn->rsp;
struct htx *htx;
struct proxy *cur_proxy;
enum rule_result ret = HTTP_RULE_RES_CONT;
if (unlikely(msg->msg_state < HTTP_MSG_BODY)) /* we need more data */
return 0;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n",
now_ms, __FUNCTION__,
s,
rep,
rep->rex, rep->wex,
rep->flags,
ci_data(rep),
rep->analysers);
htx = htxbuf(&rep->buf);
/* The stats applet needs to adjust the Connection header but we don't
* apply any filter there.
*/
if (unlikely(objt_applet(s->target) == &http_stats_applet)) {
rep->analysers &= ~an_bit;
rep->analyse_exp = TICK_ETERNITY;
goto end;
}
/*
* We will have to evaluate the filters.
* As opposed to version 1.2, now they will be evaluated in the
* filters order and not in the header order. This means that
* each filter has to be validated among all headers.
*
* Filters are tried with ->be first, then with ->fe if it is
* different from ->be.
*
* Maybe we are in resume condiion. In this case I choose the
* "struct proxy" which contains the rule list matching the resume
* pointer. If none of theses "struct proxy" match, I initialise
* the process with the first one.
*
* In fact, I check only correspondance betwwen the current list
* pointer and the ->fe rule list. If it doesn't match, I initialize
* the loop with the ->be.
*/
if (s->current_rule_list == &sess->fe->http_res_rules)
cur_proxy = sess->fe;
else
cur_proxy = s->be;
while (1) {
/* evaluate http-response rules */
if (ret == HTTP_RULE_RES_CONT) {
ret = http_res_get_intercept_rule(cur_proxy, &cur_proxy->http_res_rules, s);
if (ret == HTTP_RULE_RES_BADREQ)
goto return_srv_prx_502;
if (ret == HTTP_RULE_RES_DONE) {
rep->analysers &= ~an_bit;
rep->analyse_exp = TICK_ETERNITY;
return 1;
}
}
/* we need to be called again. */
if (ret == HTTP_RULE_RES_YIELD) {
channel_dont_close(rep);
return 0;
}
/* has the response been denied ? */
if (txn->flags & TX_SVDENY) {
if (objt_server(s->target))
_HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_secu, 1);
_HA_ATOMIC_ADD(&s->be->be_counters.denied_resp, 1);
_HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_resp, 1);
if (sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->denied_resp, 1);
goto return_srv_prx_502;
}
/* check whether we're already working on the frontend */
if (cur_proxy == sess->fe)
break;
cur_proxy = sess->fe;
}
/* After this point, this anayzer can't return yield, so we can
* remove the bit corresponding to this analyzer from the list.
*
* Note that the intermediate returns and goto found previously
* reset the analyzers.
*/
rep->analysers &= ~an_bit;
rep->analyse_exp = TICK_ETERNITY;
/* OK that's all we can do for 1xx responses */
if (unlikely(txn->status < 200 && txn->status != 101))
goto end;
/*
* Now check for a server cookie.
*/
if (s->be->cookie_name || sess->fe->capture_name || (s->be->options & PR_O_CHK_CACHE))
http_manage_server_side_cookies(s, rep);
/*
* Check for cache-control or pragma headers if required.
*/
if ((s->be->options & PR_O_CHK_CACHE) || (s->be->ck_opts & PR_CK_NOC))
http_check_response_for_cacheability(s, rep);
/*
* Add server cookie in the response if needed
*/
if (objt_server(s->target) && (s->be->ck_opts & PR_CK_INS) &&
!((txn->flags & TX_SCK_FOUND) && (s->be->ck_opts & PR_CK_PSV)) &&
(!(s->flags & SF_DIRECT) ||
((s->be->cookie_maxidle || txn->cookie_last_date) &&
(!txn->cookie_last_date || (txn->cookie_last_date - date.tv_sec) < 0)) ||
(s->be->cookie_maxlife && !txn->cookie_first_date) || // set the first_date
(!s->be->cookie_maxlife && txn->cookie_first_date)) && // remove the first_date
(!(s->be->ck_opts & PR_CK_POST) || (txn->meth == HTTP_METH_POST)) &&
!(s->flags & SF_IGNORE_PRST)) {
/* the server is known, it's not the one the client requested, or the
* cookie's last seen date needs to be refreshed. We have to
* insert a set-cookie here, except if we want to insert only on POST
* requests and this one isn't. Note that servers which don't have cookies
* (eg: some backup servers) will return a full cookie removal request.
*/
if (!objt_server(s->target)->cookie) {
chunk_printf(&trash,
"%s=; Expires=Thu, 01-Jan-1970 00:00:01 GMT; path=/",
s->be->cookie_name);
}
else {
chunk_printf(&trash, "%s=%s", s->be->cookie_name, objt_server(s->target)->cookie);
if (s->be->cookie_maxidle || s->be->cookie_maxlife) {
/* emit last_date, which is mandatory */
trash.area[trash.data++] = COOKIE_DELIM_DATE;
s30tob64((date.tv_sec+3) >> 2,
trash.area + trash.data);
trash.data += 5;
if (s->be->cookie_maxlife) {
/* emit first_date, which is either the original one or
* the current date.
*/
trash.area[trash.data++] = COOKIE_DELIM_DATE;
s30tob64(txn->cookie_first_date ?
txn->cookie_first_date >> 2 :
(date.tv_sec+3) >> 2,
trash.area + trash.data);
trash.data += 5;
}
}
chunk_appendf(&trash, "; path=/");
}
if (s->be->cookie_domain)
chunk_appendf(&trash, "; domain=%s", s->be->cookie_domain);
if (s->be->ck_opts & PR_CK_HTTPONLY)
chunk_appendf(&trash, "; HttpOnly");
if (s->be->ck_opts & PR_CK_SECURE)
chunk_appendf(&trash, "; Secure");
if (unlikely(!http_add_header(htx, ist("Set-Cookie"), ist2(trash.area, trash.data))))
goto return_bad_resp;
txn->flags &= ~TX_SCK_MASK;
if (__objt_server(s->target)->cookie && (s->flags & SF_DIRECT))
/* the server did not change, only the date was updated */
txn->flags |= TX_SCK_UPDATED;
else
txn->flags |= TX_SCK_INSERTED;
/* Here, we will tell an eventual cache on the client side that we don't
* want it to cache this reply because HTTP/1.0 caches also cache cookies !
* Some caches understand the correct form: 'no-cache="set-cookie"', but
* others don't (eg: apache <= 1.3.26). So we use 'private' instead.
*/
if ((s->be->ck_opts & PR_CK_NOC) && (txn->flags & TX_CACHEABLE)) {
txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
if (unlikely(!http_add_header(htx, ist("Cache-control"), ist("private"))))
goto return_bad_resp;
}
}
/*
* Check if result will be cacheable with a cookie.
* We'll block the response if security checks have caught
* nasty things such as a cacheable cookie.
*/
if (((txn->flags & (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) ==
(TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) &&
(s->be->options & PR_O_CHK_CACHE)) {
/* we're in presence of a cacheable response containing
* a set-cookie header. We'll block it as requested by
* the 'checkcache' option, and send an alert.
*/
if (objt_server(s->target))
_HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_secu, 1);
_HA_ATOMIC_ADD(&s->be->be_counters.denied_resp, 1);
_HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_resp, 1);
if (sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->denied_resp, 1);
ha_alert("Blocking cacheable cookie in response from instance %s, server %s.\n",
s->be->id, objt_server(s->target) ? objt_server(s->target)->id : "<dispatch>");
send_log(s->be, LOG_ALERT,
"Blocking cacheable cookie in response from instance %s, server %s.\n",
s->be->id, objt_server(s->target) ? objt_server(s->target)->id : "<dispatch>");
goto return_srv_prx_502;
}
end:
/* Always enter in the body analyzer */
rep->analysers &= ~AN_RES_FLT_XFER_DATA;
rep->analysers |= AN_RES_HTTP_XFER_BODY;
/* if the user wants to log as soon as possible, without counting
* bytes from the server, then this is the right moment. We have
* to temporarily assign bytes_out to log what we currently have.
*/
if (!LIST_ISEMPTY(&sess->fe->logformat) && !(s->logs.logwait & LW_BYTES)) {
s->logs.t_close = s->logs.t_data; /* to get a valid end date */
s->logs.bytes_out = htx->data;
s->do_log(s);
s->logs.bytes_out = 0;
}
return 1;
return_bad_resp:
if (objt_server(s->target)) {
_HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1);
health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_RSP);
}
_HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
return_srv_prx_502:
rep->analysers &= AN_RES_FLT_END;
txn->status = 502;
s->logs.t_data = -1; /* was not a valid response */
s->si[1].flags |= SI_FL_NOLINGER;
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
return 0;
}
/* This function is an analyser which forwards response body (including chunk
* sizes if any). It is called as soon as we must forward, even if we forward
* zero byte. The only situation where it must not be called is when we're in
* tunnel mode and we want to forward till the close. It's used both to forward
* remaining data and to resync after end of body. It expects the msg_state to
* be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to
* read more data, or 1 once we can go on with next request or end the stream.
*
* It is capable of compressing response data both in content-length mode and
* in chunked mode. The state machines follows different flows depending on
* whether content-length and chunked modes are used, since there are no
* trailers in content-length :
*
* chk-mode cl-mode
* ,----- BODY -----.
* / \
* V size > 0 V chk-mode
* .--> SIZE -------------> DATA -------------> CRLF
* | | size == 0 | last byte |
* | v final crlf v inspected |
* | TRAILERS -----------> DONE |
* | |
* `----------------------------------------------'
*
* Compression only happens in the DATA state, and must be flushed in final
* states (TRAILERS/DONE) or when leaving on missing data. Normal forwarding
* is performed at once on final states for all bytes parsed, or when leaving
* on missing data.
*/
int http_response_forward_body(struct stream *s, struct channel *res, int an_bit)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &s->txn->rsp;
struct htx *htx;
int ret;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n",
now_ms, __FUNCTION__,
s,
res,
res->rex, res->wex,
res->flags,
ci_data(res),
res->analysers);
htx = htxbuf(&res->buf);
if (htx->flags & HTX_FL_PARSING_ERROR)
goto return_bad_res;
if (htx->flags & HTX_FL_PROCESSING_ERROR)
goto return_int_err;
if ((res->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) ||
((res->flags & CF_SHUTW) && (res->to_forward || co_data(res)))) {
/* Output closed while we were sending data. We must abort and
* wake the other side up.
*/
msg->msg_state = HTTP_MSG_ERROR;
http_end_response(s);
http_end_request(s);
return 1;
}
if (msg->msg_state == HTTP_MSG_BODY)
msg->msg_state = HTTP_MSG_DATA;
/* in most states, we should abort in case of early close */
channel_auto_close(res);
if (res->to_forward) {
if (res->to_forward == CHN_INFINITE_FORWARD) {
if (res->flags & (CF_SHUTR|CF_EOI)) {
msg->msg_state = HTTP_MSG_DONE;
res->to_forward = 0;
goto done;
}
}
else {
/* We can't process the buffer's contents yet */
res->flags |= CF_WAKE_WRITE;
goto missing_data_or_waiting;
}
}
if (msg->msg_state >= HTTP_MSG_DONE)
goto done;
/* Forward input data. We get it by removing all outgoing data not
* forwarded yet from HTX data size. If there are some data filters, we
* let them decide the amount of data to forward.
*/
if (HAS_RSP_DATA_FILTERS(s)) {
ret = flt_http_payload(s, msg, htx->data);
if (ret < 0)
goto return_bad_res;
c_adv(res, ret);
}
else {
c_adv(res, htx->data - co_data(res));
if (msg->flags & HTTP_MSGF_XFER_LEN)
channel_htx_forward_forever(res, htx);
}
if ((txn->meth == HTTP_METH_CONNECT && txn->status == 200) || txn->status == 101 ||
(!(msg->flags & HTTP_MSGF_XFER_LEN) && (res->flags & CF_SHUTR || !HAS_RSP_DATA_FILTERS(s)))) {
msg->msg_state = HTTP_MSG_TUNNEL;
goto done;
}
/* Check if the end-of-message is reached and if so, switch the message
* in HTTP_MSG_ENDING state. Then if all data was marked to be
* forwarded, set the state to HTTP_MSG_DONE.
*/
if (htx_get_tail_type(htx) != HTX_BLK_EOM)
goto missing_data_or_waiting;
msg->msg_state = HTTP_MSG_ENDING;
if (htx->data != co_data(res))
goto missing_data_or_waiting;
msg->msg_state = HTTP_MSG_DONE;
res->to_forward = 0;
done:
/* other states, DONE...TUNNEL */
channel_dont_close(res);
if (HAS_RSP_DATA_FILTERS(s)) {
ret = flt_http_end(s, msg);
if (ret <= 0) {
if (!ret)
goto missing_data_or_waiting;
goto return_bad_res;
}
}
http_end_response(s);
if (!(res->analysers & an_bit)) {
http_end_request(s);
if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
if (res->flags & CF_SHUTW) {
/* response errors are most likely due to the
* client aborting the transfer. */
goto return_cli_abort;
}
goto return_bad_res;
}
return 1;
}
return 0;
missing_data_or_waiting:
if (res->flags & CF_SHUTW)
goto return_cli_abort;
/* stop waiting for data if the input is closed before the end. If the
* client side was already closed, it means that the client has aborted,
* so we don't want to count this as a server abort. Otherwise it's a
* server abort.
*/
if (msg->msg_state < HTTP_MSG_ENDING && res->flags & CF_SHUTR) {
if ((s->req.flags & (CF_SHUTR|CF_SHUTW)) == (CF_SHUTR|CF_SHUTW))
goto return_cli_abort;
/* If we have some pending data, we continue the processing */
if (htx_is_empty(htx))
goto return_srv_abort;
}
/* When TE: chunked is used, we need to get there again to parse
* remaining chunks even if the server has closed, so we don't want to
* set CF_DONTCLOSE. Similarly when there is a content-leng or if there
* are filters registered on the stream, we don't want to forward a
* close
*/
if ((msg->flags & HTTP_MSGF_XFER_LEN) || HAS_RSP_DATA_FILTERS(s))
channel_dont_close(res);
/* We know that more data are expected, but we couldn't send more that
* what we did. So we always set the CF_EXPECT_MORE flag so that the
* system knows it must not set a PUSH on this first part. Interactive
* modes are already handled by the stream sock layer. We must not do
* this in content-length mode because it could present the MSG_MORE
* flag with the last block of forwarded data, which would cause an
* additional delay to be observed by the receiver.
*/
if ((msg->flags & HTTP_MSGF_TE_CHNK) || (msg->flags & HTTP_MSGF_COMPRESSING))
res->flags |= CF_EXPECT_MORE;
/* the stream handler will take care of timeouts and errors */
return 0;
return_srv_abort:
_HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1);
_HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1);
if (objt_server(s->target))
_HA_ATOMIC_ADD(&objt_server(s->target)->counters.srv_aborts, 1);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_SRVCL;
goto return_error;
return_cli_abort:
_HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1);
_HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1);
if (objt_server(s->target))
_HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
goto return_error;
return_int_err:
_HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_INTERNAL;
goto return_error;
return_bad_res:
_HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
if (objt_server(s->target)) {
_HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_resp, 1);
health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_RSP);
}
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_SRVCL;
return_error:
/* don't send any error message as we're in the body */
http_reply_and_close(s, txn->status, NULL);
res->analysers &= AN_RES_FLT_END;
s->req.analysers &= AN_REQ_FLT_END; /* we're in data phase, we want to abort both directions */
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_D;
return 0;
}
/* Perform an HTTP redirect based on the information in <rule>. The function
* returns zero on success, or zero in case of a, irrecoverable error such
* as too large a request to build a valid response.
*/
int http_apply_redirect_rule(struct redirect_rule *rule, struct stream *s, struct http_txn *txn)
{
struct channel *req = &s->req;
struct channel *res = &s->res;
struct htx *htx;
struct htx_sl *sl;
struct buffer *chunk;
struct ist status, reason, location;
unsigned int flags;
size_t data;
int close = 0; /* Try to keep the connection alive byt default */
chunk = alloc_trash_chunk();
if (!chunk)
goto fail;
/*
* Create the location
*/
htx = htxbuf(&req->buf);
switch(rule->type) {
case REDIRECT_TYPE_SCHEME: {
struct http_hdr_ctx ctx;
struct ist path, host;
host = ist("");
ctx.blk = NULL;
if (http_find_header(htx, ist("Host"), &ctx, 0))
host = ctx.value;
sl = http_get_stline(htx);
path = http_get_path(htx_sl_req_uri(sl));
/* build message using path */
if (path.ptr) {
if (rule->flags & REDIRECT_FLAG_DROP_QS) {
int qs = 0;
while (qs < path.len) {
if (*(path.ptr + qs) == '?') {
path.len = qs;
break;
}
qs++;
}
}
}
else
path = ist("/");
if (rule->rdr_str) { /* this is an old "redirect" rule */
/* add scheme */
if (!chunk_memcat(chunk, rule->rdr_str, rule->rdr_len))
goto fail;
}
else {
/* add scheme with executing log format */
chunk->data += build_logline(s, chunk->area + chunk->data,
chunk->size - chunk->data,
&rule->rdr_fmt);
}
/* add "://" + host + path */
if (!chunk_memcat(chunk, "://", 3) ||
!chunk_memcat(chunk, host.ptr, host.len) ||
!chunk_memcat(chunk, path.ptr, path.len))
goto fail;
/* append a slash at the end of the location if needed and missing */
if (chunk->data && chunk->area[chunk->data - 1] != '/' &&
(rule->flags & REDIRECT_FLAG_APPEND_SLASH)) {
if (chunk->data + 1 >= chunk->size)
goto fail;
chunk->area[chunk->data++] = '/';
}
break;
}
case REDIRECT_TYPE_PREFIX: {
struct ist path;
sl = http_get_stline(htx);
path = http_get_path(htx_sl_req_uri(sl));
/* build message using path */
if (path.ptr) {
if (rule->flags & REDIRECT_FLAG_DROP_QS) {
int qs = 0;
while (qs < path.len) {
if (*(path.ptr + qs) == '?') {
path.len = qs;
break;
}
qs++;
}
}
}
else
path = ist("/");
if (rule->rdr_str) { /* this is an old "redirect" rule */
/* add prefix. Note that if prefix == "/", we don't want to
* add anything, otherwise it makes it hard for the user to
* configure a self-redirection.
*/
if (rule->rdr_len != 1 || *rule->rdr_str != '/') {
if (!chunk_memcat(chunk, rule->rdr_str, rule->rdr_len))
goto fail;
}
}
else {
/* add prefix with executing log format */
chunk->data += build_logline(s, chunk->area + chunk->data,
chunk->size - chunk->data,
&rule->rdr_fmt);
}
/* add path */
if (!chunk_memcat(chunk, path.ptr, path.len))
goto fail;
/* append a slash at the end of the location if needed and missing */
if (chunk->data && chunk->area[chunk->data - 1] != '/' &&
(rule->flags & REDIRECT_FLAG_APPEND_SLASH)) {
if (chunk->data + 1 >= chunk->size)
goto fail;
chunk->area[chunk->data++] = '/';
}
break;
}
case REDIRECT_TYPE_LOCATION:
default:
if (rule->rdr_str) { /* this is an old "redirect" rule */
/* add location */
if (!chunk_memcat(chunk, rule->rdr_str, rule->rdr_len))
goto fail;
}
else {
/* add location with executing log format */
chunk->data += build_logline(s, chunk->area + chunk->data,
chunk->size - chunk->data,
&rule->rdr_fmt);
}
break;
}
location = ist2(chunk->area, chunk->data);
/*
* Create the 30x response
*/
switch (rule->code) {
case 308:
status = ist("308");
reason = ist("Permanent Redirect");
break;
case 307:
status = ist("307");
reason = ist("Temporary Redirect");
break;
case 303:
status = ist("303");
reason = ist("See Other");
break;
case 301:
status = ist("301");
reason = ist("Moved Permanently");
break;
case 302:
default:
status = ist("302");
reason = ist("Found");
break;
}
if (!(txn->req.flags & HTTP_MSGF_BODYLESS) && txn->req.msg_state != HTTP_MSG_DONE)
close = 1;
htx = htx_from_buf(&res->buf);
flags = (HTX_SL_F_IS_RESP|HTX_SL_F_VER_11|HTX_SL_F_XFER_LEN|HTX_SL_F_BODYLESS);
sl = htx_add_stline(htx, HTX_BLK_RES_SL, flags, ist("HTTP/1.1"), status, reason);
if (!sl)
goto fail;
sl->info.res.status = rule->code;
s->txn->status = rule->code;
if (close && !htx_add_header(htx, ist("Connection"), ist("close")))
goto fail;
if (!htx_add_header(htx, ist("Content-length"), ist("0")) ||
!htx_add_header(htx, ist("Location"), location))
goto fail;
if (rule->code == 302 || rule->code == 303 || rule->code == 307) {
if (!htx_add_header(htx, ist("Cache-Control"), ist("no-cache")))
goto fail;
}
if (rule->cookie_len) {
if (!htx_add_header(htx, ist("Set-Cookie"), ist2(rule->cookie_str, rule->cookie_len)))
goto fail;
}
if (!htx_add_endof(htx, HTX_BLK_EOH) || !htx_add_endof(htx, HTX_BLK_EOM))
goto fail;
/* let's log the request time */
s->logs.tv_request = now;
htx->flags |= HTX_FL_PROXY_RESP;
data = htx->data - co_data(res);
c_adv(res, data);
res->total += data;
channel_auto_read(req);
channel_abort(req);
channel_auto_close(req);
channel_htx_erase(req, htxbuf(&req->buf));
res->wex = tick_add_ifset(now_ms, res->wto);
channel_auto_read(res);
channel_auto_close(res);
channel_shutr_now(res);
req->analysers &= AN_REQ_FLT_END;
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_LOCAL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
free_trash_chunk(chunk);
return 1;
fail:
/* If an error occurred, remove the incomplete HTTP response from the
* buffer */
channel_htx_truncate(res, htxbuf(&res->buf));
free_trash_chunk(chunk);
return 0;
}
int http_transform_header_str(struct stream* s, struct channel *chn, struct htx *htx,
struct ist name, const char *str, struct my_regex *re, int action)
{
struct http_hdr_ctx ctx;
struct buffer *output = get_trash_chunk();
/* find full header is action is ACT_HTTP_REPLACE_HDR */
ctx.blk = NULL;
while (http_find_header(htx, name, &ctx, (action == ACT_HTTP_REPLACE_HDR))) {
if (!regex_exec_match2(re, ctx.value.ptr, ctx.value.len, MAX_MATCH, pmatch, 0))
continue;
output->data = exp_replace(output->area, output->size, ctx.value.ptr, str, pmatch);
if (output->data == -1)
return -1;
if (!http_replace_header_value(htx, &ctx, ist2(output->area, output->data)))
return -1;
}
return 0;
}
static int http_transform_header(struct stream* s, struct channel *chn, struct htx *htx,
const struct ist name, struct list *fmt, struct my_regex *re, int action)
{
struct buffer *replace;
int ret = -1;
replace = alloc_trash_chunk();
if (!replace)
goto leave;
replace->data = build_logline(s, replace->area, replace->size, fmt);
if (replace->data >= replace->size - 1)
goto leave;
ret = http_transform_header_str(s, chn, htx, name, replace->area, re, action);
leave:
free_trash_chunk(replace);
return ret;
}
/* Terminate a 103-Erly-hints response and send it to the client. It returns 0
* on success and -1 on error. The response channel is updated accordingly.
*/
static int http_reply_103_early_hints(struct channel *res)
{
struct htx *htx = htx_from_buf(&res->buf);
size_t data;
if (!htx_add_endof(htx, HTX_BLK_EOH)) {
/* If an error occurred during an Early-hint rule,
* remove the incomplete HTTP 103 response from the
* buffer */
channel_htx_truncate(res, htx);
return -1;
}
data = htx->data - co_data(res);
c_adv(res, data);
res->total += data;
return 0;
}
/*
* Build an HTTP Early Hint HTTP 103 response header with <name> as name and with a value
* built according to <fmt> log line format.
* If <early_hints> is 0, it is starts a new response by adding the start
* line. If an error occurred -1 is returned. On success 0 is returned. The
* channel is not updated here. It must be done calling the function
* http_reply_103_early_hints().
*/
static int http_add_early_hint_header(struct stream *s, int early_hints, const struct ist name, struct list *fmt)
{
struct channel *res = &s->res;
struct htx *htx = htx_from_buf(&res->buf);
struct buffer *value = alloc_trash_chunk();
if (!early_hints) {
struct htx_sl *sl;
unsigned int flags = (HTX_SL_F_IS_RESP|HTX_SL_F_VER_11|
HTX_SL_F_XFER_LEN|HTX_SL_F_BODYLESS);
sl = htx_add_stline(htx, HTX_BLK_RES_SL, flags,
ist("HTTP/1.1"), ist("103"), ist("Early Hints"));
if (!sl)
goto fail;
sl->info.res.status = 103;
}
value->data = build_logline(s, b_tail(value), b_room(value), fmt);
if (!htx_add_header(htx, name, ist2(b_head(value), b_data(value))))
goto fail;
free_trash_chunk(value);
return 1;
fail:
/* If an error occurred during an Early-hint rule, remove the incomplete
* HTTP 103 response from the buffer */
channel_htx_truncate(res, htx);
free_trash_chunk(value);
return -1;
}
/* This function executes one of the set-{method,path,query,uri} actions. It
* takes the string from the variable 'replace' with length 'len', then modifies
* the relevant part of the request line accordingly. Then it updates various
* pointers to the next elements which were moved, and the total buffer length.
* It finds the action to be performed in p[2], previously filled by function
* parse_set_req_line(). It returns 0 in case of success, -1 in case of internal
* error, though this can be revisited when this code is finally exploited.
*
* 'action' can be '0' to replace method, '1' to replace path, '2' to replace
* query string and 3 to replace uri.
*
* In query string case, the mark question '?' must be set at the start of the
* string by the caller, event if the replacement query string is empty.
*/
int http_req_replace_stline(int action, const char *replace, int len,
struct proxy *px, struct stream *s)
{
struct htx *htx = htxbuf(&s->req.buf);
switch (action) {
case 0: // method
if (!http_replace_req_meth(htx, ist2(replace, len)))
return -1;
break;
case 1: // path
if (!http_replace_req_path(htx, ist2(replace, len)))
return -1;
break;
case 2: // query
if (!http_replace_req_query(htx, ist2(replace, len)))
return -1;
break;
case 3: // uri
if (!http_replace_req_uri(htx, ist2(replace, len)))
return -1;
break;
default:
return -1;
}
return 0;
}
/* This function replace the HTTP status code and the associated message. The
* variable <status> contains the new status code. This function never fails.
*/
void http_res_set_status(unsigned int status, const char *reason, struct stream *s)
{
struct htx *htx = htxbuf(&s->res.buf);
char *res;
chunk_reset(&trash);
res = ultoa_o(status, trash.area, trash.size);
trash.data = res - trash.area;
/* Do we have a custom reason format string? */
if (reason == NULL)
reason = http_get_reason(status);
if (http_replace_res_status(htx, ist2(trash.area, trash.data)))
http_replace_res_reason(htx, ist2(reason, strlen(reason)));
}
/* Executes the http-request rules <rules> for stream <s>, proxy <px> and
* transaction <txn>. Returns the verdict of the first rule that prevents
* further processing of the request (auth, deny, ...), and defaults to
* HTTP_RULE_RES_STOP if it executed all rules or stopped on an allow, or
* HTTP_RULE_RES_CONT if the last rule was reached. It may set the TX_CLTARPIT
* on txn->flags if it encounters a tarpit rule. If <deny_status> is not NULL
* and a deny/tarpit rule is matched, it will be filled with this rule's deny
* status.
*/
static enum rule_result http_req_get_intercept_rule(struct proxy *px, struct list *rules,
struct stream *s, int *deny_status)
{
struct session *sess = strm_sess(s);
struct http_txn *txn = s->txn;
struct htx *htx;
struct act_rule *rule;
struct http_hdr_ctx ctx;
const char *auth_realm;
enum rule_result rule_ret = HTTP_RULE_RES_CONT;
int act_flags = 0;
int early_hints = 0;
htx = htxbuf(&s->req.buf);
/* If "the current_rule_list" match the executed rule list, we are in
* resume condition. If a resume is needed it is always in the action
* and never in the ACL or converters. In this case, we initialise the
* current rule, and go to the action execution point.
*/
if (s->current_rule) {
rule = s->current_rule;
s->current_rule = NULL;
if (s->current_rule_list == rules)
goto resume_execution;
}
s->current_rule_list = rules;
list_for_each_entry(rule, rules, list) {
/* check optional condition */
if (rule->cond) {
int ret;
ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
if (!ret) /* condition not matched */
continue;
}
act_flags |= ACT_FLAG_FIRST;
resume_execution:
if (early_hints && rule->action != ACT_HTTP_EARLY_HINT) {
early_hints = 0;
if (http_reply_103_early_hints(&s->res) == -1) {
rule_ret = HTTP_RULE_RES_BADREQ;
goto end;
}
}
switch (rule->action) {
case ACT_ACTION_ALLOW:
rule_ret = HTTP_RULE_RES_STOP;
goto end;
case ACT_ACTION_DENY:
if (deny_status)
*deny_status = rule->deny_status;
rule_ret = HTTP_RULE_RES_DENY;
goto end;
case ACT_HTTP_REQ_TARPIT:
txn->flags |= TX_CLTARPIT;
if (deny_status)
*deny_status = rule->deny_status;
rule_ret = HTTP_RULE_RES_DENY;
goto end;
case ACT_HTTP_REQ_AUTH:
/* Auth might be performed on regular http-req rules as well as on stats */
auth_realm = rule->arg.auth.realm;
if (!auth_realm) {
if (px->uri_auth && rules == &px->uri_auth->http_req_rules)
auth_realm = STATS_DEFAULT_REALM;
else
auth_realm = px->id;
}
/* send 401/407 depending on whether we use a proxy or not. We still
* count one error, because normal browsing won't significantly
* increase the counter but brute force attempts will.
*/
rule_ret = HTTP_RULE_RES_ABRT;
if (http_reply_40x_unauthorized(s, auth_realm) == -1)
rule_ret = HTTP_RULE_RES_BADREQ;
stream_inc_http_err_ctr(s);
goto end;
case ACT_HTTP_REDIR:
rule_ret = HTTP_RULE_RES_DONE;
if (!http_apply_redirect_rule(rule->arg.redir, s, txn))
rule_ret = HTTP_RULE_RES_BADREQ;
goto end;
case ACT_HTTP_SET_NICE:
s->task->nice = rule->arg.nice;
break;
case ACT_HTTP_SET_TOS:
conn_set_tos(objt_conn(sess->origin), rule->arg.tos);
break;
case ACT_HTTP_SET_MARK:
conn_set_mark(objt_conn(sess->origin), rule->arg.mark);
break;
case ACT_HTTP_SET_LOGL:
s->logs.level = rule->arg.loglevel;
break;
case ACT_HTTP_REPLACE_HDR:
case ACT_HTTP_REPLACE_VAL:
if (http_transform_header(s, &s->req, htx,
ist2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len),
&rule->arg.hdr_add.fmt,
rule->arg.hdr_add.re, rule->action)) {
rule_ret = HTTP_RULE_RES_BADREQ;
goto end;
}
break;
case ACT_HTTP_DEL_HDR:
/* remove all occurrences of the header */
ctx.blk = NULL;
while (http_find_header(htx, ist2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len), &ctx, 1))
http_remove_header(htx, &ctx);
break;
case ACT_HTTP_SET_HDR:
case ACT_HTTP_ADD_HDR: {
/* The scope of the trash buffer must be limited to this function. The
* build_logline() function can execute a lot of other function which
* can use the trash buffer. So for limiting the scope of this global
* buffer, we build first the header value using build_logline, and
* after we store the header name.
*/
struct buffer *replace;
struct ist n, v;
replace = alloc_trash_chunk();
if (!replace) {
rule_ret = HTTP_RULE_RES_BADREQ;
goto end;
}
replace->data = build_logline(s, replace->area, replace->size, &rule->arg.hdr_add.fmt);
n = ist2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len);
v = ist2(replace->area, replace->data);
if (rule->action == ACT_HTTP_SET_HDR) {
/* remove all occurrences of the header */
ctx.blk = NULL;
while (http_find_header(htx, ist2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len), &ctx, 1))
http_remove_header(htx, &ctx);
}
if (!http_add_header(htx, n, v)) {
static unsigned char rate_limit = 0;
if ((rate_limit++ & 255) == 0) {
send_log(px, LOG_WARNING, "Proxy %s failed to add or set the request header '%.*s' for request #%u. You might need to increase tune.maxrewrite.", px->id, (int)n.len, n.ptr, s->uniq_id);
}
_HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_rewrites, 1);
if (sess->fe != s->be)
_HA_ATOMIC_ADD(&s->be->be_counters.failed_rewrites, 1);
if (sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->failed_rewrites, 1);
}
free_trash_chunk(replace);
break;
}
case ACT_HTTP_DEL_ACL:
case ACT_HTTP_DEL_MAP: {
struct pat_ref *ref;
struct buffer *key;
/* collect reference */
ref = pat_ref_lookup(rule->arg.map.ref);
if (!ref)
continue;
/* allocate key */
key = alloc_trash_chunk();
if (!key) {
rule_ret = HTTP_RULE_RES_BADREQ;
goto end;
}
/* collect key */
key->data = build_logline(s, key->area, key->size, &rule->arg.map.key);
key->area[key->data] = '\0';
/* perform update */
/* returned code: 1=ok, 0=ko */
HA_SPIN_LOCK(PATREF_LOCK, &ref->lock);
pat_ref_delete(ref, key->area);
HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock);
free_trash_chunk(key);
break;
}
case ACT_HTTP_ADD_ACL: {
struct pat_ref *ref;
struct buffer *key;
/* collect reference */
ref = pat_ref_lookup(rule->arg.map.ref);
if (!ref)
continue;
/* allocate key */
key = alloc_trash_chunk();
if (!key) {
rule_ret = HTTP_RULE_RES_BADREQ;
goto end;
}
/* collect key */
key->data = build_logline(s, key->area, key->size, &rule->arg.map.key);
key->area[key->data] = '\0';
/* perform update */
/* add entry only if it does not already exist */
HA_SPIN_LOCK(PATREF_LOCK, &ref->lock);
if (pat_ref_find_elt(ref, key->area) == NULL)
pat_ref_add(ref, key->area, NULL, NULL);
HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock);
free_trash_chunk(key);
break;
}
case ACT_HTTP_SET_MAP: {
struct pat_ref *ref;
struct buffer *key, *value;
/* collect reference */
ref = pat_ref_lookup(rule->arg.map.ref);
if (!ref)
continue;
/* allocate key */
key = alloc_trash_chunk();
if (!key) {
rule_ret = HTTP_RULE_RES_BADREQ;
goto end;
}
/* allocate value */
value = alloc_trash_chunk();
if (!value) {
free_trash_chunk(key);
rule_ret = HTTP_RULE_RES_BADREQ;
goto end;
}
/* collect key */
key->data = build_logline(s, key->area, key->size, &rule->arg.map.key);
key->area[key->data] = '\0';
/* collect value */
value->data = build_logline(s, value->area, value->size, &rule->arg.map.value);
value->area[value->data] = '\0';
/* perform update */
HA_SPIN_LOCK(PATREF_LOCK, &ref->lock);
if (pat_ref_find_elt(ref, key->area) != NULL)
/* update entry if it exists */
pat_ref_set(ref, key->area, value->area, NULL);
else
/* insert a new entry */
pat_ref_add(ref, key->area, value->area, NULL);
HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock);
free_trash_chunk(key);
free_trash_chunk(value);
break;
}
case ACT_HTTP_EARLY_HINT:
if (!(txn->req.flags & HTTP_MSGF_VER_11))
break;
early_hints = http_add_early_hint_header(s, early_hints,
ist2(rule->arg.early_hint.name, rule->arg.early_hint.name_len),
&rule->arg.early_hint.fmt);
if (early_hints == -1) {
rule_ret = HTTP_RULE_RES_BADREQ;
goto end;
}
break;
case ACT_CUSTOM:
if ((s->req.flags & CF_READ_ERROR) ||
((s->req.flags & (CF_SHUTR|CF_READ_NULL)) &&
(px->options & PR_O_ABRT_CLOSE)))
act_flags |= ACT_FLAG_FINAL;
switch (rule->action_ptr(rule, px, s->sess, s, act_flags)) {
case ACT_RET_ERR:
case ACT_RET_CONT:
break;
case ACT_RET_STOP:
rule_ret = HTTP_RULE_RES_STOP;
goto end;
case ACT_RET_DONE:
rule_ret = HTTP_RULE_RES_DONE;
goto end;
case ACT_RET_YIELD:
s->current_rule = rule;
rule_ret = HTTP_RULE_RES_YIELD;
goto end;
}
break;
case ACT_ACTION_TRK_SC0 ... ACT_ACTION_TRK_SCMAX:
/* Note: only the first valid tracking parameter of each
* applies.
*/
if (stkctr_entry(&s->stkctr[trk_idx(rule->action)]) == NULL) {
struct stktable *t;
struct stksess *ts;
struct stktable_key *key;
void *ptr1, *ptr2;
t = rule->arg.trk_ctr.table.t;
key = stktable_fetch_key(t, s->be, sess, s, SMP_OPT_DIR_REQ | SMP_OPT_FINAL,
rule->arg.trk_ctr.expr, NULL);
if (key && (ts = stktable_get_entry(t, key))) {
stream_track_stkctr(&s->stkctr[trk_idx(rule->action)], t, ts);
/* let's count a new HTTP request as it's the first time we do it */
ptr1 = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_CNT);
ptr2 = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_RATE);
if (ptr1 || ptr2) {
HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock);
if (ptr1)
stktable_data_cast(ptr1, http_req_cnt)++;
if (ptr2)
update_freq_ctr_period(&stktable_data_cast(ptr2, http_req_rate),
t->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u, 1);
HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
/* If data was modified, we need to touch to re-schedule sync */
stktable_touch_local(t, ts, 0);
}
stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_CONTENT);
if (sess->fe != s->be)
stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_BACKEND);
}
}
break;
/* other flags exists, but normally, they never be matched. */
default:
break;
}
}
end:
if (early_hints) {
if (http_reply_103_early_hints(&s->res) == -1)
rule_ret = HTTP_RULE_RES_BADREQ;
}
/* we reached the end of the rules, nothing to report */
return rule_ret;
}
/* Executes the http-response rules <rules> for stream <s> and proxy <px>. It
* returns one of 5 possible statuses: HTTP_RULE_RES_CONT, HTTP_RULE_RES_STOP,
* HTTP_RULE_RES_DONE, HTTP_RULE_RES_YIELD, or HTTP_RULE_RES_BADREQ. If *CONT
* is returned, the process can continue the evaluation of next rule list. If
* *STOP or *DONE is returned, the process must stop the evaluation. If *BADREQ
* is returned, it means the operation could not be processed and a server error
* must be returned. It may set the TX_SVDENY on txn->flags if it encounters a
* deny rule. If *YIELD is returned, the caller must call again the function
* with the same context.
*/
static enum rule_result http_res_get_intercept_rule(struct proxy *px, struct list *rules,
struct stream *s)
{
struct session *sess = strm_sess(s);
struct http_txn *txn = s->txn;
struct htx *htx;
struct act_rule *rule;
struct http_hdr_ctx ctx;
enum rule_result rule_ret = HTTP_RULE_RES_CONT;
int act_flags = 0;
htx = htxbuf(&s->res.buf);
/* If "the current_rule_list" match the executed rule list, we are in
* resume condition. If a resume is needed it is always in the action
* and never in the ACL or converters. In this case, we initialise the
* current rule, and go to the action execution point.
*/
if (s->current_rule) {
rule = s->current_rule;
s->current_rule = NULL;
if (s->current_rule_list == rules)
goto resume_execution;
}
s->current_rule_list = rules;
list_for_each_entry(rule, rules, list) {
/* check optional condition */
if (rule->cond) {
int ret;
ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
if (!ret) /* condition not matched */
continue;
}
act_flags |= ACT_FLAG_FIRST;
resume_execution:
switch (rule->action) {
case ACT_ACTION_ALLOW:
rule_ret = HTTP_RULE_RES_STOP; /* "allow" rules are OK */
goto end;
case ACT_ACTION_DENY:
txn->flags |= TX_SVDENY;
rule_ret = HTTP_RULE_RES_STOP;
goto end;
case ACT_HTTP_SET_NICE:
s->task->nice = rule->arg.nice;
break;
case ACT_HTTP_SET_TOS:
conn_set_tos(objt_conn(sess->origin), rule->arg.tos);
break;
case ACT_HTTP_SET_MARK:
conn_set_mark(objt_conn(sess->origin), rule->arg.mark);
break;
case ACT_HTTP_SET_LOGL:
s->logs.level = rule->arg.loglevel;
break;
case ACT_HTTP_REPLACE_HDR:
case ACT_HTTP_REPLACE_VAL:
if (http_transform_header(s, &s->res, htx,
ist2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len),
&rule->arg.hdr_add.fmt,
rule->arg.hdr_add.re, rule->action)) {
rule_ret = HTTP_RULE_RES_BADREQ;
goto end;
}
break;
case ACT_HTTP_DEL_HDR:
/* remove all occurrences of the header */
ctx.blk = NULL;
while (http_find_header(htx, ist2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len), &ctx, 1))
http_remove_header(htx, &ctx);
break;
case ACT_HTTP_SET_HDR:
case ACT_HTTP_ADD_HDR: {
struct buffer *replace;
struct ist n, v;
replace = alloc_trash_chunk();
if (!replace) {
rule_ret = HTTP_RULE_RES_BADREQ;
goto end;
}
replace->data = build_logline(s, replace->area, replace->size, &rule->arg.hdr_add.fmt);
n = ist2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len);
v = ist2(replace->area, replace->data);
if (rule->action == ACT_HTTP_SET_HDR) {
/* remove all occurrences of the header */
ctx.blk = NULL;
while (http_find_header(htx, ist2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len), &ctx, 1))
http_remove_header(htx, &ctx);
}
if (!http_add_header(htx, n, v)) {
static unsigned char rate_limit = 0;
if ((rate_limit++ & 255) == 0) {
send_log(px, LOG_WARNING, "Proxy %s failed to add or set the response header '%.*s' for request #%u. You might need to increase tune.maxrewrite.", px->id, (int)n.len, n.ptr, s->uniq_id);
}
_HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_rewrites, 1);
if (sess->fe != s->be)
_HA_ATOMIC_ADD(&s->be->be_counters.failed_rewrites, 1);
if (sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->failed_rewrites, 1);
if (objt_server(s->target))
_HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_rewrites, 1);
}
free_trash_chunk(replace);
break;
}
case ACT_HTTP_DEL_ACL:
case ACT_HTTP_DEL_MAP: {
struct pat_ref *ref;
struct buffer *key;
/* collect reference */
ref = pat_ref_lookup(rule->arg.map.ref);
if (!ref)
continue;
/* allocate key */
key = alloc_trash_chunk();
if (!key) {
rule_ret = HTTP_RULE_RES_BADREQ;
goto end;
}
/* collect key */
key->data = build_logline(s, key->area, key->size, &rule->arg.map.key);
key->area[key->data] = '\0';
/* perform update */
/* returned code: 1=ok, 0=ko */
HA_SPIN_LOCK(PATREF_LOCK, &ref->lock);
pat_ref_delete(ref, key->area);
HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock);
free_trash_chunk(key);
break;
}
case ACT_HTTP_ADD_ACL: {
struct pat_ref *ref;
struct buffer *key;
/* collect reference */
ref = pat_ref_lookup(rule->arg.map.ref);
if (!ref)
continue;
/* allocate key */
key = alloc_trash_chunk();
if (!key) {
rule_ret = HTTP_RULE_RES_BADREQ;
goto end;
}
/* collect key */
key->data = build_logline(s, key->area, key->size, &rule->arg.map.key);
key->area[key->data] = '\0';
/* perform update */
/* check if the entry already exists */
HA_SPIN_LOCK(PATREF_LOCK, &ref->lock);
if (pat_ref_find_elt(ref, key->area) == NULL)
pat_ref_add(ref, key->area, NULL, NULL);
HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock);
free_trash_chunk(key);
break;
}
case ACT_HTTP_SET_MAP: {
struct pat_ref *ref;
struct buffer *key, *value;
/* collect reference */
ref = pat_ref_lookup(rule->arg.map.ref);
if (!ref)
continue;
/* allocate key */
key = alloc_trash_chunk();
if (!key) {
rule_ret = HTTP_RULE_RES_BADREQ;
goto end;
}
/* allocate value */
value = alloc_trash_chunk();
if (!value) {
free_trash_chunk(key);
rule_ret = HTTP_RULE_RES_BADREQ;
goto end;
}
/* collect key */
key->data = build_logline(s, key->area, key->size, &rule->arg.map.key);
key->area[key->data] = '\0';
/* collect value */
value->data = build_logline(s, value->area, value->size, &rule->arg.map.value);
value->area[value->data] = '\0';
/* perform update */
HA_SPIN_LOCK(PATREF_LOCK, &ref->lock);
if (pat_ref_find_elt(ref, key->area) != NULL)
/* update entry if it exists */
pat_ref_set(ref, key->area, value->area, NULL);
else
/* insert a new entry */
pat_ref_add(ref, key->area, value->area, NULL);
HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock);
free_trash_chunk(key);
free_trash_chunk(value);
break;
}
case ACT_HTTP_REDIR:
rule_ret = HTTP_RULE_RES_DONE;
if (!http_apply_redirect_rule(rule->arg.redir, s, txn))
rule_ret = HTTP_RULE_RES_BADREQ;
goto end;
case ACT_ACTION_TRK_SC0 ... ACT_ACTION_TRK_SCMAX:
/* Note: only the first valid tracking parameter of each
* applies.
*/
if (stkctr_entry(&s->stkctr[trk_idx(rule->action)]) == NULL) {
struct stktable *t;
struct stksess *ts;
struct stktable_key *key;
void *ptr;
t = rule->arg.trk_ctr.table.t;
key = stktable_fetch_key(t, s->be, sess, s, SMP_OPT_DIR_RES | SMP_OPT_FINAL,
rule->arg.trk_ctr.expr, NULL);
if (key && (ts = stktable_get_entry(t, key))) {
stream_track_stkctr(&s->stkctr[trk_idx(rule->action)], t, ts);
HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock);
/* let's count a new HTTP request as it's the first time we do it */
ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_CNT);
if (ptr)
stktable_data_cast(ptr, http_req_cnt)++;
ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_RATE);
if (ptr)
update_freq_ctr_period(&stktable_data_cast(ptr, http_req_rate),
t->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u, 1);
/* When the client triggers a 4xx from the server, it's most often due
* to a missing object or permission. These events should be tracked
* because if they happen often, it may indicate a brute force or a
* vulnerability scan. Normally this is done when receiving the response
* but here we're tracking after this ought to have been done so we have
* to do it on purpose.
*/
if ((unsigned)(txn->status - 400) < 100) {
ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_ERR_CNT);
if (ptr)
stktable_data_cast(ptr, http_err_cnt)++;
ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_ERR_RATE);
if (ptr)
update_freq_ctr_period(&stktable_data_cast(ptr, http_err_rate),
t->data_arg[STKTABLE_DT_HTTP_ERR_RATE].u, 1);
}
HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
/* If data was modified, we need to touch to re-schedule sync */
stktable_touch_local(t, ts, 0);
stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_CONTENT);
if (sess->fe != s->be)
stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_BACKEND);
}
}
break;
case ACT_CUSTOM:
if ((s->req.flags & CF_READ_ERROR) ||
((s->req.flags & (CF_SHUTR|CF_READ_NULL)) &&
(px->options & PR_O_ABRT_CLOSE)))
act_flags |= ACT_FLAG_FINAL;
switch (rule->action_ptr(rule, px, s->sess, s, act_flags)) {
case ACT_RET_ERR:
case ACT_RET_CONT:
break;
case ACT_RET_STOP:
rule_ret = HTTP_RULE_RES_STOP;
goto end;
case ACT_RET_DONE:
rule_ret = HTTP_RULE_RES_DONE;
goto end;
case ACT_RET_YIELD:
s->current_rule = rule;
rule_ret = HTTP_RULE_RES_YIELD;
goto end;
}
break;
/* other flags exists, but normally, they never be matched. */
default:
break;
}
}
end:
/* we reached the end of the rules, nothing to report */
return rule_ret;
}
/*
* Manage client-side cookie. It can impact performance by about 2% so it is
* desirable to call it only when needed. This code is quite complex because
* of the multiple very crappy and ambiguous syntaxes we have to support. it
* highly recommended not to touch this part without a good reason !
*/
static void http_manage_client_side_cookies(struct stream *s, struct channel *req)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct htx *htx;
struct http_hdr_ctx ctx;
char *hdr_beg, *hdr_end, *del_from;
char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next;
int preserve_hdr;
htx = htxbuf(&req->buf);
ctx.blk = NULL;
while (http_find_header(htx, ist("Cookie"), &ctx, 1)) {
int is_first = 1;
del_from = NULL; /* nothing to be deleted */
preserve_hdr = 0; /* assume we may kill the whole header */
/* Now look for cookies. Conforming to RFC2109, we have to support
* attributes whose name begin with a '$', and associate them with
* the right cookie, if we want to delete this cookie.
* So there are 3 cases for each cookie read :
* 1) it's a special attribute, beginning with a '$' : ignore it.
* 2) it's a server id cookie that we *MAY* want to delete : save
* some pointers on it (last semi-colon, beginning of cookie...)
* 3) it's an application cookie : we *MAY* have to delete a previous
* "special" cookie.
* At the end of loop, if a "special" cookie remains, we may have to
* remove it. If no application cookie persists in the header, we
* *MUST* delete it.
*
* Note: RFC2965 is unclear about the processing of spaces around
* the equal sign in the ATTR=VALUE form. A careful inspection of
* the RFC explicitly allows spaces before it, and not within the
* tokens (attrs or values). An inspection of RFC2109 allows that
* too but section 10.1.3 lets one think that spaces may be allowed
* after the equal sign too, resulting in some (rare) buggy
* implementations trying to do that. So let's do what servers do.
* Latest ietf draft forbids spaces all around. Also, earlier RFCs
* allowed quoted strings in values, with any possible character
* after a backslash, including control chars and delimitors, which
* causes parsing to become ambiguous. Browsers also allow spaces
* within values even without quotes.
*
* We have to keep multiple pointers in order to support cookie
* removal at the beginning, middle or end of header without
* corrupting the header. All of these headers are valid :
*
* hdr_beg hdr_end
* | |
* v |
* NAME1=VALUE1;NAME2=VALUE2;NAME3=VALUE3 |
* NAME1=VALUE1;NAME2_ONLY ;NAME3=VALUE3 v
* NAME1 = VALUE 1 ; NAME2 = VALUE2 ; NAME3 = VALUE3
* | | | | | | |
* | | | | | | |
* | | | | | | +--> next
* | | | | | +----> val_end
* | | | | +-----------> val_beg
* | | | +--------------> equal
* | | +----------------> att_end
* | +---------------------> att_beg
* +--------------------------> prev
*
*/
hdr_beg = ctx.value.ptr;
hdr_end = hdr_beg + ctx.value.len;
for (prev = hdr_beg; prev < hdr_end; prev = next) {
/* Iterate through all cookies on this line */
/* find att_beg */
att_beg = prev;
if (!is_first)
att_beg++;
is_first = 0;
while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg))
att_beg++;
/* find att_end : this is the first character after the last non
* space before the equal. It may be equal to hdr_end.
*/
equal = att_end = att_beg;
while (equal < hdr_end) {
if (*equal == '=' || *equal == ',' || *equal == ';')
break;
if (HTTP_IS_SPHT(*equal++))
continue;
att_end = equal;
}
/* here, <equal> points to '=', a delimitor or the end. <att_end>
* is between <att_beg> and <equal>, both may be identical.
*/
/* look for end of cookie if there is an equal sign */
if (equal < hdr_end && *equal == '=') {
/* look for the beginning of the value */
val_beg = equal + 1;
while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg))
val_beg++;
/* find the end of the value, respecting quotes */
next = http_find_cookie_value_end(val_beg, hdr_end);
/* make val_end point to the first white space or delimitor after the value */
val_end = next;
while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1)))
val_end--;
}
else
val_beg = val_end = next = equal;
/* We have nothing to do with attributes beginning with
* '$'. However, they will automatically be removed if a
* header before them is removed, since they're supposed
* to be linked together.
*/
if (*att_beg == '$')
continue;
/* Ignore cookies with no equal sign */
if (equal == next) {
/* This is not our cookie, so we must preserve it. But if we already
* scheduled another cookie for removal, we cannot remove the
* complete header, but we can remove the previous block itself.
*/
preserve_hdr = 1;
if (del_from != NULL) {
int delta = http_del_hdr_value(hdr_beg, hdr_end, &del_from, prev);
val_end += delta;
next += delta;
hdr_end += delta;
prev = del_from;
del_from = NULL;
}
continue;
}
/* if there are spaces around the equal sign, we need to
* strip them otherwise we'll get trouble for cookie captures,
* or even for rewrites. Since this happens extremely rarely,
* it does not hurt performance.
*/
if (unlikely(att_end != equal || val_beg > equal + 1)) {
int stripped_before = 0;
int stripped_after = 0;
if (att_end != equal) {
memmove(att_end, equal, hdr_end - equal);
stripped_before = (att_end - equal);
equal += stripped_before;
val_beg += stripped_before;
}
if (val_beg > equal + 1) {
memmove(equal + 1, val_beg, hdr_end + stripped_before - val_beg);
stripped_after = (equal + 1) - val_beg;
val_beg += stripped_after;
stripped_before += stripped_after;
}
val_end += stripped_before;
next += stripped_before;
hdr_end += stripped_before;
}
/* now everything is as on the diagram above */
/* First, let's see if we want to capture this cookie. We check
* that we don't already have a client side cookie, because we
* can only capture one. Also as an optimisation, we ignore
* cookies shorter than the declared name.
*/
if (sess->fe->capture_name != NULL && txn->cli_cookie == NULL &&
(val_end - att_beg >= sess->fe->capture_namelen) &&
memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) {
int log_len = val_end - att_beg;
if ((txn->cli_cookie = pool_alloc(pool_head_capture)) == NULL) {
ha_alert("HTTP logging : out of memory.\n");
} else {
if (log_len > sess->fe->capture_len)
log_len = sess->fe->capture_len;
memcpy(txn->cli_cookie, att_beg, log_len);
txn->cli_cookie[log_len] = 0;
}
}
/* Persistence cookies in passive, rewrite or insert mode have the
* following form :
*
* Cookie: NAME=SRV[|<lastseen>[|<firstseen>]]
*
* For cookies in prefix mode, the form is :
*
* Cookie: NAME=SRV~VALUE
*/
if ((att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) &&
(memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) {
struct server *srv = s->be->srv;
char *delim;
/* if we're in cookie prefix mode, we'll search the delimitor so that we
* have the server ID between val_beg and delim, and the original cookie between
* delim+1 and val_end. Otherwise, delim==val_end :
*
* hdr_beg
* |
* v
* NAME=SRV; # in all but prefix modes
* NAME=SRV~OPAQUE ; # in prefix mode
* || || | |+-> next
* || || | +--> val_end
* || || +---------> delim
* || |+------------> val_beg
* || +-------------> att_end = equal
* |+-----------------> att_beg
* +------------------> prev
*
*/
if (s->be->ck_opts & PR_CK_PFX) {
for (delim = val_beg; delim < val_end; delim++)
if (*delim == COOKIE_DELIM)
break;
}
else {
char *vbar1;
delim = val_end;
/* Now check if the cookie contains a date field, which would
* appear after a vertical bar ('|') just after the server name
* and before the delimiter.
*/
vbar1 = memchr(val_beg, COOKIE_DELIM_DATE, val_end - val_beg);
if (vbar1) {
/* OK, so left of the bar is the server's cookie and
* right is the last seen date. It is a base64 encoded
* 30-bit value representing the UNIX date since the
* epoch in 4-second quantities.
*/
int val;
delim = vbar1++;
if (val_end - vbar1 >= 5) {
val = b64tos30(vbar1);
if (val > 0)
txn->cookie_last_date = val << 2;
}
/* look for a second vertical bar */
vbar1 = memchr(vbar1, COOKIE_DELIM_DATE, val_end - vbar1);
if (vbar1 && (val_end - vbar1 > 5)) {
val = b64tos30(vbar1 + 1);
if (val > 0)
txn->cookie_first_date = val << 2;
}
}
}
/* if the cookie has an expiration date and the proxy wants to check
* it, then we do that now. We first check if the cookie is too old,
* then only if it has expired. We detect strict overflow because the
* time resolution here is not great (4 seconds). Cookies with dates
* in the future are ignored if their offset is beyond one day. This
* allows an admin to fix timezone issues without expiring everyone
* and at the same time avoids keeping unwanted side effects for too
* long.
*/
if (txn->cookie_first_date && s->be->cookie_maxlife &&
(((signed)(date.tv_sec - txn->cookie_first_date) > (signed)s->be->cookie_maxlife) ||
((signed)(txn->cookie_first_date - date.tv_sec) > 86400))) {
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_OLD;
delim = val_beg; // let's pretend we have not found the cookie
txn->cookie_first_date = 0;
txn->cookie_last_date = 0;
}
else if (txn->cookie_last_date && s->be->cookie_maxidle &&
(((signed)(date.tv_sec - txn->cookie_last_date) > (signed)s->be->cookie_maxidle) ||
((signed)(txn->cookie_last_date - date.tv_sec) > 86400))) {
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_EXPIRED;
delim = val_beg; // let's pretend we have not found the cookie
txn->cookie_first_date = 0;
txn->cookie_last_date = 0;
}
/* Here, we'll look for the first running server which supports the cookie.
* This allows to share a same cookie between several servers, for example
* to dedicate backup servers to specific servers only.
* However, to prevent clients from sticking to cookie-less backup server
* when they have incidentely learned an empty cookie, we simply ignore
* empty cookies and mark them as invalid.
* The same behaviour is applied when persistence must be ignored.
*/
if ((delim == val_beg) || (s->flags & (SF_IGNORE_PRST | SF_ASSIGNED)))
srv = NULL;
while (srv) {
if (srv->cookie && (srv->cklen == delim - val_beg) &&
!memcmp(val_beg, srv->cookie, delim - val_beg)) {
if ((srv->cur_state != SRV_ST_STOPPED) ||
(s->be->options & PR_O_PERSIST) ||
(s->flags & SF_FORCE_PRST)) {
/* we found the server and we can use it */
txn->flags &= ~TX_CK_MASK;
txn->flags |= (srv->cur_state != SRV_ST_STOPPED) ? TX_CK_VALID : TX_CK_DOWN;
s->flags |= SF_DIRECT | SF_ASSIGNED;
s->target = &srv->obj_type;
break;
} else {
/* we found a server, but it's down,
* mark it as such and go on in case
* another one is available.
*/
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_DOWN;
}
}
srv = srv->next;
}
if (!srv && !(txn->flags & (TX_CK_DOWN|TX_CK_EXPIRED|TX_CK_OLD))) {
/* no server matched this cookie or we deliberately skipped it */
txn->flags &= ~TX_CK_MASK;
if ((s->flags & (SF_IGNORE_PRST | SF_ASSIGNED)))
txn->flags |= TX_CK_UNUSED;
else
txn->flags |= TX_CK_INVALID;
}
/* depending on the cookie mode, we may have to either :
* - delete the complete cookie if we're in insert+indirect mode, so that
* the server never sees it ;
* - remove the server id from the cookie value, and tag the cookie as an
* application cookie so that it does not get accidentally removed later,
* if we're in cookie prefix mode
*/
if ((s->be->ck_opts & PR_CK_PFX) && (delim != val_end)) {
int delta; /* negative */
memmove(val_beg, delim + 1, hdr_end - (delim + 1));
delta = val_beg - (delim + 1);
val_end += delta;
next += delta;
hdr_end += delta;
del_from = NULL;
preserve_hdr = 1; /* we want to keep this cookie */
}
else if (del_from == NULL &&
(s->be->ck_opts & (PR_CK_INS | PR_CK_IND)) == (PR_CK_INS | PR_CK_IND)) {
del_from = prev;
}
}
else {
/* This is not our cookie, so we must preserve it. But if we already
* scheduled another cookie for removal, we cannot remove the
* complete header, but we can remove the previous block itself.
*/
preserve_hdr = 1;
if (del_from != NULL) {
int delta = http_del_hdr_value(hdr_beg, hdr_end, &del_from, prev);
if (att_beg >= del_from)
att_beg += delta;
if (att_end >= del_from)
att_end += delta;
val_beg += delta;
val_end += delta;
next += delta;
hdr_end += delta;
prev = del_from;
del_from = NULL;
}
}
/* continue with next cookie on this header line */
att_beg = next;
} /* for each cookie */
/* There are no more cookies on this line.
* We may still have one (or several) marked for deletion at the
* end of the line. We must do this now in two ways :
* - if some cookies must be preserved, we only delete from the
* mark to the end of line ;
* - if nothing needs to be preserved, simply delete the whole header
*/
if (del_from) {
hdr_end = (preserve_hdr ? del_from : hdr_beg);
}
if ((hdr_end - hdr_beg) != ctx.value.len) {
if (hdr_beg != hdr_end)
htx_change_blk_value_len(htx, ctx.blk, hdr_end - hdr_beg);
else
http_remove_header(htx, &ctx);
}
} /* for each "Cookie header */
}
/*
* Manage server-side cookies. It can impact performance by about 2% so it is
* desirable to call it only when needed. This function is also used when we
* just need to know if there is a cookie (eg: for check-cache).
*/
static void http_manage_server_side_cookies(struct stream *s, struct channel *res)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct htx *htx;
struct http_hdr_ctx ctx;
struct server *srv;
char *hdr_beg, *hdr_end;
char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next;
int is_cookie2 = 0;
htx = htxbuf(&res->buf);
ctx.blk = NULL;
while (1) {
int is_first = 1;
if (!http_find_header(htx, ist("Set-Cookie"), &ctx, 1)) {
if (!http_find_header(htx, ist("Set-Cookie2"), &ctx, 1))
break;
is_cookie2 = 1;
}
/* OK, right now we know we have a Set-Cookie* at hdr_beg, and
* <prev> points to the colon.
*/
txn->flags |= TX_SCK_PRESENT;
/* Maybe we only wanted to see if there was a Set-Cookie (eg:
* check-cache is enabled) and we are not interested in checking
* them. Warning, the cookie capture is declared in the frontend.
*/
if (s->be->cookie_name == NULL && sess->fe->capture_name == NULL)
break;
/* OK so now we know we have to process this response cookie.
* The format of the Set-Cookie header is slightly different
* from the format of the Cookie header in that it does not
* support the comma as a cookie delimiter (thus the header
* cannot be folded) because the Expires attribute described in
* the original Netscape's spec may contain an unquoted date
* with a comma inside. We have to live with this because
* many browsers don't support Max-Age and some browsers don't
* support quoted strings. However the Set-Cookie2 header is
* clean.
*
* We have to keep multiple pointers in order to support cookie
* removal at the beginning, middle or end of header without
* corrupting the header (in case of set-cookie2). A special
* pointer, <scav> points to the beginning of the set-cookie-av
* fields after the first semi-colon. The <next> pointer points
* either to the end of line (set-cookie) or next unquoted comma
* (set-cookie2). All of these headers are valid :
*
* hdr_beg hdr_end
* | |
* v |
* NAME1 = VALUE 1 ; Secure; Path="/" |
* NAME=VALUE; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT v
* NAME = VALUE ; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT
* NAME1 = VALUE 1 ; Max-Age=0, NAME2=VALUE2; Discard
* | | | | | | | |
* | | | | | | | +-> next
* | | | | | | +------------> scav
* | | | | | +--------------> val_end
* | | | | +--------------------> val_beg
* | | | +----------------------> equal
* | | +------------------------> att_end
* | +----------------------------> att_beg
* +------------------------------> prev
* -------------------------------> hdr_beg
*/
hdr_beg = ctx.value.ptr;
hdr_end = hdr_beg + ctx.value.len;
for (prev = hdr_beg; prev < hdr_end; prev = next) {
/* Iterate through all cookies on this line */
/* find att_beg */
att_beg = prev;
if (!is_first)
att_beg++;
is_first = 0;
while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg))
att_beg++;
/* find att_end : this is the first character after the last non
* space before the equal. It may be equal to hdr_end.
*/
equal = att_end = att_beg;
while (equal < hdr_end) {
if (*equal == '=' || *equal == ';' || (is_cookie2 && *equal == ','))
break;
if (HTTP_IS_SPHT(*equal++))
continue;
att_end = equal;
}
/* here, <equal> points to '=', a delimitor or the end. <att_end>
* is between <att_beg> and <equal>, both may be identical.
*/
/* look for end of cookie if there is an equal sign */
if (equal < hdr_end && *equal == '=') {
/* look for the beginning of the value */
val_beg = equal + 1;
while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg))
val_beg++;
/* find the end of the value, respecting quotes */
next = http_find_cookie_value_end(val_beg, hdr_end);
/* make val_end point to the first white space or delimitor after the value */
val_end = next;
while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1)))
val_end--;
}
else {
/* <equal> points to next comma, semi-colon or EOL */
val_beg = val_end = next = equal;
}
if (next < hdr_end) {
/* Set-Cookie2 supports multiple cookies, and <next> points to
* a colon or semi-colon before the end. So skip all attr-value
* pairs and look for the next comma. For Set-Cookie, since
* commas are permitted in values, skip to the end.
*/
if (is_cookie2)
next = http_find_hdr_value_end(next, hdr_end);
else
next = hdr_end;
}
/* Now everything is as on the diagram above */
/* Ignore cookies with no equal sign */
if (equal == val_end)
continue;
/* If there are spaces around the equal sign, we need to
* strip them otherwise we'll get trouble for cookie captures,
* or even for rewrites. Since this happens extremely rarely,
* it does not hurt performance.
*/
if (unlikely(att_end != equal || val_beg > equal + 1)) {
int stripped_before = 0;
int stripped_after = 0;
if (att_end != equal) {
memmove(att_end, equal, hdr_end - equal);
stripped_before = (att_end - equal);
equal += stripped_before;
val_beg += stripped_before;
}
if (val_beg > equal + 1) {
memmove(equal + 1, val_beg, hdr_end + stripped_before - val_beg);
stripped_after = (equal + 1) - val_beg;
val_beg += stripped_after;
stripped_before += stripped_after;
}
val_end += stripped_before;
next += stripped_before;
hdr_end += stripped_before;
htx_change_blk_value_len(htx, ctx.blk, hdr_end - hdr_beg);
ctx.value.len = hdr_end - hdr_beg;
}
/* First, let's see if we want to capture this cookie. We check
* that we don't already have a server side cookie, because we
* can only capture one. Also as an optimisation, we ignore
* cookies shorter than the declared name.
*/
if (sess->fe->capture_name != NULL &&
txn->srv_cookie == NULL &&
(val_end - att_beg >= sess->fe->capture_namelen) &&
memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) {
int log_len = val_end - att_beg;
if ((txn->srv_cookie = pool_alloc(pool_head_capture)) == NULL) {
ha_alert("HTTP logging : out of memory.\n");
}
else {
if (log_len > sess->fe->capture_len)
log_len = sess->fe->capture_len;
memcpy(txn->srv_cookie, att_beg, log_len);
txn->srv_cookie[log_len] = 0;
}
}
srv = objt_server(s->target);
/* now check if we need to process it for persistence */
if (!(s->flags & SF_IGNORE_PRST) &&
(att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) &&
(memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) {
/* assume passive cookie by default */
txn->flags &= ~TX_SCK_MASK;
txn->flags |= TX_SCK_FOUND;
/* If the cookie is in insert mode on a known server, we'll delete
* this occurrence because we'll insert another one later.
* We'll delete it too if the "indirect" option is set and we're in
* a direct access.
*/
if (s->be->ck_opts & PR_CK_PSV) {
/* The "preserve" flag was set, we don't want to touch the
* server's cookie.
*/
}
else if ((srv && (s->be->ck_opts & PR_CK_INS)) ||
((s->flags & SF_DIRECT) && (s->be->ck_opts & PR_CK_IND))) {
/* this cookie must be deleted */
if (prev == hdr_beg && next == hdr_end) {
/* whole header */
http_remove_header(htx, &ctx);
/* note: while both invalid now, <next> and <hdr_end>
* are still equal, so the for() will stop as expected.
*/
} else {
/* just remove the value */
int delta = http_del_hdr_value(hdr_beg, hdr_end, &prev, next);
next = prev;
hdr_end += delta;
}
txn->flags &= ~TX_SCK_MASK;
txn->flags |= TX_SCK_DELETED;
/* and go on with next cookie */
}
else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_RW)) {
/* replace bytes val_beg->val_end with the cookie name associated
* with this server since we know it.
*/
int sliding, delta;
ctx.value = ist2(val_beg, val_end - val_beg);
ctx.lws_before = ctx.lws_after = 0;
http_replace_header_value(htx, &ctx, ist2(srv->cookie, srv->cklen));
delta = srv->cklen - (val_end - val_beg);
sliding = (ctx.value.ptr - val_beg);
hdr_beg += sliding;
val_beg += sliding;
next += sliding + delta;
hdr_end += sliding + delta;
txn->flags &= ~TX_SCK_MASK;
txn->flags |= TX_SCK_REPLACED;
}
else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_PFX)) {
/* insert the cookie name associated with this server
* before existing cookie, and insert a delimiter between them..
*/
int sliding, delta;
ctx.value = ist2(val_beg, 0);
ctx.lws_before = ctx.lws_after = 0;
http_replace_header_value(htx, &ctx, ist2(srv->cookie, srv->cklen + 1));
delta = srv->cklen + 1;
sliding = (ctx.value.ptr - val_beg);
hdr_beg += sliding;
val_beg += sliding;
next += sliding + delta;
hdr_end += sliding + delta;
val_beg[srv->cklen] = COOKIE_DELIM;
txn->flags &= ~TX_SCK_MASK;
txn->flags |= TX_SCK_REPLACED;
}
}
/* that's done for this cookie, check the next one on the same
* line when next != hdr_end (only if is_cookie2).
*/
}
}
}
/*
* Parses the Cache-Control and Pragma request header fields to determine if
* the request may be served from the cache and/or if it is cacheable. Updates
* s->txn->flags.
*/
void http_check_request_for_cacheability(struct stream *s, struct channel *req)
{
struct http_txn *txn = s->txn;
struct htx *htx;
int32_t pos;
int pragma_found, cc_found, i;
if ((txn->flags & (TX_CACHEABLE|TX_CACHE_IGNORE)) == TX_CACHE_IGNORE)
return; /* nothing more to do here */
htx = htxbuf(&req->buf);
pragma_found = cc_found = 0;
for (pos = htx_get_first(htx); pos != -1; pos = htx_get_next(htx, pos)) {
struct htx_blk *blk = htx_get_blk(htx, pos);
enum htx_blk_type type = htx_get_blk_type(blk);
struct ist n, v;
if (type == HTX_BLK_EOH)
break;
if (type != HTX_BLK_HDR)
continue;
n = htx_get_blk_name(htx, blk);
v = htx_get_blk_value(htx, blk);
if (isteq(n, ist("pragma"))) {
if (v.len >= 8 && strncasecmp(v.ptr, "no-cache", 8) == 0) {
pragma_found = 1;
continue;
}
}
/* Don't use the cache and don't try to store if we found the
* Authorization header */
if (isteq(n, ist("authorization"))) {
txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
txn->flags |= TX_CACHE_IGNORE;
continue;
}
if (!isteq(n, ist("cache-control")))
continue;
/* OK, right now we know we have a cache-control header */
cc_found = 1;
if (!v.len) /* no info */
continue;
i = 0;
while (i < v.len && *(v.ptr+i) != '=' && *(v.ptr+i) != ',' &&
!isspace((unsigned char)*(v.ptr+i)))
i++;
/* we have a complete value between v.ptr and (v.ptr+i). We don't check the
* values after max-age, max-stale nor min-fresh, we simply don't
* use the cache when they're specified.
*/
if (((i == 7) && strncasecmp(v.ptr, "max-age", 7) == 0) ||
((i == 8) && strncasecmp(v.ptr, "no-cache", 8) == 0) ||
((i == 9) && strncasecmp(v.ptr, "max-stale", 9) == 0) ||
((i == 9) && strncasecmp(v.ptr, "min-fresh", 9) == 0)) {
txn->flags |= TX_CACHE_IGNORE;
continue;
}
if ((i == 8) && strncasecmp(v.ptr, "no-store", 8) == 0) {
txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
continue;
}
}
/* RFC7234#5.4:
* When the Cache-Control header field is also present and
* understood in a request, Pragma is ignored.
* When the Cache-Control header field is not present in a
* request, caches MUST consider the no-cache request
* pragma-directive as having the same effect as if
* "Cache-Control: no-cache" were present.
*/
if (!cc_found && pragma_found)
txn->flags |= TX_CACHE_IGNORE;
}
/*
* Check if response is cacheable or not. Updates s->txn->flags.
*/
void http_check_response_for_cacheability(struct stream *s, struct channel *res)
{
struct http_txn *txn = s->txn;
struct htx *htx;
int32_t pos;
int i;
if (txn->status < 200) {
/* do not try to cache interim responses! */
txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
return;
}
htx = htxbuf(&res->buf);
for (pos = htx_get_first(htx); pos != -1; pos = htx_get_next(htx, pos)) {
struct htx_blk *blk = htx_get_blk(htx, pos);
enum htx_blk_type type = htx_get_blk_type(blk);
struct ist n, v;
if (type == HTX_BLK_EOH)
break;
if (type != HTX_BLK_HDR)
continue;
n = htx_get_blk_name(htx, blk);
v = htx_get_blk_value(htx, blk);
if (isteq(n, ist("pragma"))) {
if ((v.len >= 8) && strncasecmp(v.ptr, "no-cache", 8) == 0) {
txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
return;
}
}
if (!isteq(n, ist("cache-control")))
continue;
/* OK, right now we know we have a cache-control header */
if (!v.len) /* no info */
continue;
i = 0;
while (i < v.len && *(v.ptr+i) != '=' && *(v.ptr+i) != ',' &&
!isspace((unsigned char)*(v.ptr+i)))
i++;
/* we have a complete value between v.ptr and (v.ptr+i) */
if (i < v.len && *(v.ptr + i) == '=') {
if (((v.len - i) > 1 && (i == 7) && strncasecmp(v.ptr, "max-age=0", 9) == 0) ||
((v.len - i) > 1 && (i == 8) && strncasecmp(v.ptr, "s-maxage=0", 10) == 0)) {
txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
continue;
}
/* we have something of the form no-cache="set-cookie" */
if ((v.len >= 21) &&
strncasecmp(v.ptr, "no-cache=\"set-cookie", 20) == 0
&& (*(v.ptr + 20) == '"' || *(v.ptr + 20 ) == ','))
txn->flags &= ~TX_CACHE_COOK;
continue;
}
/* OK, so we know that either p2 points to the end of string or to a comma */
if (((i == 7) && strncasecmp(v.ptr, "private", 7) == 0) ||
((i == 8) && strncasecmp(v.ptr, "no-cache", 8) == 0) ||
((i == 8) && strncasecmp(v.ptr, "no-store", 8) == 0)) {
txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK;
return;
}
if ((i == 6) && strncasecmp(v.ptr, "public", 6) == 0) {
txn->flags |= TX_CACHEABLE | TX_CACHE_COOK;
continue;
}
}
}
/*
* In a GET, HEAD or POST request, check if the requested URI matches the stats uri
* for the current backend.
*
* It is assumed that the request is either a HEAD, GET, or POST and that the
* uri_auth field is valid.
*
* Returns 1 if stats should be provided, otherwise 0.
*/
static int http_stats_check_uri(struct stream *s, struct http_txn *txn, struct proxy *backend)
{
struct uri_auth *uri_auth = backend->uri_auth;
struct htx *htx;
struct htx_sl *sl;
struct ist uri;
if (!uri_auth)
return 0;
if (txn->meth != HTTP_METH_GET && txn->meth != HTTP_METH_HEAD && txn->meth != HTTP_METH_POST)
return 0;
htx = htxbuf(&s->req.buf);
sl = http_get_stline(htx);
uri = htx_sl_req_uri(sl);
if (*uri_auth->uri_prefix == '/')
uri = http_get_path(uri);
/* check URI size */
if (uri_auth->uri_len > uri.len)
return 0;
if (memcmp(uri.ptr, uri_auth->uri_prefix, uri_auth->uri_len) != 0)
return 0;
return 1;
}
/* This function prepares an applet to handle the stats. It can deal with the
* "100-continue" expectation, check that admin rules are met for POST requests,
* and program a response message if something was unexpected. It cannot fail
* and always relies on the stats applet to complete the job. It does not touch
* analysers nor counters, which are left to the caller. It does not touch
* s->target which is supposed to already point to the stats applet. The caller
* is expected to have already assigned an appctx to the stream.
*/
static int http_handle_stats(struct stream *s, struct channel *req)
{
struct stats_admin_rule *stats_admin_rule;
struct stream_interface *si = &s->si[1];
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &txn->req;
struct uri_auth *uri_auth = s->be->uri_auth;
const char *h, *lookup, *end;
struct appctx *appctx;
struct htx *htx;
struct htx_sl *sl;
appctx = si_appctx(si);
memset(&appctx->ctx.stats, 0, sizeof(appctx->ctx.stats));
appctx->st1 = appctx->st2 = 0;
appctx->ctx.stats.st_code = STAT_STATUS_INIT;
appctx->ctx.stats.flags |= uri_auth->flags;
appctx->ctx.stats.flags |= STAT_FMT_HTML; /* assume HTML mode by default */
if ((msg->flags & HTTP_MSGF_VER_11) && (txn->meth != HTTP_METH_HEAD))
appctx->ctx.stats.flags |= STAT_CHUNKED;
htx = htxbuf(&req->buf);
sl = http_get_stline(htx);
lookup = HTX_SL_REQ_UPTR(sl) + uri_auth->uri_len;
end = HTX_SL_REQ_UPTR(sl) + HTX_SL_REQ_ULEN(sl);
for (h = lookup; h <= end - 3; h++) {
if (memcmp(h, ";up", 3) == 0) {
appctx->ctx.stats.flags |= STAT_HIDE_DOWN;
break;
}
}
if (uri_auth->refresh) {
for (h = lookup; h <= end - 10; h++) {
if (memcmp(h, ";norefresh", 10) == 0) {
appctx->ctx.stats.flags |= STAT_NO_REFRESH;
break;
}
}
}
for (h = lookup; h <= end - 4; h++) {
if (memcmp(h, ";csv", 4) == 0) {
appctx->ctx.stats.flags &= ~(STAT_FMT_MASK|STAT_JSON_SCHM);
break;
}
}
for (h = lookup; h <= end - 6; h++) {
if (memcmp(h, ";typed", 6) == 0) {
appctx->ctx.stats.flags &= ~(STAT_FMT_MASK|STAT_JSON_SCHM);
appctx->ctx.stats.flags |= STAT_FMT_TYPED;
break;
}
}
for (h = lookup; h <= end - 5; h++) {
if (memcmp(h, ";json", 5) == 0) {
appctx->ctx.stats.flags &= ~(STAT_FMT_MASK|STAT_JSON_SCHM);
appctx->ctx.stats.flags |= STAT_FMT_JSON;
break;
}
}
for (h = lookup; h <= end - 12; h++) {
if (memcmp(h, ";json-schema", 12) == 0) {
appctx->ctx.stats.flags &= ~STAT_FMT_MASK;
appctx->ctx.stats.flags |= STAT_JSON_SCHM;
break;
}
}
for (h = lookup; h <= end - 8; h++) {
if (memcmp(h, ";st=", 4) == 0) {
int i;
h += 4;
appctx->ctx.stats.st_code = STAT_STATUS_UNKN;
for (i = STAT_STATUS_INIT + 1; i < STAT_STATUS_SIZE; i++) {
if (strncmp(stat_status_codes[i], h, 4) == 0) {
appctx->ctx.stats.st_code = i;
break;
}
}
break;
}
}
appctx->ctx.stats.scope_str = 0;
appctx->ctx.stats.scope_len = 0;
for (h = lookup; h <= end - 8; h++) {
if (memcmp(h, STAT_SCOPE_INPUT_NAME "=", strlen(STAT_SCOPE_INPUT_NAME) + 1) == 0) {
int itx = 0;
const char *h2;
char scope_txt[STAT_SCOPE_TXT_MAXLEN + 1];
const char *err;
h += strlen(STAT_SCOPE_INPUT_NAME) + 1;
h2 = h;
appctx->ctx.stats.scope_str = h2 - HTX_SL_REQ_UPTR(sl);
while (h < end) {
if (*h == ';' || *h == '&' || *h == ' ')
break;
itx++;
h++;
}
if (itx > STAT_SCOPE_TXT_MAXLEN)
itx = STAT_SCOPE_TXT_MAXLEN;
appctx->ctx.stats.scope_len = itx;
/* scope_txt = search query, appctx->ctx.stats.scope_len is always <= STAT_SCOPE_TXT_MAXLEN */
memcpy(scope_txt, h2, itx);
scope_txt[itx] = '\0';
err = invalid_char(scope_txt);
if (err) {
/* bad char in search text => clear scope */
appctx->ctx.stats.scope_str = 0;
appctx->ctx.stats.scope_len = 0;
}
break;
}
}
/* now check whether we have some admin rules for this request */
list_for_each_entry(stats_admin_rule, &uri_auth->admin_rules, list) {
int ret = 1;
if (stats_admin_rule->cond) {
ret = acl_exec_cond(stats_admin_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (stats_admin_rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
/* no rule, or the rule matches */
appctx->ctx.stats.flags |= STAT_ADMIN;
break;
}
}
if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD)
appctx->st0 = STAT_HTTP_HEAD;
else if (txn->meth == HTTP_METH_POST) {
if (appctx->ctx.stats.flags & STAT_ADMIN) {
appctx->st0 = STAT_HTTP_POST;
if (msg->msg_state < HTTP_MSG_DATA)
req->analysers |= AN_REQ_HTTP_BODY;
}
else {
/* POST without admin level */
appctx->ctx.stats.flags &= ~STAT_CHUNKED;
appctx->ctx.stats.st_code = STAT_STATUS_DENY;
appctx->st0 = STAT_HTTP_LAST;
}
}
else {
/* Unsupported method */
appctx->ctx.stats.flags &= ~STAT_CHUNKED;
appctx->ctx.stats.st_code = STAT_STATUS_IVAL;
appctx->st0 = STAT_HTTP_LAST;
}
s->task->nice = -32; /* small boost for HTTP statistics */
return 1;
}
void http_perform_server_redirect(struct stream *s, struct stream_interface *si)
{
struct channel *req = &s->req;
struct channel *res = &s->res;
struct server *srv;
struct htx *htx;
struct htx_sl *sl;
struct ist path, location;
unsigned int flags;
size_t data;
/*
* Create the location
*/
chunk_reset(&trash);
/* 1: add the server's prefix */
/* special prefix "/" means don't change URL */
srv = __objt_server(s->target);
if (srv->rdr_len != 1 || *srv->rdr_pfx != '/') {
if (!chunk_memcat(&trash, srv->rdr_pfx, srv->rdr_len))
return;
}
/* 2: add the request Path */
htx = htxbuf(&req->buf);
sl = http_get_stline(htx);
path = http_get_path(htx_sl_req_uri(sl));
if (!path.ptr)
return;
if (!chunk_memcat(&trash, path.ptr, path.len))
return;
location = ist2(trash.area, trash.data);
/*
* Create the 302 respone
*/
htx = htx_from_buf(&res->buf);
flags = (HTX_SL_F_IS_RESP|HTX_SL_F_VER_11|HTX_SL_F_XFER_LEN|HTX_SL_F_BODYLESS);
sl = htx_add_stline(htx, HTX_BLK_RES_SL, flags,
ist("HTTP/1.1"), ist("302"), ist("Found"));
if (!sl)
goto fail;
sl->info.res.status = 302;
s->txn->status = 302;
if (!htx_add_header(htx, ist("Cache-Control"), ist("no-cache")) ||
!htx_add_header(htx, ist("Connection"), ist("close")) ||
!htx_add_header(htx, ist("Content-length"), ist("0")) ||
!htx_add_header(htx, ist("Location"), location))
goto fail;
if (!htx_add_endof(htx, HTX_BLK_EOH) || !htx_add_endof(htx, HTX_BLK_EOM))
goto fail;
/*
* Send the message
*/
data = htx->data - co_data(res);
c_adv(res, data);
res->total += data;
/* return without error. */
si_shutr(si);
si_shutw(si);
si->err_type = SI_ET_NONE;
si->state = SI_ST_CLO;
channel_auto_read(req);
channel_abort(req);
channel_auto_close(req);
channel_htx_erase(req, htxbuf(&req->buf));
channel_auto_read(res);
channel_auto_close(res);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_LOCAL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_C;
/* FIXME: we should increase a counter of redirects per server and per backend. */
srv_inc_sess_ctr(srv);
srv_set_sess_last(srv);
return;
fail:
/* If an error occurred, remove the incomplete HTTP response from the
* buffer */
channel_htx_truncate(res, htx);
}
/* This function terminates the request because it was completly analyzed or
* because an error was triggered during the body forwarding.
*/
static void http_end_request(struct stream *s)
{
struct channel *chn = &s->req;
struct http_txn *txn = s->txn;
DPRINTF(stderr,"[%u] %s: stream=%p states=%s,%s req->analysers=0x%08x res->analysers=0x%08x\n",
now_ms, __FUNCTION__, s,
h1_msg_state_str(txn->req.msg_state), h1_msg_state_str(txn->rsp.msg_state),
s->req.analysers, s->res.analysers);
if (unlikely(txn->req.msg_state == HTTP_MSG_ERROR ||
txn->rsp.msg_state == HTTP_MSG_ERROR)) {
channel_abort(chn);
channel_htx_truncate(chn, htxbuf(&chn->buf));
goto end;
}
if (unlikely(txn->req.msg_state < HTTP_MSG_DONE))
return;
if (txn->req.msg_state == HTTP_MSG_DONE) {
/* No need to read anymore, the request was completely parsed.
* We can shut the read side unless we want to abort_on_close,
* or we have a POST request. The issue with POST requests is
* that some browsers still send a CRLF after the request, and
* this CRLF must be read so that it does not remain in the kernel
* buffers, otherwise a close could cause an RST on some systems
* (eg: Linux).
*/
if (!(s->be->options & PR_O_ABRT_CLOSE) && txn->meth != HTTP_METH_POST)
channel_dont_read(chn);
/* if the server closes the connection, we want to immediately react
* and close the socket to save packets and syscalls.
*/
s->si[1].flags |= SI_FL_NOHALF;
/* In any case we've finished parsing the request so we must
* disable Nagle when sending data because 1) we're not going
* to shut this side, and 2) the server is waiting for us to
* send pending data.
*/
chn->flags |= CF_NEVER_WAIT;
if (txn->rsp.msg_state < HTTP_MSG_DONE) {
/* The server has not finished to respond, so we
* don't want to move in order not to upset it.
*/
return;
}
/* When we get here, it means that both the request and the
* response have finished receiving. Depending on the connection
* mode, we'll have to wait for the last bytes to leave in either
* direction, and sometimes for a close to be effective.
*/
if (txn->flags & TX_CON_WANT_TUN) {
/* Tunnel mode will not have any analyser so it needs to
* poll for reads.
*/
channel_auto_read(chn);
if (b_data(&chn->buf))
return;
txn->req.msg_state = HTTP_MSG_TUNNEL;
}
else {
/* we're not expecting any new data to come for this
* transaction, so we can close it.
*
* However, there is an exception if the response
* length is undefined. In this case, we need to wait
* the close from the server. The response will be
* switched in TUNNEL mode until the end.
*/
if (!(txn->rsp.flags & HTTP_MSGF_XFER_LEN) &&
txn->rsp.msg_state != HTTP_MSG_CLOSED)
goto check_channel_flags;
if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) {
channel_shutr_now(chn);
channel_shutw_now(chn);
}
}
goto check_channel_flags;
}
if (txn->req.msg_state == HTTP_MSG_CLOSING) {
http_msg_closing:
/* nothing else to forward, just waiting for the output buffer
* to be empty and for the shutw_now to take effect.
*/
if (channel_is_empty(chn)) {
txn->req.msg_state = HTTP_MSG_CLOSED;
goto http_msg_closed;
}
else if (chn->flags & CF_SHUTW) {
txn->req.msg_state = HTTP_MSG_ERROR;
goto end;
}
return;
}
if (txn->req.msg_state == HTTP_MSG_CLOSED) {
http_msg_closed:
/* if we don't know whether the server will close, we need to hard close */
if (txn->rsp.flags & HTTP_MSGF_XFER_LEN)
s->si[1].flags |= SI_FL_NOLINGER; /* we want to close ASAP */
/* see above in MSG_DONE why we only do this in these states */
if (!(s->be->options & PR_O_ABRT_CLOSE))
channel_dont_read(chn);
goto end;
}
check_channel_flags:
/* Here, we are in HTTP_MSG_DONE or HTTP_MSG_TUNNEL */
if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) {
/* if we've just closed an output, let's switch */
txn->req.msg_state = HTTP_MSG_CLOSING;
goto http_msg_closing;
}
end:
chn->analysers &= AN_REQ_FLT_END;
if (txn->req.msg_state == HTTP_MSG_TUNNEL && HAS_REQ_DATA_FILTERS(s))
chn->analysers |= AN_REQ_FLT_XFER_DATA;
channel_auto_close(chn);
channel_auto_read(chn);
}
/* This function terminates the response because it was completly analyzed or
* because an error was triggered during the body forwarding.
*/
static void http_end_response(struct stream *s)
{
struct channel *chn = &s->res;
struct http_txn *txn = s->txn;
DPRINTF(stderr,"[%u] %s: stream=%p states=%s,%s req->analysers=0x%08x res->analysers=0x%08x\n",
now_ms, __FUNCTION__, s,
h1_msg_state_str(txn->req.msg_state), h1_msg_state_str(txn->rsp.msg_state),
s->req.analysers, s->res.analysers);
if (unlikely(txn->req.msg_state == HTTP_MSG_ERROR ||
txn->rsp.msg_state == HTTP_MSG_ERROR)) {
channel_htx_truncate(&s->req, htxbuf(&s->req.buf));
channel_abort(&s->req);
goto end;
}
if (unlikely(txn->rsp.msg_state < HTTP_MSG_DONE))
return;
if (txn->rsp.msg_state == HTTP_MSG_DONE) {
/* In theory, we don't need to read anymore, but we must
* still monitor the server connection for a possible close
* while the request is being uploaded, so we don't disable
* reading.
*/
/* channel_dont_read(chn); */
if (txn->req.msg_state < HTTP_MSG_DONE) {
/* The client seems to still be sending data, probably
* because we got an error response during an upload.
* We have the choice of either breaking the connection
* or letting it pass through. Let's do the later.
*/
return;
}
/* When we get here, it means that both the request and the
* response have finished receiving. Depending on the connection
* mode, we'll have to wait for the last bytes to leave in either
* direction, and sometimes for a close to be effective.
*/
if (txn->flags & TX_CON_WANT_TUN) {
channel_auto_read(chn);
chn->flags |= CF_NEVER_WAIT;
if (b_data(&chn->buf))
return;
txn->rsp.msg_state = HTTP_MSG_TUNNEL;
}
else {
/* we're not expecting any new data to come for this
* transaction, so we can close it.
*/
if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) {
channel_shutr_now(chn);
channel_shutw_now(chn);
}
}
goto check_channel_flags;
}
if (txn->rsp.msg_state == HTTP_MSG_CLOSING) {
http_msg_closing:
/* nothing else to forward, just waiting for the output buffer
* to be empty and for the shutw_now to take effect.
*/
if (channel_is_empty(chn)) {
txn->rsp.msg_state = HTTP_MSG_CLOSED;
goto http_msg_closed;
}
else if (chn->flags & CF_SHUTW) {
txn->rsp.msg_state = HTTP_MSG_ERROR;
_HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1);
if (objt_server(s->target))
_HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1);
goto end;
}
return;
}
if (txn->rsp.msg_state == HTTP_MSG_CLOSED) {
http_msg_closed:
/* drop any pending data */
channel_htx_truncate(&s->req, htxbuf(&s->req.buf));
channel_abort(&s->req);
goto end;
}
check_channel_flags:
/* Here, we are in HTTP_MSG_DONE or HTTP_MSG_TUNNEL */
if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) {
/* if we've just closed an output, let's switch */
txn->rsp.msg_state = HTTP_MSG_CLOSING;
goto http_msg_closing;
}
end:
chn->analysers &= AN_RES_FLT_END;
if (txn->rsp.msg_state == HTTP_MSG_TUNNEL && HAS_RSP_DATA_FILTERS(s))
chn->analysers |= AN_RES_FLT_XFER_DATA;
channel_auto_close(chn);
channel_auto_read(chn);
}
void http_server_error(struct stream *s, struct stream_interface *si, int err,
int finst, const struct buffer *msg)
{
channel_auto_read(si_oc(si));
channel_abort(si_oc(si));
channel_auto_close(si_oc(si));
channel_htx_erase(si_oc(si), htxbuf(&(si_oc(si))->buf));
channel_auto_close(si_ic(si));
channel_auto_read(si_ic(si));
/* <msg> is an HTX structure. So we copy it in the response's
* channel */
if (msg && !b_is_null(msg)) {
struct channel *chn = si_ic(si);
struct htx *htx;
FLT_STRM_CB(s, flt_http_reply(s, s->txn->status, msg));
chn->buf.data = msg->data;
memcpy(chn->buf.area, msg->area, msg->data);
htx = htx_from_buf(&chn->buf);
htx->flags |= HTX_FL_PROXY_RESP;
c_adv(chn, htx->data);
chn->total += htx->data;
}
if (!(s->flags & SF_ERR_MASK))
s->flags |= err;
if (!(s->flags & SF_FINST_MASK))
s->flags |= finst;
}
void http_reply_and_close(struct stream *s, short status, struct buffer *msg)
{
channel_auto_read(&s->req);
channel_abort(&s->req);
channel_auto_close(&s->req);
channel_htx_erase(&s->req, htxbuf(&s->req.buf));
channel_htx_truncate(&s->res, htxbuf(&s->res.buf));
s->txn->flags &= ~TX_WAIT_NEXT_RQ;
/* <msg> is an HTX structure. So we copy it in the response's
* channel */
/* FIXME: It is a problem for now if there is some outgoing data */
if (msg && !b_is_null(msg)) {
struct channel *chn = &s->res;
struct htx *htx;
FLT_STRM_CB(s, flt_http_reply(s, s->txn->status, msg));
chn->buf.data = msg->data;
memcpy(chn->buf.area, msg->area, msg->data);
htx = htx_from_buf(&chn->buf);
htx->flags |= HTX_FL_PROXY_RESP;
c_adv(chn, htx->data);
chn->total += htx->data;
}
s->res.wex = tick_add_ifset(now_ms, s->res.wto);
channel_auto_read(&s->res);
channel_auto_close(&s->res);
channel_shutr_now(&s->res);
}
struct buffer *http_error_message(struct stream *s)
{
const int msgnum = http_get_status_idx(s->txn->status);
if (s->be->errmsg[msgnum].area)
return &s->be->errmsg[msgnum];
else if (strm_fe(s)->errmsg[msgnum].area)
return &strm_fe(s)->errmsg[msgnum];
else
return &http_err_chunks[msgnum];
}
/* Return the error message corresponding to si->err_type. It is assumed
* that the server side is closed. Note that err_type is actually a
* bitmask, where almost only aborts may be cumulated with other
* values. We consider that aborted operations are more important
* than timeouts or errors due to the fact that nobody else in the
* logs might explain incomplete retries. All others should avoid
* being cumulated. It should normally not be possible to have multiple
* aborts at once, but just in case, the first one in sequence is reported.
* Note that connection errors appearing on the second request of a keep-alive
* connection are not reported since this allows the client to retry.
*/
void http_return_srv_error(struct stream *s, struct stream_interface *si)
{
int err_type = si->err_type;
/* set s->txn->status for http_error_message(s) */
s->txn->status = 503;
if (err_type & SI_ET_QUEUE_ABRT)
http_server_error(s, si, SF_ERR_CLICL, SF_FINST_Q,
http_error_message(s));
else if (err_type & SI_ET_CONN_ABRT)
http_server_error(s, si, SF_ERR_CLICL, SF_FINST_C,
(s->txn->flags & TX_NOT_FIRST) ? NULL :
http_error_message(s));
else if (err_type & SI_ET_QUEUE_TO)
http_server_error(s, si, SF_ERR_SRVTO, SF_FINST_Q,
http_error_message(s));
else if (err_type & SI_ET_QUEUE_ERR)
http_server_error(s, si, SF_ERR_SRVCL, SF_FINST_Q,
http_error_message(s));
else if (err_type & SI_ET_CONN_TO)
http_server_error(s, si, SF_ERR_SRVTO, SF_FINST_C,
(s->txn->flags & TX_NOT_FIRST) ? NULL :
http_error_message(s));
else if (err_type & SI_ET_CONN_ERR)
http_server_error(s, si, SF_ERR_SRVCL, SF_FINST_C,
(s->flags & SF_SRV_REUSED) ? NULL :
http_error_message(s));
else if (err_type & SI_ET_CONN_RES)
http_server_error(s, si, SF_ERR_RESOURCE, SF_FINST_C,
(s->txn->flags & TX_NOT_FIRST) ? NULL :
http_error_message(s));
else { /* SI_ET_CONN_OTHER and others */
s->txn->status = 500;
http_server_error(s, si, SF_ERR_INTERNAL, SF_FINST_C,
http_error_message(s));
}
}
/* Handle Expect: 100-continue for HTTP/1.1 messages if necessary. It returns 0
* on success and -1 on error.
*/
static int http_handle_expect_hdr(struct stream *s, struct htx *htx, struct http_msg *msg)
{
/* If we have HTTP/1.1 message with a body and Expect: 100-continue,
* then we must send an HTTP/1.1 100 Continue intermediate response.
*/
if (msg->msg_state == HTTP_MSG_BODY && (msg->flags & HTTP_MSGF_VER_11) &&
(msg->flags & (HTTP_MSGF_CNT_LEN|HTTP_MSGF_TE_CHNK))) {
struct ist hdr = { .ptr = "Expect", .len = 6 };
struct http_hdr_ctx ctx;
ctx.blk = NULL;
/* Expect is allowed in 1.1, look for it */
if (http_find_header(htx, hdr, &ctx, 0) &&
unlikely(isteqi(ctx.value, ist2("100-continue", 12)))) {
if (http_reply_100_continue(s) == -1)
return -1;
http_remove_header(htx, &ctx);
}
}
return 0;
}
/* Send a 100-Continue response to the client. It returns 0 on success and -1
* on error. The response channel is updated accordingly.
*/
static int http_reply_100_continue(struct stream *s)
{
struct channel *res = &s->res;
struct htx *htx = htx_from_buf(&res->buf);
struct htx_sl *sl;
unsigned int flags = (HTX_SL_F_IS_RESP|HTX_SL_F_VER_11|
HTX_SL_F_XFER_LEN|HTX_SL_F_BODYLESS);
size_t data;
sl = htx_add_stline(htx, HTX_BLK_RES_SL, flags,
ist("HTTP/1.1"), ist("100"), ist("Continue"));
if (!sl)
goto fail;
sl->info.res.status = 100;
if (!htx_add_endof(htx, HTX_BLK_EOH))
goto fail;
data = htx->data - co_data(res);
c_adv(res, data);
res->total += data;
return 0;
fail:
/* If an error occurred, remove the incomplete HTTP response from the
* buffer */
channel_htx_truncate(res, htx);
return -1;
}
/* Send a 401-Unauthorized or 407-Unauthorized response to the client, depending
* ont whether we use a proxy or not. It returns 0 on success and -1 on
* error. The response channel is updated accordingly.
*/
static int http_reply_40x_unauthorized(struct stream *s, const char *auth_realm)
{
struct channel *res = &s->res;
struct htx *htx = htx_from_buf(&res->buf);
struct htx_sl *sl;
struct ist code, body;
int status;
unsigned int flags = (HTX_SL_F_IS_RESP|HTX_SL_F_VER_11);
size_t data;
if (!(s->txn->flags & TX_USE_PX_CONN)) {
status = 401;
code = ist("401");
body = ist("<html><body><h1>401 Unauthorized</h1>\n"
"You need a valid user and password to access this content.\n"
"</body></html>\n");
}
else {
status = 407;
code = ist("407");
body = ist("<html><body><h1>407 Unauthorized</h1>\n"
"You need a valid user and password to access this content.\n"
"</body></html>\n");
}
sl = htx_add_stline(htx, HTX_BLK_RES_SL, flags,
ist("HTTP/1.1"), code, ist("Unauthorized"));
if (!sl)
goto fail;
sl->info.res.status = status;
s->txn->status = status;
if (chunk_printf(&trash, "Basic realm=\"%s\"", auth_realm) == -1)
goto fail;
if (!htx_add_header(htx, ist("Content-length"), ist("112")) ||
!htx_add_header(htx, ist("Cache-Control"), ist("no-cache")) ||
!htx_add_header(htx, ist("Connection"), ist("close")) ||
!htx_add_header(htx, ist("Content-Type"), ist("text/html")))
goto fail;
if (status == 401 && !htx_add_header(htx, ist("WWW-Authenticate"), ist2(trash.area, trash.data)))
goto fail;
if (status == 407 && !htx_add_header(htx, ist("Proxy-Authenticate"), ist2(trash.area, trash.data)))
goto fail;
if (!htx_add_endof(htx, HTX_BLK_EOH))
goto fail;
while (body.len) {
size_t sent = htx_add_data(htx, body);
if (!sent)
goto fail;
body.ptr += sent;
body.len -= sent;
}
if (!htx_add_endof(htx, HTX_BLK_EOM))
goto fail;
htx->flags |= HTX_FL_PROXY_RESP;
data = htx->data - co_data(res);
c_adv(res, data);
res->total += data;
channel_auto_read(&s->req);
channel_abort(&s->req);
channel_auto_close(&s->req);
channel_htx_erase(&s->req, htxbuf(&s->req.buf));
res->wex = tick_add_ifset(now_ms, res->wto);
channel_auto_read(res);
channel_auto_close(res);
channel_shutr_now(res);
return 0;
fail:
/* If an error occurred, remove the incomplete HTTP response from the
* buffer */
channel_htx_truncate(res, htx);
return -1;
}
/*
* Capture headers from message <htx> according to header list <cap_hdr>, and
* fill the <cap> pointers appropriately.
*/
static void http_capture_headers(struct htx *htx, char **cap, struct cap_hdr *cap_hdr)
{
struct cap_hdr *h;
int32_t pos;
for (pos = htx_get_first(htx); pos != -1; pos = htx_get_next(htx, pos)) {
struct htx_blk *blk = htx_get_blk(htx, pos);
enum htx_blk_type type = htx_get_blk_type(blk);
struct ist n, v;
if (type == HTX_BLK_EOH)
break;
if (type != HTX_BLK_HDR)
continue;
n = htx_get_blk_name(htx, blk);
for (h = cap_hdr; h; h = h->next) {
if (h->namelen && (h->namelen == n.len) &&
(strncasecmp(n.ptr, h->name, h->namelen) == 0)) {
if (cap[h->index] == NULL)
cap[h->index] =
pool_alloc(h->pool);
if (cap[h->index] == NULL) {
ha_alert("HTTP capture : out of memory.\n");
break;
}
v = htx_get_blk_value(htx, blk);
if (v.len > h->len)
v.len = h->len;
memcpy(cap[h->index], v.ptr, v.len);
cap[h->index][v.len]=0;
}
}
}
}
/* Delete a value in a header between delimiters <from> and <next>. The header
* itself is delimited by <start> and <end> pointers. The number of characters
* displaced is returned, and the pointer to the first delimiter is updated if
* required. The function tries as much as possible to respect the following
* principles :
* - replace <from> delimiter by the <next> one unless <from> points to <start>,
* in which case <next> is simply removed
* - set exactly one space character after the new first delimiter, unless there
* are not enough characters in the block being moved to do so.
* - remove unneeded spaces before the previous delimiter and after the new
* one.
*
* It is the caller's responsibility to ensure that :
* - <from> points to a valid delimiter or <start> ;
* - <next> points to a valid delimiter or <end> ;
* - there are non-space chars before <from>.
*/
static int http_del_hdr_value(char *start, char *end, char **from, char *next)
{
char *prev = *from;
if (prev == start) {
/* We're removing the first value. eat the semicolon, if <next>
* is lower than <end> */
if (next < end)
next++;
while (next < end && HTTP_IS_SPHT(*next))
next++;
}
else {
/* Remove useless spaces before the old delimiter. */
while (HTTP_IS_SPHT(*(prev-1)))
prev--;
*from = prev;
/* copy the delimiter and if possible a space if we're
* not at the end of the line.
*/
if (next < end) {
*prev++ = *next++;
if (prev + 1 < next)
*prev++ = ' ';
while (next < end && HTTP_IS_SPHT(*next))
next++;
}
}
memmove(prev, next, end - next);
return (prev - next);
}
/* Formats the start line of the request (without CRLF) and puts it in <str> and
* return the written length. The line can be truncated if it exceeds <len>.
*/
static size_t http_fmt_req_line(const struct htx_sl *sl, char *str, size_t len)
{
struct ist dst = ist2(str, 0);
if (istcat(&dst, htx_sl_req_meth(sl), len) == -1)
goto end;
if (dst.len + 1 > len)
goto end;
dst.ptr[dst.len++] = ' ';
if (istcat(&dst, htx_sl_req_uri(sl), len) == -1)
goto end;
if (dst.len + 1 > len)
goto end;
dst.ptr[dst.len++] = ' ';
istcat(&dst, htx_sl_req_vsn(sl), len);
end:
return dst.len;
}
/*
* Print a debug line with a start line.
*/
static void http_debug_stline(const char *dir, struct stream *s, const struct htx_sl *sl)
{
struct session *sess = strm_sess(s);
int max;
chunk_printf(&trash, "%08x:%s.%s[%04x:%04x]: ", s->uniq_id, s->be->id,
dir,
objt_conn(sess->origin) ? (unsigned short)objt_conn(sess->origin)->handle.fd : -1,
objt_cs(s->si[1].end) ? (unsigned short)objt_cs(s->si[1].end)->conn->handle.fd : -1);
max = HTX_SL_P1_LEN(sl);
UBOUND(max, trash.size - trash.data - 3);
chunk_memcat(&trash, HTX_SL_P1_PTR(sl), max);
trash.area[trash.data++] = ' ';
max = HTX_SL_P2_LEN(sl);
UBOUND(max, trash.size - trash.data - 2);
chunk_memcat(&trash, HTX_SL_P2_PTR(sl), max);
trash.area[trash.data++] = ' ';
max = HTX_SL_P3_LEN(sl);
UBOUND(max, trash.size - trash.data - 1);
chunk_memcat(&trash, HTX_SL_P3_PTR(sl), max);
trash.area[trash.data++] = '\n';
shut_your_big_mouth_gcc(write(1, trash.area, trash.data));
}
/*
* Print a debug line with a header.
*/
static void http_debug_hdr(const char *dir, struct stream *s, const struct ist n, const struct ist v)
{
struct session *sess = strm_sess(s);
int max;
chunk_printf(&trash, "%08x:%s.%s[%04x:%04x]: ", s->uniq_id, s->be->id,
dir,
objt_conn(sess->origin) ? (unsigned short)objt_conn(sess->origin)->handle.fd : -1,
objt_cs(s->si[1].end) ? (unsigned short)objt_cs(s->si[1].end)->conn->handle.fd : -1);
max = n.len;
UBOUND(max, trash.size - trash.data - 3);
chunk_memcat(&trash, n.ptr, max);
trash.area[trash.data++] = ':';
trash.area[trash.data++] = ' ';
max = v.len;
UBOUND(max, trash.size - trash.data - 1);
chunk_memcat(&trash, v.ptr, max);
trash.area[trash.data++] = '\n';
shut_your_big_mouth_gcc(write(1, trash.area, trash.data));
}
/* Allocate a new HTTP transaction for stream <s> unless there is one already.
* In case of allocation failure, everything allocated is freed and NULL is
* returned. Otherwise the new transaction is assigned to the stream and
* returned.
*/
struct http_txn *http_alloc_txn(struct stream *s)
{
struct http_txn *txn = s->txn;
if (txn)
return txn;
txn = pool_alloc(pool_head_http_txn);
if (!txn)
return txn;
s->txn = txn;
return txn;
}
void http_txn_reset_req(struct http_txn *txn)
{
txn->req.flags = 0;
txn->req.msg_state = HTTP_MSG_RQBEFORE; /* at the very beginning of the request */
}
void http_txn_reset_res(struct http_txn *txn)
{
txn->rsp.flags = 0;
txn->rsp.msg_state = HTTP_MSG_RPBEFORE; /* at the very beginning of the response */
}
/*
* Initialize a new HTTP transaction for stream <s>. It is assumed that all
* the required fields are properly allocated and that we only need to (re)init
* them. This should be used before processing any new request.
*/
void http_init_txn(struct stream *s)
{
struct http_txn *txn = s->txn;
struct conn_stream *cs = objt_cs(s->si[0].end);
txn->flags = ((cs && cs->flags & CS_FL_NOT_FIRST)
? (TX_NOT_FIRST|TX_WAIT_NEXT_RQ)
: 0);
txn->status = -1;
*(unsigned int *)txn->cache_hash = 0;
txn->cookie_first_date = 0;
txn->cookie_last_date = 0;
txn->srv_cookie = NULL;
txn->cli_cookie = NULL;
txn->uri = NULL;
http_txn_reset_req(txn);
http_txn_reset_res(txn);
txn->req.chn = &s->req;
txn->rsp.chn = &s->res;
txn->auth.method = HTTP_AUTH_UNKNOWN;
vars_init(&s->vars_txn, SCOPE_TXN);
vars_init(&s->vars_reqres, SCOPE_REQ);
}
/* to be used at the end of a transaction */
void http_end_txn(struct stream *s)
{
struct http_txn *txn = s->txn;
struct proxy *fe = strm_fe(s);
/* these ones will have been dynamically allocated */
pool_free(pool_head_requri, txn->uri);
pool_free(pool_head_capture, txn->cli_cookie);
pool_free(pool_head_capture, txn->srv_cookie);
pool_free(pool_head_uniqueid, s->unique_id);
s->unique_id = NULL;
txn->uri = NULL;
txn->srv_cookie = NULL;
txn->cli_cookie = NULL;
if (s->req_cap) {
struct cap_hdr *h;
for (h = fe->req_cap; h; h = h->next)
pool_free(h->pool, s->req_cap[h->index]);
memset(s->req_cap, 0, fe->nb_req_cap * sizeof(void *));
}
if (s->res_cap) {
struct cap_hdr *h;
for (h = fe->rsp_cap; h; h = h->next)
pool_free(h->pool, s->res_cap[h->index]);
memset(s->res_cap, 0, fe->nb_rsp_cap * sizeof(void *));
}
if (!LIST_ISEMPTY(&s->vars_txn.head))
vars_prune(&s->vars_txn, s->sess, s);
if (!LIST_ISEMPTY(&s->vars_reqres.head))
vars_prune(&s->vars_reqres, s->sess, s);
}
/* to be used at the end of a transaction to prepare a new one */
void http_reset_txn(struct stream *s)
{
http_end_txn(s);
http_init_txn(s);
/* reinitialise the current rule list pointer to NULL. We are sure that
* any rulelist match the NULL pointer.
*/
s->current_rule_list = NULL;
s->be = strm_fe(s);
s->logs.logwait = strm_fe(s)->to_log;
s->logs.level = 0;
stream_del_srv_conn(s);
s->target = NULL;
/* re-init store persistence */
s->store_count = 0;
s->uniq_id = _HA_ATOMIC_XADD(&global.req_count, 1);
s->req.flags |= CF_READ_DONTWAIT; /* one read is usually enough */
/* We must trim any excess data from the response buffer, because we
* may have blocked an invalid response from a server that we don't
* want to accidently forward once we disable the analysers, nor do
* we want those data to come along with next response. A typical
* example of such data would be from a buggy server responding to
* a HEAD with some data, or sending more than the advertised
* content-length.
*/
if (unlikely(ci_data(&s->res)))
b_set_data(&s->res.buf, co_data(&s->res));
/* Now we can realign the response buffer */
c_realign_if_empty(&s->res);
s->req.rto = strm_fe(s)->timeout.client;
s->req.wto = TICK_ETERNITY;
s->res.rto = TICK_ETERNITY;
s->res.wto = strm_fe(s)->timeout.client;
s->req.rex = TICK_ETERNITY;
s->req.wex = TICK_ETERNITY;
s->req.analyse_exp = TICK_ETERNITY;
s->res.rex = TICK_ETERNITY;
s->res.wex = TICK_ETERNITY;
s->res.analyse_exp = TICK_ETERNITY;
s->si[1].hcto = TICK_ETERNITY;
}
DECLARE_POOL(pool_head_http_txn, "http_txn", sizeof(struct http_txn));
DECLARE_POOL(pool_head_uniqueid, "uniqueid", UNIQUEID_LEN);
__attribute__((constructor))
static void __http_protocol_init(void)
{
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/