blob: 6ac23b27cedf4ca694f37cc54a6e6bf07877ed03 [file] [log] [blame]
/*
* Cache management
*
* Copyright 2017 HAProxy Technologies
* William Lallemand <wlallemand@haproxy.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <import/eb32tree.h>
#include <import/sha1.h>
#include <haproxy/action-t.h>
#include <haproxy/api.h>
#include <haproxy/cfgparse.h>
#include <haproxy/channel.h>
#include <haproxy/cli.h>
#include <haproxy/errors.h>
#include <haproxy/filters.h>
#include <haproxy/hash.h>
#include <haproxy/http.h>
#include <haproxy/http_ana.h>
#include <haproxy/http_htx.h>
#include <haproxy/http_rules.h>
#include <haproxy/htx.h>
#include <haproxy/net_helper.h>
#include <haproxy/proxy.h>
#include <haproxy/sample.h>
#include <haproxy/shctx.h>
#include <haproxy/stream.h>
#include <haproxy/stream_interface.h>
#include <haproxy/tools.h>
#define CACHE_FLT_F_IMPLICIT_DECL 0x00000001 /* The cache filtre was implicitly declared (ie without
* the filter keyword) */
#define CACHE_FLT_INIT 0x00000002 /* Whether the cache name was freed. */
const char *cache_store_flt_id = "cache store filter";
extern struct applet http_cache_applet;
struct flt_ops cache_ops;
struct cache {
struct list list; /* cache linked list */
struct eb_root entries; /* head of cache entries based on keys */
unsigned int maxage; /* max-age */
unsigned int maxblocks;
unsigned int maxobjsz; /* max-object-size (in bytes) */
unsigned int max_secondary_entries; /* maximum number of secondary entries with the same primary hash */
uint8_t vary_processing_enabled; /* boolean : manage Vary header (disabled by default) */
char id[33]; /* cache name */
};
/* cache config for filters */
struct cache_flt_conf {
union {
struct cache *cache; /* cache used by the filter */
char *name; /* cache name used during conf parsing */
} c;
unsigned int flags; /* CACHE_FLT_F_* */
};
/*
* Vary-related structures and functions
*/
enum vary_header_bit {
VARY_ACCEPT_ENCODING = (1 << 0),
VARY_REFERER = (1 << 1),
VARY_LAST /* should always be last */
};
/*
* Encoding list extracted from
* https://www.iana.org/assignments/http-parameters/http-parameters.xhtml
* and RFC7231#5.3.4.
*/
enum vary_encoding {
VARY_ENCODING_GZIP = (1 << 0),
VARY_ENCODING_DEFLATE = (1 << 1),
VARY_ENCODING_BR = (1 << 2),
VARY_ENCODING_COMPRESS = (1 << 3),
VARY_ENCODING_AES128GCM = (1 << 4),
VARY_ENCODING_EXI = (1 << 5),
VARY_ENCODING_PACK200_GZIP = (1 << 6),
VARY_ENCODING_ZSTD = (1 << 7),
VARY_ENCODING_IDENTITY = (1 << 8),
VARY_ENCODING_STAR = (1 << 9),
VARY_ENCODING_OTHER = (1 << 10)
};
struct vary_hashing_information {
struct ist hdr_name; /* Header name */
enum vary_header_bit value; /* Bit representing the header in a vary signature */
unsigned int hash_length; /* Size of the sub hash for this header's value */
int(*norm_fn)(struct htx*,struct ist hdr_name,char* buf,unsigned int* buf_len); /* Normalization function */
int(*cmp_fn)(const void *ref, const void *new, unsigned int len); /* Comparison function, should return 0 if the hashes are alike */
};
static int http_request_prebuild_full_secondary_key(struct stream *s);
static int http_request_build_secondary_key(struct stream *s, int vary_signature);
static int http_request_reduce_secondary_key(unsigned int vary_signature,
char prebuilt_key[HTTP_CACHE_SEC_KEY_LEN]);
static int parse_encoding_value(struct ist value, unsigned int *encoding_value,
unsigned int *has_null_weight);
static int accept_encoding_normalizer(struct htx *htx, struct ist hdr_name,
char *buf, unsigned int *buf_len);
static int default_normalizer(struct htx *htx, struct ist hdr_name,
char *buf, unsigned int *buf_len);
static int accept_encoding_bitmap_cmp(const void *ref, const void *new, unsigned int len);
/* Warning : do not forget to update HTTP_CACHE_SEC_KEY_LEN when new items are
* added to this array. */
const struct vary_hashing_information vary_information[] = {
{ IST("accept-encoding"), VARY_ACCEPT_ENCODING, sizeof(uint32_t), &accept_encoding_normalizer, &accept_encoding_bitmap_cmp },
{ IST("referer"), VARY_REFERER, sizeof(int), &default_normalizer, NULL },
};
/*
* cache ctx for filters
*/
struct cache_st {
struct shared_block *first_block;
};
#define DEFAULT_MAX_SECONDARY_ENTRY 10
struct cache_entry {
unsigned int complete; /* An entry won't be valid until complete is not null. */
unsigned int latest_validation; /* latest validation date */
unsigned int expire; /* expiration date */
unsigned int age; /* Origin server "Age" header value */
struct eb32_node eb; /* ebtree node used to hold the cache object */
char hash[20];
char secondary_key[HTTP_CACHE_SEC_KEY_LEN]; /* Optional secondary key. */
unsigned int secondary_key_signature; /* Bitfield of the HTTP headers that should be used
* to build secondary keys for this cache entry. */
unsigned int secondary_entries_count; /* Should only be filled in the last entry of a list of dup entries */
unsigned int last_clear_ts; /* Timestamp of the last call to clear_expired_duplicates. */
unsigned int etag_length; /* Length of the ETag value (if one was found in the response). */
unsigned int etag_offset; /* Offset of the ETag value in the data buffer. */
time_t last_modified; /* Origin server "Last-Modified" header value converted in
* seconds since epoch. If no "Last-Modified"
* header is found, use "Date" header value,
* otherwise use reception time. This field will
* be used in case of an "If-Modified-Since"-based
* conditional request. */
unsigned char data[0];
};
#define CACHE_BLOCKSIZE 1024
#define CACHE_ENTRY_MAX_AGE 2147483648U
static struct list caches = LIST_HEAD_INIT(caches);
static struct list caches_config = LIST_HEAD_INIT(caches_config); /* cache config to init */
static struct cache *tmp_cache_config = NULL;
DECLARE_STATIC_POOL(pool_head_cache_st, "cache_st", sizeof(struct cache_st));
static struct eb32_node *insert_entry(struct cache *cache, struct cache_entry *new_entry);
static void delete_entry(struct cache_entry *del_entry);
struct cache_entry *entry_exist(struct cache *cache, char *hash)
{
struct eb32_node *node;
struct cache_entry *entry;
node = eb32_lookup(&cache->entries, read_u32(hash));
if (!node)
return NULL;
entry = eb32_entry(node, struct cache_entry, eb);
/* if that's not the right node */
if (memcmp(entry->hash, hash, sizeof(entry->hash)))
return NULL;
if (entry->expire > now.tv_sec) {
return entry;
} else {
delete_entry(entry);
entry->eb.key = 0;
}
return NULL;
}
/*
* Compare a newly built secondary key to the one found in a cache_entry.
* Every sub-part of the key is compared to the reference through the dedicated
* comparison function of the sub-part (that might do more than a simple
* memcmp).
* Returns 0 if the keys are alike.
*/
static int secondary_key_cmp(const char *ref_key, const char *new_key)
{
int retval = 0;
size_t idx = 0;
unsigned int offset = 0;
const struct vary_hashing_information *info;
for (idx = 0; idx < sizeof(vary_information)/sizeof(*vary_information) && !retval; ++idx) {
info = &vary_information[idx];
if (info->cmp_fn)
retval = info->cmp_fn(&ref_key[offset], &new_key[offset], info->hash_length);
else
retval = memcmp(&ref_key[offset], &new_key[offset], info->hash_length);
offset += info->hash_length;
}
return retval;
}
/*
* There can be multiple entries with the same primary key in the ebtree so in
* order to get the proper one out of the list, we use a secondary_key.
* This function simply iterates over all the entries with the same primary_key
* until it finds the right one.
* Returns the cache_entry in case of success, NULL otherwise.
*/
struct cache_entry *secondary_entry_exist(struct cache *cache, struct cache_entry *entry,
const char *secondary_key)
{
struct eb32_node *node = &entry->eb;
if (!entry->secondary_key_signature)
return NULL;
while (entry && secondary_key_cmp(entry->secondary_key, secondary_key) != 0) {
node = eb32_next_dup(node);
/* Make the best use of this iteration and clear expired entries
* when we find them. Calling delete_entry would be too costly
* so we simply call eb32_delete. The secondary_entry count will
* be updated when we try to insert a new entry to this list. */
if (entry->expire <= now.tv_sec) {
eb32_delete(&entry->eb);
entry->eb.key = 0;
}
entry = node ? eb32_entry(node, struct cache_entry, eb) : NULL;
}
/* Expired entry */
if (entry && entry->expire <= now.tv_sec) {
eb32_delete(&entry->eb);
entry->eb.key = 0;
entry = NULL;
}
return entry;
}
/*
* Remove all expired entries from a list of duplicates.
* Return the number of alive entries in the list and sets dup_tail to the
* current last item of the list.
*/
static unsigned int clear_expired_duplicates(struct eb32_node **dup_tail)
{
unsigned int entry_count = 0;
struct cache_entry *entry = NULL;
struct eb32_node *prev = *dup_tail;
struct eb32_node *tail = NULL;
while (prev) {
entry = container_of(prev, struct cache_entry, eb);
prev = eb32_prev_dup(prev);
if (entry->expire <= now.tv_sec) {
eb32_delete(&entry->eb);
entry->eb.key = 0;
}
else {
if (!tail)
tail = &entry->eb;
++entry_count;
}
}
*dup_tail = tail;
return entry_count;
}
/*
* This function inserts a cache_entry in the cache's ebtree. In case of
* duplicate entries (vary), it then checks that the number of entries did not
* reach the max number of secondary entries. If this entry should not have been
* created, remove it.
* In the regular case (unique entries), this function does not do more than a
* simple insert. In case of secondary entries, it will at most cost an
* insertion+max_sec_entries time checks and entry deletion.
* Returns the newly inserted node in case of success, NULL otherwise.
*/
static struct eb32_node *insert_entry(struct cache *cache, struct cache_entry *new_entry)
{
struct eb32_node *prev = NULL;
struct cache_entry *entry = NULL;
unsigned int entry_count = 0;
unsigned int last_clear_ts = now.tv_sec;
struct eb32_node *node = eb32_insert(&cache->entries, &new_entry->eb);
/* We should not have multiple entries with the same primary key unless
* the entry has a non null vary signature. */
if (!new_entry->secondary_key_signature)
return node;
prev = eb32_prev_dup(node);
if (prev != NULL) {
/* The last entry of a duplicate list should contain the current
* number of entries in the list. */
entry = container_of(prev, struct cache_entry, eb);
entry_count = entry->secondary_entries_count;
last_clear_ts = entry->last_clear_ts;
if (entry_count >= cache->max_secondary_entries) {
/* Some entries of the duplicate list might be expired so
* we will iterate over all the items in order to free some
* space. In order to avoid going over the same list too
* often, we first check the timestamp of the last check
* performed. */
if (last_clear_ts == now.tv_sec) {
/* Too many entries for this primary key, clear the
* one that was inserted. */
eb32_delete(node);
node->key = 0;
return NULL;
}
entry_count = clear_expired_duplicates(&prev);
if (entry_count >= cache->max_secondary_entries) {
/* Still too many entries for this primary key, delete
* the newly inserted one. */
entry = container_of(prev, struct cache_entry, eb);
entry->last_clear_ts = now.tv_sec;
eb32_delete(node);
node->key = 0;
return NULL;
}
}
}
new_entry->secondary_entries_count = entry_count + 1;
new_entry->last_clear_ts = last_clear_ts;
return node;
}
/*
* This function removes an entry from the ebtree. If the entry was a duplicate
* (in case of Vary), it updates the secondary entry counter in another
* duplicate entry (the last entry of the dup list).
*/
static void delete_entry(struct cache_entry *del_entry)
{
struct eb32_node *prev = NULL, *next = NULL;
struct cache_entry *entry = NULL;
struct eb32_node *last = NULL;
if (del_entry->secondary_key_signature) {
next = &del_entry->eb;
/* Look for last entry of the duplicates list. */
while ((next = eb32_next_dup(next))) {
last = next;
}
if (last) {
entry = container_of(last, struct cache_entry, eb);
--entry->secondary_entries_count;
}
else {
/* The current entry is the last one, look for the
* previous one to update its counter. */
prev = eb32_prev_dup(&del_entry->eb);
if (prev) {
entry = container_of(prev, struct cache_entry, eb);
entry->secondary_entries_count = del_entry->secondary_entries_count - 1;
}
}
}
eb32_delete(&del_entry->eb);
del_entry->eb.key = 0;
}
static inline struct shared_context *shctx_ptr(struct cache *cache)
{
return (struct shared_context *)((unsigned char *)cache - ((struct shared_context *)NULL)->data);
}
static inline struct shared_block *block_ptr(struct cache_entry *entry)
{
return (struct shared_block *)((unsigned char *)entry - ((struct shared_block *)NULL)->data);
}
static int
cache_store_init(struct proxy *px, struct flt_conf *fconf)
{
fconf->flags |= FLT_CFG_FL_HTX;
return 0;
}
static void
cache_store_deinit(struct proxy *px, struct flt_conf *fconf)
{
struct cache_flt_conf *cconf = fconf->conf;
if (!(cconf->flags & CACHE_FLT_INIT))
free(cconf->c.name);
free(cconf);
}
static int
cache_store_check(struct proxy *px, struct flt_conf *fconf)
{
struct cache_flt_conf *cconf = fconf->conf;
struct flt_conf *f;
struct cache *cache;
int comp = 0;
/* Find the cache corresponding to the name in the filter config. The
* cache will not be referenced now in the filter config because it is
* not fully allocated. This step will be performed during the cache
* post_check.
*/
list_for_each_entry(cache, &caches_config, list) {
if (strcmp(cache->id, cconf->c.name) == 0)
goto found;
}
ha_alert("config: %s '%s': unable to find the cache '%s' referenced by the filter 'cache'.\n",
proxy_type_str(px), px->id, (char *)cconf->c.name);
return 1;
found:
/* Here <cache> points on the cache the filter must use and <cconf>
* points on the cache filter configuration. */
/* Check all filters for proxy <px> to know if the compression is
* enabled and if it is after the cache. When the compression is before
* the cache, an error is returned. Also check if the cache filter must
* be explicitly declaired or not. */
list_for_each_entry(f, &px->filter_configs, list) {
if (f == fconf) {
/* The compression filter must be evaluated after the cache. */
if (comp) {
ha_alert("config: %s '%s': unable to enable the compression filter before "
"the cache '%s'.\n", proxy_type_str(px), px->id, cache->id);
return 1;
}
}
else if (f->id == http_comp_flt_id)
comp = 1;
else if (f->id == fcgi_flt_id)
continue;
else if ((f->id != fconf->id) && (cconf->flags & CACHE_FLT_F_IMPLICIT_DECL)) {
/* Implicit declaration is only allowed with the
* compression and fcgi. For other filters, an implicit
* declaration is required. */
ha_alert("config: %s '%s': require an explicit filter declaration "
"to use the cache '%s'.\n", proxy_type_str(px), px->id, cache->id);
return 1;
}
}
return 0;
}
static int
cache_store_strm_init(struct stream *s, struct filter *filter)
{
struct cache_st *st;
st = pool_alloc(pool_head_cache_st);
if (st == NULL)
return -1;
st->first_block = NULL;
filter->ctx = st;
/* Register post-analyzer on AN_RES_WAIT_HTTP */
filter->post_analyzers |= AN_RES_WAIT_HTTP;
return 1;
}
static void
cache_store_strm_deinit(struct stream *s, struct filter *filter)
{
struct cache_st *st = filter->ctx;
struct cache_flt_conf *cconf = FLT_CONF(filter);
struct cache *cache = cconf->c.cache;
struct shared_context *shctx = shctx_ptr(cache);
/* Everything should be released in the http_end filter, but we need to do it
* there too, in case of errors */
if (st && st->first_block) {
shctx_lock(shctx);
shctx_row_dec_hot(shctx, st->first_block);
shctx_unlock(shctx);
}
if (st) {
pool_free(pool_head_cache_st, st);
filter->ctx = NULL;
}
}
static int
cache_store_post_analyze(struct stream *s, struct filter *filter, struct channel *chn,
unsigned an_bit)
{
struct http_txn *txn = s->txn;
struct http_msg *msg = &txn->rsp;
struct cache_st *st = filter->ctx;
if (an_bit != AN_RES_WAIT_HTTP)
goto end;
/* Here we need to check if any compression filter precedes the cache
* filter. This is only possible when the compression is configured in
* the frontend while the cache filter is configured on the
* backend. This case cannot be detected during HAProxy startup. So in
* such cases, the cache is disabled.
*/
if (st && (msg->flags & HTTP_MSGF_COMPRESSING)) {
pool_free(pool_head_cache_st, st);
filter->ctx = NULL;
}
end:
return 1;
}
static int
cache_store_http_headers(struct stream *s, struct filter *filter, struct http_msg *msg)
{
struct cache_st *st = filter->ctx;
if (!(msg->chn->flags & CF_ISRESP) || !st)
return 1;
if (st->first_block)
register_data_filter(s, msg->chn, filter);
return 1;
}
static inline void disable_cache_entry(struct cache_st *st,
struct filter *filter, struct shared_context *shctx)
{
struct cache_entry *object;
object = (struct cache_entry *)st->first_block->data;
filter->ctx = NULL; /* disable cache */
shctx_lock(shctx);
shctx_row_dec_hot(shctx, st->first_block);
eb32_delete(&object->eb);
object->eb.key = 0;
shctx_unlock(shctx);
pool_free(pool_head_cache_st, st);
}
static int
cache_store_http_payload(struct stream *s, struct filter *filter, struct http_msg *msg,
unsigned int offset, unsigned int len)
{
struct cache_flt_conf *cconf = FLT_CONF(filter);
struct shared_context *shctx = shctx_ptr(cconf->c.cache);
struct cache_st *st = filter->ctx;
struct htx *htx = htxbuf(&msg->chn->buf);
struct htx_blk *blk;
struct shared_block *fb;
struct htx_ret htxret;
unsigned int orig_len, to_forward;
int ret;
if (!len)
return len;
if (!st->first_block) {
unregister_data_filter(s, msg->chn, filter);
return len;
}
chunk_reset(&trash);
orig_len = len;
to_forward = 0;
htxret = htx_find_offset(htx, offset);
blk = htxret.blk;
offset = htxret.ret;
for (; blk && len; blk = htx_get_next_blk(htx, blk)) {
enum htx_blk_type type = htx_get_blk_type(blk);
uint32_t info, sz = htx_get_blksz(blk);
struct ist v;
switch (type) {
case HTX_BLK_UNUSED:
break;
case HTX_BLK_DATA:
v = htx_get_blk_value(htx, blk);
v = istadv(v, offset);
v = isttrim(v, len);
info = (type << 28) + v.len;
chunk_memcat(&trash, (char *)&info, sizeof(info));
chunk_memcat(&trash, v.ptr, v.len);
to_forward += v.len;
len -= v.len;
break;
default:
/* Here offset must always be 0 because only
* DATA blocks can be partially transferred. */
if (offset)
goto no_cache;
if (sz > len)
goto end;
chunk_memcat(&trash, (char *)&blk->info, sizeof(blk->info));
chunk_memcat(&trash, htx_get_blk_ptr(htx, blk), sz);
to_forward += sz;
len -= sz;
break;
}
offset = 0;
}
end:
shctx_lock(shctx);
fb = shctx_row_reserve_hot(shctx, st->first_block, trash.data);
if (!fb) {
shctx_unlock(shctx);
goto no_cache;
}
shctx_unlock(shctx);
ret = shctx_row_data_append(shctx, st->first_block, st->first_block->last_append,
(unsigned char *)b_head(&trash), b_data(&trash));
if (ret < 0)
goto no_cache;
return to_forward;
no_cache:
disable_cache_entry(st, filter, shctx);
unregister_data_filter(s, msg->chn, filter);
return orig_len;
}
static int
cache_store_http_end(struct stream *s, struct filter *filter,
struct http_msg *msg)
{
struct cache_st *st = filter->ctx;
struct cache_flt_conf *cconf = FLT_CONF(filter);
struct cache *cache = cconf->c.cache;
struct shared_context *shctx = shctx_ptr(cache);
struct cache_entry *object;
if (!(msg->chn->flags & CF_ISRESP))
return 1;
if (st && st->first_block) {
object = (struct cache_entry *)st->first_block->data;
shctx_lock(shctx);
/* The whole payload was cached, the entry can now be used. */
object->complete = 1;
/* remove from the hotlist */
shctx_row_dec_hot(shctx, st->first_block);
shctx_unlock(shctx);
}
if (st) {
pool_free(pool_head_cache_st, st);
filter->ctx = NULL;
}
return 1;
}
/*
* This intends to be used when checking HTTP headers for some
* word=value directive. Return a pointer to the first character of value, if
* the word was not found or if there wasn't any value assigned to it return NULL
*/
char *directive_value(const char *sample, int slen, const char *word, int wlen)
{
int st = 0;
if (slen < wlen)
return 0;
while (wlen) {
char c = *sample ^ *word;
if (c && c != ('A' ^ 'a'))
return NULL;
sample++;
word++;
slen--;
wlen--;
}
while (slen) {
if (st == 0) {
if (*sample != '=')
return NULL;
sample++;
slen--;
st = 1;
continue;
} else {
return (char *)sample;
}
}
return NULL;
}
/*
* Return the maxage in seconds of an HTTP response.
* The returned value will always take the cache's configuration into account
* (cache->maxage) but the actual max age of the response will be set in the
* true_maxage parameter. It will be used to determine if a response is already
* stale or not.
* Compute the maxage using either:
* - the assigned max-age of the cache
* - the s-maxage directive
* - the max-age directive
* - (Expires - Data) headers
* - the default-max-age of the cache
*
*/
int http_calc_maxage(struct stream *s, struct cache *cache, int *true_maxage)
{
struct htx *htx = htxbuf(&s->res.buf);
struct http_hdr_ctx ctx = { .blk = NULL };
long smaxage = -1;
long maxage = -1;
int expires = -1;
struct tm tm = {};
time_t expires_val = 0;
char *endptr = NULL;
int offset = 0;
/* The Cache-Control max-age and s-maxage directives should be followed by
* a positive numerical value (see RFC 7234#5.2.1.1). According to the
* specs, a sender "should not" generate a quoted-string value but we will
* still accept this format since it isn't strictly forbidden. */
while (http_find_header(htx, ist("cache-control"), &ctx, 0)) {
char *value;
value = directive_value(ctx.value.ptr, ctx.value.len, "s-maxage", 8);
if (value) {
struct buffer *chk = get_trash_chunk();
chunk_memcat(chk, value, ctx.value.len - 8 + 1);
chunk_memcat(chk, "", 1);
offset = (*chk->area == '"') ? 1 : 0;
smaxage = strtol(chk->area + offset, &endptr, 10);
if (unlikely(smaxage < 0 || endptr == chk->area + offset))
return -1;
}
value = directive_value(ctx.value.ptr, ctx.value.len, "max-age", 7);
if (value) {
struct buffer *chk = get_trash_chunk();
chunk_memcat(chk, value, ctx.value.len - 7 + 1);
chunk_memcat(chk, "", 1);
offset = (*chk->area == '"') ? 1 : 0;
maxage = strtol(chk->area + offset, &endptr, 10);
if (unlikely(maxage < 0 || endptr == chk->area + offset))
return -1;
}
}
/* Look for Expires header if no s-maxage or max-age Cache-Control data
* was found. */
if (maxage == -1 && smaxage == -1) {
ctx.blk = NULL;
if (http_find_header(htx, ist("expires"), &ctx, 1)) {
if (parse_http_date(istptr(ctx.value), istlen(ctx.value), &tm)) {
expires_val = my_timegm(&tm);
/* A request having an expiring date earlier
* than the current date should be considered as
* stale. */
expires = (expires_val >= now.tv_sec) ?
(expires_val - now.tv_sec) : 0;
}
else {
/* Following RFC 7234#5.3, an invalid date
* format must be treated as a date in the past
* so the cache entry must be seen as already
* expired. */
expires = 0;
}
}
}
if (smaxage > 0) {
if (true_maxage)
*true_maxage = smaxage;
return MIN(smaxage, cache->maxage);
}
if (maxage > 0) {
if (true_maxage)
*true_maxage = maxage;
return MIN(maxage, cache->maxage);
}
if (expires >= 0) {
if (true_maxage)
*true_maxage = expires;
return MIN(expires, cache->maxage);
}
return cache->maxage;
}
static void cache_free_blocks(struct shared_block *first, struct shared_block *block)
{
struct cache_entry *object = (struct cache_entry *)block->data;
if (first == block && object->eb.key)
delete_entry(object);
object->eb.key = 0;
}
/* As per RFC 7234#4.3.2, in case of "If-Modified-Since" conditional request, the
* date value should be compared to a date determined by in a previous response (for
* the same entity). This date could either be the "Last-Modified" value, or the "Date"
* value of the response's reception time (by decreasing order of priority). */
static time_t get_last_modified_time(struct htx *htx)
{
time_t last_modified = 0;
struct http_hdr_ctx ctx = { .blk = NULL };
struct tm tm = {};
if (http_find_header(htx, ist("last-modified"), &ctx, 1)) {
if (parse_http_date(istptr(ctx.value), istlen(ctx.value), &tm)) {
last_modified = my_timegm(&tm);
}
}
if (!last_modified) {
ctx.blk = NULL;
if (http_find_header(htx, ist("date"), &ctx, 1)) {
if (parse_http_date(istptr(ctx.value), istlen(ctx.value), &tm)) {
last_modified = my_timegm(&tm);
}
}
}
/* Fallback on the current time if no "Last-Modified" or "Date" header
* was found. */
if (!last_modified)
last_modified = now.tv_sec;
return last_modified;
}
/*
* Checks the vary header's value. The headers on which vary should be applied
* must be explicitly supported in the vary_information array (see cache.c). If
* any other header is mentioned, we won't store the response.
* Returns 1 if Vary-based storage can work, 0 otherwise.
*/
static int http_check_vary_header(struct htx *htx, unsigned int *vary_signature)
{
unsigned int vary_idx;
unsigned int vary_info_count;
const struct vary_hashing_information *vary_info;
struct http_hdr_ctx ctx = { .blk = NULL };
int retval = 1;
*vary_signature = 0;
vary_info_count = sizeof(vary_information)/sizeof(*vary_information);
while (retval && http_find_header(htx, ist("Vary"), &ctx, 0)) {
for (vary_idx = 0; vary_idx < vary_info_count; ++vary_idx) {
vary_info = &vary_information[vary_idx];
if (isteqi(ctx.value, vary_info->hdr_name)) {
*vary_signature |= vary_info->value;
break;
}
}
retval = (vary_idx < vary_info_count);
}
return retval;
}
/*
* Look for the accept-encoding part of the secondary_key and replace the
* encoding bitmap part of the hash with the actual encoding of the response,
* extracted from the content-encoding header value.
* Responses that have an unknown encoding will not be cached if they also
* "vary" on the accept-encoding value.
* Returns 0 if we found a known encoding in the response, -1 otherwise.
*/
static int set_secondary_key_encoding(struct htx *htx, char *secondary_key)
{
unsigned int resp_encoding_bitmap = 0;
const struct vary_hashing_information *info = vary_information;
unsigned int offset = 0;
unsigned int count = 0;
unsigned int hash_info_count = sizeof(vary_information)/sizeof(*vary_information);
unsigned int encoding_value;
struct http_hdr_ctx ctx = { .blk = NULL };
/* Look for the accept-encoding part of the secondary_key. */
while (count < hash_info_count && info->value != VARY_ACCEPT_ENCODING) {
offset += info->hash_length;
++info;
++count;
}
if (count == hash_info_count)
return -1;
while (http_find_header(htx, ist("content-encoding"), &ctx, 0)) {
if (parse_encoding_value(ctx.value, &encoding_value, NULL))
return -1; /* Do not store responses with an unknown encoding */
resp_encoding_bitmap |= encoding_value;
}
if (!resp_encoding_bitmap)
resp_encoding_bitmap |= VARY_ENCODING_IDENTITY;
/* Rewrite the bitmap part of the hash with the new bitmap that only
* corresponds the the response's encoding. */
write_u32(secondary_key + offset, resp_encoding_bitmap);
return 0;
}
/*
* This function will store the headers of the response in a buffer and then
* register a filter to store the data
*/
enum act_return http_action_store_cache(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
int effective_maxage = 0;
int true_maxage = 0;
struct http_txn *txn = s->txn;
struct http_msg *msg = &txn->rsp;
struct filter *filter;
struct shared_block *first = NULL;
struct cache_flt_conf *cconf = rule->arg.act.p[0];
struct cache *cache = cconf->c.cache;
struct shared_context *shctx = shctx_ptr(cache);
struct cache_st *cache_ctx = NULL;
struct cache_entry *object, *old;
unsigned int key = read_u32(txn->cache_hash);
struct htx *htx;
struct http_hdr_ctx ctx;
size_t hdrs_len = 0;
int32_t pos;
unsigned int vary_signature = 0;
/* Don't cache if the response came from a cache */
if ((obj_type(s->target) == OBJ_TYPE_APPLET) &&
s->target == &http_cache_applet.obj_type) {
goto out;
}
/* cache only HTTP/1.1 */
if (!(txn->req.flags & HTTP_MSGF_VER_11))
goto out;
/* cache only GET method */
if (txn->meth != HTTP_METH_GET) {
/* In case of successful unsafe method on a stored resource, the
* cached entry must be invalidated (see RFC7234#4.4).
* A "non-error response" is one with a 2xx (Successful) or 3xx
* (Redirection) status code. */
if (txn->status >= 200 && txn->status < 400) {
switch (txn->meth) {
case HTTP_METH_OPTIONS:
case HTTP_METH_GET:
case HTTP_METH_HEAD:
case HTTP_METH_TRACE:
break;
default: /* Any unsafe method */
/* Discard any corresponding entry in case of successful
* unsafe request (such as PUT, POST or DELETE). */
shctx_lock(shctx);
old = entry_exist(cconf->c.cache, txn->cache_hash);
if (old) {
eb32_delete(&old->eb);
old->eb.key = 0;
}
shctx_unlock(shctx);
}
}
goto out;
}
/* cache key was not computed */
if (!key)
goto out;
/* cache only 200 status code */
if (txn->status != 200)
goto out;
/* Find the corresponding filter instance for the current stream */
list_for_each_entry(filter, &s->strm_flt.filters, list) {
if (FLT_ID(filter) == cache_store_flt_id && FLT_CONF(filter) == cconf) {
/* No filter ctx, don't cache anything */
if (!filter->ctx)
goto out;
cache_ctx = filter->ctx;
break;
}
}
/* from there, cache_ctx is always defined */
htx = htxbuf(&s->res.buf);
/* Do not cache too big objects. */
if ((msg->flags & HTTP_MSGF_CNT_LEN) && shctx->max_obj_size > 0 &&
htx->data + htx->extra > shctx->max_obj_size)
goto out;
/* Only a subset of headers are supported in our Vary implementation. If
* any other header is present in the Vary header value, we won't be
* able to use the cache. Likewise, if Vary header support is disabled,
* avoid caching responses that contain such a header. */
ctx.blk = NULL;
if (cache->vary_processing_enabled) {
if (!http_check_vary_header(htx, &vary_signature))
goto out;
if (vary_signature) {
/* If something went wrong during the secondary key
* building, do not store the response. */
if (!(txn->flags & TX_CACHE_HAS_SEC_KEY))
goto out;
http_request_reduce_secondary_key(vary_signature, txn->cache_secondary_hash);
}
}
else if (http_find_header(htx, ist("Vary"), &ctx, 0)) {
goto out;
}
http_check_response_for_cacheability(s, &s->res);
if (!(txn->flags & TX_CACHEABLE) || !(txn->flags & TX_CACHE_COOK) || (txn->flags & TX_CACHE_IGNORE))
goto out;
shctx_lock(shctx);
old = entry_exist(cache, txn->cache_hash);
if (old) {
if (vary_signature)
old = secondary_entry_exist(cconf->c.cache, old,
txn->cache_secondary_hash);
if (old) {
if (!old->complete) {
/* An entry with the same primary key is already being
* created, we should not try to store the current
* response because it will waste space in the cache. */
shctx_unlock(shctx);
goto out;
}
delete_entry(old);
old->eb.key = 0;
}
}
first = shctx_row_reserve_hot(shctx, NULL, sizeof(struct cache_entry));
if (!first) {
shctx_unlock(shctx);
goto out;
}
/* the received memory is not initialized, we need at least to mark
* the object as not indexed yet.
*/
object = (struct cache_entry *)first->data;
memset(object, 0, sizeof(*object));
object->eb.key = key;
object->secondary_key_signature = vary_signature;
/* We need to temporarily set a valid expiring time until the actual one
* is set by the end of this function (in case of concurrent accesses to
* the same resource). This way the second access will find an existing
* but not yet usable entry in the tree and will avoid storing its data. */
object->expire = now.tv_sec + 2;
memcpy(object->hash, txn->cache_hash, sizeof(object->hash));
if (vary_signature)
memcpy(object->secondary_key, txn->cache_secondary_hash, HTTP_CACHE_SEC_KEY_LEN);
/* Insert the entry in the tree even if the payload is not cached yet. */
if (insert_entry(cache, object) != &object->eb) {
object->eb.key = 0;
shctx_unlock(shctx);
goto out;
}
shctx_unlock(shctx);
/* reserve space for the cache_entry structure */
first->len = sizeof(struct cache_entry);
first->last_append = NULL;
/* Determine the entry's maximum age (taking into account the cache's
* configuration) as well as the response's explicit max age (extracted
* from cache-control directives or the expires header). */
effective_maxage = http_calc_maxage(s, cconf->c.cache, &true_maxage);
ctx.blk = NULL;
if (http_find_header(htx, ist("Age"), &ctx, 0)) {
long long hdr_age;
if (!strl2llrc(ctx.value.ptr, ctx.value.len, &hdr_age) && hdr_age > 0) {
if (unlikely(hdr_age > CACHE_ENTRY_MAX_AGE))
hdr_age = CACHE_ENTRY_MAX_AGE;
/* A response with an Age value greater than its
* announced max age is stale and should not be stored. */
object->age = hdr_age;
if (unlikely(object->age > true_maxage))
goto out;
}
else
goto out;
http_remove_header(htx, &ctx);
}
/* Build a last-modified time that will be stored in the cache_entry and
* compared to a future If-Modified-Since client header. */
object->last_modified = get_last_modified_time(htx);
chunk_reset(&trash);
for (pos = htx_get_first(htx); pos != -1; pos = htx_get_next(htx, pos)) {
struct htx_blk *blk = htx_get_blk(htx, pos);
enum htx_blk_type type = htx_get_blk_type(blk);
uint32_t sz = htx_get_blksz(blk);
hdrs_len += sizeof(*blk) + sz;
chunk_memcat(&trash, (char *)&blk->info, sizeof(blk->info));
chunk_memcat(&trash, htx_get_blk_ptr(htx, blk), sz);
/* Look for optional ETag header.
* We need to store the offset of the ETag value in order for
* future conditional requests to be able to perform ETag
* comparisons. */
if (type == HTX_BLK_HDR) {
struct ist header_name = htx_get_blk_name(htx, blk);
if (isteq(header_name, ist("etag"))) {
object->etag_length = sz - istlen(header_name);
object->etag_offset = sizeof(struct cache_entry) + b_data(&trash) - sz + istlen(header_name);
}
}
if (type == HTX_BLK_EOH)
break;
}
/* Do not cache objects if the headers are too big. */
if (hdrs_len > htx->size - global.tune.maxrewrite)
goto out;
/* If the response has a secondary_key, fill its key part related to
* encodings with the actual encoding of the response. This way any
* subsequent request having the same primary key will have its accepted
* encodings tested upon the cached response's one.
* We will not cache a response that has an unknown encoding (not
* explicitly supported in parse_encoding_value function). */
if (cache->vary_processing_enabled && vary_signature)
if (set_secondary_key_encoding(htx, object->secondary_key))
goto out;
shctx_lock(shctx);
if (!shctx_row_reserve_hot(shctx, first, trash.data)) {
shctx_unlock(shctx);
goto out;
}
shctx_unlock(shctx);
/* cache the headers in a http action because it allows to chose what
* to cache, for example you might want to cache a response before
* modifying some HTTP headers, or on the contrary after modifying
* those headers.
*/
/* does not need to be locked because it's in the "hot" list,
* copy the headers */
if (shctx_row_data_append(shctx, first, NULL, (unsigned char *)trash.area, trash.data) < 0)
goto out;
/* register the buffer in the filter ctx for filling it with data*/
if (cache_ctx) {
cache_ctx->first_block = first;
/* store latest value and expiration time */
object->latest_validation = now.tv_sec;
object->expire = now.tv_sec + effective_maxage;
return ACT_RET_CONT;
}
out:
/* if does not cache */
if (first) {
shctx_lock(shctx);
first->len = 0;
if (object->eb.key)
delete_entry(object);
object->eb.key = 0;
shctx_row_dec_hot(shctx, first);
shctx_unlock(shctx);
}
return ACT_RET_CONT;
}
#define HTX_CACHE_INIT 0 /* Initial state. */
#define HTX_CACHE_HEADER 1 /* Cache entry headers forwarding */
#define HTX_CACHE_DATA 2 /* Cache entry data forwarding */
#define HTX_CACHE_EOM 3 /* Cache entry completely forwarded. Finish the HTX message */
#define HTX_CACHE_END 4 /* Cache entry treatment terminated */
static void http_cache_applet_release(struct appctx *appctx)
{
struct cache_flt_conf *cconf = appctx->rule->arg.act.p[0];
struct cache_entry *cache_ptr = appctx->ctx.cache.entry;
struct cache *cache = cconf->c.cache;
struct shared_block *first = block_ptr(cache_ptr);
shctx_lock(shctx_ptr(cache));
shctx_row_dec_hot(shctx_ptr(cache), first);
shctx_unlock(shctx_ptr(cache));
}
static unsigned int htx_cache_dump_blk(struct appctx *appctx, struct htx *htx, enum htx_blk_type type,
uint32_t info, struct shared_block *shblk, unsigned int offset)
{
struct cache_flt_conf *cconf = appctx->rule->arg.act.p[0];
struct shared_context *shctx = shctx_ptr(cconf->c.cache);
struct htx_blk *blk;
char *ptr;
unsigned int max, total;
uint32_t blksz;
max = htx_get_max_blksz(htx, channel_htx_recv_max(si_ic(appctx->owner), htx));
if (!max)
return 0;
blksz = ((type == HTX_BLK_HDR || type == HTX_BLK_TLR)
? (info & 0xff) + ((info >> 8) & 0xfffff)
: info & 0xfffffff);
if (blksz > max)
return 0;
blk = htx_add_blk(htx, type, blksz);
if (!blk)
return 0;
blk->info = info;
total = 4;
ptr = htx_get_blk_ptr(htx, blk);
while (blksz) {
max = MIN(blksz, shctx->block_size - offset);
memcpy(ptr, (const char *)shblk->data + offset, max);
offset += max;
blksz -= max;
total += max;
ptr += max;
if (blksz || offset == shctx->block_size) {
shblk = LIST_NEXT(&shblk->list, typeof(shblk), list);
offset = 0;
}
}
appctx->ctx.cache.offset = offset;
appctx->ctx.cache.next = shblk;
appctx->ctx.cache.sent += total;
return total;
}
static unsigned int htx_cache_dump_data_blk(struct appctx *appctx, struct htx *htx,
uint32_t info, struct shared_block *shblk, unsigned int offset)
{
struct cache_flt_conf *cconf = appctx->rule->arg.act.p[0];
struct shared_context *shctx = shctx_ptr(cconf->c.cache);
unsigned int max, total, rem_data;
uint32_t blksz;
max = htx_get_max_blksz(htx, channel_htx_recv_max(si_ic(appctx->owner), htx));
if (!max)
return 0;
rem_data = 0;
if (appctx->ctx.cache.rem_data) {
blksz = appctx->ctx.cache.rem_data;
total = 0;
}
else {
blksz = (info & 0xfffffff);
total = 4;
}
if (blksz > max) {
rem_data = blksz - max;
blksz = max;
}
while (blksz) {
size_t sz;
max = MIN(blksz, shctx->block_size - offset);
sz = htx_add_data(htx, ist2(shblk->data + offset, max));
offset += sz;
blksz -= sz;
total += sz;
if (sz < max)
break;
if (blksz || offset == shctx->block_size) {
shblk = LIST_NEXT(&shblk->list, typeof(shblk), list);
offset = 0;
}
}
appctx->ctx.cache.offset = offset;
appctx->ctx.cache.next = shblk;
appctx->ctx.cache.sent += total;
appctx->ctx.cache.rem_data = rem_data + blksz;
return total;
}
static size_t htx_cache_dump_msg(struct appctx *appctx, struct htx *htx, unsigned int len,
enum htx_blk_type mark)
{
struct cache_flt_conf *cconf = appctx->rule->arg.act.p[0];
struct shared_context *shctx = shctx_ptr(cconf->c.cache);
struct shared_block *shblk;
unsigned int offset, sz;
unsigned int ret, total = 0;
while (len) {
enum htx_blk_type type;
uint32_t info;
shblk = appctx->ctx.cache.next;
offset = appctx->ctx.cache.offset;
if (appctx->ctx.cache.rem_data) {
type = HTX_BLK_DATA;
info = 0;
goto add_data_blk;
}
/* Get info of the next HTX block. May be split on 2 shblk */
sz = MIN(4, shctx->block_size - offset);
memcpy((char *)&info, (const char *)shblk->data + offset, sz);
offset += sz;
if (sz < 4) {
shblk = LIST_NEXT(&shblk->list, typeof(shblk), list);
memcpy(((char *)&info)+sz, (const char *)shblk->data, 4 - sz);
offset = (4 - sz);
}
/* Get payload of the next HTX block and insert it. */
type = (info >> 28);
if (type != HTX_BLK_DATA)
ret = htx_cache_dump_blk(appctx, htx, type, info, shblk, offset);
else {
add_data_blk:
ret = htx_cache_dump_data_blk(appctx, htx, info, shblk, offset);
}
if (!ret)
break;
total += ret;
len -= ret;
if (appctx->ctx.cache.rem_data || type == mark)
break;
}
return total;
}
static int htx_cache_add_age_hdr(struct appctx *appctx, struct htx *htx)
{
struct cache_entry *cache_ptr = appctx->ctx.cache.entry;
unsigned int age;
char *end;
chunk_reset(&trash);
age = MAX(0, (int)(now.tv_sec - cache_ptr->latest_validation)) + cache_ptr->age;
if (unlikely(age > CACHE_ENTRY_MAX_AGE))
age = CACHE_ENTRY_MAX_AGE;
end = ultoa_o(age, b_head(&trash), b_size(&trash));
b_set_data(&trash, end - b_head(&trash));
if (!http_add_header(htx, ist("Age"), ist2(b_head(&trash), b_data(&trash))))
return 0;
return 1;
}
static void http_cache_io_handler(struct appctx *appctx)
{
struct cache_entry *cache_ptr = appctx->ctx.cache.entry;
struct shared_block *first = block_ptr(cache_ptr);
struct stream_interface *si = appctx->owner;
struct channel *req = si_oc(si);
struct channel *res = si_ic(si);
struct htx *req_htx, *res_htx;
struct buffer *errmsg;
unsigned int len;
size_t ret, total = 0;
res_htx = htxbuf(&res->buf);
total = res_htx->data;
if (unlikely(si->state == SI_ST_DIS || si->state == SI_ST_CLO))
goto out;
/* Check if the input buffer is available. */
if (!b_size(&res->buf)) {
si_rx_room_blk(si);
goto out;
}
if (res->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTW_NOW))
appctx->st0 = HTX_CACHE_END;
if (appctx->st0 == HTX_CACHE_INIT) {
appctx->ctx.cache.next = block_ptr(cache_ptr);
appctx->ctx.cache.offset = sizeof(*cache_ptr);
appctx->ctx.cache.sent = 0;
appctx->ctx.cache.rem_data = 0;
appctx->st0 = HTX_CACHE_HEADER;
}
if (appctx->st0 == HTX_CACHE_HEADER) {
/* Headers must be dump at once. Otherwise it is an error */
len = first->len - sizeof(*cache_ptr) - appctx->ctx.cache.sent;
ret = htx_cache_dump_msg(appctx, res_htx, len, HTX_BLK_EOH);
if (!ret || (htx_get_tail_type(res_htx) != HTX_BLK_EOH) ||
!htx_cache_add_age_hdr(appctx, res_htx))
goto error;
/* In case of a conditional request, we might want to send a
* "304 Not Modified" response instead of the stored data. */
if (appctx->ctx.cache.send_notmodified) {
if (!http_replace_res_status(res_htx, ist("304"), ist("Not Modified"))) {
/* If replacing the status code fails we need to send the full response. */
appctx->ctx.cache.send_notmodified = 0;
}
}
/* Skip response body for HEAD requests or in case of "304 Not
* Modified" response. */
if (si_strm(si)->txn->meth == HTTP_METH_HEAD || appctx->ctx.cache.send_notmodified)
appctx->st0 = HTX_CACHE_EOM;
else
appctx->st0 = HTX_CACHE_DATA;
}
if (appctx->st0 == HTX_CACHE_DATA) {
len = first->len - sizeof(*cache_ptr) - appctx->ctx.cache.sent;
if (len) {
ret = htx_cache_dump_msg(appctx, res_htx, len, HTX_BLK_UNUSED);
if (ret < len) {
si_rx_room_blk(si);
goto out;
}
}
appctx->st0 = HTX_CACHE_EOM;
}
if (appctx->st0 == HTX_CACHE_EOM) {
/* no more data are expected. */
res_htx->flags |= HTX_FL_EOM;
appctx->st0 = HTX_CACHE_END;
}
end:
if (!(res->flags & CF_SHUTR) && appctx->st0 == HTX_CACHE_END) {
res->flags |= CF_READ_NULL;
si_shutr(si);
}
out:
total = res_htx->data - total;
if (total)
channel_add_input(res, total);
htx_to_buf(res_htx, &res->buf);
/* eat the whole request */
if (co_data(req)) {
req_htx = htx_from_buf(&req->buf);
co_htx_skip(req, req_htx, co_data(req));
htx_to_buf(req_htx, &req->buf);
}
return;
error:
/* Sent and HTTP error 500 */
b_reset(&res->buf);
errmsg = &http_err_chunks[HTTP_ERR_500];
res->buf.data = b_data(errmsg);
memcpy(res->buf.area, b_head(errmsg), b_data(errmsg));
res_htx = htx_from_buf(&res->buf);
total = 0;
appctx->st0 = HTX_CACHE_END;
goto end;
}
static int parse_cache_rule(struct proxy *proxy, const char *name, struct act_rule *rule, char **err)
{
struct flt_conf *fconf;
struct cache_flt_conf *cconf = NULL;
if (!*name || strcmp(name, "if") == 0 || strcmp(name, "unless") == 0) {
memprintf(err, "expects a cache name");
goto err;
}
/* check if a cache filter was already registered with this cache
* name, if that's the case, must use it. */
list_for_each_entry(fconf, &proxy->filter_configs, list) {
if (fconf->id == cache_store_flt_id) {
cconf = fconf->conf;
if (cconf && strcmp((char *)cconf->c.name, name) == 0) {
rule->arg.act.p[0] = cconf;
return 1;
}
}
}
/* Create the filter cache config */
cconf = calloc(1, sizeof(*cconf));
if (!cconf) {
memprintf(err, "out of memory\n");
goto err;
}
cconf->flags = CACHE_FLT_F_IMPLICIT_DECL;
cconf->c.name = strdup(name);
if (!cconf->c.name) {
memprintf(err, "out of memory\n");
goto err;
}
/* register a filter to fill the cache buffer */
fconf = calloc(1, sizeof(*fconf));
if (!fconf) {
memprintf(err, "out of memory\n");
goto err;
}
fconf->id = cache_store_flt_id;
fconf->conf = cconf;
fconf->ops = &cache_ops;
LIST_APPEND(&proxy->filter_configs, &fconf->list);
rule->arg.act.p[0] = cconf;
return 1;
err:
free(cconf);
return 0;
}
enum act_parse_ret parse_cache_store(const char **args, int *orig_arg, struct proxy *proxy,
struct act_rule *rule, char **err)
{
rule->action = ACT_CUSTOM;
rule->action_ptr = http_action_store_cache;
if (!parse_cache_rule(proxy, args[*orig_arg], rule, err))
return ACT_RET_PRS_ERR;
(*orig_arg)++;
return ACT_RET_PRS_OK;
}
/* This produces a sha1 hash of the concatenation of the HTTP method,
* the first occurrence of the Host header followed by the path component
* if it begins with a slash ('/'). */
int sha1_hosturi(struct stream *s)
{
struct http_txn *txn = s->txn;
struct htx *htx = htxbuf(&s->req.buf);
struct htx_sl *sl;
struct http_hdr_ctx ctx;
struct ist uri;
blk_SHA_CTX sha1_ctx;
struct buffer *trash;
trash = get_trash_chunk();
ctx.blk = NULL;
sl = http_get_stline(htx);
uri = htx_sl_req_uri(sl); // whole uri
if (!uri.len)
return 0;
/* In HTTP/1, most URIs are seen in origin form ('/path/to/resource'),
* unless haproxy is deployed in front of an outbound cache. In HTTP/2,
* URIs are almost always sent in absolute form with their scheme. In
* this case, the scheme is almost always "https". In order to support
* sharing of cache objects between H1 and H2, we'll hash the absolute
* URI whenever known, or prepend "https://" + the Host header for
* relative URIs. The difference will only appear on absolute HTTP/1
* requests sent to an origin server, which practically is never met in
* the real world so we don't care about the ability to share the same
* key here.URIs are normalized from the absolute URI to an origin form as
* well.
*/
if (!(sl->flags & HTX_SL_F_HAS_AUTHORITY)) {
chunk_istcat(trash, ist("https://"));
if (!http_find_header(htx, ist("Host"), &ctx, 0))
return 0;
chunk_istcat(trash, ctx.value);
}
chunk_istcat(trash, uri);
/* hash everything */
blk_SHA1_Init(&sha1_ctx);
blk_SHA1_Update(&sha1_ctx, trash->area, trash->data);
blk_SHA1_Final((unsigned char *)txn->cache_hash, &sha1_ctx);
return 1;
}
/* Looks for "If-None-Match" headers in the request and compares their value
* with the one that might have been stored in the cache_entry. If any of them
* matches, a "304 Not Modified" response should be sent instead of the cached
* data.
* Although unlikely in a GET/HEAD request, the "If-None-Match: *" syntax is
* valid and should receive a "304 Not Modified" response (RFC 7234#4.3.2).
*
* If no "If-None-Match" header was found, look for an "If-Modified-Since"
* header and compare its value (date) to the one stored in the cache_entry.
* If the request's date is later than the cached one, we also send a
* "304 Not Modified" response (see RFCs 7232#3.3 and 7234#4.3.2).
*
* Returns 1 if "304 Not Modified" should be sent, 0 otherwise.
*/
static int should_send_notmodified_response(struct cache *cache, struct htx *htx,
struct cache_entry *entry)
{
int retval = 0;
struct http_hdr_ctx ctx = { .blk = NULL };
struct ist cache_entry_etag = IST_NULL;
struct buffer *etag_buffer = NULL;
int if_none_match_found = 0;
struct tm tm = {};
time_t if_modified_since = 0;
/* If we find a "If-None-Match" header in the request, rebuild the
* cache_entry's ETag in order to perform comparisons.
* There could be multiple "if-none-match" header lines. */
while (http_find_header(htx, ist("if-none-match"), &ctx, 0)) {
if_none_match_found = 1;
/* A '*' matches everything. */
if (isteq(ctx.value, ist("*")) != 0) {
retval = 1;
break;
}
/* No need to rebuild an etag if none was stored in the cache. */
if (entry->etag_length == 0)
break;
/* Rebuild the stored ETag. */
if (etag_buffer == NULL) {
etag_buffer = get_trash_chunk();
if (shctx_row_data_get(shctx_ptr(cache), block_ptr(entry),
(unsigned char*)b_orig(etag_buffer),
entry->etag_offset, entry->etag_length) == 0) {
cache_entry_etag = ist2(b_orig(etag_buffer), entry->etag_length);
} else {
/* We could not rebuild the ETag in one go, we
* won't send a "304 Not Modified" response. */
break;
}
}
if (http_compare_etags(cache_entry_etag, ctx.value) == 1) {
retval = 1;
break;
}
}
/* If the request did not contain an "If-None-Match" header, we look for
* an "If-Modified-Since" header (see RFC 7232#3.3). */
if (retval == 0 && if_none_match_found == 0) {
ctx.blk = NULL;
if (http_find_header(htx, ist("if-modified-since"), &ctx, 1)) {
if (parse_http_date(istptr(ctx.value), istlen(ctx.value), &tm)) {
if_modified_since = my_timegm(&tm);
/* We send a "304 Not Modified" response if the
* entry's last modified date is earlier than
* the one found in the "If-Modified-Since"
* header. */
retval = (entry->last_modified <= if_modified_since);
}
}
}
return retval;
}
enum act_return http_action_req_cache_use(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
struct http_txn *txn = s->txn;
struct cache_entry *res, *sec_entry = NULL;
struct cache_flt_conf *cconf = rule->arg.act.p[0];
struct cache *cache = cconf->c.cache;
struct shared_block *entry_block;
/* Ignore cache for HTTP/1.0 requests and for requests other than GET
* and HEAD */
if (!(txn->req.flags & HTTP_MSGF_VER_11) ||
(txn->meth != HTTP_METH_GET && txn->meth != HTTP_METH_HEAD))
txn->flags |= TX_CACHE_IGNORE;
http_check_request_for_cacheability(s, &s->req);
/* The request's hash has to be calculated for all requests, even POSTs
* or PUTs for instance because RFC7234 specifies that a successful
* "unsafe" method on a stored resource must invalidate it
* (see RFC7234#4.4). */
if (!sha1_hosturi(s))
return ACT_RET_CONT;
if (s->txn->flags & TX_CACHE_IGNORE)
return ACT_RET_CONT;
if (px == strm_fe(s))
_HA_ATOMIC_INC(&px->fe_counters.p.http.cache_lookups);
else
_HA_ATOMIC_INC(&px->be_counters.p.http.cache_lookups);
shctx_lock(shctx_ptr(cache));
res = entry_exist(cache, s->txn->cache_hash);
/* We must not use an entry that is not complete. */
if (res && res->complete) {
struct appctx *appctx;
entry_block = block_ptr(res);
shctx_row_inc_hot(shctx_ptr(cache), entry_block);
shctx_unlock(shctx_ptr(cache));
/* In case of Vary, we could have multiple entries with the same
* primary hash. We need to calculate the secondary hash in order
* to find the actual entry we want (if it exists). */
if (res->secondary_key_signature) {
if (!http_request_build_secondary_key(s, res->secondary_key_signature)) {
shctx_lock(shctx_ptr(cache));
sec_entry = secondary_entry_exist(cache, res,
s->txn->cache_secondary_hash);
if (sec_entry && sec_entry != res) {
/* The wrong row was added to the hot list. */
shctx_row_dec_hot(shctx_ptr(cache), entry_block);
entry_block = block_ptr(sec_entry);
shctx_row_inc_hot(shctx_ptr(cache), entry_block);
}
res = sec_entry;
shctx_unlock(shctx_ptr(cache));
}
else
res = NULL;
}
/* We looked for a valid secondary entry and could not find one,
* the request must be forwarded to the server. */
if (!res) {
shctx_lock(shctx_ptr(cache));
shctx_row_dec_hot(shctx_ptr(cache), entry_block);
shctx_unlock(shctx_ptr(cache));
return ACT_RET_CONT;
}
s->target = &http_cache_applet.obj_type;
if ((appctx = si_register_handler(&s->si[1], objt_applet(s->target)))) {
appctx->st0 = HTX_CACHE_INIT;
appctx->rule = rule;
appctx->ctx.cache.entry = res;
appctx->ctx.cache.next = NULL;
appctx->ctx.cache.sent = 0;
appctx->ctx.cache.send_notmodified =
should_send_notmodified_response(cache, htxbuf(&s->req.buf), res);
if (px == strm_fe(s))
_HA_ATOMIC_INC(&px->fe_counters.p.http.cache_hits);
else
_HA_ATOMIC_INC(&px->be_counters.p.http.cache_hits);
return ACT_RET_CONT;
} else {
shctx_lock(shctx_ptr(cache));
shctx_row_dec_hot(shctx_ptr(cache), entry_block);
shctx_unlock(shctx_ptr(cache));
return ACT_RET_YIELD;
}
}
shctx_unlock(shctx_ptr(cache));
/* Shared context does not need to be locked while we calculate the
* secondary hash. */
if (!res && cache->vary_processing_enabled) {
/* Build a complete secondary hash until the server response
* tells us which fields should be kept (if any). */
http_request_prebuild_full_secondary_key(s);
}
return ACT_RET_CONT;
}
enum act_parse_ret parse_cache_use(const char **args, int *orig_arg, struct proxy *proxy,
struct act_rule *rule, char **err)
{
rule->action = ACT_CUSTOM;
rule->action_ptr = http_action_req_cache_use;
if (!parse_cache_rule(proxy, args[*orig_arg], rule, err))
return ACT_RET_PRS_ERR;
(*orig_arg)++;
return ACT_RET_PRS_OK;
}
int cfg_parse_cache(const char *file, int linenum, char **args, int kwm)
{
int err_code = 0;
if (strcmp(args[0], "cache") == 0) { /* new cache section */
if (!*args[1]) {
ha_alert("parsing [%s:%d] : '%s' expects a <name> argument\n",
file, linenum, args[0]);
err_code |= ERR_ALERT | ERR_ABORT;
goto out;
}
if (alertif_too_many_args(1, file, linenum, args, &err_code)) {
err_code |= ERR_ABORT;
goto out;
}
if (tmp_cache_config == NULL) {
struct cache *cache_config;
tmp_cache_config = calloc(1, sizeof(*tmp_cache_config));
if (!tmp_cache_config) {
ha_alert("parsing [%s:%d]: out of memory.\n", file, linenum);
err_code |= ERR_ALERT | ERR_ABORT;
goto out;
}
strlcpy2(tmp_cache_config->id, args[1], 33);
if (strlen(args[1]) > 32) {
ha_warning("parsing [%s:%d]: cache name is limited to 32 characters, truncate to '%s'.\n",
file, linenum, tmp_cache_config->id);
err_code |= ERR_WARN;
}
list_for_each_entry(cache_config, &caches_config, list) {
if (strcmp(tmp_cache_config->id, cache_config->id) == 0) {
ha_alert("parsing [%s:%d]: Duplicate cache name '%s'.\n",
file, linenum, tmp_cache_config->id);
err_code |= ERR_ALERT | ERR_ABORT;
goto out;
}
}
tmp_cache_config->maxage = 60;
tmp_cache_config->maxblocks = 0;
tmp_cache_config->maxobjsz = 0;
tmp_cache_config->max_secondary_entries = DEFAULT_MAX_SECONDARY_ENTRY;
}
} else if (strcmp(args[0], "total-max-size") == 0) {
unsigned long int maxsize;
char *err;
if (alertif_too_many_args(1, file, linenum, args, &err_code)) {
err_code |= ERR_ABORT;
goto out;
}
maxsize = strtoul(args[1], &err, 10);
if (err == args[1] || *err != '\0') {
ha_warning("parsing [%s:%d]: total-max-size wrong value '%s'\n",
file, linenum, args[1]);
err_code |= ERR_ABORT;
goto out;
}
if (maxsize > (UINT_MAX >> 20)) {
ha_warning("parsing [%s:%d]: \"total-max-size\" (%s) must not be greater than %u\n",
file, linenum, args[1], UINT_MAX >> 20);
err_code |= ERR_ABORT;
goto out;
}
/* size in megabytes */
maxsize *= 1024 * 1024 / CACHE_BLOCKSIZE;
tmp_cache_config->maxblocks = maxsize;
} else if (strcmp(args[0], "max-age") == 0) {
if (alertif_too_many_args(1, file, linenum, args, &err_code)) {
err_code |= ERR_ABORT;
goto out;
}
if (!*args[1]) {
ha_warning("parsing [%s:%d]: '%s' expects an age parameter in seconds.\n",
file, linenum, args[0]);
err_code |= ERR_WARN;
}
tmp_cache_config->maxage = atoi(args[1]);
} else if (strcmp(args[0], "max-object-size") == 0) {
unsigned int maxobjsz;
char *err;
if (alertif_too_many_args(1, file, linenum, args, &err_code)) {
err_code |= ERR_ABORT;
goto out;
}
if (!*args[1]) {
ha_warning("parsing [%s:%d]: '%s' expects a maximum file size parameter in bytes.\n",
file, linenum, args[0]);
err_code |= ERR_WARN;
}
maxobjsz = strtoul(args[1], &err, 10);
if (err == args[1] || *err != '\0') {
ha_warning("parsing [%s:%d]: max-object-size wrong value '%s'\n",
file, linenum, args[1]);
err_code |= ERR_ABORT;
goto out;
}
tmp_cache_config->maxobjsz = maxobjsz;
} else if (strcmp(args[0], "process-vary") == 0) {
if (alertif_too_many_args(1, file, linenum, args, &err_code)) {
err_code |= ERR_ABORT;
goto out;
}
if (!*args[1]) {
ha_warning("parsing [%s:%d]: '%s' expects \"on\" or \"off\" (enable or disable vary processing).\n",
file, linenum, args[0]);
err_code |= ERR_WARN;
}
if (strcmp(args[1], "on") == 0)
tmp_cache_config->vary_processing_enabled = 1;
else if (strcmp(args[1], "off") == 0)
tmp_cache_config->vary_processing_enabled = 0;
else {
ha_warning("parsing [%s:%d]: '%s' expects \"on\" or \"off\" (enable or disable vary processing).\n",
file, linenum, args[0]);
err_code |= ERR_WARN;
}
} else if (strcmp(args[0], "max-secondary-entries") == 0) {
unsigned int max_sec_entries;
char *err;
if (alertif_too_many_args(1, file, linenum, args, &err_code)) {
err_code |= ERR_ABORT;
goto out;
}
if (!*args[1]) {
ha_warning("parsing [%s:%d]: '%s' expects a strictly positive number.\n",
file, linenum, args[0]);
err_code |= ERR_WARN;
}
max_sec_entries = strtoul(args[1], &err, 10);
if (err == args[1] || *err != '\0' || max_sec_entries == 0) {
ha_warning("parsing [%s:%d]: max-secondary-entries wrong value '%s'\n",
file, linenum, args[1]);
err_code |= ERR_ABORT;
goto out;
}
tmp_cache_config->max_secondary_entries = max_sec_entries;
}
else if (*args[0] != 0) {
ha_alert("parsing [%s:%d] : unknown keyword '%s' in 'cache' section\n", file, linenum, args[0]);
err_code |= ERR_ALERT | ERR_FATAL;
goto out;
}
out:
return err_code;
}
/* once the cache section is parsed */
int cfg_post_parse_section_cache()
{
int err_code = 0;
if (tmp_cache_config) {
if (tmp_cache_config->maxblocks <= 0) {
ha_alert("Size not specified for cache '%s'\n", tmp_cache_config->id);
err_code |= ERR_FATAL | ERR_ALERT;
goto out;
}
if (!tmp_cache_config->maxobjsz) {
/* Default max. file size is a 256th of the cache size. */
tmp_cache_config->maxobjsz =
(tmp_cache_config->maxblocks * CACHE_BLOCKSIZE) >> 8;
}
else if (tmp_cache_config->maxobjsz > tmp_cache_config->maxblocks * CACHE_BLOCKSIZE / 2) {
ha_alert("\"max-object-size\" is limited to an half of \"total-max-size\" => %u\n", tmp_cache_config->maxblocks * CACHE_BLOCKSIZE / 2);
err_code |= ERR_FATAL | ERR_ALERT;
goto out;
}
/* add to the list of cache to init and reinit tmp_cache_config
* for next cache section, if any.
*/
LIST_APPEND(&caches_config, &tmp_cache_config->list);
tmp_cache_config = NULL;
return err_code;
}
out:
ha_free(&tmp_cache_config);
return err_code;
}
int post_check_cache()
{
struct proxy *px;
struct cache *back, *cache_config, *cache;
struct shared_context *shctx;
int ret_shctx;
int err_code = ERR_NONE;
list_for_each_entry_safe(cache_config, back, &caches_config, list) {
ret_shctx = shctx_init(&shctx, cache_config->maxblocks, CACHE_BLOCKSIZE,
cache_config->maxobjsz, sizeof(struct cache), 1);
if (ret_shctx <= 0) {
if (ret_shctx == SHCTX_E_INIT_LOCK)
ha_alert("Unable to initialize the lock for the cache.\n");
else
ha_alert("Unable to allocate cache.\n");
err_code |= ERR_FATAL | ERR_ALERT;
goto out;
}
shctx->free_block = cache_free_blocks;
/* the cache structure is stored in the shctx and added to the
* caches list, we can remove the entry from the caches_config
* list */
memcpy(shctx->data, cache_config, sizeof(struct cache));
cache = (struct cache *)shctx->data;
cache->entries = EB_ROOT;
LIST_APPEND(&caches, &cache->list);
LIST_DELETE(&cache_config->list);
free(cache_config);
/* Find all references for this cache in the existing filters
* (over all proxies) and reference it in matching filters.
*/
for (px = proxies_list; px; px = px->next) {
struct flt_conf *fconf;
struct cache_flt_conf *cconf;
list_for_each_entry(fconf, &px->filter_configs, list) {
if (fconf->id != cache_store_flt_id)
continue;
cconf = fconf->conf;
if (strcmp(cache->id, cconf->c.name) == 0) {
free(cconf->c.name);
cconf->flags |= CACHE_FLT_INIT;
cconf->c.cache = cache;
break;
}
}
}
}
out:
return err_code;
}
struct flt_ops cache_ops = {
.init = cache_store_init,
.check = cache_store_check,
.deinit = cache_store_deinit,
/* Handle stream init/deinit */
.attach = cache_store_strm_init,
.detach = cache_store_strm_deinit,
/* Handle channels activity */
.channel_post_analyze = cache_store_post_analyze,
/* Filter HTTP requests and responses */
.http_headers = cache_store_http_headers,
.http_payload = cache_store_http_payload,
.http_end = cache_store_http_end,
};
#define CHECK_ENCODING(str, encoding_name, encoding_value) \
({ \
int retval = 0; \
if (istmatch(str, (struct ist){ .ptr = encoding_name+1, .len = sizeof(encoding_name) - 2 })) { \
retval = encoding_value; \
encoding = istadv(encoding, sizeof(encoding_name) - 2); \
} \
(retval); \
})
/*
* Parse the encoding <encoding> and try to match the encoding part upon an
* encoding list of explicitly supported encodings (which all have a specific
* bit in an encoding bitmap). If a weight is included in the value, find out if
* it is null or not. The bit value will be set in the <encoding_value>
* parameter and the <has_null_weight> will be set to 1 if the weight is strictly
* 0, 1 otherwise.
* The encodings list is extracted from
* https://www.iana.org/assignments/http-parameters/http-parameters.xhtml.
* Returns 0 in case of success and -1 in case of error.
*/
static int parse_encoding_value(struct ist encoding, unsigned int *encoding_value,
unsigned int *has_null_weight)
{
int retval = 0;
if (!encoding_value)
return -1;
if (!istlen(encoding))
return -1; /* Invalid encoding */
*encoding_value = 0;
if (has_null_weight)
*has_null_weight = 0;
switch (*encoding.ptr) {
case 'a':
encoding = istnext(encoding);
*encoding_value = CHECK_ENCODING(encoding, "aes128gcm", VARY_ENCODING_AES128GCM);
break;
case 'b':
encoding = istnext(encoding);
*encoding_value = CHECK_ENCODING(encoding, "br", VARY_ENCODING_BR);
break;
case 'c':
encoding = istnext(encoding);
*encoding_value = CHECK_ENCODING(encoding, "compress", VARY_ENCODING_COMPRESS);
break;
case 'd':
encoding = istnext(encoding);
*encoding_value = CHECK_ENCODING(encoding, "deflate", VARY_ENCODING_DEFLATE);
break;
case 'e':
encoding = istnext(encoding);
*encoding_value = CHECK_ENCODING(encoding, "exi", VARY_ENCODING_EXI);
break;
case 'g':
encoding = istnext(encoding);
*encoding_value = CHECK_ENCODING(encoding, "gzip", VARY_ENCODING_GZIP);
break;
case 'i':
encoding = istnext(encoding);
*encoding_value = CHECK_ENCODING(encoding, "identity", VARY_ENCODING_IDENTITY);
break;
case 'p':
encoding = istnext(encoding);
*encoding_value = CHECK_ENCODING(encoding, "pack200-gzip", VARY_ENCODING_PACK200_GZIP);
break;
case 'x':
encoding = istnext(encoding);
*encoding_value = CHECK_ENCODING(encoding, "x-gzip", VARY_ENCODING_GZIP);
if (!*encoding_value)
*encoding_value = CHECK_ENCODING(encoding, "x-compress", VARY_ENCODING_COMPRESS);
break;
case 'z':
encoding = istnext(encoding);
*encoding_value = CHECK_ENCODING(encoding, "zstd", VARY_ENCODING_ZSTD);
break;
case '*':
encoding = istnext(encoding);
*encoding_value = VARY_ENCODING_STAR;
break;
default:
retval = -1; /* Unmanaged encoding */
break;
}
/* Process the optional weight part of the encoding. */
if (*encoding_value) {
encoding = http_trim_leading_spht(encoding);
if (istlen(encoding)) {
if (*encoding.ptr != ';')
return -1;
if (has_null_weight) {
encoding = istnext(encoding);
encoding = http_trim_leading_spht(encoding);
*has_null_weight = isteq(encoding, ist("q=0"));
}
}
}
return retval;
}
#define ACCEPT_ENCODING_MAX_ENTRIES 16
/*
* Build a bitmap of the accept-encoding header.
*
* The bitmap is built by matching every sub-part of the accept-encoding value
* with a subset of explicitly supported encodings, which all have their own bit
* in the bitmap. This bitmap will be used to determine if a response can be
* served to a client (that is if it has an encoding that is accepted by the
* client). Any unknown encodings will be indicated by the VARY_ENCODING_OTHER
* bit.
*
* Returns 0 in case of success and -1 in case of error.
*/
static int accept_encoding_normalizer(struct htx *htx, struct ist hdr_name,
char *buf, unsigned int *buf_len)
{
size_t count = 0;
uint32_t encoding_bitmap = 0;
unsigned int encoding_bmp_bl = -1;
struct http_hdr_ctx ctx = { .blk = NULL };
unsigned int encoding_value;
unsigned int rejected_encoding;
/* A user agent always accepts an unencoded value unless it explicitly
* refuses it through an "identity;q=0" accept-encoding value. */
encoding_bitmap |= VARY_ENCODING_IDENTITY;
/* Iterate over all the ACCEPT_ENCODING_MAX_ENTRIES first accept-encoding
* values that might span acrosse multiple accept-encoding headers. */
while (http_find_header(htx, hdr_name, &ctx, 0) && count < ACCEPT_ENCODING_MAX_ENTRIES) {
count++;
/* As per RFC7231#5.3.4, "An Accept-Encoding header field with a
* combined field-value that is empty implies that the user agent
* does not want any content-coding in response."
*
* We must (and did) count the existence of this empty header to not
* hit the `count == 0` case below, but must ignore the value to not
* include VARY_ENCODING_OTHER into the final bitmap.
*/
if (istlen(ctx.value) == 0)
continue;
/* Turn accept-encoding value to lower case */
ist2bin_lc(istptr(ctx.value), ctx.value);
/* Try to identify a known encoding and to manage null weights. */
if (!parse_encoding_value(ctx.value, &encoding_value, &rejected_encoding)) {
if (rejected_encoding)
encoding_bmp_bl &= ~encoding_value;
else
encoding_bitmap |= encoding_value;
}
else {
/* Unknown encoding */
encoding_bitmap |= VARY_ENCODING_OTHER;
}
}
/* If a "*" was found in the accepted encodings (without a null weight),
* all the encoding are accepted except the ones explicitly rejected. */
if (encoding_bitmap & VARY_ENCODING_STAR) {
encoding_bitmap = ~0;
}
/* Clear explicitly rejected encodings from the bitmap */
encoding_bitmap &= encoding_bmp_bl;
/* As per RFC7231#5.3.4, "If no Accept-Encoding field is in the request,
* any content-coding is considered acceptable by the user agent". */
if (count == 0)
encoding_bitmap = ~0;
/* A request with more than ACCEPT_ENCODING_MAX_ENTRIES accepted
* encodings might be illegitimate so we will not use it. */
if (count == ACCEPT_ENCODING_MAX_ENTRIES)
return -1;
write_u32(buf, encoding_bitmap);
*buf_len = sizeof(encoding_bitmap);
/* This function fills the hash buffer correctly even if no header was
* found, hence the 0 return value (success). */
return 0;
}
#undef ACCEPT_ENCODING_MAX_ENTRIES
/*
* Normalizer used by default for the Referer header. It only
* calculates a simple crc of the whole value.
* Only the first occurrence of the header will be taken into account in the
* hash.
* Returns 0 in case of success, 1 if the hash buffer should be filled with 0s
* and -1 in case of error.
*/
static int default_normalizer(struct htx *htx, struct ist hdr_name,
char *buf, unsigned int *buf_len)
{
int retval = 1;
struct http_hdr_ctx ctx = { .blk = NULL };
if (http_find_header(htx, hdr_name, &ctx, 1)) {
retval = 0;
write_u32(buf, hash_crc32(istptr(ctx.value), istlen(ctx.value)));
*buf_len = sizeof(int);
}
return retval;
}
/*
* Accept-Encoding bitmap comparison function.
* Returns 0 if the bitmaps are compatible.
*/
static int accept_encoding_bitmap_cmp(const void *ref, const void *new, unsigned int len)
{
uint32_t ref_bitmap = read_u32(ref);
uint32_t new_bitmap = read_u32(new);
if (!(ref_bitmap & VARY_ENCODING_OTHER)) {
/* All the bits set in the reference bitmap correspond to the
* stored response' encoding and should all be set in the new
* encoding bitmap in order for the client to be able to manage
* the response.
*
* If this is the case the cached response has encodings that
* are accepted by the client. It can be served directly by
* the cache (as far as the accept-encoding part is concerned).
*/
return (ref_bitmap & new_bitmap) != ref_bitmap;
}
else {
return 1;
}
}
/*
* Pre-calculate the hashes of all the supported headers (in our Vary
* implementation) of a given request. We have to calculate all the hashes
* in advance because the actual Vary signature won't be known until the first
* response.
* Only the first occurrence of every header will be taken into account in the
* hash.
* If the header is not present, the hash portion of the given header will be
* filled with zeros.
* Returns 0 in case of success.
*/
static int http_request_prebuild_full_secondary_key(struct stream *s)
{
/* The fake signature (second parameter) will ensure that every part of the
* secondary key is calculated. */
return http_request_build_secondary_key(s, ~0);
}
/*
* Calculate the secondary key for a request for which we already have a known
* vary signature. The key is made by aggregating hashes calculated for every
* header mentioned in the vary signature.
* Only the first occurrence of every header will be taken into account in the
* hash.
* If the header is not present, the hash portion of the given header will be
* filled with zeros.
* Returns 0 in case of success.
*/
static int http_request_build_secondary_key(struct stream *s, int vary_signature)
{
struct http_txn *txn = s->txn;
struct htx *htx = htxbuf(&s->req.buf);
unsigned int idx;
const struct vary_hashing_information *info = NULL;
unsigned int hash_length = 0;
int retval = 0;
int offset = 0;
for (idx = 0; idx < sizeof(vary_information)/sizeof(*vary_information) && retval >= 0; ++idx) {
info = &vary_information[idx];
/* The normalizing functions will be in charge of getting the
* header values from the htx. This way they can manage multiple
* occurrences of their processed header. */
if ((vary_signature & info->value) && info->norm_fn != NULL &&
!(retval = info->norm_fn(htx, info->hdr_name, &txn->cache_secondary_hash[offset], &hash_length))) {
offset += hash_length;
}
else {
/* Fill hash with 0s. */
hash_length = info->hash_length;
memset(&txn->cache_secondary_hash[offset], 0, hash_length);
offset += hash_length;
}
}
if (retval >= 0)
txn->flags |= TX_CACHE_HAS_SEC_KEY;
return (retval < 0);
}
/*
* Build the actual secondary key of a given request out of the prebuilt key and
* the actual vary signature (extracted from the response).
* Returns 0 in case of success.
*/
static int http_request_reduce_secondary_key(unsigned int vary_signature,
char prebuilt_key[HTTP_CACHE_SEC_KEY_LEN])
{
int offset = 0;
int global_offset = 0;
int vary_info_count = 0;
int keep = 0;
unsigned int vary_idx;
const struct vary_hashing_information *vary_info;
vary_info_count = sizeof(vary_information)/sizeof(*vary_information);
for (vary_idx = 0; vary_idx < vary_info_count; ++vary_idx) {
vary_info = &vary_information[vary_idx];
keep = (vary_signature & vary_info->value) ? 0xff : 0;
for (offset = 0; offset < vary_info->hash_length; ++offset,++global_offset) {
prebuilt_key[global_offset] &= keep;
}
}
return 0;
}
static int
parse_cache_flt(char **args, int *cur_arg, struct proxy *px,
struct flt_conf *fconf, char **err, void *private)
{
struct flt_conf *f, *back;
struct cache_flt_conf *cconf = NULL;
char *name = NULL;
int pos = *cur_arg;
/* Get the cache filter name. <pos> point on "cache" keyword */
if (!*args[pos + 1]) {
memprintf(err, "%s : expects a <name> argument", args[pos]);
goto error;
}
name = strdup(args[pos + 1]);
if (!name) {
memprintf(err, "%s '%s' : out of memory", args[pos], args[pos + 1]);
goto error;
}
pos += 2;
/* Check if an implicit filter with the same name already exists. If so,
* we remove the implicit filter to use the explicit one. */
list_for_each_entry_safe(f, back, &px->filter_configs, list) {
if (f->id != cache_store_flt_id)
continue;
cconf = f->conf;
if (strcmp(name, cconf->c.name) != 0) {
cconf = NULL;
continue;
}
if (!(cconf->flags & CACHE_FLT_F_IMPLICIT_DECL)) {
cconf = NULL;
memprintf(err, "%s: multiple explicit declarations of the cache filter '%s'",
px->id, name);
goto error;
}
/* Remove the implicit filter. <cconf> is kept for the explicit one */
LIST_DELETE(&f->list);
free(f);
free(name);
break;
}
/* No implicit cache filter found, create configuration for the explicit one */
if (!cconf) {
cconf = calloc(1, sizeof(*cconf));
if (!cconf) {
memprintf(err, "%s: out of memory", args[*cur_arg]);
goto error;
}
cconf->c.name = name;
}
cconf->flags = 0;
fconf->id = cache_store_flt_id;
fconf->conf = cconf;
fconf->ops = &cache_ops;
*cur_arg = pos;
return 0;
error:
free(name);
free(cconf);
return -1;
}
static int cli_parse_show_cache(char **args, char *payload, struct appctx *appctx, void *private)
{
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
return 0;
}
static int cli_io_handler_show_cache(struct appctx *appctx)
{
struct cache* cache = appctx->ctx.cli.p0;
struct stream_interface *si = appctx->owner;
if (cache == NULL) {
cache = LIST_ELEM((caches).n, typeof(struct cache *), list);
}
list_for_each_entry_from(cache, &caches, list) {
struct eb32_node *node = NULL;
unsigned int next_key;
struct cache_entry *entry;
unsigned int i;
next_key = appctx->ctx.cli.i0;
if (!next_key) {
chunk_printf(&trash, "%p: %s (shctx:%p, available blocks:%d)\n", cache, cache->id, shctx_ptr(cache), shctx_ptr(cache)->nbav);
if (ci_putchk(si_ic(si), &trash) == -1) {
si_rx_room_blk(si);
return 0;
}
}
appctx->ctx.cli.p0 = cache;
while (1) {
shctx_lock(shctx_ptr(cache));
if (!node)
node = eb32_lookup_ge(&cache->entries, next_key);
if (!node) {
shctx_unlock(shctx_ptr(cache));
appctx->ctx.cli.i0 = 0;
break;
}
entry = container_of(node, struct cache_entry, eb);
chunk_printf(&trash, "%p hash:%u vary:0x", entry, read_u32(entry->hash));
for (i = 0; i < HTTP_CACHE_SEC_KEY_LEN; ++i)
chunk_appendf(&trash, "%02x", (unsigned char)entry->secondary_key[i]);
chunk_appendf(&trash, " size:%u (%u blocks), refcount:%u, expire:%d\n", block_ptr(entry)->len, block_ptr(entry)->block_count, block_ptr(entry)->refcount, entry->expire - (int)now.tv_sec);
next_key = node->key + 1;
appctx->ctx.cli.i0 = next_key;
shctx_unlock(shctx_ptr(cache));
if (ci_putchk(si_ic(si), &trash) == -1) {
si_rx_room_blk(si);
return 0;
}
}
}
return 1;
}
/*
* boolean, returns true if response was built out of a cache entry.
*/
static int
smp_fetch_res_cache_hit(const struct arg *args, struct sample *smp,
const char *kw, void *private)
{
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = (smp->strm ? (smp->strm->target == &http_cache_applet.obj_type) : 0);
return 1;
}
/*
* string, returns cache name (if response came from a cache).
*/
static int
smp_fetch_res_cache_name(const struct arg *args, struct sample *smp,
const char *kw, void *private)
{
struct appctx *appctx = NULL;
struct cache_flt_conf *cconf = NULL;
struct cache *cache = NULL;
if (!smp->strm || smp->strm->target != &http_cache_applet.obj_type)
return 0;
/* Get appctx from the stream_interface. */
appctx = si_appctx(&smp->strm->si[1]);
if (appctx && appctx->rule) {
cconf = appctx->rule->arg.act.p[0];
if (cconf) {
cache = cconf->c.cache;
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
smp->data.u.str.area = cache->id;
smp->data.u.str.data = strlen(cache->id);
return 1;
}
}
return 0;
}
/* Declare the filter parser for "cache" keyword */
static struct flt_kw_list filter_kws = { "CACHE", { }, {
{ "cache", parse_cache_flt, NULL },
{ NULL, NULL, NULL },
}
};
INITCALL1(STG_REGISTER, flt_register_keywords, &filter_kws);
static struct cli_kw_list cli_kws = {{},{
{ { "show", "cache", NULL }, "show cache : show cache status", cli_parse_show_cache, cli_io_handler_show_cache, NULL, NULL },
{{},}
}};
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
static struct action_kw_list http_res_actions = {
.kw = {
{ "cache-store", parse_cache_store },
{ NULL, NULL }
}
};
INITCALL1(STG_REGISTER, http_res_keywords_register, &http_res_actions);
static struct action_kw_list http_req_actions = {
.kw = {
{ "cache-use", parse_cache_use },
{ NULL, NULL }
}
};
INITCALL1(STG_REGISTER, http_req_keywords_register, &http_req_actions);
struct applet http_cache_applet = {
.obj_type = OBJ_TYPE_APPLET,
.name = "<CACHE>", /* used for logging */
.fct = http_cache_io_handler,
.release = http_cache_applet_release,
};
/* config parsers for this section */
REGISTER_CONFIG_SECTION("cache", cfg_parse_cache, cfg_post_parse_section_cache);
REGISTER_POST_CHECK(post_check_cache);
/* Note: must not be declared <const> as its list will be overwritten */
static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, {
{ "res.cache_hit", smp_fetch_res_cache_hit, 0, NULL, SMP_T_BOOL, SMP_USE_HRSHP, SMP_VAL_RESPONSE },
{ "res.cache_name", smp_fetch_res_cache_name, 0, NULL, SMP_T_STR, SMP_USE_HRSHP, SMP_VAL_RESPONSE },
{ /* END */ },
}
};
INITCALL1(STG_REGISTER, sample_register_fetches, &sample_fetch_keywords);