blob: 0a2edf12d1b33bf07fec0ea7792b1934d3cc61af [file] [log] [blame]
/*
* Conn-stream management functions
*
* Copyright 2021 Christopher Faulet <cfaulet@haproxy.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <haproxy/api.h>
#include <haproxy/applet.h>
#include <haproxy/connection.h>
#include <haproxy/conn_stream.h>
#include <haproxy/cs_utils.h>
#include <haproxy/pool.h>
#include <haproxy/stream_interface.h>
DECLARE_POOL(pool_head_connstream, "conn_stream", sizeof(struct conn_stream));
DECLARE_POOL(pool_head_cs_endpoint, "cs_endpoint", sizeof(struct cs_endpoint));
/* functions used by default on a detached conn-stream */
static void cs_app_shutr(struct conn_stream *cs);
static void cs_app_shutw(struct conn_stream *cs);
static void cs_app_chk_rcv(struct conn_stream *cs);
static void cs_app_chk_snd(struct conn_stream *cs);
/* functions used on a mux-based conn-stream */
static void cs_app_shutr_conn(struct conn_stream *cs);
static void cs_app_shutw_conn(struct conn_stream *cs);
static void cs_app_chk_rcv_conn(struct conn_stream *cs);
static void cs_app_chk_snd_conn(struct conn_stream *cs);
/* functions used on an applet-based conn-stream */
static void cs_app_shutr_applet(struct conn_stream *cs);
static void cs_app_shutw_applet(struct conn_stream *cs);
static void cs_app_chk_rcv_applet(struct conn_stream *cs);
static void cs_app_chk_snd_applet(struct conn_stream *cs);
/* conn-stream operations for connections */
struct cs_app_ops cs_app_conn_ops = {
.chk_rcv = cs_app_chk_rcv_conn,
.chk_snd = cs_app_chk_snd_conn,
.shutr = cs_app_shutr_conn,
.shutw = cs_app_shutw_conn,
};
/* conn-stream operations for embedded tasks */
struct cs_app_ops cs_app_embedded_ops = {
.chk_rcv = cs_app_chk_rcv,
.chk_snd = cs_app_chk_snd,
.shutr = cs_app_shutr,
.shutw = cs_app_shutw,
};
/* conn-stream operations for connections */
struct cs_app_ops cs_app_applet_ops = {
.chk_rcv = cs_app_chk_rcv_applet,
.chk_snd = cs_app_chk_snd_applet,
.shutr = cs_app_shutr_applet,
.shutw = cs_app_shutw_applet,
};
void cs_endpoint_init(struct cs_endpoint *endp)
{
endp->target = NULL;
endp->ctx = NULL;
endp->flags = CS_EP_NONE;
}
struct cs_endpoint *cs_endpoint_new()
{
struct cs_endpoint *endp;
endp = pool_alloc(pool_head_cs_endpoint);
if (unlikely(!endp))
return NULL;
cs_endpoint_init(endp);
return endp;
}
void cs_endpoint_free(struct cs_endpoint *endp)
{
pool_free(pool_head_cs_endpoint, endp);
}
/* Tries to allocate a new conn_stream and initialize its main fields. On
* failure, nothing is allocated and NULL is returned.
*/
struct conn_stream *cs_new(struct cs_endpoint *endp)
{
struct conn_stream *cs;
cs = pool_alloc(pool_head_connstream);
if (unlikely(!cs))
goto alloc_error;
cs->obj_type = OBJ_TYPE_CS;
cs->flags = CS_FL_NONE;
cs->state = CS_ST_INI;
cs->hcto = TICK_ETERNITY;
cs->app = NULL;
cs->si = NULL;
cs->data_cb = NULL;
cs->src = NULL;
cs->dst = NULL;
cs->wait_event.tasklet = NULL;
cs->wait_event.events = 0;
if (!endp) {
endp = cs_endpoint_new();
if (unlikely(!endp))
goto alloc_error;
}
cs->endp = endp;
return cs;
alloc_error:
pool_free(pool_head_connstream, cs);
return NULL;
}
struct conn_stream *cs_new_from_mux(struct cs_endpoint *endp, struct session *sess, struct buffer *input)
{
struct conn_stream *cs;
cs = cs_new(endp);
if (unlikely(!cs))
return NULL;
if (unlikely(!stream_new(sess, cs, input))) {
pool_free(pool_head_connstream, cs);
cs = NULL;
}
endp->flags &= ~CS_EP_ORPHAN;
return cs;
}
struct conn_stream *cs_new_from_applet(struct cs_endpoint *endp, struct session *sess, struct buffer *input)
{
struct conn_stream *cs;
struct appctx *appctx = endp->ctx;
cs = cs_new(endp);
if (unlikely(!cs))
return NULL;
appctx->owner = cs;
if (unlikely(!stream_new(sess, cs, input))) {
pool_free(pool_head_connstream, cs);
cs = NULL;
}
endp->flags &= ~CS_EP_ORPHAN;
return cs;
}
struct conn_stream *cs_new_from_strm(struct stream *strm, unsigned int flags)
{
struct conn_stream *cs;
cs = cs_new(NULL);
if (unlikely(!cs))
return NULL;
cs->flags |= flags;
cs->endp->flags |= CS_EP_DETACHED;
cs->si = si_new(cs);
if (unlikely(!cs->si)) {
cs_free(cs);
return NULL;
}
cs->app = &strm->obj_type;
cs->ops = &cs_app_embedded_ops;
cs->data_cb = NULL;
return cs;
}
struct conn_stream *cs_new_from_check(struct check *check, unsigned int flags)
{
struct conn_stream *cs;
cs = cs_new(NULL);
if (unlikely(!cs))
return NULL;
cs->flags |= flags;
cs->endp->flags |= CS_EP_DETACHED;
cs->app = &check->obj_type;
cs->data_cb = &check_conn_cb;
return cs;
}
/* Releases a conn_stream previously allocated by cs_new(), as well as any
* buffer it would still hold.
*/
void cs_free(struct conn_stream *cs)
{
si_free(cs->si);
sockaddr_free(&cs->src);
sockaddr_free(&cs->dst);
if (cs->endp) {
BUG_ON(!(cs->endp->flags & CS_EP_DETACHED));
cs_endpoint_free(cs->endp);
}
if (cs->wait_event.tasklet)
tasklet_free(cs->wait_event.tasklet);
pool_free(pool_head_connstream, cs);
}
/* Attaches a conn_stream to an mux endpoint and sets the endpoint ctx */
int cs_attach_mux(struct conn_stream *cs, void *target, void *ctx)
{
struct connection *conn = ctx;
cs->endp->target = target;
cs->endp->ctx = ctx;
cs->endp->flags |= CS_EP_T_MUX;
cs->endp->flags &= ~CS_EP_DETACHED;
if (!conn->ctx)
conn->ctx = cs;
if (cs_strm(cs)) {
if (!cs->wait_event.tasklet) {
cs->wait_event.tasklet = tasklet_new();
if (!cs->wait_event.tasklet)
return -1;
cs->wait_event.tasklet->process = cs_conn_io_cb;
cs->wait_event.tasklet->context = cs;
cs->wait_event.events = 0;
}
cs->ops = &cs_app_conn_ops;
cs->data_cb = &cs_data_conn_cb;
}
else if (cs_check(cs))
cs->data_cb = &check_conn_cb;
return 0;
}
/* Attaches a conn_stream to an applet endpoint and sets the endpoint ctx */
void cs_attach_applet(struct conn_stream *cs, void *target, void *ctx)
{
struct appctx *appctx = target;
cs->endp->target = target;
cs->endp->ctx = ctx;
cs->endp->flags |= CS_EP_T_APPLET;
cs->endp->flags &= ~CS_EP_DETACHED;
appctx->owner = cs;
if (cs_strm(cs)) {
cs->ops = &cs_app_applet_ops;
cs->data_cb = &cs_data_applet_cb;
}
}
/* Attaches a conn_stream to a app layer and sets the relevant callbacks */
int cs_attach_strm(struct conn_stream *cs, struct stream *strm)
{
cs->app = &strm->obj_type;
cs->si = si_new(cs);
if (unlikely(!cs->si))
return -1;
cs->endp->flags &= ~CS_EP_ORPHAN;
if (cs->endp->flags & CS_EP_T_MUX) {
cs->wait_event.tasklet = tasklet_new();
if (!cs->wait_event.tasklet) {
si_free(cs->si);
cs->si = NULL;
return -1;
}
cs->wait_event.tasklet->process = cs_conn_io_cb;
cs->wait_event.tasklet->context = cs;
cs->wait_event.events = 0;
cs->ops = &cs_app_conn_ops;
cs->data_cb = &cs_data_conn_cb;
}
else if (cs->endp->flags & CS_EP_T_APPLET) {
cs->ops = &cs_app_applet_ops;
cs->data_cb = &cs_data_applet_cb;
}
else {
cs->ops = &cs_app_embedded_ops;
cs->data_cb = NULL;
}
return 0;
}
/* Detach the conn_stream from the endpoint, if any. For a connecrion, if a mux
* owns the connection ->detach() callback is called. Otherwise, it means the
* conn-stream owns the connection. In this case the connection is closed and
* released. For an applet, the appctx is released. At the end, the conn-stream
* is not released but some fields a reset.
*/
void cs_detach_endp(struct conn_stream *cs)
{
if (!cs->endp)
goto reset_cs;
if (cs->endp->flags & CS_EP_T_MUX) {
struct connection *conn = cs_conn(cs);
if (conn->mux) {
/* TODO: handle unsubscribe for healthchecks too */
cs->endp->flags |= CS_EP_ORPHAN;
if (cs->wait_event.events != 0)
conn->mux->unsubscribe(cs, cs->wait_event.events, &cs->wait_event);
conn->mux->detach(cs);
cs->endp = NULL;
}
else {
/* It's too early to have a mux, let's just destroy
* the connection
*/
conn_stop_tracking(conn);
conn_full_close(conn);
if (conn->destroy_cb)
conn->destroy_cb(conn);
conn_free(conn);
}
}
else if (cs->endp->flags & CS_EP_T_APPLET) {
struct appctx *appctx = cs_appctx(cs);
cs->endp->flags |= CS_EP_ORPHAN;
cs_applet_release(cs);
appctx_free(appctx);
cs->endp = NULL;
}
if (cs->endp) {
/* the cs is the only one one the endpoint */
cs_endpoint_init(cs->endp);
cs->endp->flags |= CS_EP_DETACHED;
}
reset_cs:
/* FIXME: Rest CS for now but must be reviewed. CS flags are only
* connection related for now but this will evolved
*/
cs->flags &= CS_FL_ISBACK;
if (cs->si)
cs->ops = &cs_app_embedded_ops;
cs->data_cb = NULL;
if (cs->app == NULL)
cs_free(cs);
}
void cs_detach_app(struct conn_stream *cs)
{
si_free(cs->si);
cs->app = NULL;
cs->si = NULL;
cs->data_cb = NULL;
sockaddr_free(&cs->src);
sockaddr_free(&cs->dst);
if (cs->wait_event.tasklet)
tasklet_free(cs->wait_event.tasklet);
cs->wait_event.tasklet = NULL;
cs->wait_event.events = 0;
if (!cs->endp || (cs->endp->flags & CS_EP_DETACHED))
cs_free(cs);
}
int cs_reset_endp(struct conn_stream *cs)
{
struct cs_endpoint *new_endp;
BUG_ON(!cs->app);
if (!__cs_endp_target(cs)) {
/* endpoint not attached or attached to a mux with no
* target. Thus the endpoint will not be release but just
* reset
*/
cs_detach_endp(cs);
return 0;
}
/* allocate the new endpoint first to be able to set error if it
* fails */
new_endp = cs_endpoint_new();
if (!unlikely(new_endp)) {
cs->endp->flags |= CS_EP_ERROR;
return -1;
}
cs_detach_endp(cs);
BUG_ON(cs->endp);
cs->endp = new_endp;
cs->endp->flags |= CS_EP_DETACHED;
return 0;
}
/* Register an applet to handle a conn-stream as a new appctx. The CS will
* wake it up every time it is solicited. The appctx must be deleted by the task
* handler using cs_detach_endp(), possibly from within the function itself.
* It also pre-initializes the applet's context and returns it (or NULL in case
* it could not be allocated).
*/
struct appctx *cs_register_applet(struct conn_stream *cs, struct applet *app)
{
struct appctx *appctx;
DPRINTF(stderr, "registering handler %p for cs %p (was %p)\n", app, cs, cs_strm_task(cs));
appctx = appctx_new(app, cs->endp);
if (!appctx)
return NULL;
cs_attach_applet(cs, appctx, appctx);
appctx->owner = cs;
appctx->t->nice = __cs_strm(cs)->task->nice;
si_cant_get(cs->si);
appctx_wakeup(appctx);
return appctx;
}
/* call the applet's release function if any. Needs to be called upon close() */
void cs_applet_release(struct conn_stream *cs)
{
struct appctx *appctx = __cs_appctx(cs);
if (appctx->applet->release && !cs_state_in(cs->state, CS_SB_DIS|CS_SB_CLO))
appctx->applet->release(appctx);
}
/*
* This function performs a shutdown-read on a detached conn-stream in a
* connected or init state (it does nothing for other states). It either shuts
* the read side or marks itself as closed. The buffer flags are updated to
* reflect the new state. If the stream interface has CS_FL_NOHALF, we also
* forward the close to the write side. The owner task is woken up if it exists.
*/
static void cs_app_shutr(struct conn_stream *cs)
{
struct channel *ic = cs_ic(cs);
si_rx_shut_blk(cs->si);
if (ic->flags & CF_SHUTR)
return;
ic->flags |= CF_SHUTR;
ic->rex = TICK_ETERNITY;
if (!cs_state_in(cs->state, CS_SB_CON|CS_SB_RDY|CS_SB_EST))
return;
if (cs_oc(cs)->flags & CF_SHUTW) {
cs->state = CS_ST_DIS;
__cs_strm(cs)->conn_exp = TICK_ETERNITY;
}
else if (cs->flags & CS_FL_NOHALF) {
/* we want to immediately forward this close to the write side */
return cs_app_shutw(cs);
}
/* note that if the task exists, it must unregister itself once it runs */
if (!(cs->flags & CS_FL_DONT_WAKE))
task_wakeup(cs_strm_task(cs), TASK_WOKEN_IO);
}
/*
* This function performs a shutdown-write on a detached conn-stream in a
* connected or init state (it does nothing for other states). It either shuts
* the write side or marks itself as closed. The buffer flags are updated to
* reflect the new state. It does also close everything if the SI was marked as
* being in error state. The owner task is woken up if it exists.
*/
static void cs_app_shutw(struct conn_stream *cs)
{
struct channel *ic = cs_ic(cs);
struct channel *oc = cs_oc(cs);
oc->flags &= ~CF_SHUTW_NOW;
if (oc->flags & CF_SHUTW)
return;
oc->flags |= CF_SHUTW;
oc->wex = TICK_ETERNITY;
si_done_get(cs->si);
if (tick_isset(cs->hcto)) {
ic->rto = cs->hcto;
ic->rex = tick_add(now_ms, ic->rto);
}
switch (cs->state) {
case CS_ST_RDY:
case CS_ST_EST:
/* we have to shut before closing, otherwise some short messages
* may never leave the system, especially when there are remaining
* unread data in the socket input buffer, or when nolinger is set.
* However, if CS_FL_NOLINGER is explicitly set, we know there is
* no risk so we close both sides immediately.
*/
if (!(cs->endp->flags & CS_EP_ERROR) && !(cs->flags & CS_FL_NOLINGER) &&
!(ic->flags & (CF_SHUTR|CF_DONT_READ)))
return;
/* fall through */
case CS_ST_CON:
case CS_ST_CER:
case CS_ST_QUE:
case CS_ST_TAR:
/* Note that none of these states may happen with applets */
cs->state = CS_ST_DIS;
/* fall through */
default:
cs->flags &= ~CS_FL_NOLINGER;
si_rx_shut_blk(cs->si);
ic->flags |= CF_SHUTR;
ic->rex = TICK_ETERNITY;
__cs_strm(cs)->conn_exp = TICK_ETERNITY;
}
/* note that if the task exists, it must unregister itself once it runs */
if (!(cs->flags & CS_FL_DONT_WAKE))
task_wakeup(cs_strm_task(cs), TASK_WOKEN_IO);
}
/* default chk_rcv function for scheduled tasks */
static void cs_app_chk_rcv(struct conn_stream *cs)
{
struct channel *ic = cs_ic(cs);
DPRINTF(stderr, "%s: cs=%p, cs->state=%d ic->flags=%08x oc->flags=%08x\n",
__FUNCTION__,
cs, cs->state, ic->flags, cs_oc(cs)->flags);
if (ic->pipe) {
/* stop reading */
si_rx_room_blk(cs->si);
}
else {
/* (re)start reading */
if (!(cs->flags & CS_FL_DONT_WAKE))
task_wakeup(cs_strm_task(cs), TASK_WOKEN_IO);
}
}
/* default chk_snd function for scheduled tasks */
static void cs_app_chk_snd(struct conn_stream *cs)
{
struct channel *oc = cs_oc(cs);
DPRINTF(stderr, "%s: cs=%p, cs->state=%d ic->flags=%08x oc->flags=%08x\n",
__FUNCTION__,
cs, cs->state, cs_ic(cs)->flags, oc->flags);
if (unlikely(cs->state != CS_ST_EST || (oc->flags & CF_SHUTW)))
return;
if (!(cs->si->flags & SI_FL_WAIT_DATA) || /* not waiting for data */
channel_is_empty(oc)) /* called with nothing to send ! */
return;
/* Otherwise there are remaining data to be sent in the buffer,
* so we tell the handler.
*/
cs->si->flags &= ~SI_FL_WAIT_DATA;
if (!tick_isset(oc->wex))
oc->wex = tick_add_ifset(now_ms, oc->wto);
if (!(cs->flags & CS_FL_DONT_WAKE))
task_wakeup(cs_strm_task(cs), TASK_WOKEN_IO);
}
/*
* This function performs a shutdown-read on a conn-stream attached to
* a connection in a connected or init state (it does nothing for other
* states). It either shuts the read side or marks itself as closed. The buffer
* flags are updated to reflect the new state. If the stream interface has
* CS_FL_NOHALF, we also forward the close to the write side. If a control
* layer is defined, then it is supposed to be a socket layer and file
* descriptors are then shutdown or closed accordingly. The function
* automatically disables polling if needed.
*/
static void cs_app_shutr_conn(struct conn_stream *cs)
{
struct channel *ic = cs_ic(cs);
BUG_ON(!cs_conn(cs));
si_rx_shut_blk(cs->si);
if (ic->flags & CF_SHUTR)
return;
ic->flags |= CF_SHUTR;
ic->rex = TICK_ETERNITY;
if (!cs_state_in(cs->state, CS_SB_CON|CS_SB_RDY|CS_SB_EST))
return;
if (cs_oc(cs)->flags & CF_SHUTW) {
cs_conn_close(cs);
cs->state = CS_ST_DIS;
__cs_strm(cs)->conn_exp = TICK_ETERNITY;
}
else if (cs->flags & CS_FL_NOHALF) {
/* we want to immediately forward this close to the write side */
return cs_app_shutw_conn(cs);
}
}
/*
* This function performs a shutdown-write on a conn-stream attached to
* a connection in a connected or init state (it does nothing for other
* states). It either shuts the write side or marks itself as closed. The
* buffer flags are updated to reflect the new state. It does also close
* everything if the SI was marked as being in error state. If there is a
* data-layer shutdown, it is called.
*/
static void cs_app_shutw_conn(struct conn_stream *cs)
{
struct channel *ic = cs_ic(cs);
struct channel *oc = cs_oc(cs);
BUG_ON(!cs_conn(cs));
oc->flags &= ~CF_SHUTW_NOW;
if (oc->flags & CF_SHUTW)
return;
oc->flags |= CF_SHUTW;
oc->wex = TICK_ETERNITY;
si_done_get(cs->si);
if (tick_isset(cs->hcto)) {
ic->rto = cs->hcto;
ic->rex = tick_add(now_ms, ic->rto);
}
switch (cs->state) {
case CS_ST_RDY:
case CS_ST_EST:
/* we have to shut before closing, otherwise some short messages
* may never leave the system, especially when there are remaining
* unread data in the socket input buffer, or when nolinger is set.
* However, if CS_FL_NOLINGER is explicitly set, we know there is
* no risk so we close both sides immediately.
*/
if (cs->endp->flags & CS_EP_ERROR) {
/* quick close, the socket is already shut anyway */
}
else if (cs->flags & CS_FL_NOLINGER) {
/* unclean data-layer shutdown, typically an aborted request
* or a forwarded shutdown from a client to a server due to
* option abortonclose. No need for the TLS layer to try to
* emit a shutdown message.
*/
cs_conn_shutw(cs, CO_SHW_SILENT);
}
else {
/* clean data-layer shutdown. This only happens on the
* frontend side, or on the backend side when forwarding
* a client close in TCP mode or in HTTP TUNNEL mode
* while option abortonclose is set. We want the TLS
* layer to try to signal it to the peer before we close.
*/
cs_conn_shutw(cs, CO_SHW_NORMAL);
if (!(ic->flags & (CF_SHUTR|CF_DONT_READ)))
return;
}
/* fall through */
case CS_ST_CON:
/* we may have to close a pending connection, and mark the
* response buffer as shutr
*/
cs_conn_close(cs);
/* fall through */
case CS_ST_CER:
case CS_ST_QUE:
case CS_ST_TAR:
cs->state = CS_ST_DIS;
/* fall through */
default:
cs->flags &= ~CS_FL_NOLINGER;
si_rx_shut_blk(cs->si);
ic->flags |= CF_SHUTR;
ic->rex = TICK_ETERNITY;
__cs_strm(cs)->conn_exp = TICK_ETERNITY;
}
}
/* This function is used for inter-conn-stream calls. It is called by the
* consumer to inform the producer side that it may be interested in checking
* for free space in the buffer. Note that it intentionally does not update
* timeouts, so that we can still check them later at wake-up. This function is
* dedicated to connection-based stream interfaces.
*/
static void cs_app_chk_rcv_conn(struct conn_stream *cs)
{
BUG_ON(!cs_conn(cs));
/* (re)start reading */
if (cs_state_in(cs->state, CS_SB_CON|CS_SB_RDY|CS_SB_EST))
tasklet_wakeup(cs->wait_event.tasklet);
}
/* This function is used for inter-conn-stream calls. It is called by the
* producer to inform the consumer side that it may be interested in checking
* for data in the buffer. Note that it intentionally does not update timeouts,
* so that we can still check them later at wake-up.
*/
static void cs_app_chk_snd_conn(struct conn_stream *cs)
{
struct channel *oc = cs_oc(cs);
BUG_ON(!cs_conn(cs));
if (unlikely(!cs_state_in(cs->state, CS_SB_CON|CS_SB_RDY|CS_SB_EST) ||
(oc->flags & CF_SHUTW)))
return;
if (unlikely(channel_is_empty(oc))) /* called with nothing to send ! */
return;
if (!oc->pipe && /* spliced data wants to be forwarded ASAP */
!(cs->si->flags & SI_FL_WAIT_DATA)) /* not waiting for data */
return;
if (!(cs->wait_event.events & SUB_RETRY_SEND) && !channel_is_empty(cs_oc(cs)))
cs_conn_send(cs);
if (cs->endp->flags & (CS_EP_ERROR|CS_EP_ERR_PENDING) || si_is_conn_error(cs->si)) {
/* Write error on the file descriptor */
if (cs->state >= CS_ST_CON)
cs->endp->flags |= CS_EP_ERROR;
goto out_wakeup;
}
/* OK, so now we know that some data might have been sent, and that we may
* have to poll first. We have to do that too if the buffer is not empty.
*/
if (channel_is_empty(oc)) {
/* the connection is established but we can't write. Either the
* buffer is empty, or we just refrain from sending because the
* ->o limit was reached. Maybe we just wrote the last
* chunk and need to close.
*/
if (((oc->flags & (CF_SHUTW|CF_AUTO_CLOSE|CF_SHUTW_NOW)) ==
(CF_AUTO_CLOSE|CF_SHUTW_NOW)) &&
cs_state_in(cs->state, CS_SB_RDY|CS_SB_EST)) {
cs_shutw(cs);
goto out_wakeup;
}
if ((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == 0)
cs->si->flags |= SI_FL_WAIT_DATA;
oc->wex = TICK_ETERNITY;
}
else {
/* Otherwise there are remaining data to be sent in the buffer,
* which means we have to poll before doing so.
*/
cs->si->flags &= ~SI_FL_WAIT_DATA;
if (!tick_isset(oc->wex))
oc->wex = tick_add_ifset(now_ms, oc->wto);
}
if (likely(oc->flags & CF_WRITE_ACTIVITY)) {
struct channel *ic = cs_ic(cs);
/* update timeout if we have written something */
if ((oc->flags & (CF_SHUTW|CF_WRITE_PARTIAL)) == CF_WRITE_PARTIAL &&
!channel_is_empty(oc))
oc->wex = tick_add_ifset(now_ms, oc->wto);
if (tick_isset(ic->rex) && !(cs->flags & CS_FL_INDEP_STR)) {
/* Note: to prevent the client from expiring read timeouts
* during writes, we refresh it. We only do this if the
* interface is not configured for "independent streams",
* because for some applications it's better not to do this,
* for instance when continuously exchanging small amounts
* of data which can full the socket buffers long before a
* write timeout is detected.
*/
ic->rex = tick_add_ifset(now_ms, ic->rto);
}
}
/* in case of special condition (error, shutdown, end of write...), we
* have to notify the task.
*/
if (likely((oc->flags & (CF_WRITE_NULL|CF_WRITE_ERROR|CF_SHUTW)) ||
((oc->flags & CF_WAKE_WRITE) &&
((channel_is_empty(oc) && !oc->to_forward) ||
!cs_state_in(cs->state, CS_SB_EST))))) {
out_wakeup:
if (!(cs->flags & CS_FL_DONT_WAKE))
task_wakeup(cs_strm_task(cs), TASK_WOKEN_IO);
}
}
/*
* This function performs a shutdown-read on a conn-stream attached to an
* applet in a connected or init state (it does nothing for other states). It
* either shuts the read side or marks itself as closed. The buffer flags are
* updated to reflect the new state. If the stream interface has CS_FL_NOHALF,
* we also forward the close to the write side. The owner task is woken up if
* it exists.
*/
static void cs_app_shutr_applet(struct conn_stream *cs)
{
struct channel *ic = cs_ic(cs);
BUG_ON(!cs_appctx(cs));
si_rx_shut_blk(cs->si);
if (ic->flags & CF_SHUTR)
return;
ic->flags |= CF_SHUTR;
ic->rex = TICK_ETERNITY;
/* Note: on shutr, we don't call the applet */
if (!cs_state_in(cs->state, CS_SB_CON|CS_SB_RDY|CS_SB_EST))
return;
if (cs_oc(cs)->flags & CF_SHUTW) {
cs_applet_release(cs);
cs->state = CS_ST_DIS;
__cs_strm(cs)->conn_exp = TICK_ETERNITY;
}
else if (cs->flags & CS_FL_NOHALF) {
/* we want to immediately forward this close to the write side */
return cs_app_shutw_applet(cs);
}
}
/*
* This function performs a shutdown-write on a conn-stream attached to an
* applet in a connected or init state (it does nothing for other states). It
* either shuts the write side or marks itself as closed. The buffer flags are
* updated to reflect the new state. It does also close everything if the SI
* was marked as being in error state. The owner task is woken up if it exists.
*/
static void cs_app_shutw_applet(struct conn_stream *cs)
{
struct channel *ic = cs_ic(cs);
struct channel *oc = cs_oc(cs);
BUG_ON(!cs_appctx(cs));
oc->flags &= ~CF_SHUTW_NOW;
if (oc->flags & CF_SHUTW)
return;
oc->flags |= CF_SHUTW;
oc->wex = TICK_ETERNITY;
si_done_get(cs->si);
if (tick_isset(cs->hcto)) {
ic->rto = cs->hcto;
ic->rex = tick_add(now_ms, ic->rto);
}
/* on shutw we always wake the applet up */
appctx_wakeup(__cs_appctx(cs));
switch (cs->state) {
case CS_ST_RDY:
case CS_ST_EST:
/* we have to shut before closing, otherwise some short messages
* may never leave the system, especially when there are remaining
* unread data in the socket input buffer, or when nolinger is set.
* However, if CS_FL_NOLINGER is explicitly set, we know there is
* no risk so we close both sides immediately.
*/
if (!(cs->endp->flags & CS_EP_ERROR) && !(cs->flags & CS_FL_NOLINGER) &&
!(ic->flags & (CF_SHUTR|CF_DONT_READ)))
return;
/* fall through */
case CS_ST_CON:
case CS_ST_CER:
case CS_ST_QUE:
case CS_ST_TAR:
/* Note that none of these states may happen with applets */
cs_applet_release(cs);
cs->state = CS_ST_DIS;
/* fall through */
default:
cs->flags &= ~CS_FL_NOLINGER;
si_rx_shut_blk(cs->si);
ic->flags |= CF_SHUTR;
ic->rex = TICK_ETERNITY;
__cs_strm(cs)->conn_exp = TICK_ETERNITY;
}
}
/* chk_rcv function for applets */
static void cs_app_chk_rcv_applet(struct conn_stream *cs)
{
struct channel *ic = cs_ic(cs);
BUG_ON(!cs_appctx(cs));
DPRINTF(stderr, "%s: cs=%p, cs->state=%d ic->flags=%08x oc->flags=%08x\n",
__FUNCTION__,
cs, cs->state, ic->flags, cs_oc(cs)->flags);
if (!ic->pipe) {
/* (re)start reading */
appctx_wakeup(__cs_appctx(cs));
}
}
/* chk_snd function for applets */
static void cs_app_chk_snd_applet(struct conn_stream *cs)
{
struct channel *oc = cs_oc(cs);
BUG_ON(!cs_appctx(cs));
DPRINTF(stderr, "%s: cs=%p, cs->state=%d ic->flags=%08x oc->flags=%08x\n",
__FUNCTION__,
cs, cs->state, cs_ic(cs)->flags, oc->flags);
if (unlikely(cs->state != CS_ST_EST || (oc->flags & CF_SHUTW)))
return;
/* we only wake the applet up if it was waiting for some data */
if (!(cs->si->flags & SI_FL_WAIT_DATA))
return;
if (!tick_isset(oc->wex))
oc->wex = tick_add_ifset(now_ms, oc->wto);
if (!channel_is_empty(oc)) {
/* (re)start sending */
appctx_wakeup(__cs_appctx(cs));
}
}
/* This function is designed to be called from within the stream handler to
* update the input channel's expiration timer and the conn-stream's
* Rx flags based on the channel's flags. It needs to be called only once
* after the channel's flags have settled down, and before they are cleared,
* though it doesn't harm to call it as often as desired (it just slightly
* hurts performance). It must not be called from outside of the stream
* handler, as what it does will be used to compute the stream task's
* expiration.
*/
void cs_update_rx(struct conn_stream *cs)
{
struct channel *ic = cs_ic(cs);
if (ic->flags & CF_SHUTR) {
si_rx_shut_blk(cs->si);
return;
}
/* Read not closed, update FD status and timeout for reads */
if (ic->flags & CF_DONT_READ)
si_rx_chan_blk(cs->si);
else
si_rx_chan_rdy(cs->si);
if (!channel_is_empty(ic) || !channel_may_recv(ic)) {
/* stop reading, imposed by channel's policy or contents */
si_rx_room_blk(cs->si);
}
else {
/* (re)start reading and update timeout. Note: we don't recompute the timeout
* every time we get here, otherwise it would risk never to expire. We only
* update it if is was not yet set. The stream socket handler will already
* have updated it if there has been a completed I/O.
*/
si_rx_room_rdy(cs->si);
}
if (cs->si->flags & SI_FL_RXBLK_ANY & ~SI_FL_RX_WAIT_EP)
ic->rex = TICK_ETERNITY;
else if (!(ic->flags & CF_READ_NOEXP) && !tick_isset(ic->rex))
ic->rex = tick_add_ifset(now_ms, ic->rto);
cs_chk_rcv(cs);
}
/* This function is designed to be called from within the stream handler to
* update the output channel's expiration timer and the conn-stream's
* Tx flags based on the channel's flags. It needs to be called only once
* after the channel's flags have settled down, and before they are cleared,
* though it doesn't harm to call it as often as desired (it just slightly
* hurts performance). It must not be called from outside of the stream
* handler, as what it does will be used to compute the stream task's
* expiration.
*/
void cs_update_tx(struct conn_stream *cs)
{
struct channel *oc = cs_oc(cs);
struct channel *ic = cs_ic(cs);
if (oc->flags & CF_SHUTW)
return;
/* Write not closed, update FD status and timeout for writes */
if (channel_is_empty(oc)) {
/* stop writing */
if (!(cs->si->flags & SI_FL_WAIT_DATA)) {
if ((oc->flags & CF_SHUTW_NOW) == 0)
cs->si->flags |= SI_FL_WAIT_DATA;
oc->wex = TICK_ETERNITY;
}
return;
}
/* (re)start writing and update timeout. Note: we don't recompute the timeout
* every time we get here, otherwise it would risk never to expire. We only
* update it if is was not yet set. The stream socket handler will already
* have updated it if there has been a completed I/O.
*/
cs->si->flags &= ~SI_FL_WAIT_DATA;
if (!tick_isset(oc->wex)) {
oc->wex = tick_add_ifset(now_ms, oc->wto);
if (tick_isset(ic->rex) && !(cs->flags & CS_FL_INDEP_STR)) {
/* Note: depending on the protocol, we don't know if we're waiting
* for incoming data or not. So in order to prevent the socket from
* expiring read timeouts during writes, we refresh the read timeout,
* except if it was already infinite or if we have explicitly setup
* independent streams.
*/
ic->rex = tick_add_ifset(now_ms, ic->rto);
}
}
}