blob: f6eddb84a9b800aa3f9c8e0b5c12f2a5adc3ec4b [file] [log] [blame]
developer10a61df2022-05-20 11:23:47 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2022 MediaTek Inc. All rights reserved.
4 *
5 * Author: Weijie Gao <weijie.gao@mediatek.com>
6 */
7
8#include <log.h>
9#include <nand.h>
10#include <malloc.h>
11#include <asm/addrspace.h>
12#include <linux/io.h>
13#include <linux/iopoll.h>
14#include <linux/sizes.h>
15#include <linux/bitops.h>
16#include <linux/bitfield.h>
17#include "mt7621_nand.h"
18
19/* NFI core registers */
20#define NFI_CNFG 0x000
21#define CNFG_OP_MODE GENMASK(14, 12)
22#define CNFG_OP_CUSTOM 6
23#define CNFG_AUTO_FMT_EN BIT(9)
24#define CNFG_HW_ECC_EN BIT(8)
25#define CNFG_BYTE_RW BIT(6)
26#define CNFG_READ_MODE BIT(1)
27
28#define NFI_PAGEFMT 0x004
29#define PAGEFMT_FDM_ECC GENMASK(15, 12)
30#define PAGEFMT_FDM GENMASK(11, 8)
31#define PAGEFMT_SPARE GENMASK(5, 4)
32#define PAGEFMT_PAGE GENMASK(1, 0)
33
34#define NFI_CON 0x008
35#define CON_NFI_SEC GENMASK(15, 12)
36#define CON_NFI_BWR BIT(9)
37#define CON_NFI_BRD BIT(8)
38#define CON_NFI_RST BIT(1)
39#define CON_FIFO_FLUSH BIT(0)
40
41#define NFI_ACCCON 0x00c
42#define ACCCON_POECS GENMASK(31, 28)
43#define ACCCON_POECS_DEF 3
44#define ACCCON_PRECS GENMASK(27, 22)
45#define ACCCON_PRECS_DEF 3
46#define ACCCON_C2R GENMASK(21, 16)
47#define ACCCON_C2R_DEF 7
48#define ACCCON_W2R GENMASK(15, 12)
49#define ACCCON_W2R_DEF 7
50#define ACCCON_WH GENMASK(11, 8)
51#define ACCCON_WH_DEF 15
52#define ACCCON_WST GENMASK(7, 4)
53#define ACCCON_WST_DEF 15
54#define ACCCON_WST_MIN 3
55#define ACCCON_RLT GENMASK(3, 0)
56#define ACCCON_RLT_DEF 15
57#define ACCCON_RLT_MIN 3
58
59#define NFI_CMD 0x020
60
61#define NFI_ADDRNOB 0x030
62#define ADDR_ROW_NOB GENMASK(6, 4)
63#define ADDR_COL_NOB GENMASK(2, 0)
64
65#define NFI_COLADDR 0x034
66#define NFI_ROWADDR 0x038
67
68#define NFI_STRDATA 0x040
69#define STR_DATA BIT(0)
70
71#define NFI_CNRNB 0x044
72#define CB2R_TIME GENMASK(7, 4)
73#define STR_CNRNB BIT(0)
74
75#define NFI_DATAW 0x050
76#define NFI_DATAR 0x054
77
78#define NFI_PIO_DIRDY 0x058
79#define PIO_DIRDY BIT(0)
80
81#define NFI_STA 0x060
82#define STA_NFI_FSM GENMASK(19, 16)
83#define STA_FSM_CUSTOM_DATA 14
84#define STA_BUSY BIT(8)
85#define STA_ADDR BIT(1)
86#define STA_CMD BIT(0)
87
88#define NFI_ADDRCNTR 0x070
89#define SEC_CNTR GENMASK(15, 12)
90#define SEC_ADDR GENMASK(9, 0)
91
92#define NFI_CSEL 0x090
93#define CSEL GENMASK(1, 0)
94
95#define NFI_FDM0L 0x0a0
96#define NFI_FDML(n) (0x0a0 + ((n) << 3))
97
98#define NFI_FDM0M 0x0a4
99#define NFI_FDMM(n) (0x0a4 + ((n) << 3))
100
101#define NFI_MASTER_STA 0x210
102#define MAS_ADDR GENMASK(11, 9)
103#define MAS_RD GENMASK(8, 6)
104#define MAS_WR GENMASK(5, 3)
105#define MAS_RDDLY GENMASK(2, 0)
106
107/* ECC engine registers */
108#define ECC_ENCCON 0x000
109#define ENC_EN BIT(0)
110
111#define ECC_ENCCNFG 0x004
112#define ENC_CNFG_MSG GENMASK(28, 16)
113#define ENC_MODE GENMASK(5, 4)
114#define ENC_MODE_NFI 1
115#define ENC_TNUM GENMASK(2, 0)
116
117#define ECC_ENCIDLE 0x00c
118#define ENC_IDLE BIT(0)
119
120#define ECC_DECCON 0x100
121#define DEC_EN BIT(0)
122
123#define ECC_DECCNFG 0x104
124#define DEC_EMPTY_EN BIT(31)
125#define DEC_CS GENMASK(28, 16)
126#define DEC_CON GENMASK(13, 12)
127#define DEC_CON_EL 2
128#define DEC_MODE GENMASK(5, 4)
129#define DEC_MODE_NFI 1
130#define DEC_TNUM GENMASK(2, 0)
131
132#define ECC_DECIDLE 0x10c
133#define DEC_IDLE BIT(1)
134
135#define ECC_DECENUM 0x114
136#define ERRNUM_S 2
137#define ERRNUM_M GENMASK(3, 0)
138
139#define ECC_DECDONE 0x118
140#define DEC_DONE7 BIT(7)
141#define DEC_DONE6 BIT(6)
142#define DEC_DONE5 BIT(5)
143#define DEC_DONE4 BIT(4)
144#define DEC_DONE3 BIT(3)
145#define DEC_DONE2 BIT(2)
146#define DEC_DONE1 BIT(1)
147#define DEC_DONE0 BIT(0)
148
149#define ECC_DECEL(n) (0x11c + (n) * 4)
150#define DEC_EL_ODD_S 16
151#define DEC_EL_M 0x1fff
152#define DEC_EL_BYTE_POS_S 3
153#define DEC_EL_BIT_POS_M GENMASK(2, 0)
154
155#define ECC_FDMADDR 0x13c
156
157/* ENCIDLE and DECIDLE */
158#define ECC_IDLE BIT(0)
159
160#define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
161 (FIELD_PREP(ACCCON_POECS, tpoecs) | \
162 FIELD_PREP(ACCCON_PRECS, tprecs) | \
163 FIELD_PREP(ACCCON_C2R, tc2r) | \
164 FIELD_PREP(ACCCON_W2R, tw2r) | \
165 FIELD_PREP(ACCCON_WH, twh) | \
166 FIELD_PREP(ACCCON_WST, twst) | \
167 FIELD_PREP(ACCCON_RLT, trlt))
168
169#define MASTER_STA_MASK (MAS_ADDR | MAS_RD | MAS_WR | \
170 MAS_RDDLY)
171#define NFI_RESET_TIMEOUT 1000000
172#define NFI_CORE_TIMEOUT 500000
173#define ECC_ENGINE_TIMEOUT 500000
174
175#define ECC_SECTOR_SIZE 512
176#define ECC_PARITY_BITS 13
177
178#define NFI_FDM_SIZE 8
179
180/* Register base */
181#define NFI_BASE 0x1e003000
182#define NFI_ECC_BASE 0x1e003800
183
184static struct mt7621_nfc nfc_dev;
185
186static const u16 mt7621_nfi_page_size[] = { SZ_512, SZ_2K, SZ_4K };
187static const u8 mt7621_nfi_spare_size[] = { 16, 26, 27, 28 };
188static const u8 mt7621_ecc_strength[] = { 4, 6, 8, 10, 12 };
189
190static inline u32 nfi_read32(struct mt7621_nfc *nfc, u32 reg)
191{
192 return readl(nfc->nfi_regs + reg);
193}
194
195static inline void nfi_write32(struct mt7621_nfc *nfc, u32 reg, u32 val)
196{
197 writel(val, nfc->nfi_regs + reg);
198}
199
200static inline u16 nfi_read16(struct mt7621_nfc *nfc, u32 reg)
201{
202 return readw(nfc->nfi_regs + reg);
203}
204
205static inline void nfi_write16(struct mt7621_nfc *nfc, u32 reg, u16 val)
206{
207 writew(val, nfc->nfi_regs + reg);
208}
209
210static inline void ecc_write16(struct mt7621_nfc *nfc, u32 reg, u16 val)
211{
212 writew(val, nfc->ecc_regs + reg);
213}
214
215static inline u32 ecc_read32(struct mt7621_nfc *nfc, u32 reg)
216{
217 return readl(nfc->ecc_regs + reg);
218}
219
220static inline void ecc_write32(struct mt7621_nfc *nfc, u32 reg, u32 val)
221{
222 return writel(val, nfc->ecc_regs + reg);
223}
224
225static inline u8 *oob_fdm_ptr(struct nand_chip *nand, int sect)
226{
227 return nand->oob_poi + sect * NFI_FDM_SIZE;
228}
229
230static inline u8 *oob_ecc_ptr(struct mt7621_nfc *nfc, int sect)
231{
232 struct nand_chip *nand = &nfc->nand;
233
234 return nand->oob_poi + nand->ecc.steps * NFI_FDM_SIZE +
235 sect * (nfc->spare_per_sector - NFI_FDM_SIZE);
236}
237
238static inline u8 *page_data_ptr(struct nand_chip *nand, const u8 *buf,
239 int sect)
240{
241 return (u8 *)buf + sect * nand->ecc.size;
242}
243
244static int mt7621_ecc_wait_idle(struct mt7621_nfc *nfc, u32 reg)
245{
246 u32 val;
247 int ret;
248
249 ret = readw_poll_timeout(nfc->ecc_regs + reg, val, val & ECC_IDLE,
250 ECC_ENGINE_TIMEOUT);
251 if (ret) {
252 pr_warn("ECC engine timed out entering idle mode\n");
253 return -EIO;
254 }
255
256 return 0;
257}
258
259static int mt7621_ecc_decoder_wait_done(struct mt7621_nfc *nfc, u32 sect)
260{
261 u32 val;
262 int ret;
263
264 ret = readw_poll_timeout(nfc->ecc_regs + ECC_DECDONE, val,
265 val & (1 << sect), ECC_ENGINE_TIMEOUT);
266 if (ret) {
267 pr_warn("ECC decoder for sector %d timed out\n", sect);
268 return -ETIMEDOUT;
269 }
270
271 return 0;
272}
273
274static void mt7621_ecc_encoder_op(struct mt7621_nfc *nfc, bool enable)
275{
276 mt7621_ecc_wait_idle(nfc, ECC_ENCIDLE);
277 ecc_write16(nfc, ECC_ENCCON, enable ? ENC_EN : 0);
278}
279
280static void mt7621_ecc_decoder_op(struct mt7621_nfc *nfc, bool enable)
281{
282 mt7621_ecc_wait_idle(nfc, ECC_DECIDLE);
283 ecc_write16(nfc, ECC_DECCON, enable ? DEC_EN : 0);
284}
285
286static int mt7621_ecc_correct_check(struct mt7621_nfc *nfc, u8 *sector_buf,
287 u8 *fdm_buf, u32 sect)
288{
289 struct nand_chip *nand = &nfc->nand;
290 u32 decnum, num_error_bits, fdm_end_bits;
291 u32 error_locations, error_bit_loc;
292 u32 error_byte_pos, error_bit_pos;
293 int bitflips = 0;
294 u32 i;
295
296 decnum = ecc_read32(nfc, ECC_DECENUM);
297 num_error_bits = (decnum >> (sect << ERRNUM_S)) & ERRNUM_M;
298 fdm_end_bits = (nand->ecc.size + NFI_FDM_SIZE) << 3;
299
300 if (!num_error_bits)
301 return 0;
302
303 if (num_error_bits == ERRNUM_M)
304 return -1;
305
306 for (i = 0; i < num_error_bits; i++) {
307 error_locations = ecc_read32(nfc, ECC_DECEL(i / 2));
308 error_bit_loc = (error_locations >> ((i % 2) * DEC_EL_ODD_S)) &
309 DEC_EL_M;
310 error_byte_pos = error_bit_loc >> DEC_EL_BYTE_POS_S;
311 error_bit_pos = error_bit_loc & DEC_EL_BIT_POS_M;
312
313 if (error_bit_loc < (nand->ecc.size << 3)) {
314 if (sector_buf) {
315 sector_buf[error_byte_pos] ^=
316 (1 << error_bit_pos);
317 }
318 } else if (error_bit_loc < fdm_end_bits) {
319 if (fdm_buf) {
320 fdm_buf[error_byte_pos - nand->ecc.size] ^=
321 (1 << error_bit_pos);
322 }
323 }
324
325 bitflips++;
326 }
327
328 return bitflips;
329}
330
331static int mt7621_nfc_wait_write_completion(struct mt7621_nfc *nfc,
332 struct nand_chip *nand)
333{
334 u16 val;
335 int ret;
336
337 ret = readw_poll_timeout(nfc->nfi_regs + NFI_ADDRCNTR, val,
338 FIELD_GET(SEC_CNTR, val) >= nand->ecc.steps,
339 NFI_CORE_TIMEOUT);
340
341 if (ret) {
342 pr_warn("NFI core write operation timed out\n");
343 return -ETIMEDOUT;
344 }
345
346 return ret;
347}
348
349static void mt7621_nfc_hw_reset(struct mt7621_nfc *nfc)
350{
351 u32 val;
352 int ret;
353
354 /* reset all registers and force the NFI master to terminate */
355 nfi_write16(nfc, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
356
357 /* wait for the master to finish the last transaction */
358 ret = readw_poll_timeout(nfc->nfi_regs + NFI_MASTER_STA, val,
359 !(val & MASTER_STA_MASK), NFI_RESET_TIMEOUT);
360 if (ret) {
361 pr_warn("Failed to reset NFI master in %dms\n",
362 NFI_RESET_TIMEOUT);
363 }
364
365 /* ensure any status register affected by the NFI master is reset */
366 nfi_write16(nfc, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
367 nfi_write16(nfc, NFI_STRDATA, 0);
368}
369
370static inline void mt7621_nfc_hw_init(struct mt7621_nfc *nfc)
371{
372 u32 acccon;
373
374 /*
375 * CNRNB: nand ready/busy register
376 * -------------------------------
377 * 7:4: timeout register for polling the NAND busy/ready signal
378 * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles.
379 */
380 nfi_write16(nfc, NFI_CNRNB, CB2R_TIME | STR_CNRNB);
381
382 mt7621_nfc_hw_reset(nfc);
383
384 /* Apply default access timing */
385 acccon = ACCTIMING(ACCCON_POECS_DEF, ACCCON_PRECS_DEF, ACCCON_C2R_DEF,
386 ACCCON_W2R_DEF, ACCCON_WH_DEF, ACCCON_WST_DEF,
387 ACCCON_RLT_DEF);
388
389 nfi_write32(nfc, NFI_ACCCON, acccon);
390}
391
392static int mt7621_nfc_send_command(struct mt7621_nfc *nfc, u8 command)
393{
394 u32 val;
395 int ret;
396
397 nfi_write32(nfc, NFI_CMD, command);
398
399 ret = readl_poll_timeout(nfc->nfi_regs + NFI_STA, val, !(val & STA_CMD),
400 NFI_CORE_TIMEOUT);
401 if (ret) {
402 pr_warn("NFI core timed out entering command mode\n");
403 return -EIO;
404 }
405
406 return 0;
407}
408
409static int mt7621_nfc_send_address_byte(struct mt7621_nfc *nfc, int addr)
410{
411 u32 val;
412 int ret;
413
414 nfi_write32(nfc, NFI_COLADDR, addr);
415 nfi_write32(nfc, NFI_ROWADDR, 0);
416 nfi_write16(nfc, NFI_ADDRNOB, 1);
417
418 ret = readl_poll_timeout(nfc->nfi_regs + NFI_STA, val,
419 !(val & STA_ADDR), NFI_CORE_TIMEOUT);
420 if (ret) {
421 pr_warn("NFI core timed out entering address mode\n");
422 return -EIO;
423 }
424
425 return 0;
426}
427
428static void mt7621_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
429 unsigned int ctrl)
430{
431 struct mt7621_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
432
433 if (ctrl & NAND_ALE) {
434 mt7621_nfc_send_address_byte(nfc, dat & 0xff);
435 } else if (ctrl & NAND_CLE) {
436 mt7621_nfc_hw_reset(nfc);
437 nfi_write16(nfc, NFI_CNFG,
438 FIELD_PREP(CNFG_OP_MODE, CNFG_OP_CUSTOM));
439 mt7621_nfc_send_command(nfc, dat);
440 }
441}
442
443static int mt7621_nfc_dev_ready(struct mtd_info *mtd)
444{
445 struct mt7621_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
446
447 if (nfi_read32(nfc, NFI_STA) & STA_BUSY)
448 return 0;
449
450 return 1;
451}
452
453static void mt7621_nfc_select_chip(struct mtd_info *mtd, int chipnr)
454{
455 struct mt7621_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
456
457 nfi_write16(nfc, NFI_CSEL, 0);
458}
459
460static void mt7621_nfc_wait_pio_ready(struct mt7621_nfc *nfc)
461{
462 int ret;
463 u16 val;
464
465 ret = readw_poll_timeout(nfc->nfi_regs + NFI_PIO_DIRDY, val,
466 val & PIO_DIRDY, NFI_CORE_TIMEOUT);
467 if (ret < 0)
468 pr_err("NFI core PIO mode not ready\n");
469}
470
471static u32 mt7621_nfc_pio_read(struct mt7621_nfc *nfc, bool br)
472{
473 u32 reg, fsm;
474
475 /* after each byte read, the NFI_STA reg is reset by the hardware */
476 reg = nfi_read32(nfc, NFI_STA);
477 fsm = FIELD_GET(STA_NFI_FSM, reg);
478
479 if (fsm != STA_FSM_CUSTOM_DATA) {
480 reg = nfi_read16(nfc, NFI_CNFG);
481 reg |= CNFG_READ_MODE | CNFG_BYTE_RW;
482 if (!br)
483 reg &= ~CNFG_BYTE_RW;
484 nfi_write16(nfc, NFI_CNFG, reg);
485
486 /*
487 * set to max sector to allow the HW to continue reading over
488 * unaligned accesses
489 */
490 nfi_write16(nfc, NFI_CON, CON_NFI_SEC | CON_NFI_BRD);
491
492 /* trigger to fetch data */
493 nfi_write16(nfc, NFI_STRDATA, STR_DATA);
494 }
495
496 mt7621_nfc_wait_pio_ready(nfc);
497
498 return nfi_read32(nfc, NFI_DATAR);
499}
500
501static void mt7621_nfc_read_data(struct mt7621_nfc *nfc, u8 *buf, u32 len)
502{
503 while (((uintptr_t)buf & 3) && len) {
504 *buf = mt7621_nfc_pio_read(nfc, true);
505 buf++;
506 len--;
507 }
508
509 while (len >= 4) {
510 *(u32 *)buf = mt7621_nfc_pio_read(nfc, false);
511 buf += 4;
512 len -= 4;
513 }
514
515 while (len) {
516 *buf = mt7621_nfc_pio_read(nfc, true);
517 buf++;
518 len--;
519 }
520}
521
522static void mt7621_nfc_read_data_discard(struct mt7621_nfc *nfc, u32 len)
523{
524 while (len >= 4) {
525 mt7621_nfc_pio_read(nfc, false);
526 len -= 4;
527 }
528
529 while (len) {
530 mt7621_nfc_pio_read(nfc, true);
531 len--;
532 }
533}
534
535static void mt7621_nfc_pio_write(struct mt7621_nfc *nfc, u32 val, bool bw)
536{
537 u32 reg, fsm;
538
539 reg = nfi_read32(nfc, NFI_STA);
540 fsm = FIELD_GET(STA_NFI_FSM, reg);
541
542 if (fsm != STA_FSM_CUSTOM_DATA) {
543 reg = nfi_read16(nfc, NFI_CNFG);
544 reg &= ~(CNFG_READ_MODE | CNFG_BYTE_RW);
545 if (bw)
546 reg |= CNFG_BYTE_RW;
547 nfi_write16(nfc, NFI_CNFG, reg);
548
549 nfi_write16(nfc, NFI_CON, CON_NFI_SEC | CON_NFI_BWR);
550 nfi_write16(nfc, NFI_STRDATA, STR_DATA);
551 }
552
553 mt7621_nfc_wait_pio_ready(nfc);
554 nfi_write32(nfc, NFI_DATAW, val);
555}
556
557static void mt7621_nfc_write_data(struct mt7621_nfc *nfc, const u8 *buf,
558 u32 len)
559{
560 while (((uintptr_t)buf & 3) && len) {
561 mt7621_nfc_pio_write(nfc, *buf, true);
562 buf++;
563 len--;
564 }
565
566 while (len >= 4) {
567 mt7621_nfc_pio_write(nfc, *(const u32 *)buf, false);
568 buf += 4;
569 len -= 4;
570 }
571
572 while (len) {
573 mt7621_nfc_pio_write(nfc, *buf, true);
574 buf++;
575 len--;
576 }
577}
578
579static void mt7621_nfc_write_data_empty(struct mt7621_nfc *nfc, u32 len)
580{
581 while (len >= 4) {
582 mt7621_nfc_pio_write(nfc, 0xffffffff, false);
583 len -= 4;
584 }
585
586 while (len) {
587 mt7621_nfc_pio_write(nfc, 0xff, true);
588 len--;
589 }
590}
591
592static void mt7621_nfc_write_byte(struct mtd_info *mtd, u8 byte)
593{
594 struct mt7621_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
595
596 mt7621_nfc_pio_write(nfc, byte, true);
597}
598
599static void mt7621_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
600{
601 struct mt7621_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
602
603 return mt7621_nfc_write_data(nfc, buf, len);
604}
605
606static u8 mt7621_nfc_read_byte(struct mtd_info *mtd)
607{
608 struct mt7621_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
609
610 return mt7621_nfc_pio_read(nfc, true);
611}
612
613static void mt7621_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
614{
615 struct mt7621_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
616
617 mt7621_nfc_read_data(nfc, buf, len);
618}
619
620static int mt7621_nfc_calc_ecc_strength(struct mt7621_nfc *nfc,
621 u32 avail_ecc_bytes)
622{
623 struct nand_chip *nand = &nfc->nand;
624 struct mtd_info *mtd = nand_to_mtd(nand);
625 u32 strength;
626 int i;
627
628 strength = avail_ecc_bytes * 8 / ECC_PARITY_BITS;
629
630 /* Find the closest supported ecc strength */
631 for (i = ARRAY_SIZE(mt7621_ecc_strength) - 1; i >= 0; i--) {
632 if (mt7621_ecc_strength[i] <= strength)
633 break;
634 }
635
636 if (unlikely(i < 0)) {
637 pr_err("OOB size (%u) is not supported\n", mtd->oobsize);
638 return -EINVAL;
639 }
640
641 nand->ecc.strength = mt7621_ecc_strength[i];
642 nand->ecc.bytes = DIV_ROUND_UP(nand->ecc.strength * ECC_PARITY_BITS, 8);
643
644 pr_debug("ECC strength adjusted to %u bits\n", nand->ecc.strength);
645
646 return i;
647}
648
649static int mt7621_nfc_set_spare_per_sector(struct mt7621_nfc *nfc)
650{
651 struct nand_chip *nand = &nfc->nand;
652 struct mtd_info *mtd = nand_to_mtd(nand);
653 u32 size;
654 int i;
655
656 size = nand->ecc.bytes + NFI_FDM_SIZE;
657
658 /* Find the closest supported spare size */
659 for (i = 0; i < ARRAY_SIZE(mt7621_nfi_spare_size); i++) {
660 if (mt7621_nfi_spare_size[i] >= size)
661 break;
662 }
663
664 if (unlikely(i >= ARRAY_SIZE(mt7621_nfi_spare_size))) {
665 pr_err("OOB size (%u) is not supported\n", mtd->oobsize);
666 return -EINVAL;
667 }
668
669 nfc->spare_per_sector = mt7621_nfi_spare_size[i];
670
671 return i;
672}
673
674static int mt7621_nfc_ecc_init(struct mt7621_nfc *nfc)
675{
676 struct nand_chip *nand = &nfc->nand;
677 struct mtd_info *mtd = nand_to_mtd(nand);
678 u32 avail_ecc_bytes, encode_block_size, decode_block_size;
679 u32 ecc_enccfg, ecc_deccfg;
680 int ecc_cap;
681
682 nand->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
683
684 nand->ecc.size = ECC_SECTOR_SIZE;
685 nand->ecc.steps = mtd->writesize / nand->ecc.size;
686
687 avail_ecc_bytes = mtd->oobsize / nand->ecc.steps - NFI_FDM_SIZE;
688
689 ecc_cap = mt7621_nfc_calc_ecc_strength(nfc, avail_ecc_bytes);
690 if (ecc_cap < 0)
691 return ecc_cap;
692
693 /* Sector + FDM */
694 encode_block_size = (nand->ecc.size + NFI_FDM_SIZE) * 8;
695 ecc_enccfg = ecc_cap | FIELD_PREP(ENC_MODE, ENC_MODE_NFI) |
696 FIELD_PREP(ENC_CNFG_MSG, encode_block_size);
697
698 /* Sector + FDM + ECC parity bits */
699 decode_block_size = ((nand->ecc.size + NFI_FDM_SIZE) * 8) +
700 nand->ecc.strength * ECC_PARITY_BITS;
701 ecc_deccfg = ecc_cap | FIELD_PREP(DEC_MODE, DEC_MODE_NFI) |
702 FIELD_PREP(DEC_CS, decode_block_size) |
703 FIELD_PREP(DEC_CON, DEC_CON_EL) | DEC_EMPTY_EN;
704
705 mt7621_ecc_encoder_op(nfc, false);
706 ecc_write32(nfc, ECC_ENCCNFG, ecc_enccfg);
707
708 mt7621_ecc_decoder_op(nfc, false);
709 ecc_write32(nfc, ECC_DECCNFG, ecc_deccfg);
710
711 return 0;
712}
713
714static int mt7621_nfc_set_page_format(struct mt7621_nfc *nfc)
715{
716 struct nand_chip *nand = &nfc->nand;
717 struct mtd_info *mtd = nand_to_mtd(nand);
718 int i, spare_size;
719 u32 pagefmt;
720
721 spare_size = mt7621_nfc_set_spare_per_sector(nfc);
722 if (spare_size < 0)
723 return spare_size;
724
725 for (i = 0; i < ARRAY_SIZE(mt7621_nfi_page_size); i++) {
726 if (mt7621_nfi_page_size[i] == mtd->writesize)
727 break;
728 }
729
730 if (unlikely(i >= ARRAY_SIZE(mt7621_nfi_page_size))) {
731 pr_err("Page size (%u) is not supported\n", mtd->writesize);
732 return -EINVAL;
733 }
734
735 pagefmt = FIELD_PREP(PAGEFMT_PAGE, i) |
736 FIELD_PREP(PAGEFMT_SPARE, spare_size) |
737 FIELD_PREP(PAGEFMT_FDM, NFI_FDM_SIZE) |
738 FIELD_PREP(PAGEFMT_FDM_ECC, NFI_FDM_SIZE);
739
740 nfi_write16(nfc, NFI_PAGEFMT, pagefmt);
741
742 return 0;
743}
744
745static int mt7621_nfc_attach_chip(struct nand_chip *nand)
746{
747 struct mt7621_nfc *nfc = nand_get_controller_data(nand);
748 int ret;
749
750 if (nand->options & NAND_BUSWIDTH_16) {
751 pr_err("16-bit buswidth is not supported");
752 return -EINVAL;
753 }
754
755 ret = mt7621_nfc_ecc_init(nfc);
756 if (ret)
757 return ret;
758
759 return mt7621_nfc_set_page_format(nfc);
760}
761
762static void mt7621_nfc_write_fdm(struct mt7621_nfc *nfc)
763{
764 struct nand_chip *nand = &nfc->nand;
765 u32 vall, valm;
766 u8 *oobptr;
767 int i, j;
768
769 for (i = 0; i < nand->ecc.steps; i++) {
770 vall = 0;
771 valm = 0;
772 oobptr = oob_fdm_ptr(nand, i);
773
774 for (j = 0; j < 4; j++)
775 vall |= (u32)oobptr[j] << (j * 8);
776
777 for (j = 0; j < 4; j++)
778 valm |= (u32)oobptr[j + 4] << (j * 8);
779
780 nfi_write32(nfc, NFI_FDML(i), vall);
781 nfi_write32(nfc, NFI_FDMM(i), valm);
782 }
783}
784
785static void mt7621_nfc_read_sector_fdm(struct mt7621_nfc *nfc, u32 sect)
786{
787 struct nand_chip *nand = &nfc->nand;
788 u32 vall, valm;
789 u8 *oobptr;
790 int i;
791
792 vall = nfi_read32(nfc, NFI_FDML(sect));
793 valm = nfi_read32(nfc, NFI_FDMM(sect));
794 oobptr = oob_fdm_ptr(nand, sect);
795
796 for (i = 0; i < 4; i++)
797 oobptr[i] = (vall >> (i * 8)) & 0xff;
798
799 for (i = 0; i < 4; i++)
800 oobptr[i + 4] = (valm >> (i * 8)) & 0xff;
801}
802
803static int mt7621_nfc_read_page_hwecc(struct mtd_info *mtd,
804 struct nand_chip *nand, uint8_t *buf,
805 int oob_required, int page)
806{
807 struct mt7621_nfc *nfc = nand_get_controller_data(nand);
808 int bitflips = 0, ret = 0;
809 int rc, i;
810
811 nand_read_page_op(nand, page, 0, NULL, 0);
812
813 nfi_write16(nfc, NFI_CNFG, FIELD_PREP(CNFG_OP_MODE, CNFG_OP_CUSTOM) |
814 CNFG_READ_MODE | CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
815
816 mt7621_ecc_decoder_op(nfc, true);
817
818 nfi_write16(nfc, NFI_CON, FIELD_PREP(CON_NFI_SEC, nand->ecc.steps) |
819 CON_NFI_BRD);
820
821 for (i = 0; i < nand->ecc.steps; i++) {
822 if (buf)
823 mt7621_nfc_read_data(nfc, page_data_ptr(nand, buf, i),
824 nand->ecc.size);
825 else
826 mt7621_nfc_read_data_discard(nfc, nand->ecc.size);
827
828 rc = mt7621_ecc_decoder_wait_done(nfc, i);
829
830 mt7621_nfc_read_sector_fdm(nfc, i);
831
832 if (rc < 0) {
833 ret = -EIO;
834 continue;
835 }
836
837 rc = mt7621_ecc_correct_check(nfc,
838 buf ? page_data_ptr(nand, buf, i) : NULL,
839 oob_fdm_ptr(nand, i), i);
840
841 if (rc < 0) {
842 pr_warn("Uncorrectable ECC error at page %d step %d\n",
843 page, i);
844 bitflips = nand->ecc.strength + 1;
845 mtd->ecc_stats.failed++;
846 } else {
847 if (rc > bitflips)
848 bitflips = rc;
849 mtd->ecc_stats.corrected += rc;
850 }
851 }
852
853 mt7621_ecc_decoder_op(nfc, false);
854
855 nfi_write16(nfc, NFI_CON, 0);
856
857 if (ret < 0)
858 return ret;
859
860 return bitflips;
861}
862
863static int mt7621_nfc_read_page_raw(struct mtd_info *mtd,
864 struct nand_chip *nand, uint8_t *buf,
865 int oob_required, int page)
866{
867 struct mt7621_nfc *nfc = nand_get_controller_data(nand);
868 int i;
869
870 nand_read_page_op(nand, page, 0, NULL, 0);
871
872 nfi_write16(nfc, NFI_CNFG, FIELD_PREP(CNFG_OP_MODE, CNFG_OP_CUSTOM) |
873 CNFG_READ_MODE);
874
875 nfi_write16(nfc, NFI_CON, FIELD_PREP(CON_NFI_SEC, nand->ecc.steps) |
876 CON_NFI_BRD);
877
878 for (i = 0; i < nand->ecc.steps; i++) {
879 /* Read data */
880 if (buf)
881 mt7621_nfc_read_data(nfc, page_data_ptr(nand, buf, i),
882 nand->ecc.size);
883 else
884 mt7621_nfc_read_data_discard(nfc, nand->ecc.size);
885
886 /* Read FDM */
887 mt7621_nfc_read_data(nfc, oob_fdm_ptr(nand, i), NFI_FDM_SIZE);
888
889 /* Read ECC parity data */
890 mt7621_nfc_read_data(nfc, oob_ecc_ptr(nfc, i),
891 nfc->spare_per_sector - NFI_FDM_SIZE);
892 }
893
894 nfi_write16(nfc, NFI_CON, 0);
895
896 return 0;
897}
898
899static int mt7621_nfc_read_oob_hwecc(struct mtd_info *mtd,
900 struct nand_chip *nand, int page)
901{
902 return mt7621_nfc_read_page_hwecc(mtd, nand, NULL, 1, page);
903}
904
905static int mt7621_nfc_read_oob_raw(struct mtd_info *mtd,
906 struct nand_chip *nand, int page)
907{
908 return mt7621_nfc_read_page_raw(mtd, nand, NULL, 1, page);
909}
910
911static int mt7621_nfc_check_empty_page(struct nand_chip *nand, const u8 *buf)
912{
913 struct mtd_info *mtd = nand_to_mtd(nand);
914 u8 *oobptr;
915 u32 i, j;
916
917 if (buf) {
918 for (i = 0; i < mtd->writesize; i++)
919 if (buf[i] != 0xff)
920 return 0;
921 }
922
923 for (i = 0; i < nand->ecc.steps; i++) {
924 oobptr = oob_fdm_ptr(nand, i);
925 for (j = 0; j < NFI_FDM_SIZE; j++)
926 if (oobptr[j] != 0xff)
927 return 0;
928 }
929
930 return 1;
931}
932
933static int mt7621_nfc_write_page_hwecc(struct mtd_info *mtd,
934 struct nand_chip *nand,
935 const u8 *buf, int oob_required,
936 int page)
937{
938 struct mt7621_nfc *nfc = nand_get_controller_data(nand);
939
940 if (mt7621_nfc_check_empty_page(nand, buf)) {
941 /*
942 * MT7621 ECC engine always generates parity code for input
943 * pages, even for empty pages. Doing so will write back ECC
944 * parity code to the oob region, which means such pages will
945 * no longer be empty pages.
946 *
947 * To avoid this, stop write operation if current page is an
948 * empty page.
949 */
950 return 0;
951 }
952
953 nand_prog_page_begin_op(nand, page, 0, NULL, 0);
954
955 nfi_write16(nfc, NFI_CNFG, FIELD_PREP(CNFG_OP_MODE, CNFG_OP_CUSTOM) |
956 CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
957
958 mt7621_ecc_encoder_op(nfc, true);
959
960 mt7621_nfc_write_fdm(nfc);
961
962 nfi_write16(nfc, NFI_CON, FIELD_PREP(CON_NFI_SEC, nand->ecc.steps) |
963 CON_NFI_BWR);
964
965 if (buf)
966 mt7621_nfc_write_data(nfc, buf, mtd->writesize);
967 else
968 mt7621_nfc_write_data_empty(nfc, mtd->writesize);
969
970 mt7621_nfc_wait_write_completion(nfc, nand);
971
972 mt7621_ecc_encoder_op(nfc, false);
973
974 nfi_write16(nfc, NFI_CON, 0);
975
976 return nand_prog_page_end_op(nand);
977}
978
979static int mt7621_nfc_write_page_raw(struct mtd_info *mtd,
980 struct nand_chip *nand,
981 const u8 *buf, int oob_required,
982 int page)
983{
984 struct mt7621_nfc *nfc = nand_get_controller_data(nand);
985 int i;
986
987 nand_prog_page_begin_op(nand, page, 0, NULL, 0);
988
989 nfi_write16(nfc, NFI_CNFG, FIELD_PREP(CNFG_OP_MODE, CNFG_OP_CUSTOM));
990
991 nfi_write16(nfc, NFI_CON, FIELD_PREP(CON_NFI_SEC, nand->ecc.steps) |
992 CON_NFI_BWR);
993
994 for (i = 0; i < nand->ecc.steps; i++) {
995 /* Write data */
996 if (buf)
997 mt7621_nfc_write_data(nfc, page_data_ptr(nand, buf, i),
998 nand->ecc.size);
999 else
1000 mt7621_nfc_write_data_empty(nfc, nand->ecc.size);
1001
1002 /* Write FDM */
1003 mt7621_nfc_write_data(nfc, oob_fdm_ptr(nand, i),
1004 NFI_FDM_SIZE);
1005
1006 /* Write dummy ECC parity data */
1007 mt7621_nfc_write_data_empty(nfc, nfc->spare_per_sector -
1008 NFI_FDM_SIZE);
1009 }
1010
1011 mt7621_nfc_wait_write_completion(nfc, nand);
1012
1013 nfi_write16(nfc, NFI_CON, 0);
1014
1015 return nand_prog_page_end_op(nand);
1016}
1017
1018static int mt7621_nfc_write_oob_hwecc(struct mtd_info *mtd,
1019 struct nand_chip *nand, int page)
1020{
1021 return mt7621_nfc_write_page_hwecc(mtd, nand, NULL, 1, page);
1022}
1023
1024static int mt7621_nfc_write_oob_raw(struct mtd_info *mtd,
1025 struct nand_chip *nand, int page)
1026{
1027 return mt7621_nfc_write_page_raw(mtd, nand, NULL, 1, page);
1028}
1029
1030static int mt7621_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1031 struct mtd_oob_region *oob_region)
1032{
1033 struct nand_chip *nand = mtd_to_nand(mtd);
1034
1035 if (section >= nand->ecc.steps)
1036 return -ERANGE;
1037
1038 oob_region->length = NFI_FDM_SIZE - 1;
1039 oob_region->offset = section * NFI_FDM_SIZE + 1;
1040
1041 return 0;
1042}
1043
1044static int mt7621_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1045 struct mtd_oob_region *oob_region)
1046{
1047 struct nand_chip *nand = mtd_to_nand(mtd);
1048
1049 if (section)
1050 return -ERANGE;
1051
1052 oob_region->offset = NFI_FDM_SIZE * nand->ecc.steps;
1053 oob_region->length = mtd->oobsize - oob_region->offset;
1054
1055 return 0;
1056}
1057
1058static const struct mtd_ooblayout_ops mt7621_nfc_ooblayout_ops = {
1059 .rfree = mt7621_nfc_ooblayout_free,
1060 .ecc = mt7621_nfc_ooblayout_ecc,
1061};
1062
1063/*
1064 * This function will override the default one which is not supposed to be
1065 * used for ECC syndrome based pages.
1066 */
1067static int mt7621_nfc_block_bad(struct mtd_info *mtd, loff_t ofs)
1068{
1069 struct nand_chip *nand = mtd_to_nand(mtd);
1070 struct mtd_oob_ops ops;
1071 int ret, i = 0;
1072 u16 bad;
1073
1074 memset(&ops, 0, sizeof(ops));
1075 ops.oobbuf = (uint8_t *)&bad;
1076 ops.ooboffs = nand->badblockpos;
1077 if (nand->options & NAND_BUSWIDTH_16) {
1078 ops.ooboffs &= ~0x01;
1079 ops.ooblen = 2;
1080 } else {
1081 ops.ooblen = 1;
1082 }
1083 ops.mode = MTD_OPS_RAW;
1084
1085 /* Read from first/last page(s) if necessary */
1086 if (nand->bbt_options & NAND_BBT_SCANLASTPAGE)
1087 ofs += mtd->erasesize - mtd->writesize;
1088
1089 do {
1090 ret = mtd_read_oob(mtd, ofs, &ops);
1091 if (ret)
1092 return ret;
1093
1094 if (likely(nand->badblockbits == 8))
1095 ret = bad != 0xFF;
1096 else
1097 ret = hweight8(bad) < nand->badblockbits;
1098
1099 i++;
1100 ofs += mtd->writesize;
1101 } while (!ret && (nand->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
1102
1103 return ret;
1104}
1105
1106static void mt7621_nfc_init_chip(struct mt7621_nfc *nfc)
1107{
1108 struct nand_chip *nand = &nfc->nand;
1109 struct mtd_info *mtd;
1110 int ret;
1111
1112 nand_set_controller_data(nand, nfc);
1113
1114 nand->options |= NAND_NO_SUBPAGE_WRITE;
1115
1116 nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1117 nand->ecc.read_page = mt7621_nfc_read_page_hwecc;
1118 nand->ecc.read_page_raw = mt7621_nfc_read_page_raw;
1119 nand->ecc.write_page = mt7621_nfc_write_page_hwecc;
1120 nand->ecc.write_page_raw = mt7621_nfc_write_page_raw;
1121 nand->ecc.read_oob = mt7621_nfc_read_oob_hwecc;
1122 nand->ecc.read_oob_raw = mt7621_nfc_read_oob_raw;
1123 nand->ecc.write_oob = mt7621_nfc_write_oob_hwecc;
1124 nand->ecc.write_oob_raw = mt7621_nfc_write_oob_raw;
1125
1126 nand->dev_ready = mt7621_nfc_dev_ready;
1127 nand->select_chip = mt7621_nfc_select_chip;
1128 nand->write_byte = mt7621_nfc_write_byte;
1129 nand->write_buf = mt7621_nfc_write_buf;
1130 nand->read_byte = mt7621_nfc_read_byte;
1131 nand->read_buf = mt7621_nfc_read_buf;
1132 nand->cmd_ctrl = mt7621_nfc_cmd_ctrl;
1133 nand->block_bad = mt7621_nfc_block_bad;
1134
1135 mtd = nand_to_mtd(nand);
1136 mtd_set_ooblayout(mtd, &mt7621_nfc_ooblayout_ops);
1137
1138 /* Reset NFI master */
1139 mt7621_nfc_hw_init(nfc);
1140
1141 ret = nand_scan_ident(mtd, 1, NULL);
1142 if (ret)
1143 return;
1144
1145 mt7621_nfc_attach_chip(nand);
1146
1147 ret = nand_scan_tail(mtd);
1148 if (ret)
1149 return;
1150
1151 nand_register(0, mtd);
1152}
1153
1154static void mt7621_nfc_set_regs(struct mt7621_nfc *nfc)
1155{
1156 nfc->nfi_regs = (void __iomem *)CKSEG1ADDR(NFI_BASE);
1157 nfc->ecc_regs = (void __iomem *)CKSEG1ADDR(NFI_ECC_BASE);
1158}
1159
1160void mt7621_nfc_spl_init(struct mt7621_nfc *nfc)
1161{
1162 struct nand_chip *nand = &nfc->nand;
1163
1164 mt7621_nfc_set_regs(nfc);
1165
1166 nand_set_controller_data(nand, nfc);
1167
1168 nand->options |= NAND_NO_SUBPAGE_WRITE;
1169
1170 nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1171 nand->ecc.read_page = mt7621_nfc_read_page_hwecc;
1172
1173 nand->dev_ready = mt7621_nfc_dev_ready;
1174 nand->select_chip = mt7621_nfc_select_chip;
1175 nand->read_byte = mt7621_nfc_read_byte;
1176 nand->read_buf = mt7621_nfc_read_buf;
1177 nand->cmd_ctrl = mt7621_nfc_cmd_ctrl;
1178
1179 /* Reset NFI master */
1180 mt7621_nfc_hw_init(nfc);
1181}
1182
1183int mt7621_nfc_spl_post_init(struct mt7621_nfc *nfc)
1184{
1185 struct nand_chip *nand = &nfc->nand;
1186 int nand_maf_id, nand_dev_id;
Michael Trimarchi4d4862d92022-07-25 10:06:06 +02001187 int ret;
developer10a61df2022-05-20 11:23:47 +08001188
Michael Trimarchif20a6f02022-07-25 10:18:51 +02001189 ret = nand_detect(nand, &nand_maf_id, &nand_dev_id, NULL);
developer10a61df2022-05-20 11:23:47 +08001190
Michael Trimarchi4d4862d92022-07-25 10:06:06 +02001191 if (ret)
1192 return ret;
developer10a61df2022-05-20 11:23:47 +08001193
1194 nand->numchips = 1;
1195 nand->mtd.size = nand->chipsize;
1196
1197 return mt7621_nfc_attach_chip(nand);
1198}
1199
1200void board_nand_init(void)
1201{
1202 mt7621_nfc_set_regs(&nfc_dev);
1203 mt7621_nfc_init_chip(&nfc_dev);
1204}