blob: 088cc7fead24147ff30d50e25bf792e490af56a9 [file] [log] [blame]
Yifeng Zhao9e9021e2021-06-07 16:40:29 +08001// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Rockchip NAND Flash controller driver.
4 * Copyright (C) 2021 Rockchip Inc.
5 * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com>
6 */
7
Tom Riniabb9a042024-05-18 20:20:43 -06008#include <common.h>
Yifeng Zhao9e9021e2021-06-07 16:40:29 +08009#include <asm/io.h>
10#include <clk.h>
11#include <dm.h>
12#include <dm/device_compat.h>
13#include <dm/devres.h>
14#include <fdtdec.h>
15#include <inttypes.h>
16#include <linux/delay.h>
17#include <linux/dma-direction.h>
18#include <linux/dma-mapping.h>
19#include <linux/io.h>
20#include <linux/kernel.h>
21#include <linux/mtd/mtd.h>
22#include <linux/mtd/nand.h>
23#include <linux/mtd/partitions.h>
Tom Rini3bde7e22021-09-22 14:50:35 -040024#include <linux/mtd/rawnand.h>
Yifeng Zhao9e9021e2021-06-07 16:40:29 +080025#include <memalign.h>
26#include <nand.h>
27
28/*
29 * NFC Page Data Layout:
30 * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
31 * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
32 * ......
33 * NAND Page Data Layout:
34 * 1024 * n data + m Bytes oob
35 * Original Bad Block Mask Location:
36 * First byte of oob(spare).
37 * nand_chip->oob_poi data layout:
38 * 4Bytes sys data + .... + 4Bytes sys data + ECC data.
39 */
40
41/* NAND controller register definition */
42#define NFC_READ (0)
43#define NFC_WRITE (1)
44
45#define NFC_FMCTL (0x00)
46#define FMCTL_CE_SEL_M 0xFF
47#define FMCTL_CE_SEL(x) (1 << (x))
48#define FMCTL_WP BIT(8)
49#define FMCTL_RDY BIT(9)
50
51#define NFC_FMWAIT (0x04)
52#define FLCTL_RST BIT(0)
53#define FLCTL_WR (1) /* 0: read, 1: write */
54#define FLCTL_XFER_ST BIT(2)
55#define FLCTL_XFER_EN BIT(3)
56#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */
57#define FLCTL_XFER_READY BIT(20)
58#define FLCTL_XFER_SECTOR (22)
59#define FLCTL_TOG_FIX BIT(29)
60
61#define BCHCTL_BANK_M (7 << 5)
62#define BCHCTL_BANK (5)
63
64#define DMA_ST BIT(0)
65#define DMA_WR (1) /* 0: write, 1: read */
66#define DMA_EN BIT(2)
67#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */
68#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */
69#define DMA_INC_NUM (9) /* 1 - 16 */
70
71#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
72 (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
73#define INT_DMA BIT(0)
74#define NFC_BANK (0x800)
75#define NFC_BANK_STEP (0x100)
76#define BANK_DATA (0x00)
77#define BANK_ADDR (0x04)
78#define BANK_CMD (0x08)
79#define NFC_SRAM0 (0x1000)
80#define NFC_SRAM1 (0x1400)
81#define NFC_SRAM_SIZE (0x400)
82#define NFC_TIMEOUT_MS (500)
83#define NFC_MAX_OOB_PER_STEP 128
84#define NFC_MIN_OOB_PER_STEP 64
85#define MAX_DATA_SIZE 0xFFFC
86#define MAX_ADDRESS_CYC 6
87#define NFC_ECC_MAX_MODES 4
88#define NFC_RB_DELAY_US 50
89#define NFC_MAX_PAGE_SIZE (16 * 1024)
90#define NFC_MAX_OOB_SIZE (16 * 128)
91#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */
92#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/
93#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */
94#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs))
95
96enum nfc_type {
97 NFC_V6,
98 NFC_V8,
99 NFC_V9,
100};
101
102/**
103 * struct rk_ecc_cnt_status: represent a ecc status data.
104 * @err_flag_bit: error flag bit index at register.
105 * @low: ECC count low bit index at register.
106 * @low_mask: mask bit.
107 * @low_bn: ECC count low bit number.
108 * @high: ECC count high bit index at register.
109 * @high_mask: mask bit
110 */
111struct ecc_cnt_status {
112 u8 err_flag_bit;
113 u8 low;
114 u8 low_mask;
115 u8 low_bn;
116 u8 high;
117 u8 high_mask;
118};
119
120/**
121 * @type: NFC version
122 * @ecc_strengths: ECC strengths
123 * @ecc_cfgs: ECC config values
124 * @flctl_off: FLCTL register offset
125 * @bchctl_off: BCHCTL register offset
126 * @dma_data_buf_off: DMA_DATA_BUF register offset
127 * @dma_oob_buf_off: DMA_OOB_BUF register offset
128 * @dma_cfg_off: DMA_CFG register offset
129 * @dma_st_off: DMA_ST register offset
130 * @bch_st_off: BCG_ST register offset
131 * @randmz_off: RANDMZ register offset
132 * @int_en_off: interrupt enable register offset
133 * @int_clr_off: interrupt clean register offset
134 * @int_st_off: interrupt status register offset
135 * @oob0_off: oob0 register offset
136 * @oob1_off: oob1 register offset
137 * @ecc0: represent ECC0 status data
138 * @ecc1: represent ECC1 status data
139 */
140struct nfc_cfg {
141 enum nfc_type type;
142 u8 ecc_strengths[NFC_ECC_MAX_MODES];
143 u32 ecc_cfgs[NFC_ECC_MAX_MODES];
144 u32 flctl_off;
145 u32 bchctl_off;
146 u32 dma_cfg_off;
147 u32 dma_data_buf_off;
148 u32 dma_oob_buf_off;
149 u32 dma_st_off;
150 u32 bch_st_off;
151 u32 randmz_off;
152 u32 int_en_off;
153 u32 int_clr_off;
154 u32 int_st_off;
155 u32 oob0_off;
156 u32 oob1_off;
157 struct ecc_cnt_status ecc0;
158 struct ecc_cnt_status ecc1;
159};
160
161struct rk_nfc_nand_chip {
162 struct nand_chip chip;
163
164 u16 boot_blks;
165 u16 metadata_size;
166 u32 boot_ecc;
167 u32 timing;
168
169 u8 nsels;
170 u8 sels[0];
171 /* Nothing after this field. */
172};
173
174struct rk_nfc {
175 struct nand_hw_control controller;
176 const struct nfc_cfg *cfg;
177 struct udevice *dev;
178
179 struct clk *nfc_clk;
180 struct clk *ahb_clk;
181 void __iomem *regs;
182
183 int selected_bank;
184 u32 band_offset;
185 u32 cur_ecc;
186 u32 cur_timing;
187
188 u8 *page_buf;
189 u32 *oob_buf;
190
191 unsigned long assigned_cs;
192};
193
194static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
195{
196 return container_of(chip, struct rk_nfc_nand_chip, chip);
197}
198
199static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
200{
201 return (u8 *)p + i * chip->ecc.size;
202}
203
204static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
205{
206 u8 *poi;
207
208 poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
209
210 return poi;
211}
212
213static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
214{
215 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
216 u8 *poi;
217
218 poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
219
220 return poi;
221}
222
223static inline int rk_nfc_data_len(struct nand_chip *chip)
224{
225 return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
226}
227
228static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
229{
230 struct rk_nfc *nfc = nand_get_controller_data(chip);
231
232 return nfc->page_buf + i * rk_nfc_data_len(chip);
233}
234
235static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
236{
237 struct rk_nfc *nfc = nand_get_controller_data(chip);
238
239 return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
240}
241
242static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
243{
244 struct rk_nfc *nfc = nand_get_controller_data(chip);
245 u32 reg, i;
246
247 for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
248 if (strength == nfc->cfg->ecc_strengths[i]) {
249 reg = nfc->cfg->ecc_cfgs[i];
250 break;
251 }
252 }
253
254 if (i >= NFC_ECC_MAX_MODES)
255 return -EINVAL;
256
257 writel(reg, nfc->regs + nfc->cfg->bchctl_off);
258
259 /* Save chip ECC setting */
260 nfc->cur_ecc = strength;
261
262 return 0;
263}
264
265static void rk_nfc_select_chip(struct mtd_info *mtd, int cs)
266{
267 struct nand_chip *chip = mtd_to_nand(mtd);
268 struct rk_nfc *nfc = nand_get_controller_data(chip);
269 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
270 struct nand_ecc_ctrl *ecc = &chip->ecc;
271 u32 val;
272
273 if (cs < 0) {
274 nfc->selected_bank = -1;
275 /* Deselect the currently selected target. */
276 val = readl(nfc->regs + NFC_FMCTL);
277 val &= ~FMCTL_CE_SEL_M;
278 writel(val, nfc->regs + NFC_FMCTL);
279 return;
280 }
281
282 nfc->selected_bank = rknand->sels[cs];
283 nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
284
285 val = readl(nfc->regs + NFC_FMCTL);
286 val &= ~FMCTL_CE_SEL_M;
287 val |= FMCTL_CE_SEL(nfc->selected_bank);
288
289 writel(val, nfc->regs + NFC_FMCTL);
290
291 /*
292 * Compare current chip timing with selected chip timing and
293 * change if needed.
294 */
295 if (nfc->cur_timing != rknand->timing) {
296 writel(rknand->timing, nfc->regs + NFC_FMWAIT);
297 nfc->cur_timing = rknand->timing;
298 }
299
300 /*
301 * Compare current chip ECC setting with selected chip ECC setting and
302 * change if needed.
303 */
304 if (nfc->cur_ecc != ecc->strength)
305 rk_nfc_hw_ecc_setup(chip, ecc->strength);
306}
307
308static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
309{
310 u32 timeout = (CONFIG_SYS_HZ * NFC_TIMEOUT_MS) / 1000;
311 u32 time_start;
312
313 time_start = get_timer(0);
314 do {
315 if (readl(nfc->regs + NFC_FMCTL) & FMCTL_RDY)
316 return 0;
317 } while (get_timer(time_start) < timeout);
318
319 dev_err(nfc->dev, "wait for io ready timedout\n");
320 return -ETIMEDOUT;
321}
322
323static void rk_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
324{
325 struct nand_chip *chip = mtd_to_nand(mtd);
326 struct rk_nfc *nfc = nand_get_controller_data(chip);
327 void __iomem *bank_base;
328 int i = 0;
329
330 bank_base = nfc->regs + nfc->band_offset + BANK_DATA;
331
332 for (i = 0; i < len; i++)
333 buf[i] = readl(bank_base);
334}
335
336static void rk_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
337{
338 struct nand_chip *chip = mtd_to_nand(mtd);
339 struct rk_nfc *nfc = nand_get_controller_data(chip);
340 void __iomem *bank_base;
341 int i = 0;
342
343 bank_base = nfc->regs + nfc->band_offset + BANK_DATA;
344
345 for (i = 0; i < len; i++)
346 writel(buf[i], bank_base);
347}
348
349static void rk_nfc_cmd(struct mtd_info *mtd, int dat, unsigned int ctrl)
350{
351 struct nand_chip *chip = mtd_to_nand(mtd);
352 struct rk_nfc *nfc = nand_get_controller_data(chip);
353 void __iomem *bank_base;
354
355 bank_base = nfc->regs + nfc->band_offset;
356
357 if (ctrl & NAND_CTRL_CHANGE) {
358 if (ctrl & NAND_ALE)
359 bank_base += BANK_ADDR;
360 else if (ctrl & NAND_CLE)
361 bank_base += BANK_CMD;
362 chip->IO_ADDR_W = bank_base;
363 }
364
365 if (dat != NAND_CMD_NONE)
366 writel(dat & 0xFF, chip->IO_ADDR_W);
367}
368
369static uint8_t rockchip_nand_read_byte(struct mtd_info *mtd)
370{
371 uint8_t ret;
372
373 rk_nfc_read_buf(mtd, &ret, 1);
374
375 return ret;
376}
377
378static int rockchip_nand_dev_ready(struct mtd_info *mtd)
379{
380 struct nand_chip *chip = mtd_to_nand(mtd);
381 struct rk_nfc *nfc = nand_get_controller_data(chip);
382
383 if (readl(nfc->regs + NFC_FMCTL) & FMCTL_RDY)
384 return 1;
385
386 return 0;
387}
388
389static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
390 dma_addr_t dma_data, dma_addr_t dma_oob)
391{
392 u32 dma_reg, fl_reg, bch_reg;
393
394 dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
395 (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
396
397 fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
398 (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
399
400 if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
401 bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
402 bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
403 (nfc->selected_bank << BCHCTL_BANK);
404 writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
405 }
406
407 writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
408 writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
409 writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
410 writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
411 fl_reg |= FLCTL_XFER_ST;
412 writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
413}
414
415static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
416{
417 unsigned long timeout = (CONFIG_SYS_HZ * NFC_TIMEOUT_MS) / 1000;
418 void __iomem *ptr = nfc->regs + nfc->cfg->flctl_off;
419 u32 time_start;
420
421 time_start = get_timer(0);
422
423 do {
424 if (readl(ptr) & FLCTL_XFER_READY)
425 return 0;
426 } while (get_timer(time_start) < timeout);
427
428 dev_err(nfc->dev, "wait for io ready timedout\n");
429 return -ETIMEDOUT;
430}
431
432static int rk_nfc_write_page_raw(struct mtd_info *mtd,
433 struct nand_chip *chip,
434 const u8 *buf,
435 int oob_required,
436 int page)
437{
438 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
439 struct rk_nfc *nfc = nand_get_controller_data(chip);
440 struct nand_ecc_ctrl *ecc = &chip->ecc;
441 int i, pages_per_blk;
442
443 pages_per_blk = mtd->erasesize / mtd->writesize;
444 if ((page < (pages_per_blk * rknand->boot_blks)) &&
445 rknand->boot_ecc != ecc->strength) {
446 /*
447 * There's currently no method to notify the MTD framework that
448 * a different ECC strength is in use for the boot blocks.
449 */
450 return -EIO;
451 }
452
453 if (!buf)
454 memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
455
456 for (i = 0; i < ecc->steps; i++) {
457 /* Copy data to the NFC buffer. */
458 if (buf)
459 memcpy(rk_nfc_data_ptr(chip, i),
460 rk_nfc_buf_to_data_ptr(chip, buf, i),
461 ecc->size);
462 /*
463 * The first four bytes of OOB are reserved for the
464 * boot ROM. In some debugging cases, such as with a
465 * read, erase and write back test these 4 bytes stored
466 * in OOB also need to be written back.
467 *
468 * The function nand_block_bad detects bad blocks like:
469 *
470 * bad = chip->oob_poi[chip->badblockpos];
471 *
472 * chip->badblockpos == 0 for a large page NAND Flash,
473 * so chip->oob_poi[0] is the bad block mask (BBM).
474 *
475 * The OOB data layout on the NFC is:
476 *
477 * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
478 *
479 * or
480 *
481 * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
482 *
483 * The code here just swaps the first 4 bytes with the last
484 * 4 bytes without losing any data.
485 *
486 * The chip->oob_poi data layout:
487 *
488 * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3
489 *
Johan Jonker6404ca62023-03-13 01:29:05 +0100490 * The oobfree structure already has reserved these 4 bytes
491 * together with 2 bytes for BBM by reducing it's length:
Yifeng Zhao9e9021e2021-06-07 16:40:29 +0800492 *
Johan Jonker6404ca62023-03-13 01:29:05 +0100493 * oobfree[0].length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
Yifeng Zhao9e9021e2021-06-07 16:40:29 +0800494 */
495 if (!i)
496 memcpy(rk_nfc_oob_ptr(chip, i),
497 rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
498 NFC_SYS_DATA_SIZE);
499 else
500 memcpy(rk_nfc_oob_ptr(chip, i),
501 rk_nfc_buf_to_oob_ptr(chip, i - 1),
502 NFC_SYS_DATA_SIZE);
503 /* Copy ECC data to the NFC buffer. */
504 memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
505 rk_nfc_buf_to_oob_ecc_ptr(chip, i),
506 ecc->bytes);
507 }
508
509 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
510 rk_nfc_write_buf(mtd, buf, mtd->writesize + mtd->oobsize);
511 return nand_prog_page_end_op(chip);
512}
513
514static int rk_nfc_write_page_hwecc(struct mtd_info *mtd,
515 struct nand_chip *chip,
516 const u8 *buf,
517 int oob_required,
518 int page)
519{
520 struct rk_nfc *nfc = nand_get_controller_data(chip);
521 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
522 struct nand_ecc_ctrl *ecc = &chip->ecc;
523 int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
524 NFC_MIN_OOB_PER_STEP;
525 int pages_per_blk = mtd->erasesize / mtd->writesize;
526 int ret = 0, i, boot_rom_mode = 0;
527 dma_addr_t dma_data, dma_oob;
Johan Jonkercceb2382023-06-22 15:59:24 +0200528 u32 tmp;
Yifeng Zhao9e9021e2021-06-07 16:40:29 +0800529 u8 *oob;
530
531 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
532
533 if (buf)
534 memcpy(nfc->page_buf, buf, mtd->writesize);
535 else
536 memset(nfc->page_buf, 0xFF, mtd->writesize);
537
538 /*
539 * The first blocks (4, 8 or 16 depending on the device) are used
540 * by the boot ROM and the first 32 bits of OOB need to link to
541 * the next page address in the same block. We can't directly copy
542 * OOB data from the MTD framework, because this page address
543 * conflicts for example with the bad block marker (BBM),
544 * so we shift all OOB data including the BBM with 4 byte positions.
545 * As a consequence the OOB size available to the MTD framework is
546 * also reduced with 4 bytes.
547 *
548 * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
549 *
550 * If a NAND is not a boot medium or the page is not a boot block,
551 * the first 4 bytes are left untouched by writing 0xFF to them.
552 *
553 * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
554 *
Johan Jonkercceb2382023-06-22 15:59:24 +0200555 * The code here just swaps the first 4 bytes with the last
556 * 4 bytes without losing any data.
557 *
558 * The chip->oob_poi data layout:
559 *
560 * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3
561 *
Yifeng Zhao9e9021e2021-06-07 16:40:29 +0800562 * Configure the ECC algorithm supported by the boot ROM.
563 */
564 if (page < (pages_per_blk * rknand->boot_blks)) {
565 boot_rom_mode = 1;
566 if (rknand->boot_ecc != ecc->strength)
567 rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
568 }
569
570 for (i = 0; i < ecc->steps; i++) {
Johan Jonkercceb2382023-06-22 15:59:24 +0200571 if (!i)
572 oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
573 else
Yifeng Zhao9e9021e2021-06-07 16:40:29 +0800574 oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
Yifeng Zhao9e9021e2021-06-07 16:40:29 +0800575
Johan Jonkercceb2382023-06-22 15:59:24 +0200576 tmp = oob[0] | oob[1] << 8 | oob[2] << 16 | oob[3] << 24;
Yifeng Zhao9e9021e2021-06-07 16:40:29 +0800577
578 if (nfc->cfg->type == NFC_V9)
Johan Jonkercceb2382023-06-22 15:59:24 +0200579 nfc->oob_buf[i] = tmp;
Yifeng Zhao9e9021e2021-06-07 16:40:29 +0800580 else
Johan Jonkercceb2382023-06-22 15:59:24 +0200581 nfc->oob_buf[i * (oob_step / 4)] = tmp;
Yifeng Zhao9e9021e2021-06-07 16:40:29 +0800582 }
583
584 dma_data = dma_map_single((void *)nfc->page_buf,
585 mtd->writesize, DMA_TO_DEVICE);
586 dma_oob = dma_map_single(nfc->oob_buf,
587 ecc->steps * oob_step,
588 DMA_TO_DEVICE);
589
590 rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
591 dma_oob);
592 ret = rk_nfc_wait_for_xfer_done(nfc);
593
594 dma_unmap_single(dma_data, mtd->writesize,
595 DMA_TO_DEVICE);
596 dma_unmap_single(dma_oob, ecc->steps * oob_step,
597 DMA_TO_DEVICE);
598
599 if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
600 rk_nfc_hw_ecc_setup(chip, ecc->strength);
601
602 if (ret) {
603 dev_err(nfc->dev, "write: wait transfer done timeout.\n");
604 return -ETIMEDOUT;
605 }
606
607 return nand_prog_page_end_op(chip);
608}
609
610static int rk_nfc_write_oob(struct mtd_info *mtd,
611 struct nand_chip *chip, int page)
612{
613 return rk_nfc_write_page_hwecc(mtd, chip, NULL, 1, page);
614}
615
616static int rk_nfc_read_page_raw(struct mtd_info *mtd,
617 struct nand_chip *chip,
618 u8 *buf,
619 int oob_required,
620 int page)
621{
622 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
623 struct rk_nfc *nfc = nand_get_controller_data(chip);
624 struct nand_ecc_ctrl *ecc = &chip->ecc;
625 int i, pages_per_blk;
626
627 pages_per_blk = mtd->erasesize / mtd->writesize;
628 if ((page < (pages_per_blk * rknand->boot_blks)) &&
629 nfc->selected_bank == 0 &&
630 rknand->boot_ecc != ecc->strength) {
631 /*
632 * There's currently no method to notify the MTD framework that
633 * a different ECC strength is in use for the boot blocks.
634 */
635 return -EIO;
636 }
637
638 nand_read_page_op(chip, page, 0, NULL, 0);
639 rk_nfc_read_buf(mtd, nfc->page_buf, mtd->writesize + mtd->oobsize);
640 for (i = 0; i < ecc->steps; i++) {
641 /*
642 * The first four bytes of OOB are reserved for the
643 * boot ROM. In some debugging cases, such as with a read,
644 * erase and write back test, these 4 bytes also must be
645 * saved somewhere, otherwise this information will be
646 * lost during a write back.
647 */
648 if (!i)
649 memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
650 rk_nfc_oob_ptr(chip, i),
651 NFC_SYS_DATA_SIZE);
652 else
653 memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
654 rk_nfc_oob_ptr(chip, i),
655 NFC_SYS_DATA_SIZE);
656
657 /* Copy ECC data from the NFC buffer. */
658 memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
659 rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
660 ecc->bytes);
661
662 /* Copy data from the NFC buffer. */
663 if (buf)
664 memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
665 rk_nfc_data_ptr(chip, i),
666 ecc->size);
667 }
668
669 return 0;
670}
671
672static int rk_nfc_read_page_hwecc(struct mtd_info *mtd,
673 struct nand_chip *chip,
674 u8 *buf,
675 int oob_required,
676 int page)
677{
678 struct rk_nfc *nfc = nand_get_controller_data(chip);
679 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
680 struct nand_ecc_ctrl *ecc = &chip->ecc;
681 int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
682 NFC_MIN_OOB_PER_STEP;
683 int pages_per_blk = mtd->erasesize / mtd->writesize;
684 dma_addr_t dma_data, dma_oob;
685 int ret = 0, i, cnt, boot_rom_mode = 0;
686 int max_bitflips = 0, bch_st, ecc_fail = 0;
687 u8 *oob;
688 u32 tmp;
689
690 nand_read_page_op(chip, page, 0, NULL, 0);
691
692 dma_data = dma_map_single(nfc->page_buf,
693 mtd->writesize,
694 DMA_FROM_DEVICE);
695 dma_oob = dma_map_single(nfc->oob_buf,
696 ecc->steps * oob_step,
697 DMA_FROM_DEVICE);
698
699 /*
700 * The first blocks (4, 8 or 16 depending on the device)
701 * are used by the boot ROM.
702 * Configure the ECC algorithm supported by the boot ROM.
703 */
704 if (page < (pages_per_blk * rknand->boot_blks) &&
705 nfc->selected_bank == 0) {
706 boot_rom_mode = 1;
707 if (rknand->boot_ecc != ecc->strength)
708 rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
709 }
710
711 rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
712 dma_oob);
713 ret = rk_nfc_wait_for_xfer_done(nfc);
714
715 dma_unmap_single(dma_data, mtd->writesize,
716 DMA_FROM_DEVICE);
717 dma_unmap_single(dma_oob, ecc->steps * oob_step,
718 DMA_FROM_DEVICE);
719
720 if (ret) {
721 ret = -ETIMEDOUT;
722 dev_err(nfc->dev, "read: wait transfer done timeout.\n");
723 goto timeout_err;
724 }
725
Johan Jonkercceb2382023-06-22 15:59:24 +0200726 for (i = 0; i < ecc->steps; i++) {
727 if (!i)
728 oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
729 else
730 oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
731
Yifeng Zhao9e9021e2021-06-07 16:40:29 +0800732 if (nfc->cfg->type == NFC_V9)
733 tmp = nfc->oob_buf[i];
734 else
735 tmp = nfc->oob_buf[i * (oob_step / 4)];
Johan Jonkercceb2382023-06-22 15:59:24 +0200736
Yifeng Zhao9e9021e2021-06-07 16:40:29 +0800737 *oob++ = (u8)tmp;
738 *oob++ = (u8)(tmp >> 8);
739 *oob++ = (u8)(tmp >> 16);
740 *oob++ = (u8)(tmp >> 24);
741 }
742
743 for (i = 0; i < (ecc->steps / 2); i++) {
744 bch_st = readl_relaxed(nfc->regs +
745 nfc->cfg->bch_st_off + i * 4);
746 if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
747 bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
748 mtd->ecc_stats.failed++;
749 ecc_fail = 1;
750 } else {
751 cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
752 mtd->ecc_stats.corrected += cnt;
753 max_bitflips = max_t(u32, max_bitflips, cnt);
754
755 cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
756 mtd->ecc_stats.corrected += cnt;
757 max_bitflips = max_t(u32, max_bitflips, cnt);
758 }
759 }
760
761 if (buf)
762 memcpy(buf, nfc->page_buf, mtd->writesize);
763
764timeout_err:
765 if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
766 rk_nfc_hw_ecc_setup(chip, ecc->strength);
767
768 if (ret)
769 return ret;
770
771 if (ecc_fail) {
772 dev_err(nfc->dev, "read page: %x ecc error!\n", page);
773 return 0;
774 }
775
776 return max_bitflips;
777}
778
779static int rk_nfc_read_oob(struct mtd_info *mtd,
780 struct nand_chip *chip, int page)
781{
782 return rk_nfc_read_page_hwecc(mtd, chip, NULL, 1, page);
783}
784
785static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
786{
787 /* Disable flash wp. */
788 writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
789 /* Config default timing 40ns at 150 Mhz NFC clock. */
790 writel(0x1081, nfc->regs + NFC_FMWAIT);
791 nfc->cur_timing = 0x1081;
792 /* Disable randomizer and DMA. */
793 writel(0, nfc->regs + nfc->cfg->randmz_off);
794 writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
795 writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
796}
797
798static int rk_nfc_enable_clks(struct udevice *dev, struct rk_nfc *nfc)
799{
800 int ret;
801
802 if (!IS_ERR(nfc->nfc_clk)) {
803 ret = clk_prepare_enable(nfc->nfc_clk);
804 if (ret)
805 dev_err(dev, "failed to enable NFC clk\n");
806 }
807
808 ret = clk_prepare_enable(nfc->ahb_clk);
809 if (ret) {
810 dev_err(dev, "failed to enable ahb clk\n");
811 if (!IS_ERR(nfc->nfc_clk))
812 clk_disable_unprepare(nfc->nfc_clk);
813 }
814
815 return 0;
816}
817
818static void rk_nfc_disable_clks(struct rk_nfc *nfc)
819{
820 if (!IS_ERR(nfc->nfc_clk))
821 clk_disable_unprepare(nfc->nfc_clk);
822 clk_disable_unprepare(nfc->ahb_clk);
823}
824
Yifeng Zhao9e9021e2021-06-07 16:40:29 +0800825static int rk_nfc_ecc_init(struct rk_nfc *nfc, struct nand_chip *chip)
826{
Johan Jonker65c43462023-03-13 01:28:39 +0100827 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
Yifeng Zhao9e9021e2021-06-07 16:40:29 +0800828 const u8 *strengths = nfc->cfg->ecc_strengths;
829 struct mtd_info *mtd = nand_to_mtd(chip);
830 struct nand_ecc_ctrl *ecc = &chip->ecc;
831 u8 max_strength, nfc_max_strength;
832 int i;
833
834 nfc_max_strength = nfc->cfg->ecc_strengths[0];
835 /* If optional dt settings not present. */
836 if (!ecc->size || !ecc->strength ||
837 ecc->strength > nfc_max_strength) {
838 chip->ecc.size = 1024;
839 ecc->steps = mtd->writesize / ecc->size;
840
841 /*
842 * HW ECC always requests the number of ECC bytes per 1024 byte
843 * blocks. The first 4 OOB bytes are reserved for sys data.
844 */
845 max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
846 fls(8 * 1024);
847 if (max_strength > nfc_max_strength)
848 max_strength = nfc_max_strength;
849
850 for (i = 0; i < 4; i++) {
851 if (max_strength >= strengths[i])
852 break;
853 }
854
855 if (i >= 4) {
856 dev_err(nfc->dev, "unsupported ECC strength\n");
857 return -EOPNOTSUPP;
858 }
859
860 ecc->strength = strengths[i];
861 }
862 ecc->steps = mtd->writesize / ecc->size;
863 ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
864
Johan Jonker65c43462023-03-13 01:28:39 +0100865 if (ecc->bytes * ecc->steps > mtd->oobsize - rknand->metadata_size)
866 return -EINVAL;
867
868 ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL);
869 if (!ecc->layout)
870 return -ENOMEM;
871
872 ecc->layout->eccbytes = ecc->bytes * ecc->steps;
873
874 for (i = 0; i < ecc->layout->eccbytes; i++)
875 ecc->layout->eccpos[i] = rknand->metadata_size + i;
876
877 ecc->layout->oobfree[0].length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
Johan Jonker6404ca62023-03-13 01:29:05 +0100878 ecc->layout->oobfree[0].offset = 2;
Johan Jonker65c43462023-03-13 01:28:39 +0100879
Yifeng Zhao9e9021e2021-06-07 16:40:29 +0800880 return 0;
881}
882
883static int rk_nfc_nand_chip_init(ofnode node, struct rk_nfc *nfc, int devnum)
884{
885 struct rk_nfc_nand_chip *rknand;
886 struct udevice *dev = nfc->dev;
887 struct nand_ecc_ctrl *ecc;
888 struct nand_chip *chip;
889 struct mtd_info *mtd;
890 u32 cs[NFC_MAX_NSELS];
891 int nsels, i, ret;
892 u32 tmp;
893
894 if (!ofnode_get_property(node, "reg", &nsels))
895 return -ENODEV;
896 nsels /= sizeof(u32);
897 if (!nsels || nsels > NFC_MAX_NSELS) {
898 dev_err(dev, "invalid reg property size %d\n", nsels);
899 return -EINVAL;
900 }
901
902 rknand = kzalloc(sizeof(*rknand) + nsels * sizeof(u8), GFP_KERNEL);
903 if (!rknand)
904 return -ENOMEM;
905
906 rknand->nsels = nsels;
907 rknand->timing = nfc->cur_timing;
908
909 ret = ofnode_read_u32_array(node, "reg", cs, nsels);
910 if (ret < 0) {
911 dev_err(dev, "Could not retrieve reg property\n");
912 return -EINVAL;
913 }
914
915 for (i = 0; i < nsels; i++) {
916 if (cs[i] >= NFC_MAX_NSELS) {
917 dev_err(dev, "invalid CS: %u\n", cs[i]);
918 return -EINVAL;
919 }
920
921 if (test_and_set_bit(cs[i], &nfc->assigned_cs)) {
922 dev_err(dev, "CS %u already assigned\n", cs[i]);
923 return -EINVAL;
924 }
925
926 rknand->sels[i] = cs[i];
927 }
928
929 chip = &rknand->chip;
930 ecc = &chip->ecc;
931 ecc->mode = NAND_ECC_HW_SYNDROME;
932
933 ret = ofnode_read_u32(node, "nand-ecc-strength", &tmp);
934 ecc->strength = ret ? 0 : tmp;
935
936 ret = ofnode_read_u32(node, "nand-ecc-step-size", &tmp);
937 ecc->size = ret ? 0 : tmp;
938
939 mtd = nand_to_mtd(chip);
940 mtd->owner = THIS_MODULE;
941 mtd->dev->parent = dev;
942
943 nand_set_controller_data(chip, nfc);
944
Johan Jonkerfb1ab9f2023-03-13 01:28:53 +0100945 chip->flash_node = node;
Yifeng Zhao9e9021e2021-06-07 16:40:29 +0800946 chip->chip_delay = NFC_RB_DELAY_US;
947 chip->select_chip = rk_nfc_select_chip;
948 chip->cmd_ctrl = rk_nfc_cmd;
949 chip->read_buf = rk_nfc_read_buf;
950 chip->write_buf = rk_nfc_write_buf;
951 chip->read_byte = rockchip_nand_read_byte;
952 chip->dev_ready = rockchip_nand_dev_ready;
953 chip->controller = &nfc->controller;
954
955 chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
956 chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER;
957
Johan Jonker904e0f02023-10-18 16:00:27 +0200958 if (IS_ENABLED(CONFIG_ROCKCHIP_NAND_SKIP_BBTSCAN))
959 chip->options |= NAND_SKIP_BBTSCAN;
960
Yifeng Zhao9e9021e2021-06-07 16:40:29 +0800961 rk_nfc_hw_init(nfc);
962 ret = nand_scan_ident(mtd, nsels, NULL);
963 if (ret)
964 return ret;
965
966 ret = rk_nfc_ecc_init(nfc, chip);
967 if (ret) {
968 dev_err(dev, "rk_nfc_ecc_init failed: %d\n", ret);
969 return ret;
970 }
971
972 ret = ofnode_read_u32(node, "rockchip,boot-blks", &tmp);
973 rknand->boot_blks = ret ? 0 : tmp;
974
975 ret = ofnode_read_u32(node, "rockchip,boot-ecc-strength", &tmp);
976 rknand->boot_ecc = ret ? ecc->strength : tmp;
977
978 rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
979
980 if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
981 dev_err(dev,
982 "driver needs at least %d bytes of meta data\n",
983 NFC_SYS_DATA_SIZE + 2);
984 return -EIO;
985 }
986
987 if (!nfc->page_buf) {
988 nfc->page_buf = kzalloc(NFC_MAX_PAGE_SIZE, GFP_KERNEL);
Johan Jonker65c43462023-03-13 01:28:39 +0100989 if (!nfc->page_buf) {
990 kfree(ecc->layout);
Yifeng Zhao9e9021e2021-06-07 16:40:29 +0800991 return -ENOMEM;
Johan Jonker65c43462023-03-13 01:28:39 +0100992 }
Yifeng Zhao9e9021e2021-06-07 16:40:29 +0800993 }
994
995 if (!nfc->oob_buf) {
996 nfc->oob_buf = kzalloc(NFC_MAX_OOB_SIZE, GFP_KERNEL);
997 if (!nfc->oob_buf) {
Johan Jonker65c43462023-03-13 01:28:39 +0100998 kfree(ecc->layout);
Yifeng Zhao9e9021e2021-06-07 16:40:29 +0800999 kfree(nfc->page_buf);
1000 nfc->page_buf = NULL;
1001 return -ENOMEM;
1002 }
1003 }
1004
1005 ecc->read_page = rk_nfc_read_page_hwecc;
1006 ecc->read_page_raw = rk_nfc_read_page_raw;
1007 ecc->read_oob = rk_nfc_read_oob;
1008 ecc->write_page = rk_nfc_write_page_hwecc;
1009 ecc->write_page_raw = rk_nfc_write_page_raw;
1010 ecc->write_oob = rk_nfc_write_oob;
1011
1012 ret = nand_scan_tail(mtd);
1013 if (ret) {
1014 dev_err(dev, "nand_scan_tail failed: %d\n", ret);
1015 return ret;
1016 }
1017
1018 return nand_register(devnum, mtd);
1019}
1020
1021static int rk_nfc_nand_chips_init(struct udevice *dev, struct rk_nfc *nfc)
1022{
1023 int ret, i = 0;
1024 ofnode child;
1025
1026 ofnode_for_each_subnode(child, dev_ofnode(dev)) {
1027 ret = rk_nfc_nand_chip_init(child, nfc, i++);
1028 if (ret)
1029 return ret;
1030 }
1031
1032 return 0;
1033}
1034
1035static struct nfc_cfg nfc_v6_cfg = {
1036 .type = NFC_V6,
1037 .ecc_strengths = {60, 40, 24, 16},
1038 .ecc_cfgs = {
1039 0x00040011, 0x00040001, 0x00000011, 0x00000001,
1040 },
1041 .flctl_off = 0x08,
1042 .bchctl_off = 0x0C,
1043 .dma_cfg_off = 0x10,
1044 .dma_data_buf_off = 0x14,
1045 .dma_oob_buf_off = 0x18,
1046 .dma_st_off = 0x1C,
1047 .bch_st_off = 0x20,
1048 .randmz_off = 0x150,
1049 .int_en_off = 0x16C,
1050 .int_clr_off = 0x170,
1051 .int_st_off = 0x174,
1052 .oob0_off = 0x200,
1053 .oob1_off = 0x230,
1054 .ecc0 = {
1055 .err_flag_bit = 2,
1056 .low = 3,
1057 .low_mask = 0x1F,
1058 .low_bn = 5,
1059 .high = 27,
1060 .high_mask = 0x1,
1061 },
1062 .ecc1 = {
1063 .err_flag_bit = 15,
1064 .low = 16,
1065 .low_mask = 0x1F,
1066 .low_bn = 5,
1067 .high = 29,
1068 .high_mask = 0x1,
1069 },
1070};
1071
1072static struct nfc_cfg nfc_v8_cfg = {
1073 .type = NFC_V8,
1074 .ecc_strengths = {16, 16, 16, 16},
1075 .ecc_cfgs = {
1076 0x00000001, 0x00000001, 0x00000001, 0x00000001,
1077 },
1078 .flctl_off = 0x08,
1079 .bchctl_off = 0x0C,
1080 .dma_cfg_off = 0x10,
1081 .dma_data_buf_off = 0x14,
1082 .dma_oob_buf_off = 0x18,
1083 .dma_st_off = 0x1C,
1084 .bch_st_off = 0x20,
1085 .randmz_off = 0x150,
1086 .int_en_off = 0x16C,
1087 .int_clr_off = 0x170,
1088 .int_st_off = 0x174,
1089 .oob0_off = 0x200,
1090 .oob1_off = 0x230,
1091 .ecc0 = {
1092 .err_flag_bit = 2,
1093 .low = 3,
1094 .low_mask = 0x1F,
1095 .low_bn = 5,
1096 .high = 27,
1097 .high_mask = 0x1,
1098 },
1099 .ecc1 = {
1100 .err_flag_bit = 15,
1101 .low = 16,
1102 .low_mask = 0x1F,
1103 .low_bn = 5,
1104 .high = 29,
1105 .high_mask = 0x1,
1106 },
1107};
1108
1109static struct nfc_cfg nfc_v9_cfg = {
1110 .type = NFC_V9,
1111 .ecc_strengths = {70, 60, 40, 16},
1112 .ecc_cfgs = {
1113 0x00000001, 0x06000001, 0x04000001, 0x02000001,
1114 },
1115 .flctl_off = 0x10,
1116 .bchctl_off = 0x20,
1117 .dma_cfg_off = 0x30,
1118 .dma_data_buf_off = 0x34,
1119 .dma_oob_buf_off = 0x38,
1120 .dma_st_off = 0x3C,
1121 .bch_st_off = 0x150,
1122 .randmz_off = 0x208,
1123 .int_en_off = 0x120,
1124 .int_clr_off = 0x124,
1125 .int_st_off = 0x128,
1126 .oob0_off = 0x200,
1127 .oob1_off = 0x204,
1128 .ecc0 = {
1129 .err_flag_bit = 2,
1130 .low = 3,
1131 .low_mask = 0x7F,
1132 .low_bn = 7,
1133 .high = 0,
1134 .high_mask = 0x0,
1135 },
1136 .ecc1 = {
1137 .err_flag_bit = 18,
1138 .low = 19,
1139 .low_mask = 0x7F,
1140 .low_bn = 7,
1141 .high = 0,
1142 .high_mask = 0x0,
1143 },
1144};
1145
1146static const struct udevice_id rk_nfc_id_table[] = {
1147 {
1148 .compatible = "rockchip,px30-nfc",
1149 .data = (unsigned long)&nfc_v9_cfg
1150 },
1151 {
1152 .compatible = "rockchip,rk2928-nfc",
1153 .data = (unsigned long)&nfc_v6_cfg
1154 },
1155 {
1156 .compatible = "rockchip,rv1108-nfc",
1157 .data = (unsigned long)&nfc_v8_cfg
1158 },
Yifeng Zhao9e9021e2021-06-07 16:40:29 +08001159 { /* sentinel */ }
1160};
1161
1162static int rk_nfc_probe(struct udevice *dev)
1163{
1164 struct rk_nfc *nfc = dev_get_priv(dev);
1165 int ret = 0;
1166
1167 nfc->cfg = (void *)dev_get_driver_data(dev);
1168 nfc->dev = dev;
1169
Johan Jonkera433de02023-03-13 01:28:06 +01001170 nfc->regs = dev_read_addr_ptr(dev);
1171 if (!nfc->regs) {
1172 ret = -EINVAL;
Yifeng Zhao9e9021e2021-06-07 16:40:29 +08001173 goto release_nfc;
1174 }
1175
1176 nfc->nfc_clk = devm_clk_get(dev, "nfc");
1177 if (IS_ERR(nfc->nfc_clk)) {
1178 dev_dbg(dev, "no NFC clk\n");
1179 /* Some earlier models, such as rk3066, have no NFC clk. */
1180 }
1181
1182 nfc->ahb_clk = devm_clk_get(dev, "ahb");
1183 if (IS_ERR(nfc->ahb_clk)) {
1184 dev_err(dev, "no ahb clk\n");
1185 ret = PTR_ERR(nfc->ahb_clk);
1186 goto release_nfc;
1187 }
1188
1189 ret = rk_nfc_enable_clks(dev, nfc);
1190 if (ret)
1191 goto release_nfc;
1192
1193 spin_lock_init(&nfc->controller.lock);
1194 init_waitqueue_head(&nfc->controller.wq);
1195
1196 rk_nfc_hw_init(nfc);
1197
1198 ret = rk_nfc_nand_chips_init(dev, nfc);
1199 if (ret) {
1200 dev_err(dev, "failed to init NAND chips\n");
1201 goto clk_disable;
1202 }
1203 return 0;
1204
1205clk_disable:
1206 rk_nfc_disable_clks(nfc);
1207release_nfc:
1208 return ret;
1209}
1210
1211U_BOOT_DRIVER(rockchip_nfc) = {
1212 .name = "rockchip_nfc",
1213 .id = UCLASS_MTD,
1214 .of_match = rk_nfc_id_table,
1215 .probe = rk_nfc_probe,
1216 .priv_auto = sizeof(struct rk_nfc),
1217};
1218
1219void board_nand_init(void)
1220{
1221 struct udevice *dev;
1222 int ret;
1223
1224 ret = uclass_get_device_by_driver(UCLASS_MTD,
1225 DM_DRIVER_GET(rockchip_nfc),
1226 &dev);
1227 if (ret && ret != -ENODEV)
1228 log_err("Failed to initialize ROCKCHIP NAND controller. (error %d)\n",
1229 ret);
1230}
1231
1232int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
1233{
1234 struct mtd_info *mtd;
1235 size_t length = size;
1236
1237 mtd = get_nand_dev_by_index(0);
1238 return nand_read_skip_bad(mtd, offs, &length, NULL, size, (u_char *)dst);
1239}
1240
1241void nand_deselect(void) {}