blob: 4fb10045ff2f4f6469f2fb36189785494ef764d3 [file] [log] [blame]
Tom Rini10e47792018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Stefan Roese2fc10f62009-03-19 15:35:05 +01002/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
Stefan Roese2fc10f62009-03-19 15:35:05 +01007 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
9 */
10
11/*
12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
13 * the UBIFS B-tree.
14 *
15 * At the moment the locking rules of the TNC tree are quite simple and
16 * straightforward. We just have a mutex and lock it when we traverse the
17 * tree. If a znode is not in memory, we read it from flash while still having
18 * the mutex locked.
19 */
20
Heiko Schocherf5895d12014-06-24 10:10:04 +020021#ifndef __UBOOT__
Simon Glass0f2af882020-05-10 11:40:05 -060022#include <log.h>
Simon Glassd66c5f72020-02-03 07:36:15 -070023#include <dm/devres.h>
Heiko Schocherf5895d12014-06-24 10:10:04 +020024#include <linux/crc32.h>
25#include <linux/slab.h>
Simon Glass48b6c6b2019-11-14 12:57:16 -070026#include <u-boot/crc.h>
Heiko Schocherf5895d12014-06-24 10:10:04 +020027#else
Simon Glass4dcacfc2020-05-10 11:40:13 -060028#include <linux/bitops.h>
Simon Glassc06c1be2020-05-10 11:40:08 -060029#include <linux/bug.h>
Heiko Schocherf5895d12014-06-24 10:10:04 +020030#include <linux/compat.h>
31#include <linux/err.h>
32#include <linux/stat.h>
33#endif
Stefan Roese2fc10f62009-03-19 15:35:05 +010034#include "ubifs.h"
35
36/*
37 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
38 * @NAME_LESS: name corresponding to the first argument is less than second
39 * @NAME_MATCHES: names match
40 * @NAME_GREATER: name corresponding to the second argument is greater than
41 * first
42 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
43 *
44 * These constants were introduce to improve readability.
45 */
46enum {
47 NAME_LESS = 0,
48 NAME_MATCHES = 1,
49 NAME_GREATER = 2,
50 NOT_ON_MEDIA = 3,
51};
52
Ville Bailliec332a1c2022-03-28 09:13:43 +000053static int try_read_node(const struct ubifs_info *c, void *buf, int type,
54 int len, int lnum, int offs);
55static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
56 struct ubifs_zbranch *zbr, void *node);
57
Stefan Roese2fc10f62009-03-19 15:35:05 +010058/**
59 * insert_old_idx - record an index node obsoleted since the last commit start.
60 * @c: UBIFS file-system description object
61 * @lnum: LEB number of obsoleted index node
62 * @offs: offset of obsoleted index node
63 *
64 * Returns %0 on success, and a negative error code on failure.
65 *
66 * For recovery, there must always be a complete intact version of the index on
67 * flash at all times. That is called the "old index". It is the index as at the
68 * time of the last successful commit. Many of the index nodes in the old index
69 * may be dirty, but they must not be erased until the next successful commit
70 * (at which point that index becomes the old index).
71 *
72 * That means that the garbage collection and the in-the-gaps method of
73 * committing must be able to determine if an index node is in the old index.
74 * Most of the old index nodes can be found by looking up the TNC using the
75 * 'lookup_znode()' function. However, some of the old index nodes may have
76 * been deleted from the current index or may have been changed so much that
77 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
78 * That is what this function does. The RB-tree is ordered by LEB number and
79 * offset because they uniquely identify the old index node.
80 */
81static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
82{
83 struct ubifs_old_idx *old_idx, *o;
84 struct rb_node **p, *parent = NULL;
85
86 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
87 if (unlikely(!old_idx))
88 return -ENOMEM;
89 old_idx->lnum = lnum;
90 old_idx->offs = offs;
91
92 p = &c->old_idx.rb_node;
93 while (*p) {
94 parent = *p;
95 o = rb_entry(parent, struct ubifs_old_idx, rb);
96 if (lnum < o->lnum)
97 p = &(*p)->rb_left;
98 else if (lnum > o->lnum)
99 p = &(*p)->rb_right;
100 else if (offs < o->offs)
101 p = &(*p)->rb_left;
102 else if (offs > o->offs)
103 p = &(*p)->rb_right;
104 else {
Heiko Schocher94b66de2015-10-22 06:19:21 +0200105 ubifs_err(c, "old idx added twice!");
Stefan Roese2fc10f62009-03-19 15:35:05 +0100106 kfree(old_idx);
107 return 0;
108 }
109 }
110 rb_link_node(&old_idx->rb, parent, p);
111 rb_insert_color(&old_idx->rb, &c->old_idx);
112 return 0;
113}
114
115/**
116 * insert_old_idx_znode - record a znode obsoleted since last commit start.
117 * @c: UBIFS file-system description object
118 * @znode: znode of obsoleted index node
119 *
120 * Returns %0 on success, and a negative error code on failure.
121 */
122int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
123{
124 if (znode->parent) {
125 struct ubifs_zbranch *zbr;
126
127 zbr = &znode->parent->zbranch[znode->iip];
128 if (zbr->len)
129 return insert_old_idx(c, zbr->lnum, zbr->offs);
130 } else
131 if (c->zroot.len)
132 return insert_old_idx(c, c->zroot.lnum,
133 c->zroot.offs);
134 return 0;
135}
136
137/**
138 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
139 * @c: UBIFS file-system description object
140 * @znode: znode of obsoleted index node
141 *
142 * Returns %0 on success, and a negative error code on failure.
143 */
144static int ins_clr_old_idx_znode(struct ubifs_info *c,
145 struct ubifs_znode *znode)
146{
147 int err;
148
149 if (znode->parent) {
150 struct ubifs_zbranch *zbr;
151
152 zbr = &znode->parent->zbranch[znode->iip];
153 if (zbr->len) {
154 err = insert_old_idx(c, zbr->lnum, zbr->offs);
155 if (err)
156 return err;
157 zbr->lnum = 0;
158 zbr->offs = 0;
159 zbr->len = 0;
160 }
161 } else
162 if (c->zroot.len) {
163 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
164 if (err)
165 return err;
166 c->zroot.lnum = 0;
167 c->zroot.offs = 0;
168 c->zroot.len = 0;
169 }
170 return 0;
171}
172
173/**
174 * destroy_old_idx - destroy the old_idx RB-tree.
175 * @c: UBIFS file-system description object
176 *
177 * During start commit, the old_idx RB-tree is used to avoid overwriting index
178 * nodes that were in the index last commit but have since been deleted. This
179 * is necessary for recovery i.e. the old index must be kept intact until the
180 * new index is successfully written. The old-idx RB-tree is used for the
181 * in-the-gaps method of writing index nodes and is destroyed every commit.
182 */
183void destroy_old_idx(struct ubifs_info *c)
184{
Heiko Schocherf5895d12014-06-24 10:10:04 +0200185 struct ubifs_old_idx *old_idx, *n;
Stefan Roese2fc10f62009-03-19 15:35:05 +0100186
Heiko Schocherf5895d12014-06-24 10:10:04 +0200187 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
Stefan Roese2fc10f62009-03-19 15:35:05 +0100188 kfree(old_idx);
Heiko Schocherf5895d12014-06-24 10:10:04 +0200189
Stefan Roese2fc10f62009-03-19 15:35:05 +0100190 c->old_idx = RB_ROOT;
191}
192
193/**
194 * copy_znode - copy a dirty znode.
195 * @c: UBIFS file-system description object
196 * @znode: znode to copy
197 *
198 * A dirty znode being committed may not be changed, so it is copied.
199 */
200static struct ubifs_znode *copy_znode(struct ubifs_info *c,
201 struct ubifs_znode *znode)
202{
203 struct ubifs_znode *zn;
204
205 zn = kmalloc(c->max_znode_sz, GFP_NOFS);
206 if (unlikely(!zn))
207 return ERR_PTR(-ENOMEM);
208
209 memcpy(zn, znode, c->max_znode_sz);
210 zn->cnext = NULL;
211 __set_bit(DIRTY_ZNODE, &zn->flags);
212 __clear_bit(COW_ZNODE, &zn->flags);
213
Heiko Schocherf5895d12014-06-24 10:10:04 +0200214 ubifs_assert(!ubifs_zn_obsolete(znode));
Stefan Roese2fc10f62009-03-19 15:35:05 +0100215 __set_bit(OBSOLETE_ZNODE, &znode->flags);
216
217 if (znode->level != 0) {
218 int i;
219 const int n = zn->child_cnt;
220
221 /* The children now have new parent */
222 for (i = 0; i < n; i++) {
223 struct ubifs_zbranch *zbr = &zn->zbranch[i];
224
225 if (zbr->znode)
226 zbr->znode->parent = zn;
227 }
228 }
229
230 atomic_long_inc(&c->dirty_zn_cnt);
231 return zn;
232}
233
234/**
235 * add_idx_dirt - add dirt due to a dirty znode.
236 * @c: UBIFS file-system description object
237 * @lnum: LEB number of index node
238 * @dirt: size of index node
239 *
240 * This function updates lprops dirty space and the new size of the index.
241 */
242static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
243{
244 c->calc_idx_sz -= ALIGN(dirt, 8);
245 return ubifs_add_dirt(c, lnum, dirt);
246}
247
248/**
249 * dirty_cow_znode - ensure a znode is not being committed.
250 * @c: UBIFS file-system description object
251 * @zbr: branch of znode to check
252 *
253 * Returns dirtied znode on success or negative error code on failure.
254 */
255static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
256 struct ubifs_zbranch *zbr)
257{
258 struct ubifs_znode *znode = zbr->znode;
259 struct ubifs_znode *zn;
260 int err;
261
Heiko Schocherf5895d12014-06-24 10:10:04 +0200262 if (!ubifs_zn_cow(znode)) {
Stefan Roese2fc10f62009-03-19 15:35:05 +0100263 /* znode is not being committed */
264 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
265 atomic_long_inc(&c->dirty_zn_cnt);
266 atomic_long_dec(&c->clean_zn_cnt);
267 atomic_long_dec(&ubifs_clean_zn_cnt);
268 err = add_idx_dirt(c, zbr->lnum, zbr->len);
269 if (unlikely(err))
270 return ERR_PTR(err);
271 }
272 return znode;
273 }
274
275 zn = copy_znode(c, znode);
276 if (IS_ERR(zn))
277 return zn;
278
279 if (zbr->len) {
280 err = insert_old_idx(c, zbr->lnum, zbr->offs);
281 if (unlikely(err))
282 return ERR_PTR(err);
283 err = add_idx_dirt(c, zbr->lnum, zbr->len);
284 } else
285 err = 0;
286
287 zbr->znode = zn;
288 zbr->lnum = 0;
289 zbr->offs = 0;
290 zbr->len = 0;
291
292 if (unlikely(err))
293 return ERR_PTR(err);
294 return zn;
295}
296
297/**
298 * lnc_add - add a leaf node to the leaf node cache.
299 * @c: UBIFS file-system description object
300 * @zbr: zbranch of leaf node
301 * @node: leaf node
302 *
303 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
304 * purpose of the leaf node cache is to save re-reading the same leaf node over
305 * and over again. Most things are cached by VFS, however the file system must
306 * cache directory entries for readdir and for resolving hash collisions. The
307 * present implementation of the leaf node cache is extremely simple, and
308 * allows for error returns that are not used but that may be needed if a more
309 * complex implementation is created.
310 *
311 * Note, this function does not add the @node object to LNC directly, but
312 * allocates a copy of the object and adds the copy to LNC. The reason for this
313 * is that @node has been allocated outside of the TNC subsystem and will be
314 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
315 * may be changed at any time, e.g. freed by the shrinker.
316 */
317static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
318 const void *node)
319{
320 int err;
321 void *lnc_node;
322 const struct ubifs_dent_node *dent = node;
323
324 ubifs_assert(!zbr->leaf);
325 ubifs_assert(zbr->len != 0);
326 ubifs_assert(is_hash_key(c, &zbr->key));
327
328 err = ubifs_validate_entry(c, dent);
329 if (err) {
Heiko Schocherf5895d12014-06-24 10:10:04 +0200330 dump_stack();
331 ubifs_dump_node(c, dent);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100332 return err;
333 }
334
Heiko Schocherf5895d12014-06-24 10:10:04 +0200335 lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100336 if (!lnc_node)
337 /* We don't have to have the cache, so no error */
338 return 0;
339
Stefan Roese2fc10f62009-03-19 15:35:05 +0100340 zbr->leaf = lnc_node;
341 return 0;
342}
343
344 /**
345 * lnc_add_directly - add a leaf node to the leaf-node-cache.
346 * @c: UBIFS file-system description object
347 * @zbr: zbranch of leaf node
348 * @node: leaf node
349 *
350 * This function is similar to 'lnc_add()', but it does not create a copy of
351 * @node but inserts @node to TNC directly.
352 */
353static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
354 void *node)
355{
356 int err;
357
358 ubifs_assert(!zbr->leaf);
359 ubifs_assert(zbr->len != 0);
360
361 err = ubifs_validate_entry(c, node);
362 if (err) {
Heiko Schocherf5895d12014-06-24 10:10:04 +0200363 dump_stack();
364 ubifs_dump_node(c, node);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100365 return err;
366 }
367
368 zbr->leaf = node;
369 return 0;
370}
371
372/**
373 * lnc_free - remove a leaf node from the leaf node cache.
374 * @zbr: zbranch of leaf node
375 * @node: leaf node
376 */
377static void lnc_free(struct ubifs_zbranch *zbr)
378{
379 if (!zbr->leaf)
380 return;
381 kfree(zbr->leaf);
382 zbr->leaf = NULL;
383}
384
385/**
386 * tnc_read_node_nm - read a "hashed" leaf node.
387 * @c: UBIFS file-system description object
388 * @zbr: key and position of the node
389 * @node: node is returned here
390 *
391 * This function reads a "hashed" node defined by @zbr from the leaf node cache
392 * (in it is there) or from the hash media, in which case the node is also
393 * added to LNC. Returns zero in case of success or a negative negative error
394 * code in case of failure.
395 */
396static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
397 void *node)
398{
399 int err;
400
401 ubifs_assert(is_hash_key(c, &zbr->key));
402
403 if (zbr->leaf) {
404 /* Read from the leaf node cache */
405 ubifs_assert(zbr->len != 0);
406 memcpy(node, zbr->leaf, zbr->len);
407 return 0;
408 }
409
Ville Bailliec332a1c2022-03-28 09:13:43 +0000410 if (c->replaying) {
411 err = fallible_read_node(c, &zbr->key, zbr, node);
412 /*
413 * When the node was not found, return -ENOENT, 0 otherwise.
414 * Negative return codes stay as-is.
415 */
416 if (err == 0)
417 err = -ENOENT;
418 else if (err == 1)
419 err = 0;
420 } else {
421 err = ubifs_tnc_read_node(c, zbr, node);
422 }
Stefan Roese2fc10f62009-03-19 15:35:05 +0100423 if (err)
424 return err;
425
426 /* Add the node to the leaf node cache */
427 err = lnc_add(c, zbr, node);
428 return err;
429}
430
431/**
432 * try_read_node - read a node if it is a node.
433 * @c: UBIFS file-system description object
434 * @buf: buffer to read to
435 * @type: node type
436 * @len: node length (not aligned)
437 * @lnum: LEB number of node to read
438 * @offs: offset of node to read
439 *
440 * This function tries to read a node of known type and length, checks it and
441 * stores it in @buf. This function returns %1 if a node is present and %0 if
442 * a node is not present. A negative error code is returned for I/O errors.
443 * This function performs that same function as ubifs_read_node except that
444 * it does not require that there is actually a node present and instead
445 * the return code indicates if a node was read.
446 *
447 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
448 * is true (it is controlled by corresponding mount option). However, if
Heiko Schocherf5895d12014-06-24 10:10:04 +0200449 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
450 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
451 * because during mounting or re-mounting from R/O mode to R/W mode we may read
452 * journal nodes (when replying the journal or doing the recovery) and the
453 * journal nodes may potentially be corrupted, so checking is required.
Stefan Roese2fc10f62009-03-19 15:35:05 +0100454 */
455static int try_read_node(const struct ubifs_info *c, void *buf, int type,
456 int len, int lnum, int offs)
457{
458 int err, node_len;
459 struct ubifs_ch *ch = buf;
460 uint32_t crc, node_crc;
461
462 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
463
Heiko Schocherf5895d12014-06-24 10:10:04 +0200464 err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100465 if (err) {
Heiko Schocher94b66de2015-10-22 06:19:21 +0200466 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
Stefan Roese2fc10f62009-03-19 15:35:05 +0100467 type, lnum, offs, err);
468 return err;
469 }
470
471 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
472 return 0;
473
474 if (ch->node_type != type)
475 return 0;
476
477 node_len = le32_to_cpu(ch->len);
478 if (node_len != len)
479 return 0;
480
Heiko Schocherf5895d12014-06-24 10:10:04 +0200481 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
482 !c->remounting_rw)
Stefan Roese2fc10f62009-03-19 15:35:05 +0100483 return 1;
484
485 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
486 node_crc = le32_to_cpu(ch->crc);
487 if (crc != node_crc)
488 return 0;
489
490 return 1;
491}
492
493/**
494 * fallible_read_node - try to read a leaf node.
495 * @c: UBIFS file-system description object
496 * @key: key of node to read
497 * @zbr: position of node
498 * @node: node returned
499 *
500 * This function tries to read a node and returns %1 if the node is read, %0
501 * if the node is not present, and a negative error code in the case of error.
502 */
503static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
504 struct ubifs_zbranch *zbr, void *node)
505{
506 int ret;
507
Heiko Schocherf5895d12014-06-24 10:10:04 +0200508 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100509
510 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
511 zbr->offs);
512 if (ret == 1) {
513 union ubifs_key node_key;
514 struct ubifs_dent_node *dent = node;
515
516 /* All nodes have key in the same place */
517 key_read(c, &dent->key, &node_key);
518 if (keys_cmp(c, key, &node_key) != 0)
519 ret = 0;
520 }
521 if (ret == 0 && c->replaying)
Heiko Schocherf5895d12014-06-24 10:10:04 +0200522 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
523 zbr->lnum, zbr->offs, zbr->len);
Stefan Roese2fc10f62009-03-19 15:35:05 +0100524 return ret;
525}
526
527/**
528 * matches_name - determine if a direntry or xattr entry matches a given name.
529 * @c: UBIFS file-system description object
530 * @zbr: zbranch of dent
531 * @nm: name to match
532 *
533 * This function checks if xentry/direntry referred by zbranch @zbr matches name
534 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
535 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
536 * of failure, a negative error code is returned.
537 */
538static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
539 const struct qstr *nm)
540{
541 struct ubifs_dent_node *dent;
542 int nlen, err;
543
544 /* If possible, match against the dent in the leaf node cache */
545 if (!zbr->leaf) {
546 dent = kmalloc(zbr->len, GFP_NOFS);
547 if (!dent)
548 return -ENOMEM;
549
550 err = ubifs_tnc_read_node(c, zbr, dent);
551 if (err)
552 goto out_free;
553
554 /* Add the node to the leaf node cache */
555 err = lnc_add_directly(c, zbr, dent);
556 if (err)
557 goto out_free;
558 } else
559 dent = zbr->leaf;
560
561 nlen = le16_to_cpu(dent->nlen);
562 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
563 if (err == 0) {
564 if (nlen == nm->len)
565 return NAME_MATCHES;
566 else if (nlen < nm->len)
567 return NAME_LESS;
568 else
569 return NAME_GREATER;
570 } else if (err < 0)
571 return NAME_LESS;
572 else
573 return NAME_GREATER;
574
575out_free:
576 kfree(dent);
577 return err;
578}
579
580/**
581 * get_znode - get a TNC znode that may not be loaded yet.
582 * @c: UBIFS file-system description object
583 * @znode: parent znode
584 * @n: znode branch slot number
585 *
586 * This function returns the znode or a negative error code.
587 */
588static struct ubifs_znode *get_znode(struct ubifs_info *c,
589 struct ubifs_znode *znode, int n)
590{
591 struct ubifs_zbranch *zbr;
592
593 zbr = &znode->zbranch[n];
594 if (zbr->znode)
595 znode = zbr->znode;
596 else
597 znode = ubifs_load_znode(c, zbr, znode, n);
598 return znode;
599}
600
601/**
602 * tnc_next - find next TNC entry.
603 * @c: UBIFS file-system description object
604 * @zn: znode is passed and returned here
605 * @n: znode branch slot number is passed and returned here
606 *
607 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
608 * no next entry, or a negative error code otherwise.
609 */
610static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
611{
612 struct ubifs_znode *znode = *zn;
613 int nn = *n;
614
615 nn += 1;
616 if (nn < znode->child_cnt) {
617 *n = nn;
618 return 0;
619 }
620 while (1) {
621 struct ubifs_znode *zp;
622
623 zp = znode->parent;
624 if (!zp)
625 return -ENOENT;
626 nn = znode->iip + 1;
627 znode = zp;
628 if (nn < znode->child_cnt) {
629 znode = get_znode(c, znode, nn);
630 if (IS_ERR(znode))
631 return PTR_ERR(znode);
632 while (znode->level != 0) {
633 znode = get_znode(c, znode, 0);
634 if (IS_ERR(znode))
635 return PTR_ERR(znode);
636 }
637 nn = 0;
638 break;
639 }
640 }
641 *zn = znode;
642 *n = nn;
643 return 0;
644}
645
646/**
647 * tnc_prev - find previous TNC entry.
648 * @c: UBIFS file-system description object
649 * @zn: znode is returned here
650 * @n: znode branch slot number is passed and returned here
651 *
652 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
653 * there is no next entry, or a negative error code otherwise.
654 */
655static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
656{
657 struct ubifs_znode *znode = *zn;
658 int nn = *n;
659
660 if (nn > 0) {
661 *n = nn - 1;
662 return 0;
663 }
664 while (1) {
665 struct ubifs_znode *zp;
666
667 zp = znode->parent;
668 if (!zp)
669 return -ENOENT;
670 nn = znode->iip - 1;
671 znode = zp;
672 if (nn >= 0) {
673 znode = get_znode(c, znode, nn);
674 if (IS_ERR(znode))
675 return PTR_ERR(znode);
676 while (znode->level != 0) {
677 nn = znode->child_cnt - 1;
678 znode = get_znode(c, znode, nn);
679 if (IS_ERR(znode))
680 return PTR_ERR(znode);
681 }
682 nn = znode->child_cnt - 1;
683 break;
684 }
685 }
686 *zn = znode;
687 *n = nn;
688 return 0;
689}
690
691/**
692 * resolve_collision - resolve a collision.
693 * @c: UBIFS file-system description object
694 * @key: key of a directory or extended attribute entry
695 * @zn: znode is returned here
696 * @n: zbranch number is passed and returned here
697 * @nm: name of the entry
698 *
699 * This function is called for "hashed" keys to make sure that the found key
700 * really corresponds to the looked up node (directory or extended attribute
701 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
702 * %0 is returned if @nm is not found and @zn and @n are set to the previous
703 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
704 * This means that @n may be set to %-1 if the leftmost key in @zn is the
705 * previous one. A negative error code is returned on failures.
706 */
707static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
708 struct ubifs_znode **zn, int *n,
709 const struct qstr *nm)
710{
711 int err;
712
713 err = matches_name(c, &(*zn)->zbranch[*n], nm);
714 if (unlikely(err < 0))
715 return err;
716 if (err == NAME_MATCHES)
717 return 1;
718
719 if (err == NAME_GREATER) {
720 /* Look left */
721 while (1) {
722 err = tnc_prev(c, zn, n);
723 if (err == -ENOENT) {
724 ubifs_assert(*n == 0);
725 *n = -1;
726 return 0;
727 }
728 if (err < 0)
729 return err;
730 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
731 /*
732 * We have found the branch after which we would
733 * like to insert, but inserting in this znode
734 * may still be wrong. Consider the following 3
735 * znodes, in the case where we are resolving a
736 * collision with Key2.
737 *
738 * znode zp
739 * ----------------------
740 * level 1 | Key0 | Key1 |
741 * -----------------------
742 * | |
743 * znode za | | znode zb
744 * ------------ ------------
745 * level 0 | Key0 | | Key2 |
746 * ------------ ------------
747 *
748 * The lookup finds Key2 in znode zb. Lets say
749 * there is no match and the name is greater so
750 * we look left. When we find Key0, we end up
751 * here. If we return now, we will insert into
752 * znode za at slot n = 1. But that is invalid
753 * according to the parent's keys. Key2 must
754 * be inserted into znode zb.
755 *
756 * Note, this problem is not relevant for the
757 * case when we go right, because
758 * 'tnc_insert()' would correct the parent key.
759 */
760 if (*n == (*zn)->child_cnt - 1) {
761 err = tnc_next(c, zn, n);
762 if (err) {
763 /* Should be impossible */
764 ubifs_assert(0);
765 if (err == -ENOENT)
766 err = -EINVAL;
767 return err;
768 }
769 ubifs_assert(*n == 0);
770 *n = -1;
771 }
772 return 0;
773 }
774 err = matches_name(c, &(*zn)->zbranch[*n], nm);
775 if (err < 0)
776 return err;
777 if (err == NAME_LESS)
778 return 0;
779 if (err == NAME_MATCHES)
780 return 1;
781 ubifs_assert(err == NAME_GREATER);
782 }
783 } else {
784 int nn = *n;
785 struct ubifs_znode *znode = *zn;
786
787 /* Look right */
788 while (1) {
789 err = tnc_next(c, &znode, &nn);
790 if (err == -ENOENT)
791 return 0;
792 if (err < 0)
793 return err;
794 if (keys_cmp(c, &znode->zbranch[nn].key, key))
795 return 0;
796 err = matches_name(c, &znode->zbranch[nn], nm);
797 if (err < 0)
798 return err;
799 if (err == NAME_GREATER)
800 return 0;
801 *zn = znode;
802 *n = nn;
803 if (err == NAME_MATCHES)
804 return 1;
805 ubifs_assert(err == NAME_LESS);
806 }
807 }
808}
809
810/**
811 * fallible_matches_name - determine if a dent matches a given name.
812 * @c: UBIFS file-system description object
813 * @zbr: zbranch of dent
814 * @nm: name to match
815 *
816 * This is a "fallible" version of 'matches_name()' function which does not
817 * panic if the direntry/xentry referred by @zbr does not exist on the media.
818 *
819 * This function checks if xentry/direntry referred by zbranch @zbr matches name
820 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
821 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
822 * if xentry/direntry referred by @zbr does not exist on the media. A negative
823 * error code is returned in case of failure.
824 */
825static int fallible_matches_name(struct ubifs_info *c,
826 struct ubifs_zbranch *zbr,
827 const struct qstr *nm)
828{
829 struct ubifs_dent_node *dent;
830 int nlen, err;
831
832 /* If possible, match against the dent in the leaf node cache */
833 if (!zbr->leaf) {
834 dent = kmalloc(zbr->len, GFP_NOFS);
835 if (!dent)
836 return -ENOMEM;
837
838 err = fallible_read_node(c, &zbr->key, zbr, dent);
839 if (err < 0)
840 goto out_free;
841 if (err == 0) {
842 /* The node was not present */
843 err = NOT_ON_MEDIA;
844 goto out_free;
845 }
846 ubifs_assert(err == 1);
847
848 err = lnc_add_directly(c, zbr, dent);
849 if (err)
850 goto out_free;
851 } else
852 dent = zbr->leaf;
853
854 nlen = le16_to_cpu(dent->nlen);
855 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
856 if (err == 0) {
857 if (nlen == nm->len)
858 return NAME_MATCHES;
859 else if (nlen < nm->len)
860 return NAME_LESS;
861 else
862 return NAME_GREATER;
863 } else if (err < 0)
864 return NAME_LESS;
865 else
866 return NAME_GREATER;
867
868out_free:
869 kfree(dent);
870 return err;
871}
872
873/**
874 * fallible_resolve_collision - resolve a collision even if nodes are missing.
875 * @c: UBIFS file-system description object
876 * @key: key
877 * @zn: znode is returned here
878 * @n: branch number is passed and returned here
879 * @nm: name of directory entry
880 * @adding: indicates caller is adding a key to the TNC
881 *
882 * This is a "fallible" version of the 'resolve_collision()' function which
883 * does not panic if one of the nodes referred to by TNC does not exist on the
884 * media. This may happen when replaying the journal if a deleted node was
885 * Garbage-collected and the commit was not done. A branch that refers to a node
886 * that is not present is called a dangling branch. The following are the return
887 * codes for this function:
888 * o if @nm was found, %1 is returned and @zn and @n are set to the found
889 * branch;
890 * o if we are @adding and @nm was not found, %0 is returned;
891 * o if we are not @adding and @nm was not found, but a dangling branch was
892 * found, then %1 is returned and @zn and @n are set to the dangling branch;
893 * o a negative error code is returned in case of failure.
894 */
895static int fallible_resolve_collision(struct ubifs_info *c,
896 const union ubifs_key *key,
897 struct ubifs_znode **zn, int *n,
898 const struct qstr *nm, int adding)
899{
900 struct ubifs_znode *o_znode = NULL, *znode = *zn;
901 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
902
903 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
904 if (unlikely(cmp < 0))
905 return cmp;
906 if (cmp == NAME_MATCHES)
907 return 1;
908 if (cmp == NOT_ON_MEDIA) {
909 o_znode = znode;
910 o_n = nn;
911 /*
912 * We are unlucky and hit a dangling branch straight away.
913 * Now we do not really know where to go to find the needed
914 * branch - to the left or to the right. Well, let's try left.
915 */
916 unsure = 1;
917 } else if (!adding)
918 unsure = 1; /* Remove a dangling branch wherever it is */
919
920 if (cmp == NAME_GREATER || unsure) {
921 /* Look left */
922 while (1) {
923 err = tnc_prev(c, zn, n);
924 if (err == -ENOENT) {
925 ubifs_assert(*n == 0);
926 *n = -1;
927 break;
928 }
929 if (err < 0)
930 return err;
931 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
932 /* See comments in 'resolve_collision()' */
933 if (*n == (*zn)->child_cnt - 1) {
934 err = tnc_next(c, zn, n);
935 if (err) {
936 /* Should be impossible */
937 ubifs_assert(0);
938 if (err == -ENOENT)
939 err = -EINVAL;
940 return err;
941 }
942 ubifs_assert(*n == 0);
943 *n = -1;
944 }
945 break;
946 }
947 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
948 if (err < 0)
949 return err;
950 if (err == NAME_MATCHES)
951 return 1;
952 if (err == NOT_ON_MEDIA) {
953 o_znode = *zn;
954 o_n = *n;
955 continue;
956 }
957 if (!adding)
958 continue;
959 if (err == NAME_LESS)
960 break;
961 else
962 unsure = 0;
963 }
964 }
965
966 if (cmp == NAME_LESS || unsure) {
967 /* Look right */
968 *zn = znode;
969 *n = nn;
970 while (1) {
971 err = tnc_next(c, &znode, &nn);
972 if (err == -ENOENT)
973 break;
974 if (err < 0)
975 return err;
976 if (keys_cmp(c, &znode->zbranch[nn].key, key))
977 break;
978 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
979 if (err < 0)
980 return err;
981 if (err == NAME_GREATER)
982 break;
983 *zn = znode;
984 *n = nn;
985 if (err == NAME_MATCHES)
986 return 1;
987 if (err == NOT_ON_MEDIA) {
988 o_znode = znode;
989 o_n = nn;
990 }
991 }
992 }
993
994 /* Never match a dangling branch when adding */
995 if (adding || !o_znode)
996 return 0;
997
Heiko Schocherf5895d12014-06-24 10:10:04 +0200998 dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
Stefan Roese2fc10f62009-03-19 15:35:05 +0100999 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
Heiko Schocherf5895d12014-06-24 10:10:04 +02001000 o_znode->zbranch[o_n].len);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001001 *zn = o_znode;
1002 *n = o_n;
1003 return 1;
1004}
1005
1006/**
1007 * matches_position - determine if a zbranch matches a given position.
1008 * @zbr: zbranch of dent
1009 * @lnum: LEB number of dent to match
1010 * @offs: offset of dent to match
1011 *
1012 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1013 */
1014static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1015{
1016 if (zbr->lnum == lnum && zbr->offs == offs)
1017 return 1;
1018 else
1019 return 0;
1020}
1021
1022/**
1023 * resolve_collision_directly - resolve a collision directly.
1024 * @c: UBIFS file-system description object
1025 * @key: key of directory entry
1026 * @zn: znode is passed and returned here
1027 * @n: zbranch number is passed and returned here
1028 * @lnum: LEB number of dent node to match
1029 * @offs: offset of dent node to match
1030 *
1031 * This function is used for "hashed" keys to make sure the found directory or
1032 * extended attribute entry node is what was looked for. It is used when the
1033 * flash address of the right node is known (@lnum:@offs) which makes it much
1034 * easier to resolve collisions (no need to read entries and match full
1035 * names). This function returns %1 and sets @zn and @n if the collision is
1036 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1037 * previous directory entry. Otherwise a negative error code is returned.
1038 */
1039static int resolve_collision_directly(struct ubifs_info *c,
1040 const union ubifs_key *key,
1041 struct ubifs_znode **zn, int *n,
1042 int lnum, int offs)
1043{
1044 struct ubifs_znode *znode;
1045 int nn, err;
1046
1047 znode = *zn;
1048 nn = *n;
1049 if (matches_position(&znode->zbranch[nn], lnum, offs))
1050 return 1;
1051
1052 /* Look left */
1053 while (1) {
1054 err = tnc_prev(c, &znode, &nn);
1055 if (err == -ENOENT)
1056 break;
1057 if (err < 0)
1058 return err;
1059 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1060 break;
1061 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1062 *zn = znode;
1063 *n = nn;
1064 return 1;
1065 }
1066 }
1067
1068 /* Look right */
1069 znode = *zn;
1070 nn = *n;
1071 while (1) {
1072 err = tnc_next(c, &znode, &nn);
1073 if (err == -ENOENT)
1074 return 0;
1075 if (err < 0)
1076 return err;
1077 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1078 return 0;
1079 *zn = znode;
1080 *n = nn;
1081 if (matches_position(&znode->zbranch[nn], lnum, offs))
1082 return 1;
1083 }
1084}
1085
1086/**
1087 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1088 * @c: UBIFS file-system description object
1089 * @znode: znode to dirty
1090 *
1091 * If we do not have a unique key that resides in a znode, then we cannot
1092 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1093 * This function records the path back to the last dirty ancestor, and then
1094 * dirties the znodes on that path.
1095 */
1096static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1097 struct ubifs_znode *znode)
1098{
1099 struct ubifs_znode *zp;
1100 int *path = c->bottom_up_buf, p = 0;
1101
1102 ubifs_assert(c->zroot.znode);
1103 ubifs_assert(znode);
1104 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1105 kfree(c->bottom_up_buf);
1106 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1107 GFP_NOFS);
1108 if (!c->bottom_up_buf)
1109 return ERR_PTR(-ENOMEM);
1110 path = c->bottom_up_buf;
1111 }
1112 if (c->zroot.znode->level) {
1113 /* Go up until parent is dirty */
1114 while (1) {
1115 int n;
1116
1117 zp = znode->parent;
1118 if (!zp)
1119 break;
1120 n = znode->iip;
1121 ubifs_assert(p < c->zroot.znode->level);
1122 path[p++] = n;
1123 if (!zp->cnext && ubifs_zn_dirty(znode))
1124 break;
1125 znode = zp;
1126 }
1127 }
1128
1129 /* Come back down, dirtying as we go */
1130 while (1) {
1131 struct ubifs_zbranch *zbr;
1132
1133 zp = znode->parent;
1134 if (zp) {
1135 ubifs_assert(path[p - 1] >= 0);
1136 ubifs_assert(path[p - 1] < zp->child_cnt);
1137 zbr = &zp->zbranch[path[--p]];
1138 znode = dirty_cow_znode(c, zbr);
1139 } else {
1140 ubifs_assert(znode == c->zroot.znode);
1141 znode = dirty_cow_znode(c, &c->zroot);
1142 }
1143 if (IS_ERR(znode) || !p)
1144 break;
1145 ubifs_assert(path[p - 1] >= 0);
1146 ubifs_assert(path[p - 1] < znode->child_cnt);
1147 znode = znode->zbranch[path[p - 1]].znode;
1148 }
1149
1150 return znode;
1151}
1152
1153/**
1154 * ubifs_lookup_level0 - search for zero-level znode.
1155 * @c: UBIFS file-system description object
1156 * @key: key to lookup
1157 * @zn: znode is returned here
1158 * @n: znode branch slot number is returned here
1159 *
1160 * This function looks up the TNC tree and search for zero-level znode which
1161 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1162 * cases:
1163 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1164 * is returned and slot number of the matched branch is stored in @n;
1165 * o not exact match, which means that zero-level znode does not contain
Heiko Schocherf5895d12014-06-24 10:10:04 +02001166 * @key, then %0 is returned and slot number of the closest branch is stored
1167 * in @n;
Stefan Roese2fc10f62009-03-19 15:35:05 +01001168 * o @key is so small that it is even less than the lowest key of the
1169 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1170 *
1171 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1172 * function reads corresponding indexing nodes and inserts them to TNC. In
1173 * case of failure, a negative error code is returned.
1174 */
1175int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1176 struct ubifs_znode **zn, int *n)
1177{
1178 int err, exact;
1179 struct ubifs_znode *znode;
1180 unsigned long time = get_seconds();
1181
Heiko Schocherf5895d12014-06-24 10:10:04 +02001182 dbg_tnck(key, "search key ");
1183 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001184
1185 znode = c->zroot.znode;
1186 if (unlikely(!znode)) {
1187 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1188 if (IS_ERR(znode))
1189 return PTR_ERR(znode);
1190 }
1191
1192 znode->time = time;
1193
1194 while (1) {
1195 struct ubifs_zbranch *zbr;
1196
1197 exact = ubifs_search_zbranch(c, znode, key, n);
1198
1199 if (znode->level == 0)
1200 break;
1201
1202 if (*n < 0)
1203 *n = 0;
1204 zbr = &znode->zbranch[*n];
1205
1206 if (zbr->znode) {
1207 znode->time = time;
1208 znode = zbr->znode;
1209 continue;
1210 }
1211
1212 /* znode is not in TNC cache, load it from the media */
1213 znode = ubifs_load_znode(c, zbr, znode, *n);
1214 if (IS_ERR(znode))
1215 return PTR_ERR(znode);
1216 }
1217
1218 *zn = znode;
1219 if (exact || !is_hash_key(c, key) || *n != -1) {
1220 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1221 return exact;
1222 }
1223
1224 /*
1225 * Here is a tricky place. We have not found the key and this is a
1226 * "hashed" key, which may collide. The rest of the code deals with
1227 * situations like this:
1228 *
1229 * | 3 | 5 |
1230 * / \
1231 * | 3 | 5 | | 6 | 7 | (x)
1232 *
1233 * Or more a complex example:
1234 *
1235 * | 1 | 5 |
1236 * / \
1237 * | 1 | 3 | | 5 | 8 |
1238 * \ /
1239 * | 5 | 5 | | 6 | 7 | (x)
1240 *
1241 * In the examples, if we are looking for key "5", we may reach nodes
1242 * marked with "(x)". In this case what we have do is to look at the
1243 * left and see if there is "5" key there. If there is, we have to
1244 * return it.
1245 *
1246 * Note, this whole situation is possible because we allow to have
1247 * elements which are equivalent to the next key in the parent in the
1248 * children of current znode. For example, this happens if we split a
1249 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1250 * like this:
1251 * | 3 | 5 |
1252 * / \
1253 * | 3 | 5 | | 5 | 6 | 7 |
1254 * ^
1255 * And this becomes what is at the first "picture" after key "5" marked
1256 * with "^" is removed. What could be done is we could prohibit
1257 * splitting in the middle of the colliding sequence. Also, when
1258 * removing the leftmost key, we would have to correct the key of the
1259 * parent node, which would introduce additional complications. Namely,
Heiko Schocherf5895d12014-06-24 10:10:04 +02001260 * if we changed the leftmost key of the parent znode, the garbage
Stefan Roese2fc10f62009-03-19 15:35:05 +01001261 * collector would be unable to find it (GC is doing this when GC'ing
1262 * indexing LEBs). Although we already have an additional RB-tree where
1263 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1264 * after the commit. But anyway, this does not look easy to implement
1265 * so we did not try this.
1266 */
1267 err = tnc_prev(c, &znode, n);
1268 if (err == -ENOENT) {
1269 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1270 *n = -1;
1271 return 0;
1272 }
1273 if (unlikely(err < 0))
1274 return err;
1275 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1276 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1277 *n = -1;
1278 return 0;
1279 }
1280
1281 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1282 *zn = znode;
1283 return 1;
1284}
1285
1286/**
1287 * lookup_level0_dirty - search for zero-level znode dirtying.
1288 * @c: UBIFS file-system description object
1289 * @key: key to lookup
1290 * @zn: znode is returned here
1291 * @n: znode branch slot number is returned here
1292 *
1293 * This function looks up the TNC tree and search for zero-level znode which
1294 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1295 * cases:
1296 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1297 * is returned and slot number of the matched branch is stored in @n;
1298 * o not exact match, which means that zero-level znode does not contain @key
1299 * then %0 is returned and slot number of the closed branch is stored in
1300 * @n;
1301 * o @key is so small that it is even less than the lowest key of the
1302 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1303 *
1304 * Additionally all znodes in the path from the root to the located zero-level
1305 * znode are marked as dirty.
1306 *
1307 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1308 * function reads corresponding indexing nodes and inserts them to TNC. In
1309 * case of failure, a negative error code is returned.
1310 */
1311static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1312 struct ubifs_znode **zn, int *n)
1313{
1314 int err, exact;
1315 struct ubifs_znode *znode;
1316 unsigned long time = get_seconds();
1317
Heiko Schocherf5895d12014-06-24 10:10:04 +02001318 dbg_tnck(key, "search and dirty key ");
Stefan Roese2fc10f62009-03-19 15:35:05 +01001319
1320 znode = c->zroot.znode;
1321 if (unlikely(!znode)) {
1322 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1323 if (IS_ERR(znode))
1324 return PTR_ERR(znode);
1325 }
1326
1327 znode = dirty_cow_znode(c, &c->zroot);
1328 if (IS_ERR(znode))
1329 return PTR_ERR(znode);
1330
1331 znode->time = time;
1332
1333 while (1) {
1334 struct ubifs_zbranch *zbr;
1335
1336 exact = ubifs_search_zbranch(c, znode, key, n);
1337
1338 if (znode->level == 0)
1339 break;
1340
1341 if (*n < 0)
1342 *n = 0;
1343 zbr = &znode->zbranch[*n];
1344
1345 if (zbr->znode) {
1346 znode->time = time;
1347 znode = dirty_cow_znode(c, zbr);
1348 if (IS_ERR(znode))
1349 return PTR_ERR(znode);
1350 continue;
1351 }
1352
1353 /* znode is not in TNC cache, load it from the media */
1354 znode = ubifs_load_znode(c, zbr, znode, *n);
1355 if (IS_ERR(znode))
1356 return PTR_ERR(znode);
1357 znode = dirty_cow_znode(c, zbr);
1358 if (IS_ERR(znode))
1359 return PTR_ERR(znode);
1360 }
1361
1362 *zn = znode;
1363 if (exact || !is_hash_key(c, key) || *n != -1) {
1364 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1365 return exact;
1366 }
1367
1368 /*
1369 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1370 * code.
1371 */
1372 err = tnc_prev(c, &znode, n);
1373 if (err == -ENOENT) {
1374 *n = -1;
1375 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1376 return 0;
1377 }
1378 if (unlikely(err < 0))
1379 return err;
1380 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1381 *n = -1;
1382 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1383 return 0;
1384 }
1385
1386 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1387 znode = dirty_cow_bottom_up(c, znode);
1388 if (IS_ERR(znode))
1389 return PTR_ERR(znode);
1390 }
1391
1392 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1393 *zn = znode;
1394 return 1;
1395}
1396
1397/**
1398 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1399 * @c: UBIFS file-system description object
1400 * @lnum: LEB number
1401 * @gc_seq1: garbage collection sequence number
1402 *
1403 * This function determines if @lnum may have been garbage collected since
1404 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1405 * %0 is returned.
1406 */
1407static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1408{
Heiko Schocherf5895d12014-06-24 10:10:04 +02001409#ifndef __UBOOT__
1410 int gc_seq2, gced_lnum;
1411
1412 gced_lnum = c->gced_lnum;
1413 smp_rmb();
1414 gc_seq2 = c->gc_seq;
1415 /* Same seq means no GC */
1416 if (gc_seq1 == gc_seq2)
1417 return 0;
1418 /* Different by more than 1 means we don't know */
1419 if (gc_seq1 + 1 != gc_seq2)
1420 return 1;
Stefan Roese2fc10f62009-03-19 15:35:05 +01001421 /*
Heiko Schocherf5895d12014-06-24 10:10:04 +02001422 * We have seen the sequence number has increased by 1. Now we need to
1423 * be sure we read the right LEB number, so read it again.
Stefan Roese2fc10f62009-03-19 15:35:05 +01001424 */
Heiko Schocherf5895d12014-06-24 10:10:04 +02001425 smp_rmb();
1426 if (gced_lnum != c->gced_lnum)
1427 return 1;
1428 /* Finally we can check lnum */
1429 if (gced_lnum == lnum)
1430 return 1;
1431#else
1432 /* No garbage collection in the read-only U-Boot implementation */
1433#endif
Stefan Roese2fc10f62009-03-19 15:35:05 +01001434 return 0;
1435}
1436
1437/**
1438 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1439 * @c: UBIFS file-system description object
1440 * @key: node key to lookup
1441 * @node: the node is returned here
1442 * @lnum: LEB number is returned here
1443 * @offs: offset is returned here
1444 *
Heiko Schocherf5895d12014-06-24 10:10:04 +02001445 * This function looks up and reads node with key @key. The caller has to make
Stefan Roese2fc10f62009-03-19 15:35:05 +01001446 * sure the @node buffer is large enough to fit the node. Returns zero in case
1447 * of success, %-ENOENT if the node was not found, and a negative error code in
1448 * case of failure. The node location can be returned in @lnum and @offs.
1449 */
1450int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1451 void *node, int *lnum, int *offs)
1452{
1453 int found, n, err, safely = 0, gc_seq1;
1454 struct ubifs_znode *znode;
1455 struct ubifs_zbranch zbr, *zt;
1456
1457again:
1458 mutex_lock(&c->tnc_mutex);
1459 found = ubifs_lookup_level0(c, key, &znode, &n);
1460 if (!found) {
1461 err = -ENOENT;
1462 goto out;
1463 } else if (found < 0) {
1464 err = found;
1465 goto out;
1466 }
1467 zt = &znode->zbranch[n];
1468 if (lnum) {
1469 *lnum = zt->lnum;
1470 *offs = zt->offs;
1471 }
1472 if (is_hash_key(c, key)) {
1473 /*
1474 * In this case the leaf node cache gets used, so we pass the
1475 * address of the zbranch and keep the mutex locked
1476 */
1477 err = tnc_read_node_nm(c, zt, node);
1478 goto out;
1479 }
1480 if (safely) {
1481 err = ubifs_tnc_read_node(c, zt, node);
1482 goto out;
1483 }
1484 /* Drop the TNC mutex prematurely and race with garbage collection */
1485 zbr = znode->zbranch[n];
1486 gc_seq1 = c->gc_seq;
1487 mutex_unlock(&c->tnc_mutex);
1488
Heiko Schocherf5895d12014-06-24 10:10:04 +02001489 if (ubifs_get_wbuf(c, zbr.lnum)) {
1490 /* We do not GC journal heads */
1491 err = ubifs_tnc_read_node(c, &zbr, node);
1492 return err;
1493 }
1494
Stefan Roese2fc10f62009-03-19 15:35:05 +01001495 err = fallible_read_node(c, key, &zbr, node);
1496 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1497 /*
1498 * The node may have been GC'ed out from under us so try again
1499 * while keeping the TNC mutex locked.
1500 */
1501 safely = 1;
1502 goto again;
1503 }
1504 return 0;
1505
1506out:
1507 mutex_unlock(&c->tnc_mutex);
1508 return err;
1509}
1510
1511/**
1512 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1513 * @c: UBIFS file-system description object
1514 * @bu: bulk-read parameters and results
1515 *
1516 * Lookup consecutive data node keys for the same inode that reside
1517 * consecutively in the same LEB. This function returns zero in case of success
1518 * and a negative error code in case of failure.
1519 *
1520 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1521 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1522 * maximum possible amount of nodes for bulk-read.
1523 */
1524int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1525{
1526 int n, err = 0, lnum = -1, uninitialized_var(offs);
1527 int uninitialized_var(len);
1528 unsigned int block = key_block(c, &bu->key);
1529 struct ubifs_znode *znode;
1530
1531 bu->cnt = 0;
1532 bu->blk_cnt = 0;
1533 bu->eof = 0;
1534
1535 mutex_lock(&c->tnc_mutex);
1536 /* Find first key */
1537 err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1538 if (err < 0)
1539 goto out;
1540 if (err) {
1541 /* Key found */
1542 len = znode->zbranch[n].len;
1543 /* The buffer must be big enough for at least 1 node */
1544 if (len > bu->buf_len) {
1545 err = -EINVAL;
1546 goto out;
1547 }
1548 /* Add this key */
1549 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1550 bu->blk_cnt += 1;
1551 lnum = znode->zbranch[n].lnum;
1552 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1553 }
1554 while (1) {
1555 struct ubifs_zbranch *zbr;
1556 union ubifs_key *key;
1557 unsigned int next_block;
1558
1559 /* Find next key */
1560 err = tnc_next(c, &znode, &n);
1561 if (err)
1562 goto out;
1563 zbr = &znode->zbranch[n];
1564 key = &zbr->key;
1565 /* See if there is another data key for this file */
1566 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1567 key_type(c, key) != UBIFS_DATA_KEY) {
1568 err = -ENOENT;
1569 goto out;
1570 }
1571 if (lnum < 0) {
1572 /* First key found */
1573 lnum = zbr->lnum;
1574 offs = ALIGN(zbr->offs + zbr->len, 8);
1575 len = zbr->len;
1576 if (len > bu->buf_len) {
1577 err = -EINVAL;
1578 goto out;
1579 }
1580 } else {
1581 /*
1582 * The data nodes must be in consecutive positions in
1583 * the same LEB.
1584 */
1585 if (zbr->lnum != lnum || zbr->offs != offs)
1586 goto out;
1587 offs += ALIGN(zbr->len, 8);
1588 len = ALIGN(len, 8) + zbr->len;
1589 /* Must not exceed buffer length */
1590 if (len > bu->buf_len)
1591 goto out;
1592 }
1593 /* Allow for holes */
1594 next_block = key_block(c, key);
1595 bu->blk_cnt += (next_block - block - 1);
1596 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1597 goto out;
1598 block = next_block;
1599 /* Add this key */
1600 bu->zbranch[bu->cnt++] = *zbr;
1601 bu->blk_cnt += 1;
1602 /* See if we have room for more */
1603 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1604 goto out;
1605 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1606 goto out;
1607 }
1608out:
1609 if (err == -ENOENT) {
1610 bu->eof = 1;
1611 err = 0;
1612 }
1613 bu->gc_seq = c->gc_seq;
1614 mutex_unlock(&c->tnc_mutex);
1615 if (err)
1616 return err;
1617 /*
1618 * An enormous hole could cause bulk-read to encompass too many
1619 * page cache pages, so limit the number here.
1620 */
1621 if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1622 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1623 /*
1624 * Ensure that bulk-read covers a whole number of page cache
1625 * pages.
1626 */
1627 if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1628 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1629 return 0;
1630 if (bu->eof) {
1631 /* At the end of file we can round up */
1632 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1633 return 0;
1634 }
1635 /* Exclude data nodes that do not make up a whole page cache page */
1636 block = key_block(c, &bu->key) + bu->blk_cnt;
1637 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1638 while (bu->cnt) {
1639 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1640 break;
1641 bu->cnt -= 1;
1642 }
1643 return 0;
1644}
1645
1646/**
Heiko Schocherf5895d12014-06-24 10:10:04 +02001647 * read_wbuf - bulk-read from a LEB with a wbuf.
1648 * @wbuf: wbuf that may overlap the read
1649 * @buf: buffer into which to read
1650 * @len: read length
1651 * @lnum: LEB number from which to read
1652 * @offs: offset from which to read
1653 *
1654 * This functions returns %0 on success or a negative error code on failure.
1655 */
1656static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1657 int offs)
1658{
1659 const struct ubifs_info *c = wbuf->c;
1660 int rlen, overlap;
1661
1662 dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1663 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1664 ubifs_assert(!(offs & 7) && offs < c->leb_size);
1665 ubifs_assert(offs + len <= c->leb_size);
1666
1667 spin_lock(&wbuf->lock);
1668 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1669 if (!overlap) {
1670 /* We may safely unlock the write-buffer and read the data */
1671 spin_unlock(&wbuf->lock);
1672 return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1673 }
1674
1675 /* Don't read under wbuf */
1676 rlen = wbuf->offs - offs;
1677 if (rlen < 0)
1678 rlen = 0;
1679
1680 /* Copy the rest from the write-buffer */
1681 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1682 spin_unlock(&wbuf->lock);
1683
1684 if (rlen > 0)
1685 /* Read everything that goes before write-buffer */
1686 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1687
1688 return 0;
1689}
1690
1691/**
Stefan Roese2fc10f62009-03-19 15:35:05 +01001692 * validate_data_node - validate data nodes for bulk-read.
1693 * @c: UBIFS file-system description object
1694 * @buf: buffer containing data node to validate
1695 * @zbr: zbranch of data node to validate
1696 *
1697 * This functions returns %0 on success or a negative error code on failure.
1698 */
1699static int validate_data_node(struct ubifs_info *c, void *buf,
1700 struct ubifs_zbranch *zbr)
1701{
1702 union ubifs_key key1;
1703 struct ubifs_ch *ch = buf;
1704 int err, len;
1705
1706 if (ch->node_type != UBIFS_DATA_NODE) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001707 ubifs_err(c, "bad node type (%d but expected %d)",
Stefan Roese2fc10f62009-03-19 15:35:05 +01001708 ch->node_type, UBIFS_DATA_NODE);
1709 goto out_err;
1710 }
1711
1712 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1713 if (err) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001714 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001715 goto out;
1716 }
1717
1718 len = le32_to_cpu(ch->len);
1719 if (len != zbr->len) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001720 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001721 goto out_err;
1722 }
1723
1724 /* Make sure the key of the read node is correct */
1725 key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1726 if (!keys_eq(c, &zbr->key, &key1)) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001727 ubifs_err(c, "bad key in node at LEB %d:%d",
Stefan Roese2fc10f62009-03-19 15:35:05 +01001728 zbr->lnum, zbr->offs);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001729 dbg_tnck(&zbr->key, "looked for key ");
1730 dbg_tnck(&key1, "found node's key ");
Stefan Roese2fc10f62009-03-19 15:35:05 +01001731 goto out_err;
1732 }
1733
1734 return 0;
1735
1736out_err:
1737 err = -EINVAL;
1738out:
Heiko Schocher94b66de2015-10-22 06:19:21 +02001739 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001740 ubifs_dump_node(c, buf);
1741 dump_stack();
Stefan Roese2fc10f62009-03-19 15:35:05 +01001742 return err;
1743}
1744
1745/**
1746 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1747 * @c: UBIFS file-system description object
1748 * @bu: bulk-read parameters and results
1749 *
1750 * This functions reads and validates the data nodes that were identified by the
1751 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1752 * -EAGAIN to indicate a race with GC, or another negative error code on
1753 * failure.
1754 */
1755int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1756{
1757 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
Heiko Schocherf5895d12014-06-24 10:10:04 +02001758 struct ubifs_wbuf *wbuf;
Stefan Roese2fc10f62009-03-19 15:35:05 +01001759 void *buf;
1760
1761 len = bu->zbranch[bu->cnt - 1].offs;
1762 len += bu->zbranch[bu->cnt - 1].len - offs;
1763 if (len > bu->buf_len) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001764 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001765 return -EINVAL;
1766 }
1767
1768 /* Do the read */
Heiko Schocherf5895d12014-06-24 10:10:04 +02001769 wbuf = ubifs_get_wbuf(c, lnum);
1770 if (wbuf)
1771 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1772 else
1773 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001774
1775 /* Check for a race with GC */
1776 if (maybe_leb_gced(c, lnum, bu->gc_seq))
1777 return -EAGAIN;
1778
1779 if (err && err != -EBADMSG) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02001780 ubifs_err(c, "failed to read from LEB %d:%d, error %d",
Stefan Roese2fc10f62009-03-19 15:35:05 +01001781 lnum, offs, err);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001782 dump_stack();
1783 dbg_tnck(&bu->key, "key ");
Stefan Roese2fc10f62009-03-19 15:35:05 +01001784 return err;
1785 }
1786
1787 /* Validate the nodes read */
1788 buf = bu->buf;
1789 for (i = 0; i < bu->cnt; i++) {
1790 err = validate_data_node(c, buf, &bu->zbranch[i]);
1791 if (err)
1792 return err;
1793 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1794 }
1795
1796 return 0;
1797}
1798
1799/**
1800 * do_lookup_nm- look up a "hashed" node.
1801 * @c: UBIFS file-system description object
1802 * @key: node key to lookup
1803 * @node: the node is returned here
1804 * @nm: node name
1805 *
1806 * This function look up and reads a node which contains name hash in the key.
1807 * Since the hash may have collisions, there may be many nodes with the same
1808 * key, so we have to sequentially look to all of them until the needed one is
1809 * found. This function returns zero in case of success, %-ENOENT if the node
1810 * was not found, and a negative error code in case of failure.
1811 */
1812static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1813 void *node, const struct qstr *nm)
1814{
1815 int found, n, err;
1816 struct ubifs_znode *znode;
1817
Heiko Schocherf5895d12014-06-24 10:10:04 +02001818 dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001819 mutex_lock(&c->tnc_mutex);
1820 found = ubifs_lookup_level0(c, key, &znode, &n);
1821 if (!found) {
1822 err = -ENOENT;
1823 goto out_unlock;
1824 } else if (found < 0) {
1825 err = found;
1826 goto out_unlock;
1827 }
1828
1829 ubifs_assert(n >= 0);
1830
1831 err = resolve_collision(c, key, &znode, &n, nm);
1832 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1833 if (unlikely(err < 0))
1834 goto out_unlock;
1835 if (err == 0) {
1836 err = -ENOENT;
1837 goto out_unlock;
1838 }
1839
1840 err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1841
1842out_unlock:
1843 mutex_unlock(&c->tnc_mutex);
1844 return err;
1845}
1846
1847/**
1848 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1849 * @c: UBIFS file-system description object
1850 * @key: node key to lookup
1851 * @node: the node is returned here
1852 * @nm: node name
1853 *
1854 * This function look up and reads a node which contains name hash in the key.
1855 * Since the hash may have collisions, there may be many nodes with the same
1856 * key, so we have to sequentially look to all of them until the needed one is
1857 * found. This function returns zero in case of success, %-ENOENT if the node
1858 * was not found, and a negative error code in case of failure.
1859 */
1860int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1861 void *node, const struct qstr *nm)
1862{
1863 int err, len;
1864 const struct ubifs_dent_node *dent = node;
1865
1866 /*
1867 * We assume that in most of the cases there are no name collisions and
1868 * 'ubifs_tnc_lookup()' returns us the right direntry.
1869 */
1870 err = ubifs_tnc_lookup(c, key, node);
1871 if (err)
1872 return err;
1873
1874 len = le16_to_cpu(dent->nlen);
1875 if (nm->len == len && !memcmp(dent->name, nm->name, len))
1876 return 0;
1877
1878 /*
1879 * Unluckily, there are hash collisions and we have to iterate over
1880 * them look at each direntry with colliding name hash sequentially.
1881 */
1882 return do_lookup_nm(c, key, node, nm);
1883}
1884
1885/**
1886 * correct_parent_keys - correct parent znodes' keys.
1887 * @c: UBIFS file-system description object
1888 * @znode: znode to correct parent znodes for
1889 *
1890 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1891 * zbranch changes, keys of parent znodes have to be corrected. This helper
1892 * function is called in such situations and corrects the keys if needed.
1893 */
1894static void correct_parent_keys(const struct ubifs_info *c,
1895 struct ubifs_znode *znode)
1896{
1897 union ubifs_key *key, *key1;
1898
1899 ubifs_assert(znode->parent);
1900 ubifs_assert(znode->iip == 0);
1901
1902 key = &znode->zbranch[0].key;
1903 key1 = &znode->parent->zbranch[0].key;
1904
1905 while (keys_cmp(c, key, key1) < 0) {
1906 key_copy(c, key, key1);
1907 znode = znode->parent;
1908 znode->alt = 1;
1909 if (!znode->parent || znode->iip)
1910 break;
1911 key1 = &znode->parent->zbranch[0].key;
1912 }
1913}
1914
1915/**
1916 * insert_zbranch - insert a zbranch into a znode.
1917 * @znode: znode into which to insert
1918 * @zbr: zbranch to insert
1919 * @n: slot number to insert to
1920 *
1921 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1922 * znode's array of zbranches and keeps zbranches consolidated, so when a new
1923 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1924 * slot, zbranches starting from @n have to be moved right.
1925 */
1926static void insert_zbranch(struct ubifs_znode *znode,
1927 const struct ubifs_zbranch *zbr, int n)
1928{
1929 int i;
1930
1931 ubifs_assert(ubifs_zn_dirty(znode));
1932
1933 if (znode->level) {
1934 for (i = znode->child_cnt; i > n; i--) {
1935 znode->zbranch[i] = znode->zbranch[i - 1];
1936 if (znode->zbranch[i].znode)
1937 znode->zbranch[i].znode->iip = i;
1938 }
1939 if (zbr->znode)
1940 zbr->znode->iip = n;
1941 } else
1942 for (i = znode->child_cnt; i > n; i--)
1943 znode->zbranch[i] = znode->zbranch[i - 1];
1944
1945 znode->zbranch[n] = *zbr;
1946 znode->child_cnt += 1;
1947
1948 /*
1949 * After inserting at slot zero, the lower bound of the key range of
1950 * this znode may have changed. If this znode is subsequently split
1951 * then the upper bound of the key range may change, and furthermore
1952 * it could change to be lower than the original lower bound. If that
1953 * happens, then it will no longer be possible to find this znode in the
1954 * TNC using the key from the index node on flash. That is bad because
1955 * if it is not found, we will assume it is obsolete and may overwrite
1956 * it. Then if there is an unclean unmount, we will start using the
1957 * old index which will be broken.
1958 *
1959 * So we first mark znodes that have insertions at slot zero, and then
1960 * if they are split we add their lnum/offs to the old_idx tree.
1961 */
1962 if (n == 0)
1963 znode->alt = 1;
1964}
1965
1966/**
1967 * tnc_insert - insert a node into TNC.
1968 * @c: UBIFS file-system description object
1969 * @znode: znode to insert into
1970 * @zbr: branch to insert
1971 * @n: slot number to insert new zbranch to
1972 *
1973 * This function inserts a new node described by @zbr into znode @znode. If
1974 * znode does not have a free slot for new zbranch, it is split. Parent znodes
1975 * are splat as well if needed. Returns zero in case of success or a negative
1976 * error code in case of failure.
1977 */
1978static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1979 struct ubifs_zbranch *zbr, int n)
1980{
1981 struct ubifs_znode *zn, *zi, *zp;
1982 int i, keep, move, appending = 0;
1983 union ubifs_key *key = &zbr->key, *key1;
1984
1985 ubifs_assert(n >= 0 && n <= c->fanout);
1986
1987 /* Implement naive insert for now */
1988again:
1989 zp = znode->parent;
1990 if (znode->child_cnt < c->fanout) {
1991 ubifs_assert(n != c->fanout);
Heiko Schocherf5895d12014-06-24 10:10:04 +02001992 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
Stefan Roese2fc10f62009-03-19 15:35:05 +01001993
1994 insert_zbranch(znode, zbr, n);
1995
1996 /* Ensure parent's key is correct */
1997 if (n == 0 && zp && znode->iip == 0)
1998 correct_parent_keys(c, znode);
1999
2000 return 0;
2001 }
2002
2003 /*
2004 * Unfortunately, @znode does not have more empty slots and we have to
2005 * split it.
2006 */
Heiko Schocherf5895d12014-06-24 10:10:04 +02002007 dbg_tnck(key, "splitting level %d, key ", znode->level);
Stefan Roese2fc10f62009-03-19 15:35:05 +01002008
2009 if (znode->alt)
2010 /*
2011 * We can no longer be sure of finding this znode by key, so we
2012 * record it in the old_idx tree.
2013 */
2014 ins_clr_old_idx_znode(c, znode);
2015
2016 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2017 if (!zn)
2018 return -ENOMEM;
2019 zn->parent = zp;
2020 zn->level = znode->level;
2021
2022 /* Decide where to split */
2023 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2024 /* Try not to split consecutive data keys */
2025 if (n == c->fanout) {
2026 key1 = &znode->zbranch[n - 1].key;
2027 if (key_inum(c, key1) == key_inum(c, key) &&
2028 key_type(c, key1) == UBIFS_DATA_KEY)
2029 appending = 1;
2030 } else
2031 goto check_split;
2032 } else if (appending && n != c->fanout) {
2033 /* Try not to split consecutive data keys */
2034 appending = 0;
2035check_split:
2036 if (n >= (c->fanout + 1) / 2) {
2037 key1 = &znode->zbranch[0].key;
2038 if (key_inum(c, key1) == key_inum(c, key) &&
2039 key_type(c, key1) == UBIFS_DATA_KEY) {
2040 key1 = &znode->zbranch[n].key;
2041 if (key_inum(c, key1) != key_inum(c, key) ||
2042 key_type(c, key1) != UBIFS_DATA_KEY) {
2043 keep = n;
2044 move = c->fanout - keep;
2045 zi = znode;
2046 goto do_split;
2047 }
2048 }
2049 }
2050 }
2051
2052 if (appending) {
2053 keep = c->fanout;
2054 move = 0;
2055 } else {
2056 keep = (c->fanout + 1) / 2;
2057 move = c->fanout - keep;
2058 }
2059
2060 /*
2061 * Although we don't at present, we could look at the neighbors and see
2062 * if we can move some zbranches there.
2063 */
2064
2065 if (n < keep) {
2066 /* Insert into existing znode */
2067 zi = znode;
2068 move += 1;
2069 keep -= 1;
2070 } else {
2071 /* Insert into new znode */
2072 zi = zn;
2073 n -= keep;
2074 /* Re-parent */
2075 if (zn->level != 0)
2076 zbr->znode->parent = zn;
2077 }
2078
2079do_split:
2080
2081 __set_bit(DIRTY_ZNODE, &zn->flags);
2082 atomic_long_inc(&c->dirty_zn_cnt);
2083
2084 zn->child_cnt = move;
2085 znode->child_cnt = keep;
2086
2087 dbg_tnc("moving %d, keeping %d", move, keep);
2088
2089 /* Move zbranch */
2090 for (i = 0; i < move; i++) {
2091 zn->zbranch[i] = znode->zbranch[keep + i];
2092 /* Re-parent */
2093 if (zn->level != 0)
2094 if (zn->zbranch[i].znode) {
2095 zn->zbranch[i].znode->parent = zn;
2096 zn->zbranch[i].znode->iip = i;
2097 }
2098 }
2099
2100 /* Insert new key and branch */
Heiko Schocherf5895d12014-06-24 10:10:04 +02002101 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
Stefan Roese2fc10f62009-03-19 15:35:05 +01002102
2103 insert_zbranch(zi, zbr, n);
2104
2105 /* Insert new znode (produced by spitting) into the parent */
2106 if (zp) {
2107 if (n == 0 && zi == znode && znode->iip == 0)
2108 correct_parent_keys(c, znode);
2109
2110 /* Locate insertion point */
2111 n = znode->iip + 1;
2112
2113 /* Tail recursion */
2114 zbr->key = zn->zbranch[0].key;
2115 zbr->znode = zn;
2116 zbr->lnum = 0;
2117 zbr->offs = 0;
2118 zbr->len = 0;
2119 znode = zp;
2120
2121 goto again;
2122 }
2123
2124 /* We have to split root znode */
2125 dbg_tnc("creating new zroot at level %d", znode->level + 1);
2126
2127 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2128 if (!zi)
2129 return -ENOMEM;
2130
2131 zi->child_cnt = 2;
2132 zi->level = znode->level + 1;
2133
2134 __set_bit(DIRTY_ZNODE, &zi->flags);
2135 atomic_long_inc(&c->dirty_zn_cnt);
2136
2137 zi->zbranch[0].key = znode->zbranch[0].key;
2138 zi->zbranch[0].znode = znode;
2139 zi->zbranch[0].lnum = c->zroot.lnum;
2140 zi->zbranch[0].offs = c->zroot.offs;
2141 zi->zbranch[0].len = c->zroot.len;
2142 zi->zbranch[1].key = zn->zbranch[0].key;
2143 zi->zbranch[1].znode = zn;
2144
2145 c->zroot.lnum = 0;
2146 c->zroot.offs = 0;
2147 c->zroot.len = 0;
2148 c->zroot.znode = zi;
2149
2150 zn->parent = zi;
2151 zn->iip = 1;
2152 znode->parent = zi;
2153 znode->iip = 0;
2154
2155 return 0;
2156}
2157
2158/**
2159 * ubifs_tnc_add - add a node to TNC.
2160 * @c: UBIFS file-system description object
2161 * @key: key to add
2162 * @lnum: LEB number of node
2163 * @offs: node offset
2164 * @len: node length
2165 *
2166 * This function adds a node with key @key to TNC. The node may be new or it may
2167 * obsolete some existing one. Returns %0 on success or negative error code on
2168 * failure.
2169 */
2170int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2171 int offs, int len)
2172{
2173 int found, n, err = 0;
2174 struct ubifs_znode *znode;
2175
2176 mutex_lock(&c->tnc_mutex);
Heiko Schocherf5895d12014-06-24 10:10:04 +02002177 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
Stefan Roese2fc10f62009-03-19 15:35:05 +01002178 found = lookup_level0_dirty(c, key, &znode, &n);
2179 if (!found) {
2180 struct ubifs_zbranch zbr;
2181
2182 zbr.znode = NULL;
2183 zbr.lnum = lnum;
2184 zbr.offs = offs;
2185 zbr.len = len;
2186 key_copy(c, key, &zbr.key);
2187 err = tnc_insert(c, znode, &zbr, n + 1);
2188 } else if (found == 1) {
2189 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2190
2191 lnc_free(zbr);
2192 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2193 zbr->lnum = lnum;
2194 zbr->offs = offs;
2195 zbr->len = len;
2196 } else
2197 err = found;
2198 if (!err)
2199 err = dbg_check_tnc(c, 0);
2200 mutex_unlock(&c->tnc_mutex);
2201
2202 return err;
2203}
2204
2205/**
2206 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2207 * @c: UBIFS file-system description object
2208 * @key: key to add
2209 * @old_lnum: LEB number of old node
2210 * @old_offs: old node offset
2211 * @lnum: LEB number of node
2212 * @offs: node offset
2213 * @len: node length
2214 *
2215 * This function replaces a node with key @key in the TNC only if the old node
2216 * is found. This function is called by garbage collection when node are moved.
2217 * Returns %0 on success or negative error code on failure.
2218 */
2219int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2220 int old_lnum, int old_offs, int lnum, int offs, int len)
2221{
2222 int found, n, err = 0;
2223 struct ubifs_znode *znode;
2224
2225 mutex_lock(&c->tnc_mutex);
Heiko Schocherf5895d12014-06-24 10:10:04 +02002226 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2227 old_offs, lnum, offs, len);
Stefan Roese2fc10f62009-03-19 15:35:05 +01002228 found = lookup_level0_dirty(c, key, &znode, &n);
2229 if (found < 0) {
2230 err = found;
2231 goto out_unlock;
2232 }
2233
2234 if (found == 1) {
2235 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2236
2237 found = 0;
2238 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2239 lnc_free(zbr);
2240 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2241 if (err)
2242 goto out_unlock;
2243 zbr->lnum = lnum;
2244 zbr->offs = offs;
2245 zbr->len = len;
2246 found = 1;
2247 } else if (is_hash_key(c, key)) {
2248 found = resolve_collision_directly(c, key, &znode, &n,
2249 old_lnum, old_offs);
2250 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2251 found, znode, n, old_lnum, old_offs);
2252 if (found < 0) {
2253 err = found;
2254 goto out_unlock;
2255 }
2256
2257 if (found) {
2258 /* Ensure the znode is dirtied */
2259 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2260 znode = dirty_cow_bottom_up(c, znode);
2261 if (IS_ERR(znode)) {
2262 err = PTR_ERR(znode);
2263 goto out_unlock;
2264 }
2265 }
2266 zbr = &znode->zbranch[n];
2267 lnc_free(zbr);
2268 err = ubifs_add_dirt(c, zbr->lnum,
2269 zbr->len);
2270 if (err)
2271 goto out_unlock;
2272 zbr->lnum = lnum;
2273 zbr->offs = offs;
2274 zbr->len = len;
2275 }
2276 }
2277 }
2278
2279 if (!found)
2280 err = ubifs_add_dirt(c, lnum, len);
2281
2282 if (!err)
2283 err = dbg_check_tnc(c, 0);
2284
2285out_unlock:
2286 mutex_unlock(&c->tnc_mutex);
2287 return err;
2288}
2289
2290/**
2291 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2292 * @c: UBIFS file-system description object
2293 * @key: key to add
2294 * @lnum: LEB number of node
2295 * @offs: node offset
2296 * @len: node length
2297 * @nm: node name
2298 *
2299 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2300 * may have collisions, like directory entry keys.
2301 */
2302int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2303 int lnum, int offs, int len, const struct qstr *nm)
2304{
2305 int found, n, err = 0;
2306 struct ubifs_znode *znode;
2307
2308 mutex_lock(&c->tnc_mutex);
Heiko Schocherf5895d12014-06-24 10:10:04 +02002309 dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
2310 lnum, offs, nm->len, nm->name);
Stefan Roese2fc10f62009-03-19 15:35:05 +01002311 found = lookup_level0_dirty(c, key, &znode, &n);
2312 if (found < 0) {
2313 err = found;
2314 goto out_unlock;
2315 }
2316
2317 if (found == 1) {
2318 if (c->replaying)
2319 found = fallible_resolve_collision(c, key, &znode, &n,
2320 nm, 1);
2321 else
2322 found = resolve_collision(c, key, &znode, &n, nm);
2323 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2324 if (found < 0) {
2325 err = found;
2326 goto out_unlock;
2327 }
2328
2329 /* Ensure the znode is dirtied */
2330 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2331 znode = dirty_cow_bottom_up(c, znode);
2332 if (IS_ERR(znode)) {
2333 err = PTR_ERR(znode);
2334 goto out_unlock;
2335 }
2336 }
2337
2338 if (found == 1) {
2339 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2340
2341 lnc_free(zbr);
2342 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2343 zbr->lnum = lnum;
2344 zbr->offs = offs;
2345 zbr->len = len;
2346 goto out_unlock;
2347 }
2348 }
2349
2350 if (!found) {
2351 struct ubifs_zbranch zbr;
2352
2353 zbr.znode = NULL;
2354 zbr.lnum = lnum;
2355 zbr.offs = offs;
2356 zbr.len = len;
2357 key_copy(c, key, &zbr.key);
2358 err = tnc_insert(c, znode, &zbr, n + 1);
2359 if (err)
2360 goto out_unlock;
2361 if (c->replaying) {
2362 /*
2363 * We did not find it in the index so there may be a
2364 * dangling branch still in the index. So we remove it
2365 * by passing 'ubifs_tnc_remove_nm()' the same key but
2366 * an unmatchable name.
2367 */
Heiko Schocherf5895d12014-06-24 10:10:04 +02002368 struct qstr noname = { .name = "" };
Stefan Roese2fc10f62009-03-19 15:35:05 +01002369
2370 err = dbg_check_tnc(c, 0);
2371 mutex_unlock(&c->tnc_mutex);
2372 if (err)
2373 return err;
2374 return ubifs_tnc_remove_nm(c, key, &noname);
2375 }
2376 }
2377
2378out_unlock:
2379 if (!err)
2380 err = dbg_check_tnc(c, 0);
2381 mutex_unlock(&c->tnc_mutex);
2382 return err;
2383}
2384
2385/**
2386 * tnc_delete - delete a znode form TNC.
2387 * @c: UBIFS file-system description object
2388 * @znode: znode to delete from
2389 * @n: zbranch slot number to delete
2390 *
2391 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2392 * case of success and a negative error code in case of failure.
2393 */
2394static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2395{
2396 struct ubifs_zbranch *zbr;
2397 struct ubifs_znode *zp;
2398 int i, err;
2399
2400 /* Delete without merge for now */
2401 ubifs_assert(znode->level == 0);
2402 ubifs_assert(n >= 0 && n < c->fanout);
Heiko Schocherf5895d12014-06-24 10:10:04 +02002403 dbg_tnck(&znode->zbranch[n].key, "deleting key ");
Stefan Roese2fc10f62009-03-19 15:35:05 +01002404
2405 zbr = &znode->zbranch[n];
2406 lnc_free(zbr);
2407
2408 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2409 if (err) {
Heiko Schocherf5895d12014-06-24 10:10:04 +02002410 ubifs_dump_znode(c, znode);
Stefan Roese2fc10f62009-03-19 15:35:05 +01002411 return err;
2412 }
2413
2414 /* We do not "gap" zbranch slots */
2415 for (i = n; i < znode->child_cnt - 1; i++)
2416 znode->zbranch[i] = znode->zbranch[i + 1];
2417 znode->child_cnt -= 1;
2418
2419 if (znode->child_cnt > 0)
2420 return 0;
2421
2422 /*
2423 * This was the last zbranch, we have to delete this znode from the
2424 * parent.
2425 */
2426
2427 do {
Heiko Schocherf5895d12014-06-24 10:10:04 +02002428 ubifs_assert(!ubifs_zn_obsolete(znode));
Stefan Roese2fc10f62009-03-19 15:35:05 +01002429 ubifs_assert(ubifs_zn_dirty(znode));
2430
2431 zp = znode->parent;
2432 n = znode->iip;
2433
2434 atomic_long_dec(&c->dirty_zn_cnt);
2435
2436 err = insert_old_idx_znode(c, znode);
2437 if (err)
2438 return err;
2439
2440 if (znode->cnext) {
2441 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2442 atomic_long_inc(&c->clean_zn_cnt);
2443 atomic_long_inc(&ubifs_clean_zn_cnt);
2444 } else
2445 kfree(znode);
2446 znode = zp;
2447 } while (znode->child_cnt == 1); /* while removing last child */
2448
2449 /* Remove from znode, entry n - 1 */
2450 znode->child_cnt -= 1;
2451 ubifs_assert(znode->level != 0);
2452 for (i = n; i < znode->child_cnt; i++) {
2453 znode->zbranch[i] = znode->zbranch[i + 1];
2454 if (znode->zbranch[i].znode)
2455 znode->zbranch[i].znode->iip = i;
2456 }
2457
2458 /*
2459 * If this is the root and it has only 1 child then
2460 * collapse the tree.
2461 */
2462 if (!znode->parent) {
2463 while (znode->child_cnt == 1 && znode->level != 0) {
2464 zp = znode;
2465 zbr = &znode->zbranch[0];
2466 znode = get_znode(c, znode, 0);
2467 if (IS_ERR(znode))
2468 return PTR_ERR(znode);
2469 znode = dirty_cow_znode(c, zbr);
2470 if (IS_ERR(znode))
2471 return PTR_ERR(znode);
2472 znode->parent = NULL;
2473 znode->iip = 0;
2474 if (c->zroot.len) {
2475 err = insert_old_idx(c, c->zroot.lnum,
2476 c->zroot.offs);
2477 if (err)
2478 return err;
2479 }
2480 c->zroot.lnum = zbr->lnum;
2481 c->zroot.offs = zbr->offs;
2482 c->zroot.len = zbr->len;
2483 c->zroot.znode = znode;
Heiko Schocherf5895d12014-06-24 10:10:04 +02002484 ubifs_assert(!ubifs_zn_obsolete(zp));
2485 ubifs_assert(ubifs_zn_dirty(zp));
Stefan Roese2fc10f62009-03-19 15:35:05 +01002486 atomic_long_dec(&c->dirty_zn_cnt);
2487
2488 if (zp->cnext) {
2489 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2490 atomic_long_inc(&c->clean_zn_cnt);
2491 atomic_long_inc(&ubifs_clean_zn_cnt);
2492 } else
2493 kfree(zp);
2494 }
2495 }
2496
2497 return 0;
2498}
2499
2500/**
2501 * ubifs_tnc_remove - remove an index entry of a node.
2502 * @c: UBIFS file-system description object
2503 * @key: key of node
2504 *
2505 * Returns %0 on success or negative error code on failure.
2506 */
2507int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2508{
2509 int found, n, err = 0;
2510 struct ubifs_znode *znode;
2511
2512 mutex_lock(&c->tnc_mutex);
Heiko Schocherf5895d12014-06-24 10:10:04 +02002513 dbg_tnck(key, "key ");
Stefan Roese2fc10f62009-03-19 15:35:05 +01002514 found = lookup_level0_dirty(c, key, &znode, &n);
2515 if (found < 0) {
2516 err = found;
2517 goto out_unlock;
2518 }
2519 if (found == 1)
2520 err = tnc_delete(c, znode, n);
2521 if (!err)
2522 err = dbg_check_tnc(c, 0);
2523
2524out_unlock:
2525 mutex_unlock(&c->tnc_mutex);
2526 return err;
2527}
2528
2529/**
2530 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2531 * @c: UBIFS file-system description object
2532 * @key: key of node
2533 * @nm: directory entry name
2534 *
2535 * Returns %0 on success or negative error code on failure.
2536 */
2537int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2538 const struct qstr *nm)
2539{
2540 int n, err;
2541 struct ubifs_znode *znode;
2542
2543 mutex_lock(&c->tnc_mutex);
Heiko Schocherf5895d12014-06-24 10:10:04 +02002544 dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
Stefan Roese2fc10f62009-03-19 15:35:05 +01002545 err = lookup_level0_dirty(c, key, &znode, &n);
2546 if (err < 0)
2547 goto out_unlock;
2548
2549 if (err) {
2550 if (c->replaying)
2551 err = fallible_resolve_collision(c, key, &znode, &n,
2552 nm, 0);
2553 else
2554 err = resolve_collision(c, key, &znode, &n, nm);
2555 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2556 if (err < 0)
2557 goto out_unlock;
2558 if (err) {
2559 /* Ensure the znode is dirtied */
2560 if (znode->cnext || !ubifs_zn_dirty(znode)) {
Heiko Schocherf5895d12014-06-24 10:10:04 +02002561 znode = dirty_cow_bottom_up(c, znode);
2562 if (IS_ERR(znode)) {
2563 err = PTR_ERR(znode);
2564 goto out_unlock;
2565 }
Stefan Roese2fc10f62009-03-19 15:35:05 +01002566 }
2567 err = tnc_delete(c, znode, n);
2568 }
2569 }
2570
2571out_unlock:
2572 if (!err)
2573 err = dbg_check_tnc(c, 0);
2574 mutex_unlock(&c->tnc_mutex);
2575 return err;
2576}
2577
2578/**
2579 * key_in_range - determine if a key falls within a range of keys.
2580 * @c: UBIFS file-system description object
2581 * @key: key to check
2582 * @from_key: lowest key in range
2583 * @to_key: highest key in range
2584 *
2585 * This function returns %1 if the key is in range and %0 otherwise.
2586 */
2587static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2588 union ubifs_key *from_key, union ubifs_key *to_key)
2589{
2590 if (keys_cmp(c, key, from_key) < 0)
2591 return 0;
2592 if (keys_cmp(c, key, to_key) > 0)
2593 return 0;
2594 return 1;
2595}
2596
2597/**
2598 * ubifs_tnc_remove_range - remove index entries in range.
2599 * @c: UBIFS file-system description object
2600 * @from_key: lowest key to remove
2601 * @to_key: highest key to remove
2602 *
2603 * This function removes index entries starting at @from_key and ending at
2604 * @to_key. This function returns zero in case of success and a negative error
2605 * code in case of failure.
2606 */
2607int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2608 union ubifs_key *to_key)
2609{
2610 int i, n, k, err = 0;
2611 struct ubifs_znode *znode;
2612 union ubifs_key *key;
2613
2614 mutex_lock(&c->tnc_mutex);
2615 while (1) {
2616 /* Find first level 0 znode that contains keys to remove */
2617 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2618 if (err < 0)
2619 goto out_unlock;
2620
2621 if (err)
2622 key = from_key;
2623 else {
2624 err = tnc_next(c, &znode, &n);
2625 if (err == -ENOENT) {
2626 err = 0;
2627 goto out_unlock;
2628 }
2629 if (err < 0)
2630 goto out_unlock;
2631 key = &znode->zbranch[n].key;
2632 if (!key_in_range(c, key, from_key, to_key)) {
2633 err = 0;
2634 goto out_unlock;
2635 }
2636 }
2637
2638 /* Ensure the znode is dirtied */
2639 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2640 znode = dirty_cow_bottom_up(c, znode);
2641 if (IS_ERR(znode)) {
2642 err = PTR_ERR(znode);
2643 goto out_unlock;
2644 }
2645 }
2646
2647 /* Remove all keys in range except the first */
2648 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2649 key = &znode->zbranch[i].key;
2650 if (!key_in_range(c, key, from_key, to_key))
2651 break;
2652 lnc_free(&znode->zbranch[i]);
2653 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2654 znode->zbranch[i].len);
2655 if (err) {
Heiko Schocherf5895d12014-06-24 10:10:04 +02002656 ubifs_dump_znode(c, znode);
Stefan Roese2fc10f62009-03-19 15:35:05 +01002657 goto out_unlock;
2658 }
Heiko Schocherf5895d12014-06-24 10:10:04 +02002659 dbg_tnck(key, "removing key ");
Stefan Roese2fc10f62009-03-19 15:35:05 +01002660 }
2661 if (k) {
2662 for (i = n + 1 + k; i < znode->child_cnt; i++)
2663 znode->zbranch[i - k] = znode->zbranch[i];
2664 znode->child_cnt -= k;
2665 }
2666
2667 /* Now delete the first */
2668 err = tnc_delete(c, znode, n);
2669 if (err)
2670 goto out_unlock;
2671 }
2672
2673out_unlock:
2674 if (!err)
2675 err = dbg_check_tnc(c, 0);
2676 mutex_unlock(&c->tnc_mutex);
2677 return err;
2678}
2679
2680/**
2681 * ubifs_tnc_remove_ino - remove an inode from TNC.
2682 * @c: UBIFS file-system description object
2683 * @inum: inode number to remove
2684 *
2685 * This function remove inode @inum and all the extended attributes associated
2686 * with the anode from TNC and returns zero in case of success or a negative
2687 * error code in case of failure.
2688 */
2689int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2690{
2691 union ubifs_key key1, key2;
2692 struct ubifs_dent_node *xent, *pxent = NULL;
2693 struct qstr nm = { .name = NULL };
2694
2695 dbg_tnc("ino %lu", (unsigned long)inum);
2696
2697 /*
2698 * Walk all extended attribute entries and remove them together with
2699 * corresponding extended attribute inodes.
2700 */
2701 lowest_xent_key(c, &key1, inum);
2702 while (1) {
2703 ino_t xattr_inum;
2704 int err;
2705
2706 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2707 if (IS_ERR(xent)) {
2708 err = PTR_ERR(xent);
2709 if (err == -ENOENT)
2710 break;
2711 return err;
2712 }
2713
2714 xattr_inum = le64_to_cpu(xent->inum);
2715 dbg_tnc("xent '%s', ino %lu", xent->name,
2716 (unsigned long)xattr_inum);
2717
Heiko Schocherf5895d12014-06-24 10:10:04 +02002718 nm.name = xent->name;
Stefan Roese2fc10f62009-03-19 15:35:05 +01002719 nm.len = le16_to_cpu(xent->nlen);
2720 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2721 if (err) {
2722 kfree(xent);
2723 return err;
2724 }
2725
2726 lowest_ino_key(c, &key1, xattr_inum);
2727 highest_ino_key(c, &key2, xattr_inum);
2728 err = ubifs_tnc_remove_range(c, &key1, &key2);
2729 if (err) {
2730 kfree(xent);
2731 return err;
2732 }
2733
2734 kfree(pxent);
2735 pxent = xent;
2736 key_read(c, &xent->key, &key1);
2737 }
2738
2739 kfree(pxent);
2740 lowest_ino_key(c, &key1, inum);
2741 highest_ino_key(c, &key2, inum);
2742
2743 return ubifs_tnc_remove_range(c, &key1, &key2);
2744}
2745
2746/**
2747 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2748 * @c: UBIFS file-system description object
2749 * @key: key of last entry
2750 * @nm: name of last entry found or %NULL
2751 *
2752 * This function finds and reads the next directory or extended attribute entry
2753 * after the given key (@key) if there is one. @nm is used to resolve
2754 * collisions.
2755 *
2756 * If the name of the current entry is not known and only the key is known,
2757 * @nm->name has to be %NULL. In this case the semantics of this function is a
2758 * little bit different and it returns the entry corresponding to this key, not
2759 * the next one. If the key was not found, the closest "right" entry is
2760 * returned.
2761 *
2762 * If the fist entry has to be found, @key has to contain the lowest possible
2763 * key value for this inode and @name has to be %NULL.
2764 *
2765 * This function returns the found directory or extended attribute entry node
2766 * in case of success, %-ENOENT is returned if no entry was found, and a
2767 * negative error code is returned in case of failure.
2768 */
2769struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2770 union ubifs_key *key,
2771 const struct qstr *nm)
2772{
2773 int n, err, type = key_type(c, key);
2774 struct ubifs_znode *znode;
2775 struct ubifs_dent_node *dent;
2776 struct ubifs_zbranch *zbr;
2777 union ubifs_key *dkey;
2778
Heiko Schocherf5895d12014-06-24 10:10:04 +02002779 dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
Stefan Roese2fc10f62009-03-19 15:35:05 +01002780 ubifs_assert(is_hash_key(c, key));
2781
2782 mutex_lock(&c->tnc_mutex);
2783 err = ubifs_lookup_level0(c, key, &znode, &n);
2784 if (unlikely(err < 0))
2785 goto out_unlock;
2786
2787 if (nm->name) {
2788 if (err) {
2789 /* Handle collisions */
Ville Bailliec332a1c2022-03-28 09:13:43 +00002790 if (c->replaying)
2791 err = fallible_resolve_collision(c, key, &znode, &n,
2792 nm, 0);
2793 else
2794 err = resolve_collision(c, key, &znode, &n, nm);
Stefan Roese2fc10f62009-03-19 15:35:05 +01002795 dbg_tnc("rc returned %d, znode %p, n %d",
2796 err, znode, n);
2797 if (unlikely(err < 0))
2798 goto out_unlock;
2799 }
2800
2801 /* Now find next entry */
2802 err = tnc_next(c, &znode, &n);
2803 if (unlikely(err))
2804 goto out_unlock;
2805 } else {
2806 /*
2807 * The full name of the entry was not given, in which case the
2808 * behavior of this function is a little different and it
2809 * returns current entry, not the next one.
2810 */
2811 if (!err) {
2812 /*
2813 * However, the given key does not exist in the TNC
2814 * tree and @znode/@n variables contain the closest
2815 * "preceding" element. Switch to the next one.
2816 */
2817 err = tnc_next(c, &znode, &n);
2818 if (err)
2819 goto out_unlock;
2820 }
2821 }
2822
2823 zbr = &znode->zbranch[n];
2824 dent = kmalloc(zbr->len, GFP_NOFS);
2825 if (unlikely(!dent)) {
2826 err = -ENOMEM;
2827 goto out_unlock;
2828 }
2829
2830 /*
2831 * The above 'tnc_next()' call could lead us to the next inode, check
2832 * this.
2833 */
2834 dkey = &zbr->key;
2835 if (key_inum(c, dkey) != key_inum(c, key) ||
2836 key_type(c, dkey) != type) {
2837 err = -ENOENT;
2838 goto out_free;
2839 }
2840
2841 err = tnc_read_node_nm(c, zbr, dent);
2842 if (unlikely(err))
2843 goto out_free;
2844
2845 mutex_unlock(&c->tnc_mutex);
2846 return dent;
2847
2848out_free:
2849 kfree(dent);
2850out_unlock:
2851 mutex_unlock(&c->tnc_mutex);
2852 return ERR_PTR(err);
2853}
Heiko Schocherf5895d12014-06-24 10:10:04 +02002854
Heiko Schocherf5895d12014-06-24 10:10:04 +02002855/**
2856 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2857 * @c: UBIFS file-system description object
2858 *
2859 * Destroy left-over obsolete znodes from a failed commit.
2860 */
2861static void tnc_destroy_cnext(struct ubifs_info *c)
2862{
2863 struct ubifs_znode *cnext;
2864
2865 if (!c->cnext)
2866 return;
2867 ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2868 cnext = c->cnext;
2869 do {
2870 struct ubifs_znode *znode = cnext;
2871
2872 cnext = cnext->cnext;
2873 if (ubifs_zn_obsolete(znode))
2874 kfree(znode);
2875 } while (cnext && cnext != c->cnext);
2876}
2877
2878/**
2879 * ubifs_tnc_close - close TNC subsystem and free all related resources.
2880 * @c: UBIFS file-system description object
2881 */
2882void ubifs_tnc_close(struct ubifs_info *c)
2883{
2884 tnc_destroy_cnext(c);
2885 if (c->zroot.znode) {
Heiko Schocher94b66de2015-10-22 06:19:21 +02002886 long n, freed;
Heiko Schocherf5895d12014-06-24 10:10:04 +02002887
Heiko Schocherf5895d12014-06-24 10:10:04 +02002888 n = atomic_long_read(&c->clean_zn_cnt);
Heiko Schocher94b66de2015-10-22 06:19:21 +02002889 freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2890 ubifs_assert(freed == n);
Heiko Schocherf5895d12014-06-24 10:10:04 +02002891 atomic_long_sub(n, &ubifs_clean_zn_cnt);
2892 }
2893 kfree(c->gap_lebs);
2894 kfree(c->ilebs);
2895 destroy_old_idx(c);
2896}
Heiko Schocherf5895d12014-06-24 10:10:04 +02002897
2898/**
2899 * left_znode - get the znode to the left.
2900 * @c: UBIFS file-system description object
2901 * @znode: znode
2902 *
2903 * This function returns a pointer to the znode to the left of @znode or NULL if
2904 * there is not one. A negative error code is returned on failure.
2905 */
2906static struct ubifs_znode *left_znode(struct ubifs_info *c,
2907 struct ubifs_znode *znode)
2908{
2909 int level = znode->level;
2910
2911 while (1) {
2912 int n = znode->iip - 1;
2913
2914 /* Go up until we can go left */
2915 znode = znode->parent;
2916 if (!znode)
2917 return NULL;
2918 if (n >= 0) {
2919 /* Now go down the rightmost branch to 'level' */
2920 znode = get_znode(c, znode, n);
2921 if (IS_ERR(znode))
2922 return znode;
2923 while (znode->level != level) {
2924 n = znode->child_cnt - 1;
2925 znode = get_znode(c, znode, n);
2926 if (IS_ERR(znode))
2927 return znode;
2928 }
2929 break;
2930 }
2931 }
2932 return znode;
2933}
2934
2935/**
2936 * right_znode - get the znode to the right.
2937 * @c: UBIFS file-system description object
2938 * @znode: znode
2939 *
2940 * This function returns a pointer to the znode to the right of @znode or NULL
2941 * if there is not one. A negative error code is returned on failure.
2942 */
2943static struct ubifs_znode *right_znode(struct ubifs_info *c,
2944 struct ubifs_znode *znode)
2945{
2946 int level = znode->level;
2947
2948 while (1) {
2949 int n = znode->iip + 1;
2950
2951 /* Go up until we can go right */
2952 znode = znode->parent;
2953 if (!znode)
2954 return NULL;
2955 if (n < znode->child_cnt) {
2956 /* Now go down the leftmost branch to 'level' */
2957 znode = get_znode(c, znode, n);
2958 if (IS_ERR(znode))
2959 return znode;
2960 while (znode->level != level) {
2961 znode = get_znode(c, znode, 0);
2962 if (IS_ERR(znode))
2963 return znode;
2964 }
2965 break;
2966 }
2967 }
2968 return znode;
2969}
2970
2971/**
2972 * lookup_znode - find a particular indexing node from TNC.
2973 * @c: UBIFS file-system description object
2974 * @key: index node key to lookup
2975 * @level: index node level
2976 * @lnum: index node LEB number
2977 * @offs: index node offset
2978 *
2979 * This function searches an indexing node by its first key @key and its
2980 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2981 * nodes it traverses to TNC. This function is called for indexing nodes which
2982 * were found on the media by scanning, for example when garbage-collecting or
2983 * when doing in-the-gaps commit. This means that the indexing node which is
2984 * looked for does not have to have exactly the same leftmost key @key, because
2985 * the leftmost key may have been changed, in which case TNC will contain a
2986 * dirty znode which still refers the same @lnum:@offs. This function is clever
2987 * enough to recognize such indexing nodes.
2988 *
2989 * Note, if a znode was deleted or changed too much, then this function will
2990 * not find it. For situations like this UBIFS has the old index RB-tree
2991 * (indexed by @lnum:@offs).
2992 *
2993 * This function returns a pointer to the znode found or %NULL if it is not
2994 * found. A negative error code is returned on failure.
2995 */
2996static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2997 union ubifs_key *key, int level,
2998 int lnum, int offs)
2999{
3000 struct ubifs_znode *znode, *zn;
3001 int n, nn;
3002
3003 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
3004
3005 /*
3006 * The arguments have probably been read off flash, so don't assume
3007 * they are valid.
3008 */
3009 if (level < 0)
3010 return ERR_PTR(-EINVAL);
3011
3012 /* Get the root znode */
3013 znode = c->zroot.znode;
3014 if (!znode) {
3015 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3016 if (IS_ERR(znode))
3017 return znode;
3018 }
3019 /* Check if it is the one we are looking for */
3020 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3021 return znode;
3022 /* Descend to the parent level i.e. (level + 1) */
3023 if (level >= znode->level)
3024 return NULL;
3025 while (1) {
3026 ubifs_search_zbranch(c, znode, key, &n);
3027 if (n < 0) {
3028 /*
3029 * We reached a znode where the leftmost key is greater
3030 * than the key we are searching for. This is the same
3031 * situation as the one described in a huge comment at
3032 * the end of the 'ubifs_lookup_level0()' function. And
3033 * for exactly the same reasons we have to try to look
3034 * left before giving up.
3035 */
3036 znode = left_znode(c, znode);
3037 if (!znode)
3038 return NULL;
3039 if (IS_ERR(znode))
3040 return znode;
3041 ubifs_search_zbranch(c, znode, key, &n);
3042 ubifs_assert(n >= 0);
3043 }
3044 if (znode->level == level + 1)
3045 break;
3046 znode = get_znode(c, znode, n);
3047 if (IS_ERR(znode))
3048 return znode;
3049 }
3050 /* Check if the child is the one we are looking for */
3051 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3052 return get_znode(c, znode, n);
3053 /* If the key is unique, there is nowhere else to look */
3054 if (!is_hash_key(c, key))
3055 return NULL;
3056 /*
3057 * The key is not unique and so may be also in the znodes to either
3058 * side.
3059 */
3060 zn = znode;
3061 nn = n;
3062 /* Look left */
3063 while (1) {
3064 /* Move one branch to the left */
3065 if (n)
3066 n -= 1;
3067 else {
3068 znode = left_znode(c, znode);
3069 if (!znode)
3070 break;
3071 if (IS_ERR(znode))
3072 return znode;
3073 n = znode->child_cnt - 1;
3074 }
3075 /* Check it */
3076 if (znode->zbranch[n].lnum == lnum &&
3077 znode->zbranch[n].offs == offs)
3078 return get_znode(c, znode, n);
3079 /* Stop if the key is less than the one we are looking for */
3080 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3081 break;
3082 }
3083 /* Back to the middle */
3084 znode = zn;
3085 n = nn;
3086 /* Look right */
3087 while (1) {
3088 /* Move one branch to the right */
3089 if (++n >= znode->child_cnt) {
3090 znode = right_znode(c, znode);
3091 if (!znode)
3092 break;
3093 if (IS_ERR(znode))
3094 return znode;
3095 n = 0;
3096 }
3097 /* Check it */
3098 if (znode->zbranch[n].lnum == lnum &&
3099 znode->zbranch[n].offs == offs)
3100 return get_znode(c, znode, n);
3101 /* Stop if the key is greater than the one we are looking for */
3102 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3103 break;
3104 }
3105 return NULL;
3106}
3107
3108/**
3109 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3110 * @c: UBIFS file-system description object
3111 * @key: key of index node
3112 * @level: index node level
3113 * @lnum: LEB number of index node
3114 * @offs: offset of index node
3115 *
3116 * This function returns %0 if the index node is not referred to in the TNC, %1
3117 * if the index node is referred to in the TNC and the corresponding znode is
3118 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3119 * znode is clean, and a negative error code in case of failure.
3120 *
3121 * Note, the @key argument has to be the key of the first child. Also note,
3122 * this function relies on the fact that 0:0 is never a valid LEB number and
3123 * offset for a main-area node.
3124 */
3125int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3126 int lnum, int offs)
3127{
3128 struct ubifs_znode *znode;
3129
3130 znode = lookup_znode(c, key, level, lnum, offs);
3131 if (!znode)
3132 return 0;
3133 if (IS_ERR(znode))
3134 return PTR_ERR(znode);
3135
3136 return ubifs_zn_dirty(znode) ? 1 : 2;
3137}
3138
3139/**
3140 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3141 * @c: UBIFS file-system description object
3142 * @key: node key
3143 * @lnum: node LEB number
3144 * @offs: node offset
3145 *
3146 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3147 * not, and a negative error code in case of failure.
3148 *
3149 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3150 * and offset for a main-area node.
3151 */
3152static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3153 int lnum, int offs)
3154{
3155 struct ubifs_zbranch *zbr;
3156 struct ubifs_znode *znode, *zn;
3157 int n, found, err, nn;
3158 const int unique = !is_hash_key(c, key);
3159
3160 found = ubifs_lookup_level0(c, key, &znode, &n);
3161 if (found < 0)
3162 return found; /* Error code */
3163 if (!found)
3164 return 0;
3165 zbr = &znode->zbranch[n];
3166 if (lnum == zbr->lnum && offs == zbr->offs)
3167 return 1; /* Found it */
3168 if (unique)
3169 return 0;
3170 /*
3171 * Because the key is not unique, we have to look left
3172 * and right as well
3173 */
3174 zn = znode;
3175 nn = n;
3176 /* Look left */
3177 while (1) {
3178 err = tnc_prev(c, &znode, &n);
3179 if (err == -ENOENT)
3180 break;
3181 if (err)
3182 return err;
3183 if (keys_cmp(c, key, &znode->zbranch[n].key))
3184 break;
3185 zbr = &znode->zbranch[n];
3186 if (lnum == zbr->lnum && offs == zbr->offs)
3187 return 1; /* Found it */
3188 }
3189 /* Look right */
3190 znode = zn;
3191 n = nn;
3192 while (1) {
3193 err = tnc_next(c, &znode, &n);
3194 if (err) {
3195 if (err == -ENOENT)
3196 return 0;
3197 return err;
3198 }
3199 if (keys_cmp(c, key, &znode->zbranch[n].key))
3200 break;
3201 zbr = &znode->zbranch[n];
3202 if (lnum == zbr->lnum && offs == zbr->offs)
3203 return 1; /* Found it */
3204 }
3205 return 0;
3206}
3207
3208/**
3209 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3210 * @c: UBIFS file-system description object
3211 * @key: node key
3212 * @level: index node level (if it is an index node)
3213 * @lnum: node LEB number
3214 * @offs: node offset
3215 * @is_idx: non-zero if the node is an index node
3216 *
3217 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3218 * negative error code in case of failure. For index nodes, @key has to be the
3219 * key of the first child. An index node is considered to be in the TNC only if
3220 * the corresponding znode is clean or has not been loaded.
3221 */
3222int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3223 int lnum, int offs, int is_idx)
3224{
3225 int err;
3226
3227 mutex_lock(&c->tnc_mutex);
3228 if (is_idx) {
3229 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3230 if (err < 0)
3231 goto out_unlock;
3232 if (err == 1)
3233 /* The index node was found but it was dirty */
3234 err = 0;
3235 else if (err == 2)
3236 /* The index node was found and it was clean */
3237 err = 1;
3238 else
3239 BUG_ON(err != 0);
3240 } else
3241 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3242
3243out_unlock:
3244 mutex_unlock(&c->tnc_mutex);
3245 return err;
3246}
3247
3248/**
3249 * ubifs_dirty_idx_node - dirty an index node.
3250 * @c: UBIFS file-system description object
3251 * @key: index node key
3252 * @level: index node level
3253 * @lnum: index node LEB number
3254 * @offs: index node offset
3255 *
3256 * This function loads and dirties an index node so that it can be garbage
3257 * collected. The @key argument has to be the key of the first child. This
3258 * function relies on the fact that 0:0 is never a valid LEB number and offset
3259 * for a main-area node. Returns %0 on success and a negative error code on
3260 * failure.
3261 */
3262int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3263 int lnum, int offs)
3264{
3265 struct ubifs_znode *znode;
3266 int err = 0;
3267
3268 mutex_lock(&c->tnc_mutex);
3269 znode = lookup_znode(c, key, level, lnum, offs);
3270 if (!znode)
3271 goto out_unlock;
3272 if (IS_ERR(znode)) {
3273 err = PTR_ERR(znode);
3274 goto out_unlock;
3275 }
3276 znode = dirty_cow_bottom_up(c, znode);
3277 if (IS_ERR(znode)) {
3278 err = PTR_ERR(znode);
3279 goto out_unlock;
3280 }
3281
3282out_unlock:
3283 mutex_unlock(&c->tnc_mutex);
3284 return err;
3285}
3286
3287/**
3288 * dbg_check_inode_size - check if inode size is correct.
3289 * @c: UBIFS file-system description object
3290 * @inum: inode number
3291 * @size: inode size
3292 *
3293 * This function makes sure that the inode size (@size) is correct and it does
3294 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3295 * if it has a data page beyond @size, and other negative error code in case of
3296 * other errors.
3297 */
3298int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3299 loff_t size)
3300{
3301 int err, n;
3302 union ubifs_key from_key, to_key, *key;
3303 struct ubifs_znode *znode;
3304 unsigned int block;
3305
3306 if (!S_ISREG(inode->i_mode))
3307 return 0;
3308 if (!dbg_is_chk_gen(c))
3309 return 0;
3310
3311 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3312 data_key_init(c, &from_key, inode->i_ino, block);
3313 highest_data_key(c, &to_key, inode->i_ino);
3314
3315 mutex_lock(&c->tnc_mutex);
3316 err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3317 if (err < 0)
3318 goto out_unlock;
3319
3320 if (err) {
Heiko Schocherf5895d12014-06-24 10:10:04 +02003321 key = &from_key;
3322 goto out_dump;
3323 }
3324
3325 err = tnc_next(c, &znode, &n);
3326 if (err == -ENOENT) {
3327 err = 0;
3328 goto out_unlock;
3329 }
3330 if (err < 0)
3331 goto out_unlock;
3332
3333 ubifs_assert(err == 0);
3334 key = &znode->zbranch[n].key;
3335 if (!key_in_range(c, key, &from_key, &to_key))
3336 goto out_unlock;
3337
3338out_dump:
3339 block = key_block(c, key);
Heiko Schocher94b66de2015-10-22 06:19:21 +02003340 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
Heiko Schocherf5895d12014-06-24 10:10:04 +02003341 (unsigned long)inode->i_ino, size,
3342 ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3343 mutex_unlock(&c->tnc_mutex);
3344 ubifs_dump_inode(c, inode);
3345 dump_stack();
3346 return -EINVAL;
3347
3348out_unlock:
3349 mutex_unlock(&c->tnc_mutex);
3350 return err;
3351}