blob: 9d5d9d265fc4426f8f887899525669daef2fa012 [file] [log] [blame]
wdenk62219a22002-10-02 20:40:41 +00001/*
2 * (C) Copyright 2000
3 * Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it
4 *
5 * (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
6 * Marius Groeger <mgroeger@sysgo.de>
7 *
8 * See file CREDITS for list of people who contributed to this
9 * project.
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; either version 2 of
14 * the License, or (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
24 * MA 02111-1307 USA
25 *
26 * Back ported to the 8xx platform (from the 8260 platform) by
27 * Murray.Jensen@cmst.csiro.au, 27-Jan-01.
28 */
29
30#include <common.h>
31
32#ifdef CONFIG_HARD_I2C
33
34#include <commproc.h>
35#include <i2c.h>
36#ifdef CONFIG_LWMON
37#include <watchdog.h>
38#endif
39
40/* define to enable debug messages */
41#undef DEBUG_I2C
42
43/*-----------------------------------------------------------------------
44 * Set default values
45 */
46#ifndef CFG_I2C_SPEED
47#define CFG_I2C_SPEED 50000
48#endif
49
50#ifndef CFG_I2C_SLAVE
51#define CFG_I2C_SLAVE 0xFE
52#endif
53/*-----------------------------------------------------------------------
54 */
55
56/* tx/rx timeout (we need the i2c early, so we don't use get_timer()) */
57#define TOUT_LOOP 1000000
58
59#define NUM_RX_BDS 4
60#define NUM_TX_BDS 4
61#define MAX_TX_SPACE 256
62#define I2C_RXTX_LEN 128 /* maximum tx/rx buffer length */
63
64typedef struct I2C_BD
65{
66 unsigned short status;
67 unsigned short length;
68 unsigned char *addr;
69} I2C_BD;
70#define BD_I2C_TX_START 0x0400 /* special status for i2c: Start condition */
71
72#define BD_I2C_TX_CL 0x0001 /* collision error */
73#define BD_I2C_TX_UN 0x0002 /* underflow error */
74#define BD_I2C_TX_NAK 0x0004 /* no acknowledge error */
75#define BD_I2C_TX_ERR (BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL)
76
77#define BD_I2C_RX_ERR BD_SC_OV
78
79typedef void (*i2c_ecb_t)(int, int); /* error callback function */
80
81/* This structure keeps track of the bd and buffer space usage. */
82typedef struct i2c_state {
83 int rx_idx; /* index to next free Rx BD */
84 int tx_idx; /* index to next free Tx BD */
85 void *rxbd; /* pointer to next free Rx BD */
86 void *txbd; /* pointer to next free Tx BD */
87 int tx_space; /* number of Tx bytes left */
88 unsigned char *tx_buf; /* pointer to free Tx area */
89 i2c_ecb_t err_cb; /* error callback function */
90} i2c_state_t;
91
92
93/* flags for i2c_send() and i2c_receive() */
94#define I2CF_ENABLE_SECONDARY 0x01 /* secondary_address is valid */
95#define I2CF_START_COND 0x02 /* tx: generate start condition */
96#define I2CF_STOP_COND 0x04 /* tx: generate stop condition */
97
98/* return codes */
99#define I2CERR_NO_BUFFERS 0x01 /* no more BDs or buffer space */
100#define I2CERR_MSG_TOO_LONG 0x02 /* tried to send/receive to much data */
101#define I2CERR_TIMEOUT 0x03 /* timeout in i2c_doio() */
102#define I2CERR_QUEUE_EMPTY 0x04 /* i2c_doio called without send/receive */
103
104/* error callback flags */
105#define I2CECB_RX_ERR 0x10 /* this is a receive error */
106#define I2CECB_RX_ERR_OV 0x02 /* receive overrun error */
107#define I2CECB_RX_MASK 0x0f /* mask for error bits */
108#define I2CECB_TX_ERR 0x20 /* this is a transmit error */
109#define I2CECB_TX_CL 0x01 /* transmit collision error */
110#define I2CECB_TX_UN 0x02 /* transmit underflow error */
111#define I2CECB_TX_NAK 0x04 /* transmit no ack error */
112#define I2CECB_TX_MASK 0x0f /* mask for error bits */
113#define I2CECB_TIMEOUT 0x40 /* this is a timeout error */
114
115#ifdef DEBUG_I2C
116#define PRINTD(x) printf x
117#else
118#define PRINTD(x)
119#endif
120
121/*
122 * Returns the best value of I2BRG to meet desired clock speed of I2C with
123 * input parameters (clock speed, filter, and predivider value).
124 * It returns computer speed value and the difference between it and desired
125 * speed.
126 */
127static inline int
128i2c_roundrate(int hz, int speed, int filter, int modval,
129 int *brgval, int *totspeed)
130{
131 int moddiv = 1 << (5-(modval & 3)), brgdiv, div;
132
133 PRINTD(("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n",
134 hz, speed, filter, modval));
135
136 div = moddiv * speed;
137 brgdiv = (hz + div - 1) / div;
138
139 PRINTD(("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv));
140
141 *brgval = ((brgdiv + 1) / 2) - 3 - (2*filter);
142
143 if ((*brgval < 0) || (*brgval > 255)) {
144 PRINTD(("\t\trejected brgval=%d\n", *brgval));
145 return -1;
146 }
147
148 brgdiv = 2 * (*brgval + 3 + (2 * filter));
149 div = moddiv * brgdiv ;
150 *totspeed = hz / div;
151
152 PRINTD(("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed));
153
154 return 0;
155}
156
157/*
158 * Sets the I2C clock predivider and divider to meet required clock speed.
159 */
160static int
161i2c_setrate (int hz, int speed)
162{
163 immap_t *immap = (immap_t *) CFG_IMMR;
164 volatile i2c8xx_t *i2c = (i2c8xx_t *) & immap->im_i2c;
165 int brgval,
166 modval, /* 0-3 */
167 bestspeed_diff = speed,
168 bestspeed_brgval = 0,
169 bestspeed_modval = 0,
170 bestspeed_filter = 0,
171 totspeed,
172 filter = 0; /* Use this fixed value */
173
174 for (modval = 0; modval < 4; modval++) {
175 if (i2c_roundrate(hz,speed,filter,modval,&brgval,&totspeed) == 0) {
176 int diff = speed - totspeed;
177
178 if ((diff >= 0) && (diff < bestspeed_diff)) {
179 bestspeed_diff = diff;
180 bestspeed_modval = modval;
181 bestspeed_brgval = brgval;
182 bestspeed_filter = filter;
183 }
184 }
185 }
186
187 PRINTD (("[I2C] Best is:\n"));
188 PRINTD (("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n",
189 hz,
190 speed,
191 bestspeed_filter,
192 bestspeed_modval,
193 bestspeed_brgval,
194 bestspeed_diff));
195
196 i2c->i2c_i2mod |= ((bestspeed_modval & 3) << 1) | (bestspeed_filter << 3);
197 i2c->i2c_i2brg = bestspeed_brgval & 0xff;
198
199 PRINTD (("[I2C] i2mod=%08x i2brg=%08x\n", i2c->i2c_i2mod,
200 i2c->i2c_i2brg));
201
202 return 1;
203}
204
205void
206i2c_init(int speed, int slaveaddr)
207{
208 DECLARE_GLOBAL_DATA_PTR;
209
210 volatile immap_t *immap = (immap_t *)CFG_IMMR ;
211 volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
212 volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c;
213 volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
214 ulong rbase, tbase;
215 volatile I2C_BD *rxbd, *txbd;
216 uint dpaddr;
217
218#ifdef CFG_I2C_UCODE_PATCH
219 iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
220#else
221 /* Disable relocation */
222 iip->iic_rpbase = 0;
223#endif
224
225#ifdef CFG_ALLOC_DPRAM
226 dpaddr = iip->iic_rbase;
227 if (dpaddr == 0) {
228 /* need to allocate dual port ram */
229 dpaddr = dpram_alloc_align(
230 (NUM_RX_BDS * sizeof(I2C_BD)) + (NUM_TX_BDS * sizeof(I2C_BD)) +
231 MAX_TX_SPACE, 8);
232 }
233#else
234 dpaddr = CPM_I2C_BASE;
235#endif
236
237 /*
238 * initialise data in dual port ram:
239 *
240 * dpaddr->rbase -> rx BD (NUM_RX_BDS * sizeof(I2C_BD) bytes)
241 * tbase -> tx BD (NUM_TX_BDS * sizeof(I2C_BD) bytes)
242 * tx buffer (MAX_TX_SPACE bytes)
243 */
244
245 rbase = dpaddr;
246 tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD);
247
248 /* Initialize Port B I2C pins. */
249 cp->cp_pbpar |= 0x00000030;
250 cp->cp_pbdir |= 0x00000030;
251 cp->cp_pbodr |= 0x00000030;
252
253 /* Disable interrupts */
254 i2c->i2c_i2mod = 0x00;
255 i2c->i2c_i2cmr = 0x00;
256 i2c->i2c_i2cer = 0xff;
257 i2c->i2c_i2add = slaveaddr;
258
259 /*
260 * Set the I2C BRG Clock division factor from desired i2c rate
261 * and current CPU rate (we assume sccr dfbgr field is 0;
262 * divide BRGCLK by 1)
263 */
264 PRINTD(("[I2C] Setting rate...\n"));
265 i2c_setrate (gd->cpu_clk, CFG_I2C_SPEED) ;
266
267 /* Set I2C controller in master mode */
268 i2c->i2c_i2com = 0x01;
269
270 /* Set SDMA bus arbitration level to 5 (SDCR) */
271 immap->im_siu_conf.sc_sdcr = 0x0001 ;
272
273 /* Initialize Tx/Rx parameters */
274 iip->iic_rbase = rbase;
275 iip->iic_tbase = tbase;
276 rxbd = (I2C_BD *)((unsigned char *)&cp->cp_dpmem[iip->iic_rbase]);
277 txbd = (I2C_BD *)((unsigned char *)&cp->cp_dpmem[iip->iic_tbase]);
278
279 PRINTD(("[I2C] rbase = %04x\n", iip->iic_rbase));
280 PRINTD(("[I2C] tbase = %04x\n", iip->iic_tbase));
281 PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
282 PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
283
284 /* Set big endian byte order */
285 iip->iic_tfcr = 0x10;
286 iip->iic_rfcr = 0x10;
287
288 /* Set maximum receive size. */
289 iip->iic_mrblr = I2C_RXTX_LEN;
290
291#ifdef CFG_I2C_UCODE_PATCH
292 /*
293 * Initialize required parameters if using microcode patch.
294 */
295 iip->iic_rbptr = iip->iic_rbase;
296 iip->iic_tbptr = iip->iic_tbase;
297 iip->iic_rstate = 0;
298 iip->iic_tstate = 0;
299#else
300 cp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_I2C, CPM_CR_INIT_TRX) | CPM_CR_FLG;
301 do {
302 __asm__ __volatile__ ("eieio");
303 } while (cp->cp_cpcr & CPM_CR_FLG);
304#endif
305
306 /* Clear events and interrupts */
307 i2c->i2c_i2cer = 0xff;
308 i2c->i2c_i2cmr = 0x00;
309}
310
311static void
312i2c_newio(i2c_state_t *state)
313{
314 volatile immap_t *immap = (immap_t *)CFG_IMMR ;
315 volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
316 volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
317
318 PRINTD(("[I2C] i2c_newio\n"));
319
320#ifdef CFG_I2C_UCODE_PATCH
321 iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
322#endif
323 state->rx_idx = 0;
324 state->tx_idx = 0;
325 state->rxbd = (void*)&cp->cp_dpmem[iip->iic_rbase];
326 state->txbd = (void*)&cp->cp_dpmem[iip->iic_tbase];
327 state->tx_space = MAX_TX_SPACE;
328 state->tx_buf = (uchar*)state->txbd + NUM_TX_BDS * sizeof(I2C_BD);
329 state->err_cb = NULL;
330
331 PRINTD(("[I2C] rxbd = %08x\n", (int)state->rxbd));
332 PRINTD(("[I2C] txbd = %08x\n", (int)state->txbd));
333 PRINTD(("[I2C] tx_buf = %08x\n", (int)state->tx_buf));
334
335 /* clear the buffer memory */
336 memset((char *)state->tx_buf, 0, MAX_TX_SPACE);
337}
338
339static int
340i2c_send(i2c_state_t *state,
341 unsigned char address,
342 unsigned char secondary_address,
343 unsigned int flags,
344 unsigned short size,
345 unsigned char *dataout)
346{
347 volatile I2C_BD *txbd;
348 int i,j;
349
350 PRINTD(("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n",
351 address, secondary_address, flags, size));
352
353 /* trying to send message larger than BD */
354 if (size > I2C_RXTX_LEN)
355 return I2CERR_MSG_TOO_LONG;
356
357 /* no more free bds */
358 if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size))
359 return I2CERR_NO_BUFFERS;
360
361 txbd = (I2C_BD *)state->txbd;
362 txbd->addr = state->tx_buf;
363
364 PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
365
366 if (flags & I2CF_START_COND) {
367 PRINTD(("[I2C] Formatting addresses...\n"));
368 if (flags & I2CF_ENABLE_SECONDARY) {
369 txbd->length = size + 2; /* Length of msg + dest addr */
370 txbd->addr[0] = address << 1;
371 txbd->addr[1] = secondary_address;
372 i = 2;
373 } else {
374 txbd->length = size + 1; /* Length of msg + dest addr */
375 txbd->addr[0] = address << 1; /* Write dest addr to BD */
376 i = 1;
377 }
378 } else {
379 txbd->length = size; /* Length of message */
380 i = 0;
381 }
382
383 /* set up txbd */
384 txbd->status = BD_SC_READY;
385 if (flags & I2CF_START_COND)
386 txbd->status |= BD_I2C_TX_START;
387 if (flags & I2CF_STOP_COND)
388 txbd->status |= BD_SC_LAST | BD_SC_WRAP;
389
390 /* Copy data to send into buffer */
391 PRINTD(("[I2C] copy data...\n"));
392 for(j = 0; j < size; i++, j++)
393 txbd->addr[i] = dataout[j];
394
395 PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
396 txbd->length,
397 txbd->status,
398 txbd->addr[0],
399 txbd->addr[1]));
400
401 /* advance state */
402 state->tx_buf += txbd->length;
403 state->tx_space -= txbd->length;
404 state->tx_idx++;
405 state->txbd = (void*)(txbd + 1);
406
407 return 0;
408}
409
410static int
411i2c_receive(i2c_state_t *state,
412 unsigned char address,
413 unsigned char secondary_address,
414 unsigned int flags,
415 unsigned short size_to_expect,
416 unsigned char *datain)
417{
418 volatile I2C_BD *rxbd, *txbd;
419
420 PRINTD(("[I2C] i2c_receive %02d %02d %02d\n", address, secondary_address, flags));
421
422 /* Expected to receive too much */
423 if (size_to_expect > I2C_RXTX_LEN)
424 return I2CERR_MSG_TOO_LONG;
425
426 /* no more free bds */
427 if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS
428 || state->tx_space < 2)
429 return I2CERR_NO_BUFFERS;
430
431 rxbd = (I2C_BD *)state->rxbd;
432 txbd = (I2C_BD *)state->txbd;
433
434 PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
435 PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
436
437 txbd->addr = state->tx_buf;
438
439 /* set up TXBD for destination address */
440 if (flags & I2CF_ENABLE_SECONDARY) {
441 txbd->length = 2;
442 txbd->addr[0] = address << 1; /* Write data */
443 txbd->addr[1] = secondary_address; /* Internal address */
444 txbd->status = BD_SC_READY;
445 } else {
446 txbd->length = 1 + size_to_expect;
447 txbd->addr[0] = (address << 1) | 0x01;
448 txbd->status = BD_SC_READY;
449 memset(&txbd->addr[1], 0, txbd->length);
450 }
451
452 /* set up rxbd for reception */
453 rxbd->status = BD_SC_EMPTY;
454 rxbd->length = size_to_expect;
455 rxbd->addr = datain;
456
457 txbd->status |= BD_I2C_TX_START;
458 if (flags & I2CF_STOP_COND) {
459 txbd->status |= BD_SC_LAST | BD_SC_WRAP;
460 rxbd->status |= BD_SC_WRAP;
461 }
462
463 PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
464 txbd->length,
465 txbd->status,
466 txbd->addr[0],
467 txbd->addr[1]));
468 PRINTD(("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
469 rxbd->length,
470 rxbd->status,
471 rxbd->addr[0],
472 rxbd->addr[1]));
473
474 /* advance state */
475 state->tx_buf += txbd->length;
476 state->tx_space -= txbd->length;
477 state->tx_idx++;
478 state->txbd = (void*)(txbd + 1);
479 state->rx_idx++;
480 state->rxbd = (void*)(rxbd + 1);
481
482 return 0;
483}
484
485
486static int i2c_doio(i2c_state_t *state)
487{
488 volatile immap_t *immap = (immap_t *)CFG_IMMR ;
489 volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
490 volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c;
491 volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
492 volatile I2C_BD *txbd, *rxbd;
493 volatile int j = 0;
494
495 PRINTD(("[I2C] i2c_doio\n"));
496
497#ifdef CFG_I2C_UCODE_PATCH
498 iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
499#endif
500
501 if (state->tx_idx <= 0 && state->rx_idx <= 0) {
502 PRINTD(("[I2C] No I/O is queued\n"));
503 return I2CERR_QUEUE_EMPTY;
504 }
505
506 iip->iic_rbptr = iip->iic_rbase;
507 iip->iic_tbptr = iip->iic_tbase;
508
509 /* Enable I2C */
510 PRINTD(("[I2C] Enabling I2C...\n"));
511 i2c->i2c_i2mod |= 0x01;
512
513 /* Begin transmission */
514 i2c->i2c_i2com |= 0x80;
515
516 /* Loop until transmit & receive completed */
517
518 if (state->tx_idx > 0) {
519 txbd = ((I2C_BD*)state->txbd) - 1;
520 PRINTD(("[I2C] Transmitting...(txbd=0x%08lx)\n", (ulong)txbd));
521 while((txbd->status & BD_SC_READY) && (j++ < TOUT_LOOP)) {
522 if (ctrlc()) {
523 return (-1);
524 }
525 __asm__ __volatile__ ("eieio");
526 }
527 }
528
529 if ((state->rx_idx > 0) && (j < TOUT_LOOP)) {
530 rxbd = ((I2C_BD*)state->rxbd) - 1;
531 PRINTD(("[I2C] Receiving...(rxbd=0x%08lx)\n", (ulong)rxbd));
532 while((rxbd->status & BD_SC_EMPTY) && (j++ < TOUT_LOOP)) {
533 if (ctrlc()) {
534 return (-1);
535 }
536 __asm__ __volatile__ ("eieio");
537 }
538 }
539
540 /* Turn off I2C */
541 i2c->i2c_i2mod &= ~0x01;
542
543 if (state->err_cb != NULL) {
544 int n, i, b;
545
546 /*
547 * if we have an error callback function, look at the
548 * error bits in the bd status and pass them back
549 */
550
551 if ((n = state->tx_idx) > 0) {
552 for (i = 0; i < n; i++) {
553 txbd = ((I2C_BD*)state->txbd) - (n - i);
554 if ((b = txbd->status & BD_I2C_TX_ERR) != 0)
555 (*state->err_cb)(I2CECB_TX_ERR|b, i);
556 }
557 }
558
559 if ((n = state->rx_idx) > 0) {
560 for (i = 0; i < n; i++) {
561 rxbd = ((I2C_BD*)state->rxbd) - (n - i);
562 if ((b = rxbd->status & BD_I2C_RX_ERR) != 0)
563 (*state->err_cb)(I2CECB_RX_ERR|b, i);
564 }
565 }
566
567 if (j >= TOUT_LOOP)
568 (*state->err_cb)(I2CECB_TIMEOUT, 0);
569 }
570
571 return (j >= TOUT_LOOP) ? I2CERR_TIMEOUT : 0;
572}
573
574static int had_tx_nak;
575
576static void
577i2c_test_callback(int flags, int xnum)
578{
579 if ((flags & I2CECB_TX_ERR) && (flags & I2CECB_TX_NAK))
580 had_tx_nak = 1;
581}
582
583int i2c_probe(uchar chip)
584{
585 i2c_state_t state;
586 int rc;
587 uchar buf[1];
588
589 i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
590
591 i2c_newio(&state);
592
593 state.err_cb = i2c_test_callback;
594 had_tx_nak = 0;
595
596 rc = i2c_receive(&state, chip, 0, I2CF_START_COND|I2CF_STOP_COND, 1, buf);
597
598 if (rc != 0)
599 return (rc);
600
601 rc = i2c_doio(&state);
602
603 if ((rc != 0) && (rc != I2CERR_TIMEOUT))
604 return (rc);
605
606 return (had_tx_nak);
607}
608
609int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
610{
611 DECLARE_GLOBAL_DATA_PTR;
612
613 i2c_state_t state;
614 uchar xaddr[4];
615 int rc;
616
617#ifdef CONFIG_LWMON
618 WATCHDOG_RESET();
619#endif
620
621 xaddr[0] = (addr >> 24) & 0xFF;
622 xaddr[1] = (addr >> 16) & 0xFF;
623 xaddr[2] = (addr >> 8) & 0xFF;
624 xaddr[3] = addr & 0xFF;
625
626#ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
627 /*
628 * EEPROM chips that implement "address overflow" are ones like
629 * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the
630 * extra bits end up in the "chip address" bit slots. This makes
631 * a 24WC08 (1Kbyte) chip look like four 256 byte chips.
632 *
633 * Note that we consider the length of the address field to still
634 * be one byte because the extra address bits are hidden in the
635 * chip address.
636 */
637 chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
638#endif
639
640 i2c_newio(&state);
641
642 rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
643 if (rc != 0) {
644 if (gd->have_console)
645 printf("i2c_read: i2c_send failed (%d)\n", rc);
646 return 1;
647 }
648
649 rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer);
650 if (rc != 0) {
651 if (gd->have_console)
652 printf("i2c_read: i2c_receive failed (%d)\n", rc);
653 return 1;
654 }
655
656 rc = i2c_doio(&state);
657 if (rc != 0) {
658 if (gd->have_console)
659 printf("i2c_read: i2c_doio failed (%d)\n", rc);
660 return 1;
661 }
662 return 0;
663}
664
665int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
666{
667 DECLARE_GLOBAL_DATA_PTR;
668
669 i2c_state_t state;
670 uchar xaddr[4];
671 int rc;
672
673 xaddr[0] = (addr >> 24) & 0xFF;
674 xaddr[1] = (addr >> 16) & 0xFF;
675 xaddr[2] = (addr >> 8) & 0xFF;
676 xaddr[3] = addr & 0xFF;
677
678#ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
679 /*
680 * EEPROM chips that implement "address overflow" are ones like
681 * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the
682 * extra bits end up in the "chip address" bit slots. This makes
683 * a 24WC08 (1Kbyte) chip look like four 256 byte chips.
684 *
685 * Note that we consider the length of the address field to still
686 * be one byte because the extra address bits are hidden in the
687 * chip address.
688 */
689 chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
690#endif
691
692 i2c_newio(&state);
693
694 rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
695 if (rc != 0) {
696 if (gd->have_console)
697 printf("i2c_write: first i2c_send failed (%d)\n", rc);
698 return 1;
699 }
700
701 rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer);
702 if (rc != 0) {
703 if (gd->have_console)
704 printf("i2c_write: second i2c_send failed (%d)\n", rc);
705 return 1;
706 }
707
708 rc = i2c_doio(&state);
709 if (rc != 0) {
710 if (gd->have_console)
711 printf("i2c_write: i2c_doio failed (%d)\n", rc);
712 return 1;
713 }
714 return 0;
715}
716
717uchar
718i2c_reg_read(uchar i2c_addr, uchar reg)
719{
720 char buf;
721
722 i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
723
724 i2c_read(i2c_addr, reg, 1, &buf, 1);
725
726 return (buf);
727}
728
729void
730i2c_reg_write(uchar i2c_addr, uchar reg, uchar val)
731{
732 i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
733
734 i2c_write(i2c_addr, reg, 1, &val, 1);
735}
736
737#endif /* CONFIG_HARD_I2C */