blob: c129d032f4094bc7abfb749945035e9b6009552b [file] [log] [blame]
York Suna84cd722014-06-23 15:15:54 -07001/*
2 * Copyright 2014 Freescale Semiconductor, Inc.
3 *
4 * SPDX-License-Identifier: GPL-2.0+
5 */
6
7#include <common.h>
8#include <asm/io.h>
9#include <asm/system.h>
10#include <asm/armv8/mmu.h>
11#include <asm/io.h>
12#include <asm/arch-fsl-lsch3/immap_lsch3.h>
13#include "cpu.h"
14#include "speed.h"
J. German Rivera8ff14b72014-06-23 15:15:55 -070015#include <fsl_mc.h>
York Suna84cd722014-06-23 15:15:54 -070016
17DECLARE_GLOBAL_DATA_PTR;
18
19#ifndef CONFIG_SYS_DCACHE_OFF
20/*
21 * To start MMU before DDR is available, we create MMU table in SRAM.
22 * The base address of SRAM is CONFIG_SYS_FSL_OCRAM_BASE. We use three
23 * levels of translation tables here to cover 40-bit address space.
24 * We use 4KB granule size, with 40 bits physical address, T0SZ=24
25 * Level 0 IA[39], table address @0
26 * Level 1 IA[31:30], table address @01000, 0x2000
27 * Level 2 IA[29:21], table address @0x3000
28 */
29
30#define SECTION_SHIFT_L0 39UL
31#define SECTION_SHIFT_L1 30UL
32#define SECTION_SHIFT_L2 21UL
33#define BLOCK_SIZE_L0 0x8000000000UL
34#define BLOCK_SIZE_L1 (1 << SECTION_SHIFT_L1)
35#define BLOCK_SIZE_L2 (1 << SECTION_SHIFT_L2)
36#define CONFIG_SYS_IFC_BASE 0x30000000
37#define CONFIG_SYS_IFC_SIZE 0x10000000
38#define CONFIG_SYS_IFC_BASE2 0x500000000
39#define CONFIG_SYS_IFC_SIZE2 0x100000000
40#define TCR_EL2_PS_40BIT (2 << 16)
41#define LSCH3_VA_BITS (40)
42#define LSCH3_TCR (TCR_TG0_4K | \
43 TCR_EL2_PS_40BIT | \
44 TCR_SHARED_NON | \
45 TCR_ORGN_NC | \
46 TCR_IRGN_NC | \
47 TCR_T0SZ(LSCH3_VA_BITS))
48
49/*
50 * Final MMU
51 * Let's start from the same layout as early MMU and modify as needed.
52 * IFC regions will be cache-inhibit.
53 */
54#define FINAL_QBMAN_CACHED_MEM 0x818000000UL
55#define FINAL_QBMAN_CACHED_SIZE 0x4000000
56
57
58static inline void early_mmu_setup(void)
59{
60 int el;
61 u64 i;
62 u64 section_l1t0, section_l1t1, section_l2;
63 u64 *level0_table = (u64 *)CONFIG_SYS_FSL_OCRAM_BASE;
64 u64 *level1_table_0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x1000);
65 u64 *level1_table_1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x2000);
66 u64 *level2_table = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x3000);
67
68
69 level0_table[0] =
70 (u64)level1_table_0 | PMD_TYPE_TABLE;
71 level0_table[1] =
72 (u64)level1_table_1 | PMD_TYPE_TABLE;
73
74 /*
75 * set level 1 table 0 to cache_inhibit, covering 0 to 512GB
76 * set level 1 table 1 to cache enabled, covering 512GB to 1TB
77 * set level 2 table to cache-inhibit, covering 0 to 1GB
78 */
79 section_l1t0 = 0;
80 section_l1t1 = BLOCK_SIZE_L0;
81 section_l2 = 0;
82 for (i = 0; i < 512; i++) {
83 set_pgtable_section(level1_table_0, i, section_l1t0,
84 MT_DEVICE_NGNRNE);
85 set_pgtable_section(level1_table_1, i, section_l1t1,
86 MT_NORMAL);
87 set_pgtable_section(level2_table, i, section_l2,
88 MT_DEVICE_NGNRNE);
89 section_l1t0 += BLOCK_SIZE_L1;
90 section_l1t1 += BLOCK_SIZE_L1;
91 section_l2 += BLOCK_SIZE_L2;
92 }
93
94 level1_table_0[0] =
95 (u64)level2_table | PMD_TYPE_TABLE;
96 level1_table_0[1] =
97 0x40000000 | PMD_SECT_AF | PMD_TYPE_SECT |
98 PMD_ATTRINDX(MT_DEVICE_NGNRNE);
99 level1_table_0[2] =
100 0x80000000 | PMD_SECT_AF | PMD_TYPE_SECT |
101 PMD_ATTRINDX(MT_NORMAL);
102 level1_table_0[3] =
103 0xc0000000 | PMD_SECT_AF | PMD_TYPE_SECT |
104 PMD_ATTRINDX(MT_NORMAL);
105
106 /* Rewrite table to enable cache */
107 set_pgtable_section(level2_table,
108 CONFIG_SYS_FSL_OCRAM_BASE >> SECTION_SHIFT_L2,
109 CONFIG_SYS_FSL_OCRAM_BASE,
110 MT_NORMAL);
111 for (i = CONFIG_SYS_IFC_BASE >> SECTION_SHIFT_L2;
112 i < (CONFIG_SYS_IFC_BASE + CONFIG_SYS_IFC_SIZE)
113 >> SECTION_SHIFT_L2; i++) {
114 section_l2 = i << SECTION_SHIFT_L2;
115 set_pgtable_section(level2_table, i,
116 section_l2, MT_NORMAL);
117 }
118
119 el = current_el();
120 set_ttbr_tcr_mair(el, (u64)level0_table, LSCH3_TCR, MEMORY_ATTRIBUTES);
121 set_sctlr(get_sctlr() | CR_M);
122}
123
124/*
125 * This final tale looks similar to early table, but different in detail.
126 * These tables are in regular memory. Cache on IFC is disabled. One sub table
127 * is added to enable cache for QBMan.
128 */
129static inline void final_mmu_setup(void)
130{
131 int el;
132 u64 i, tbl_base, tbl_limit, section_base;
133 u64 section_l1t0, section_l1t1, section_l2;
134 u64 *level0_table = (u64 *)gd->arch.tlb_addr;
135 u64 *level1_table_0 = (u64 *)(gd->arch.tlb_addr + 0x1000);
136 u64 *level1_table_1 = (u64 *)(gd->arch.tlb_addr + 0x2000);
137 u64 *level2_table_0 = (u64 *)(gd->arch.tlb_addr + 0x3000);
138 u64 *level2_table_1 = (u64 *)(gd->arch.tlb_addr + 0x4000);
139
140
141 level0_table[0] =
142 (u64)level1_table_0 | PMD_TYPE_TABLE;
143 level0_table[1] =
144 (u64)level1_table_1 | PMD_TYPE_TABLE;
145
146 /*
147 * set level 1 table 0 to cache_inhibit, covering 0 to 512GB
148 * set level 1 table 1 to cache enabled, covering 512GB to 1TB
149 * set level 2 table 0 to cache-inhibit, covering 0 to 1GB
150 */
151 section_l1t0 = 0;
152 section_l1t1 = BLOCK_SIZE_L0;
153 section_l2 = 0;
154 for (i = 0; i < 512; i++) {
155 set_pgtable_section(level1_table_0, i, section_l1t0,
156 MT_DEVICE_NGNRNE);
157 set_pgtable_section(level1_table_1, i, section_l1t1,
158 MT_NORMAL);
159 set_pgtable_section(level2_table_0, i, section_l2,
160 MT_DEVICE_NGNRNE);
161 section_l1t0 += BLOCK_SIZE_L1;
162 section_l1t1 += BLOCK_SIZE_L1;
163 section_l2 += BLOCK_SIZE_L2;
164 }
165
166 level1_table_0[0] =
167 (u64)level2_table_0 | PMD_TYPE_TABLE;
168 level1_table_0[2] =
169 0x80000000 | PMD_SECT_AF | PMD_TYPE_SECT |
170 PMD_ATTRINDX(MT_NORMAL);
171 level1_table_0[3] =
172 0xc0000000 | PMD_SECT_AF | PMD_TYPE_SECT |
173 PMD_ATTRINDX(MT_NORMAL);
174
175 /* Rewrite table to enable cache */
176 set_pgtable_section(level2_table_0,
177 CONFIG_SYS_FSL_OCRAM_BASE >> SECTION_SHIFT_L2,
178 CONFIG_SYS_FSL_OCRAM_BASE,
179 MT_NORMAL);
180
181 /*
182 * Fill in other part of tables if cache is needed
183 * If finer granularity than 1GB is needed, sub table
184 * should be created.
185 */
186 section_base = FINAL_QBMAN_CACHED_MEM & ~(BLOCK_SIZE_L1 - 1);
187 i = section_base >> SECTION_SHIFT_L1;
188 level1_table_0[i] = (u64)level2_table_1 | PMD_TYPE_TABLE;
189 section_l2 = section_base;
190 for (i = 0; i < 512; i++) {
191 set_pgtable_section(level2_table_1, i, section_l2,
192 MT_DEVICE_NGNRNE);
193 section_l2 += BLOCK_SIZE_L2;
194 }
195 tbl_base = FINAL_QBMAN_CACHED_MEM & (BLOCK_SIZE_L1 - 1);
196 tbl_limit = (FINAL_QBMAN_CACHED_MEM + FINAL_QBMAN_CACHED_SIZE) &
197 (BLOCK_SIZE_L1 - 1);
198 for (i = tbl_base >> SECTION_SHIFT_L2;
199 i < tbl_limit >> SECTION_SHIFT_L2; i++) {
200 section_l2 = section_base + (i << SECTION_SHIFT_L2);
201 set_pgtable_section(level2_table_1, i,
202 section_l2, MT_NORMAL);
203 }
204
205 /* flush new MMU table */
206 flush_dcache_range(gd->arch.tlb_addr,
207 gd->arch.tlb_addr + gd->arch.tlb_size);
208
209 /* point TTBR to the new table */
210 el = current_el();
211 asm volatile("dsb sy");
212 if (el == 1) {
213 asm volatile("msr ttbr0_el1, %0"
214 : : "r" ((u64)level0_table) : "memory");
215 } else if (el == 2) {
216 asm volatile("msr ttbr0_el2, %0"
217 : : "r" ((u64)level0_table) : "memory");
218 } else if (el == 3) {
219 asm volatile("msr ttbr0_el3, %0"
220 : : "r" ((u64)level0_table) : "memory");
221 } else {
222 hang();
223 }
224 asm volatile("isb");
225
226 /*
227 * MMU is already enabled, just need to invalidate TLB to load the
228 * new table. The new table is compatible with the current table, if
229 * MMU somehow walks through the new table before invalidation TLB,
230 * it still works. So we don't need to turn off MMU here.
231 */
232}
233
234int arch_cpu_init(void)
235{
236 icache_enable();
237 __asm_invalidate_dcache_all();
238 __asm_invalidate_tlb_all();
239 early_mmu_setup();
240 set_sctlr(get_sctlr() | CR_C);
241 return 0;
242}
243
244/*
245 * flush_l3_cache
246 * Dickens L3 cache can be flushed by transitioning from FAM to SFONLY power
247 * state, by writing to HP-F P-state request register.
248 * Fixme: This function should moved to a common file if other SoCs also use
249 * the same Dickens.
250 */
251#define HNF0_PSTATE_REQ 0x04200010
252#define HNF1_PSTATE_REQ 0x04210010
253#define HNF2_PSTATE_REQ 0x04220010
254#define HNF3_PSTATE_REQ 0x04230010
255#define HNF4_PSTATE_REQ 0x04240010
256#define HNF5_PSTATE_REQ 0x04250010
257#define HNF6_PSTATE_REQ 0x04260010
258#define HNF7_PSTATE_REQ 0x04270010
259#define HNFPSTAT_MASK (0xFFFFFFFFFFFFFFFC)
260#define HNFPSTAT_FAM 0x3
261#define HNFPSTAT_SFONLY 0x01
262
263static void hnf_pstate_req(u64 *ptr, u64 state)
264{
265 int timeout = 1000;
266 out_le64(ptr, (in_le64(ptr) & HNFPSTAT_MASK) | (state & 0x3));
267 ptr++;
268 /* checking if the transition is completed */
269 while (timeout > 0) {
270 if (((in_le64(ptr) & 0x0c) >> 2) == (state & 0x3))
271 break;
272 udelay(100);
273 timeout--;
274 }
275}
276
277void flush_l3_cache(void)
278{
279 hnf_pstate_req((u64 *)HNF0_PSTATE_REQ, HNFPSTAT_SFONLY);
280 hnf_pstate_req((u64 *)HNF1_PSTATE_REQ, HNFPSTAT_SFONLY);
281 hnf_pstate_req((u64 *)HNF2_PSTATE_REQ, HNFPSTAT_SFONLY);
282 hnf_pstate_req((u64 *)HNF3_PSTATE_REQ, HNFPSTAT_SFONLY);
283 hnf_pstate_req((u64 *)HNF4_PSTATE_REQ, HNFPSTAT_SFONLY);
284 hnf_pstate_req((u64 *)HNF5_PSTATE_REQ, HNFPSTAT_SFONLY);
285 hnf_pstate_req((u64 *)HNF6_PSTATE_REQ, HNFPSTAT_SFONLY);
286 hnf_pstate_req((u64 *)HNF7_PSTATE_REQ, HNFPSTAT_SFONLY);
287 hnf_pstate_req((u64 *)HNF0_PSTATE_REQ, HNFPSTAT_FAM);
288 hnf_pstate_req((u64 *)HNF1_PSTATE_REQ, HNFPSTAT_FAM);
289 hnf_pstate_req((u64 *)HNF2_PSTATE_REQ, HNFPSTAT_FAM);
290 hnf_pstate_req((u64 *)HNF3_PSTATE_REQ, HNFPSTAT_FAM);
291 hnf_pstate_req((u64 *)HNF4_PSTATE_REQ, HNFPSTAT_FAM);
292 hnf_pstate_req((u64 *)HNF5_PSTATE_REQ, HNFPSTAT_FAM);
293 hnf_pstate_req((u64 *)HNF6_PSTATE_REQ, HNFPSTAT_FAM);
294 hnf_pstate_req((u64 *)HNF7_PSTATE_REQ, HNFPSTAT_FAM);
295}
296
297/*
298 * This function is called from lib/board.c.
299 * It recreates MMU table in main memory. MMU and d-cache are enabled earlier.
300 * There is no need to disable d-cache for this operation.
301 */
302void enable_caches(void)
303{
304 final_mmu_setup();
305 __asm_invalidate_tlb_all();
306}
307#endif
308
309static inline u32 initiator_type(u32 cluster, int init_id)
310{
311 struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
312 u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK;
313 u32 type = in_le32(&gur->tp_ityp[idx]);
314
315 if (type & TP_ITYP_AV)
316 return type;
317
318 return 0;
319}
320
321u32 cpu_mask(void)
322{
323 struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
324 int i = 0, count = 0;
325 u32 cluster, type, mask = 0;
326
327 do {
328 int j;
329 cluster = in_le32(&gur->tp_cluster[i].lower);
330 for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
331 type = initiator_type(cluster, j);
332 if (type) {
333 if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
334 mask |= 1 << count;
335 count++;
336 }
337 }
338 i++;
339 } while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
340
341 return mask;
342}
343
344/*
345 * Return the number of cores on this SOC.
346 */
347int cpu_numcores(void)
348{
349 return hweight32(cpu_mask());
350}
351
352int fsl_qoriq_core_to_cluster(unsigned int core)
353{
354 struct ccsr_gur __iomem *gur =
355 (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
356 int i = 0, count = 0;
357 u32 cluster;
358
359 do {
360 int j;
361 cluster = in_le32(&gur->tp_cluster[i].lower);
362 for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
363 if (initiator_type(cluster, j)) {
364 if (count == core)
365 return i;
366 count++;
367 }
368 }
369 i++;
370 } while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
371
372 return -1; /* cannot identify the cluster */
373}
374
375u32 fsl_qoriq_core_to_type(unsigned int core)
376{
377 struct ccsr_gur __iomem *gur =
378 (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
379 int i = 0, count = 0;
380 u32 cluster, type;
381
382 do {
383 int j;
384 cluster = in_le32(&gur->tp_cluster[i].lower);
385 for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
386 type = initiator_type(cluster, j);
387 if (type) {
388 if (count == core)
389 return type;
390 count++;
391 }
392 }
393 i++;
394 } while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
395
396 return -1; /* cannot identify the cluster */
397}
398
399#ifdef CONFIG_DISPLAY_CPUINFO
400int print_cpuinfo(void)
401{
402 struct sys_info sysinfo;
403 char buf[32];
404 unsigned int i, core;
405 u32 type;
406
407 get_sys_info(&sysinfo);
408 puts("Clock Configuration:");
409 for_each_cpu(i, core, cpu_numcores(), cpu_mask()) {
410 if (!(i % 3))
411 puts("\n ");
412 type = TP_ITYP_VER(fsl_qoriq_core_to_type(core));
413 printf("CPU%d(%s):%-4s MHz ", core,
414 type == TY_ITYP_VER_A7 ? "A7 " :
415 (type == TY_ITYP_VER_A53 ? "A53" :
416 (type == TY_ITYP_VER_A57 ? "A57" : " ")),
417 strmhz(buf, sysinfo.freq_processor[core]));
418 }
419 printf("\n Bus: %-4s MHz ",
420 strmhz(buf, sysinfo.freq_systembus));
421 printf("DDR: %-4s MHz", strmhz(buf, sysinfo.freq_ddrbus));
422 puts("\n");
423
424 return 0;
425}
426#endif
J. German Rivera8ff14b72014-06-23 15:15:55 -0700427
428int cpu_eth_init(bd_t *bis)
429{
430 int error = 0;
431
432#ifdef CONFIG_FSL_MC_ENET
433 error = mc_init(bis);
434#endif
435 return error;
436}