blob: 2d4da4b386dd98caa822a3ecfa8417e396a0fc96 [file] [log] [blame]
wdenk4e112c12003-06-03 23:54:09 +00001/**************************************************************************
Andre Schwarz68c2a302008-03-06 16:45:44 +01002Intel Pro 1000 for ppcboot/das-u-boot
wdenk4e112c12003-06-03 23:54:09 +00003Drivers are port from Intel's Linux driver e1000-4.3.15
4and from Etherboot pro 1000 driver by mrakes at vivato dot net
5tested on both gig copper and gig fiber boards
6***************************************************************************/
7/*******************************************************************************
8
wdenk57b2d802003-06-27 21:31:46 +00009
wdenk4e112c12003-06-03 23:54:09 +000010 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
wdenk57b2d802003-06-27 21:31:46 +000011
12 This program is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published by the Free
14 Software Foundation; either version 2 of the License, or (at your option)
wdenk4e112c12003-06-03 23:54:09 +000015 any later version.
wdenk57b2d802003-06-27 21:31:46 +000016
17 This program is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
wdenk4e112c12003-06-03 23:54:09 +000020 more details.
wdenk57b2d802003-06-27 21:31:46 +000021
wdenk4e112c12003-06-03 23:54:09 +000022 You should have received a copy of the GNU General Public License along with
wdenk57b2d802003-06-27 21:31:46 +000023 this program; if not, write to the Free Software Foundation, Inc., 59
Wolfgang Denk35f734f2008-04-13 09:59:26 -070024 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
wdenk57b2d802003-06-27 21:31:46 +000025
wdenk4e112c12003-06-03 23:54:09 +000026 The full GNU General Public License is included in this distribution in the
27 file called LICENSE.
wdenk57b2d802003-06-27 21:31:46 +000028
wdenk4e112c12003-06-03 23:54:09 +000029 Contact Information:
30 Linux NICS <linux.nics@intel.com>
31 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32
33*******************************************************************************/
34/*
35 * Copyright (C) Archway Digital Solutions.
36 *
37 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38 * 2/9/2002
39 *
40 * Copyright (C) Linux Networx.
41 * Massive upgrade to work with the new intel gigabit NICs.
42 * <ebiederman at lnxi dot com>
Roy Zang181119b2011-01-21 11:29:38 +080043 *
44 * Copyright 2011 Freescale Semiconductor, Inc.
wdenk4e112c12003-06-03 23:54:09 +000045 */
46
47#include "e1000.h"
48
wdenk4e112c12003-06-03 23:54:09 +000049#define TOUT_LOOP 100000
50
Timur Tabiedc45b52009-08-17 15:55:38 -050051#define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v))
wdenk4e112c12003-06-03 23:54:09 +000052#define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
wdenk4e112c12003-06-03 23:54:09 +000053
Roy Zang966172e2009-08-22 03:49:52 +080054#define E1000_DEFAULT_PCI_PBA 0x00000030
55#define E1000_DEFAULT_PCIE_PBA 0x000a0026
wdenk4e112c12003-06-03 23:54:09 +000056
57/* NIC specific static variables go here */
58
59static char tx_pool[128 + 16];
60static char rx_pool[128 + 16];
61static char packet[2096];
62
63static struct e1000_tx_desc *tx_base;
64static struct e1000_rx_desc *rx_base;
65
66static int tx_tail;
67static int rx_tail, rx_last;
68
Kyle Moffett7b698d52011-10-18 11:05:26 +000069static struct pci_device_id e1000_supported[] = {
wdenk4e112c12003-06-03 23:54:09 +000070 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
71 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
72 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
73 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
74 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
75 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
76 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
77 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
78 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
Paul Gortmaker7d13b8d2008-07-09 17:50:45 -040079 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
wdenk4e112c12003-06-03 23:54:09 +000080 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
81 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
82 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
Reinhard Arlt1140ea52009-12-04 09:52:17 +010083 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
wdenk4e112c12003-06-03 23:54:09 +000084 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
Andre Schwarz68c2a302008-03-06 16:45:44 +010085 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
Wolfgang Grandegger8562c382008-05-28 19:55:19 +020086 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
Roy Zang28f7a052009-07-31 13:34:02 +080087 /* E1000 PCIe card */
88 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
89 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER },
90 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES },
91 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
92 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
93 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
94 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
95 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
96 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
97 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
98 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
99 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
100 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
101 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
102 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
103 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
Roy Zang181119b2011-01-21 11:29:38 +0800104 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
Roy Zang28f7a052009-07-31 13:34:02 +0800105 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
106 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
107 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
108 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
109 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
Stefan Althoeferbc6d2fc2008-12-20 19:40:41 +0100110 {}
wdenk4e112c12003-06-03 23:54:09 +0000111};
112
113/* Function forward declarations */
114static int e1000_setup_link(struct eth_device *nic);
115static int e1000_setup_fiber_link(struct eth_device *nic);
116static int e1000_setup_copper_link(struct eth_device *nic);
117static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
118static void e1000_config_collision_dist(struct e1000_hw *hw);
119static int e1000_config_mac_to_phy(struct e1000_hw *hw);
120static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
121static int e1000_check_for_link(struct eth_device *nic);
122static int e1000_wait_autoneg(struct e1000_hw *hw);
Roy Zang28f7a052009-07-31 13:34:02 +0800123static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
wdenk4e112c12003-06-03 23:54:09 +0000124 uint16_t * duplex);
125static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
126 uint16_t * phy_data);
127static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
128 uint16_t phy_data);
Roy Zang28f7a052009-07-31 13:34:02 +0800129static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000130static int e1000_phy_reset(struct e1000_hw *hw);
131static int e1000_detect_gig_phy(struct e1000_hw *hw);
Roy Zang28f7a052009-07-31 13:34:02 +0800132static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
133static void e1000_set_media_type(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000134
Roy Zang28f7a052009-07-31 13:34:02 +0800135static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
136static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000137
Roy Zang9b7c4302009-08-11 03:48:05 +0800138static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
139 uint16_t words,
140 uint16_t *data);
wdenk4e112c12003-06-03 23:54:09 +0000141/******************************************************************************
142 * Raises the EEPROM's clock input.
143 *
144 * hw - Struct containing variables accessed by shared code
145 * eecd - EECD's current value
146 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000147void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
wdenk4e112c12003-06-03 23:54:09 +0000148{
149 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
150 * wait 50 microseconds.
151 */
152 *eecd = *eecd | E1000_EECD_SK;
153 E1000_WRITE_REG(hw, EECD, *eecd);
154 E1000_WRITE_FLUSH(hw);
155 udelay(50);
156}
157
158/******************************************************************************
159 * Lowers the EEPROM's clock input.
160 *
wdenk57b2d802003-06-27 21:31:46 +0000161 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000162 * eecd - EECD's current value
163 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000164void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
wdenk4e112c12003-06-03 23:54:09 +0000165{
wdenk57b2d802003-06-27 21:31:46 +0000166 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
167 * wait 50 microseconds.
wdenk4e112c12003-06-03 23:54:09 +0000168 */
169 *eecd = *eecd & ~E1000_EECD_SK;
170 E1000_WRITE_REG(hw, EECD, *eecd);
171 E1000_WRITE_FLUSH(hw);
172 udelay(50);
173}
174
175/******************************************************************************
176 * Shift data bits out to the EEPROM.
177 *
178 * hw - Struct containing variables accessed by shared code
179 * data - data to send to the EEPROM
180 * count - number of bits to shift out
181 *****************************************************************************/
182static void
183e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
184{
185 uint32_t eecd;
186 uint32_t mask;
187
188 /* We need to shift "count" bits out to the EEPROM. So, value in the
189 * "data" parameter will be shifted out to the EEPROM one bit at a time.
wdenk57b2d802003-06-27 21:31:46 +0000190 * In order to do this, "data" must be broken down into bits.
wdenk4e112c12003-06-03 23:54:09 +0000191 */
192 mask = 0x01 << (count - 1);
193 eecd = E1000_READ_REG(hw, EECD);
194 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
195 do {
196 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
197 * and then raising and then lowering the clock (the SK bit controls
198 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
199 * by setting "DI" to "0" and then raising and then lowering the clock.
200 */
201 eecd &= ~E1000_EECD_DI;
202
203 if (data & mask)
204 eecd |= E1000_EECD_DI;
205
206 E1000_WRITE_REG(hw, EECD, eecd);
207 E1000_WRITE_FLUSH(hw);
208
209 udelay(50);
210
211 e1000_raise_ee_clk(hw, &eecd);
212 e1000_lower_ee_clk(hw, &eecd);
213
214 mask = mask >> 1;
215
216 } while (mask);
217
218 /* We leave the "DI" bit set to "0" when we leave this routine. */
219 eecd &= ~E1000_EECD_DI;
220 E1000_WRITE_REG(hw, EECD, eecd);
221}
222
223/******************************************************************************
224 * Shift data bits in from the EEPROM
225 *
226 * hw - Struct containing variables accessed by shared code
227 *****************************************************************************/
228static uint16_t
Roy Zang28f7a052009-07-31 13:34:02 +0800229e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
wdenk4e112c12003-06-03 23:54:09 +0000230{
231 uint32_t eecd;
232 uint32_t i;
233 uint16_t data;
234
Roy Zang28f7a052009-07-31 13:34:02 +0800235 /* In order to read a register from the EEPROM, we need to shift 'count'
236 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
237 * input to the EEPROM (setting the SK bit), and then reading the
238 * value of the "DO" bit. During this "shifting in" process the
239 * "DI" bit should always be clear.
wdenk4e112c12003-06-03 23:54:09 +0000240 */
241
242 eecd = E1000_READ_REG(hw, EECD);
243
244 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
245 data = 0;
246
Roy Zang28f7a052009-07-31 13:34:02 +0800247 for (i = 0; i < count; i++) {
wdenk4e112c12003-06-03 23:54:09 +0000248 data = data << 1;
249 e1000_raise_ee_clk(hw, &eecd);
250
251 eecd = E1000_READ_REG(hw, EECD);
252
253 eecd &= ~(E1000_EECD_DI);
254 if (eecd & E1000_EECD_DO)
255 data |= 1;
256
257 e1000_lower_ee_clk(hw, &eecd);
258 }
259
260 return data;
261}
262
263/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800264 * Returns EEPROM to a "standby" state
wdenk4e112c12003-06-03 23:54:09 +0000265 *
266 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000267 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000268void e1000_standby_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000269{
Roy Zang28f7a052009-07-31 13:34:02 +0800270 struct e1000_eeprom_info *eeprom = &hw->eeprom;
wdenk4e112c12003-06-03 23:54:09 +0000271 uint32_t eecd;
272
273 eecd = E1000_READ_REG(hw, EECD);
274
Roy Zang28f7a052009-07-31 13:34:02 +0800275 if (eeprom->type == e1000_eeprom_microwire) {
276 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
277 E1000_WRITE_REG(hw, EECD, eecd);
278 E1000_WRITE_FLUSH(hw);
279 udelay(eeprom->delay_usec);
wdenk4e112c12003-06-03 23:54:09 +0000280
Roy Zang28f7a052009-07-31 13:34:02 +0800281 /* Clock high */
282 eecd |= E1000_EECD_SK;
283 E1000_WRITE_REG(hw, EECD, eecd);
284 E1000_WRITE_FLUSH(hw);
285 udelay(eeprom->delay_usec);
286
287 /* Select EEPROM */
288 eecd |= E1000_EECD_CS;
289 E1000_WRITE_REG(hw, EECD, eecd);
290 E1000_WRITE_FLUSH(hw);
291 udelay(eeprom->delay_usec);
292
293 /* Clock low */
294 eecd &= ~E1000_EECD_SK;
295 E1000_WRITE_REG(hw, EECD, eecd);
296 E1000_WRITE_FLUSH(hw);
297 udelay(eeprom->delay_usec);
298 } else if (eeprom->type == e1000_eeprom_spi) {
299 /* Toggle CS to flush commands */
300 eecd |= E1000_EECD_CS;
301 E1000_WRITE_REG(hw, EECD, eecd);
302 E1000_WRITE_FLUSH(hw);
303 udelay(eeprom->delay_usec);
304 eecd &= ~E1000_EECD_CS;
305 E1000_WRITE_REG(hw, EECD, eecd);
306 E1000_WRITE_FLUSH(hw);
307 udelay(eeprom->delay_usec);
308 }
309}
310
311/***************************************************************************
312* Description: Determines if the onboard NVM is FLASH or EEPROM.
313*
314* hw - Struct containing variables accessed by shared code
315****************************************************************************/
316static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
317{
318 uint32_t eecd = 0;
319
320 DEBUGFUNC();
321
322 if (hw->mac_type == e1000_ich8lan)
323 return FALSE;
324
Roy Zang181119b2011-01-21 11:29:38 +0800325 if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
Roy Zang28f7a052009-07-31 13:34:02 +0800326 eecd = E1000_READ_REG(hw, EECD);
327
328 /* Isolate bits 15 & 16 */
329 eecd = ((eecd >> 15) & 0x03);
330
331 /* If both bits are set, device is Flash type */
332 if (eecd == 0x03)
333 return FALSE;
334 }
335 return TRUE;
wdenk4e112c12003-06-03 23:54:09 +0000336}
337
338/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800339 * Prepares EEPROM for access
wdenk57b2d802003-06-27 21:31:46 +0000340 *
wdenk4e112c12003-06-03 23:54:09 +0000341 * hw - Struct containing variables accessed by shared code
Roy Zang28f7a052009-07-31 13:34:02 +0800342 *
343 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
344 * function should be called before issuing a command to the EEPROM.
wdenk4e112c12003-06-03 23:54:09 +0000345 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000346int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000347{
Roy Zang28f7a052009-07-31 13:34:02 +0800348 struct e1000_eeprom_info *eeprom = &hw->eeprom;
349 uint32_t eecd, i = 0;
350
Timur Tabiedc45b52009-08-17 15:55:38 -0500351 DEBUGFUNC();
wdenk4e112c12003-06-03 23:54:09 +0000352
Roy Zang28f7a052009-07-31 13:34:02 +0800353 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
354 return -E1000_ERR_SWFW_SYNC;
wdenk4e112c12003-06-03 23:54:09 +0000355 eecd = E1000_READ_REG(hw, EECD);
356
Roy Zang181119b2011-01-21 11:29:38 +0800357 if (hw->mac_type != e1000_82573 || hw->mac_type != e1000_82574) {
Roy Zang28f7a052009-07-31 13:34:02 +0800358 /* Request EEPROM Access */
359 if (hw->mac_type > e1000_82544) {
360 eecd |= E1000_EECD_REQ;
361 E1000_WRITE_REG(hw, EECD, eecd);
362 eecd = E1000_READ_REG(hw, EECD);
363 while ((!(eecd & E1000_EECD_GNT)) &&
364 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
365 i++;
366 udelay(5);
367 eecd = E1000_READ_REG(hw, EECD);
368 }
369 if (!(eecd & E1000_EECD_GNT)) {
370 eecd &= ~E1000_EECD_REQ;
371 E1000_WRITE_REG(hw, EECD, eecd);
372 DEBUGOUT("Could not acquire EEPROM grant\n");
373 return -E1000_ERR_EEPROM;
374 }
375 }
376 }
wdenk4e112c12003-06-03 23:54:09 +0000377
Roy Zang28f7a052009-07-31 13:34:02 +0800378 /* Setup EEPROM for Read/Write */
wdenk4e112c12003-06-03 23:54:09 +0000379
Roy Zang28f7a052009-07-31 13:34:02 +0800380 if (eeprom->type == e1000_eeprom_microwire) {
381 /* Clear SK and DI */
382 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
383 E1000_WRITE_REG(hw, EECD, eecd);
wdenk4e112c12003-06-03 23:54:09 +0000384
Roy Zang28f7a052009-07-31 13:34:02 +0800385 /* Set CS */
386 eecd |= E1000_EECD_CS;
387 E1000_WRITE_REG(hw, EECD, eecd);
388 } else if (eeprom->type == e1000_eeprom_spi) {
389 /* Clear SK and CS */
390 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
391 E1000_WRITE_REG(hw, EECD, eecd);
392 udelay(1);
393 }
394
395 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +0000396}
397
398/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800399 * Sets up eeprom variables in the hw struct. Must be called after mac_type
400 * is configured. Additionally, if this is ICH8, the flash controller GbE
401 * registers must be mapped, or this will crash.
wdenk4e112c12003-06-03 23:54:09 +0000402 *
403 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000404 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800405static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000406{
Roy Zang28f7a052009-07-31 13:34:02 +0800407 struct e1000_eeprom_info *eeprom = &hw->eeprom;
408 uint32_t eecd = E1000_READ_REG(hw, EECD);
409 int32_t ret_val = E1000_SUCCESS;
410 uint16_t eeprom_size;
wdenk4e112c12003-06-03 23:54:09 +0000411
Timur Tabiedc45b52009-08-17 15:55:38 -0500412 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +0800413
414 switch (hw->mac_type) {
415 case e1000_82542_rev2_0:
416 case e1000_82542_rev2_1:
417 case e1000_82543:
418 case e1000_82544:
419 eeprom->type = e1000_eeprom_microwire;
420 eeprom->word_size = 64;
421 eeprom->opcode_bits = 3;
422 eeprom->address_bits = 6;
423 eeprom->delay_usec = 50;
424 eeprom->use_eerd = FALSE;
425 eeprom->use_eewr = FALSE;
426 break;
427 case e1000_82540:
428 case e1000_82545:
429 case e1000_82545_rev_3:
430 case e1000_82546:
431 case e1000_82546_rev_3:
432 eeprom->type = e1000_eeprom_microwire;
433 eeprom->opcode_bits = 3;
434 eeprom->delay_usec = 50;
435 if (eecd & E1000_EECD_SIZE) {
436 eeprom->word_size = 256;
437 eeprom->address_bits = 8;
438 } else {
439 eeprom->word_size = 64;
440 eeprom->address_bits = 6;
441 }
442 eeprom->use_eerd = FALSE;
443 eeprom->use_eewr = FALSE;
444 break;
445 case e1000_82541:
446 case e1000_82541_rev_2:
447 case e1000_82547:
448 case e1000_82547_rev_2:
449 if (eecd & E1000_EECD_TYPE) {
450 eeprom->type = e1000_eeprom_spi;
451 eeprom->opcode_bits = 8;
452 eeprom->delay_usec = 1;
453 if (eecd & E1000_EECD_ADDR_BITS) {
454 eeprom->page_size = 32;
455 eeprom->address_bits = 16;
456 } else {
457 eeprom->page_size = 8;
458 eeprom->address_bits = 8;
459 }
460 } else {
461 eeprom->type = e1000_eeprom_microwire;
462 eeprom->opcode_bits = 3;
463 eeprom->delay_usec = 50;
464 if (eecd & E1000_EECD_ADDR_BITS) {
465 eeprom->word_size = 256;
466 eeprom->address_bits = 8;
467 } else {
468 eeprom->word_size = 64;
469 eeprom->address_bits = 6;
470 }
471 }
472 eeprom->use_eerd = FALSE;
473 eeprom->use_eewr = FALSE;
474 break;
475 case e1000_82571:
476 case e1000_82572:
477 eeprom->type = e1000_eeprom_spi;
478 eeprom->opcode_bits = 8;
479 eeprom->delay_usec = 1;
480 if (eecd & E1000_EECD_ADDR_BITS) {
481 eeprom->page_size = 32;
482 eeprom->address_bits = 16;
483 } else {
484 eeprom->page_size = 8;
485 eeprom->address_bits = 8;
486 }
487 eeprom->use_eerd = FALSE;
488 eeprom->use_eewr = FALSE;
489 break;
490 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +0800491 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +0800492 eeprom->type = e1000_eeprom_spi;
493 eeprom->opcode_bits = 8;
494 eeprom->delay_usec = 1;
495 if (eecd & E1000_EECD_ADDR_BITS) {
496 eeprom->page_size = 32;
497 eeprom->address_bits = 16;
498 } else {
499 eeprom->page_size = 8;
500 eeprom->address_bits = 8;
wdenk4e112c12003-06-03 23:54:09 +0000501 }
Roy Zang28f7a052009-07-31 13:34:02 +0800502 eeprom->use_eerd = TRUE;
503 eeprom->use_eewr = TRUE;
504 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
505 eeprom->type = e1000_eeprom_flash;
506 eeprom->word_size = 2048;
507
508 /* Ensure that the Autonomous FLASH update bit is cleared due to
509 * Flash update issue on parts which use a FLASH for NVM. */
510 eecd &= ~E1000_EECD_AUPDEN;
wdenk4e112c12003-06-03 23:54:09 +0000511 E1000_WRITE_REG(hw, EECD, eecd);
wdenk4e112c12003-06-03 23:54:09 +0000512 }
Roy Zang28f7a052009-07-31 13:34:02 +0800513 break;
514 case e1000_80003es2lan:
515 eeprom->type = e1000_eeprom_spi;
516 eeprom->opcode_bits = 8;
517 eeprom->delay_usec = 1;
518 if (eecd & E1000_EECD_ADDR_BITS) {
519 eeprom->page_size = 32;
520 eeprom->address_bits = 16;
521 } else {
522 eeprom->page_size = 8;
523 eeprom->address_bits = 8;
524 }
525 eeprom->use_eerd = TRUE;
526 eeprom->use_eewr = FALSE;
527 break;
wdenk4e112c12003-06-03 23:54:09 +0000528
Roy Zang28f7a052009-07-31 13:34:02 +0800529 /* ich8lan does not support currently. if needed, please
530 * add corresponding code and functions.
531 */
532#if 0
533 case e1000_ich8lan:
534 {
535 int32_t i = 0;
wdenk4e112c12003-06-03 23:54:09 +0000536
Roy Zang28f7a052009-07-31 13:34:02 +0800537 eeprom->type = e1000_eeprom_ich8;
538 eeprom->use_eerd = FALSE;
539 eeprom->use_eewr = FALSE;
540 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
541 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
542 ICH_FLASH_GFPREG);
543 /* Zero the shadow RAM structure. But don't load it from NVM
544 * so as to save time for driver init */
545 if (hw->eeprom_shadow_ram != NULL) {
546 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
547 hw->eeprom_shadow_ram[i].modified = FALSE;
548 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
549 }
550 }
wdenk4e112c12003-06-03 23:54:09 +0000551
Roy Zang28f7a052009-07-31 13:34:02 +0800552 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
553 ICH_FLASH_SECTOR_SIZE;
wdenk4e112c12003-06-03 23:54:09 +0000554
Roy Zang28f7a052009-07-31 13:34:02 +0800555 hw->flash_bank_size = ((flash_size >> 16)
556 & ICH_GFPREG_BASE_MASK) + 1;
557 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
wdenk4e112c12003-06-03 23:54:09 +0000558
Roy Zang28f7a052009-07-31 13:34:02 +0800559 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
560
561 hw->flash_bank_size /= 2 * sizeof(uint16_t);
562 break;
563 }
564#endif
565 default:
566 break;
wdenk4e112c12003-06-03 23:54:09 +0000567 }
568
Roy Zang28f7a052009-07-31 13:34:02 +0800569 if (eeprom->type == e1000_eeprom_spi) {
570 /* eeprom_size will be an enum [0..8] that maps
571 * to eeprom sizes 128B to
572 * 32KB (incremented by powers of 2).
573 */
574 if (hw->mac_type <= e1000_82547_rev_2) {
575 /* Set to default value for initial eeprom read. */
576 eeprom->word_size = 64;
577 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
578 &eeprom_size);
579 if (ret_val)
580 return ret_val;
581 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
582 >> EEPROM_SIZE_SHIFT;
583 /* 256B eeprom size was not supported in earlier
584 * hardware, so we bump eeprom_size up one to
585 * ensure that "1" (which maps to 256B) is never
586 * the result used in the shifting logic below. */
587 if (eeprom_size)
588 eeprom_size++;
589 } else {
590 eeprom_size = (uint16_t)((eecd &
591 E1000_EECD_SIZE_EX_MASK) >>
592 E1000_EECD_SIZE_EX_SHIFT);
593 }
594
595 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
596 }
597 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +0000598}
599
Roy Zang28f7a052009-07-31 13:34:02 +0800600/******************************************************************************
601 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
602 *
603 * hw - Struct containing variables accessed by shared code
604 *****************************************************************************/
605static int32_t
606e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
wdenk4e112c12003-06-03 23:54:09 +0000607{
Roy Zang28f7a052009-07-31 13:34:02 +0800608 uint32_t attempts = 100000;
609 uint32_t i, reg = 0;
610 int32_t done = E1000_ERR_EEPROM;
wdenk4e112c12003-06-03 23:54:09 +0000611
Roy Zang28f7a052009-07-31 13:34:02 +0800612 for (i = 0; i < attempts; i++) {
613 if (eerd == E1000_EEPROM_POLL_READ)
614 reg = E1000_READ_REG(hw, EERD);
615 else
616 reg = E1000_READ_REG(hw, EEWR);
617
618 if (reg & E1000_EEPROM_RW_REG_DONE) {
619 done = E1000_SUCCESS;
620 break;
621 }
622 udelay(5);
623 }
624
625 return done;
wdenk4e112c12003-06-03 23:54:09 +0000626}
627
Roy Zang28f7a052009-07-31 13:34:02 +0800628/******************************************************************************
629 * Reads a 16 bit word from the EEPROM using the EERD register.
630 *
631 * hw - Struct containing variables accessed by shared code
632 * offset - offset of word in the EEPROM to read
633 * data - word read from the EEPROM
634 * words - number of words to read
635 *****************************************************************************/
636static int32_t
637e1000_read_eeprom_eerd(struct e1000_hw *hw,
638 uint16_t offset,
639 uint16_t words,
640 uint16_t *data)
wdenk4e112c12003-06-03 23:54:09 +0000641{
Roy Zang28f7a052009-07-31 13:34:02 +0800642 uint32_t i, eerd = 0;
643 int32_t error = 0;
wdenk4e112c12003-06-03 23:54:09 +0000644
Roy Zang28f7a052009-07-31 13:34:02 +0800645 for (i = 0; i < words; i++) {
646 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
647 E1000_EEPROM_RW_REG_START;
648
649 E1000_WRITE_REG(hw, EERD, eerd);
650 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
651
652 if (error)
653 break;
654 data[i] = (E1000_READ_REG(hw, EERD) >>
655 E1000_EEPROM_RW_REG_DATA);
656
wdenk4e112c12003-06-03 23:54:09 +0000657 }
Roy Zang28f7a052009-07-31 13:34:02 +0800658
659 return error;
wdenk4e112c12003-06-03 23:54:09 +0000660}
661
Kyle Moffett142cbf82011-10-18 11:05:28 +0000662void e1000_release_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000663{
664 uint32_t eecd;
wdenk4e112c12003-06-03 23:54:09 +0000665
Roy Zang28f7a052009-07-31 13:34:02 +0800666 DEBUGFUNC();
667
668 eecd = E1000_READ_REG(hw, EECD);
669
670 if (hw->eeprom.type == e1000_eeprom_spi) {
671 eecd |= E1000_EECD_CS; /* Pull CS high */
672 eecd &= ~E1000_EECD_SK; /* Lower SCK */
673
wdenk4e112c12003-06-03 23:54:09 +0000674 E1000_WRITE_REG(hw, EECD, eecd);
Roy Zang28f7a052009-07-31 13:34:02 +0800675
676 udelay(hw->eeprom.delay_usec);
677 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
678 /* cleanup eeprom */
679
680 /* CS on Microwire is active-high */
681 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
682
683 E1000_WRITE_REG(hw, EECD, eecd);
684
685 /* Rising edge of clock */
686 eecd |= E1000_EECD_SK;
687 E1000_WRITE_REG(hw, EECD, eecd);
688 E1000_WRITE_FLUSH(hw);
689 udelay(hw->eeprom.delay_usec);
690
691 /* Falling edge of clock */
692 eecd &= ~E1000_EECD_SK;
693 E1000_WRITE_REG(hw, EECD, eecd);
694 E1000_WRITE_FLUSH(hw);
695 udelay(hw->eeprom.delay_usec);
wdenk4e112c12003-06-03 23:54:09 +0000696 }
wdenk4e112c12003-06-03 23:54:09 +0000697
698 /* Stop requesting EEPROM access */
699 if (hw->mac_type > e1000_82544) {
wdenk4e112c12003-06-03 23:54:09 +0000700 eecd &= ~E1000_EECD_REQ;
701 E1000_WRITE_REG(hw, EECD, eecd);
702 }
wdenk4e112c12003-06-03 23:54:09 +0000703}
wdenk4e112c12003-06-03 23:54:09 +0000704/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800705 * Reads a 16 bit word from the EEPROM.
wdenk57b2d802003-06-27 21:31:46 +0000706 *
wdenk4e112c12003-06-03 23:54:09 +0000707 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000708 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800709static int32_t
710e1000_spi_eeprom_ready(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000711{
Roy Zang28f7a052009-07-31 13:34:02 +0800712 uint16_t retry_count = 0;
713 uint8_t spi_stat_reg;
wdenk4e112c12003-06-03 23:54:09 +0000714
715 DEBUGFUNC();
716
Roy Zang28f7a052009-07-31 13:34:02 +0800717 /* Read "Status Register" repeatedly until the LSB is cleared. The
718 * EEPROM will signal that the command has been completed by clearing
719 * bit 0 of the internal status register. If it's not cleared within
720 * 5 milliseconds, then error out.
721 */
722 retry_count = 0;
723 do {
724 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
725 hw->eeprom.opcode_bits);
726 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
727 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
728 break;
wdenk57b2d802003-06-27 21:31:46 +0000729
Roy Zang28f7a052009-07-31 13:34:02 +0800730 udelay(5);
731 retry_count += 5;
732
733 e1000_standby_eeprom(hw);
734 } while (retry_count < EEPROM_MAX_RETRY_SPI);
735
736 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
737 * only 0-5mSec on 5V devices)
738 */
739 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
740 DEBUGOUT("SPI EEPROM Status error\n");
wdenk4e112c12003-06-03 23:54:09 +0000741 return -E1000_ERR_EEPROM;
742 }
Roy Zang28f7a052009-07-31 13:34:02 +0800743
744 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +0000745}
746
747/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800748 * Reads a 16 bit word from the EEPROM.
wdenk4e112c12003-06-03 23:54:09 +0000749 *
Roy Zang28f7a052009-07-31 13:34:02 +0800750 * hw - Struct containing variables accessed by shared code
751 * offset - offset of word in the EEPROM to read
752 * data - word read from the EEPROM
wdenk4e112c12003-06-03 23:54:09 +0000753 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800754static int32_t
755e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
756 uint16_t words, uint16_t *data)
wdenk4e112c12003-06-03 23:54:09 +0000757{
Roy Zang28f7a052009-07-31 13:34:02 +0800758 struct e1000_eeprom_info *eeprom = &hw->eeprom;
759 uint32_t i = 0;
wdenk4e112c12003-06-03 23:54:09 +0000760
761 DEBUGFUNC();
762
Roy Zang28f7a052009-07-31 13:34:02 +0800763 /* If eeprom is not yet detected, do so now */
764 if (eeprom->word_size == 0)
765 e1000_init_eeprom_params(hw);
766
767 /* A check for invalid values: offset too large, too many words,
768 * and not enough words.
769 */
770 if ((offset >= eeprom->word_size) ||
771 (words > eeprom->word_size - offset) ||
772 (words == 0)) {
773 DEBUGOUT("\"words\" parameter out of bounds."
774 "Words = %d, size = %d\n", offset, eeprom->word_size);
775 return -E1000_ERR_EEPROM;
776 }
777
778 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
779 * directly. In this case, we need to acquire the EEPROM so that
780 * FW or other port software does not interrupt.
781 */
782 if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
783 hw->eeprom.use_eerd == FALSE) {
784
785 /* Prepare the EEPROM for bit-bang reading */
786 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
787 return -E1000_ERR_EEPROM;
788 }
789
790 /* Eerd register EEPROM access requires no eeprom aquire/release */
791 if (eeprom->use_eerd == TRUE)
792 return e1000_read_eeprom_eerd(hw, offset, words, data);
793
794 /* ich8lan does not support currently. if needed, please
795 * add corresponding code and functions.
796 */
797#if 0
798 /* ICH EEPROM access is done via the ICH flash controller */
799 if (eeprom->type == e1000_eeprom_ich8)
800 return e1000_read_eeprom_ich8(hw, offset, words, data);
801#endif
802 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
803 * acquired the EEPROM at this point, so any returns should relase it */
804 if (eeprom->type == e1000_eeprom_spi) {
805 uint16_t word_in;
806 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
807
808 if (e1000_spi_eeprom_ready(hw)) {
809 e1000_release_eeprom(hw);
810 return -E1000_ERR_EEPROM;
811 }
812
813 e1000_standby_eeprom(hw);
814
815 /* Some SPI eeproms use the 8th address bit embedded in
816 * the opcode */
817 if ((eeprom->address_bits == 8) && (offset >= 128))
818 read_opcode |= EEPROM_A8_OPCODE_SPI;
819
820 /* Send the READ command (opcode + addr) */
821 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
822 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
823 eeprom->address_bits);
824
825 /* Read the data. The address of the eeprom internally
826 * increments with each byte (spi) being read, saving on the
827 * overhead of eeprom setup and tear-down. The address
828 * counter will roll over if reading beyond the size of
829 * the eeprom, thus allowing the entire memory to be read
830 * starting from any offset. */
831 for (i = 0; i < words; i++) {
832 word_in = e1000_shift_in_ee_bits(hw, 16);
833 data[i] = (word_in >> 8) | (word_in << 8);
834 }
835 } else if (eeprom->type == e1000_eeprom_microwire) {
836 for (i = 0; i < words; i++) {
837 /* Send the READ command (opcode + addr) */
838 e1000_shift_out_ee_bits(hw,
839 EEPROM_READ_OPCODE_MICROWIRE,
840 eeprom->opcode_bits);
841 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
842 eeprom->address_bits);
843
844 /* Read the data. For microwire, each word requires
845 * the overhead of eeprom setup and tear-down. */
846 data[i] = e1000_shift_in_ee_bits(hw, 16);
847 e1000_standby_eeprom(hw);
848 }
849 }
850
851 /* End this read operation */
852 e1000_release_eeprom(hw);
853
854 return E1000_SUCCESS;
855}
856
857/******************************************************************************
858 * Verifies that the EEPROM has a valid checksum
859 *
860 * hw - Struct containing variables accessed by shared code
861 *
862 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
863 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
864 * valid.
865 *****************************************************************************/
Kyle Moffett70946bc2011-10-18 11:05:27 +0000866static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
Roy Zang28f7a052009-07-31 13:34:02 +0800867{
Kyle Moffett70946bc2011-10-18 11:05:27 +0000868 uint16_t i, checksum, checksum_reg, *buf;
Roy Zang28f7a052009-07-31 13:34:02 +0800869
870 DEBUGFUNC();
871
Kyle Moffett70946bc2011-10-18 11:05:27 +0000872 /* Allocate a temporary buffer */
873 buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
874 if (!buf) {
875 E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
876 return -E1000_ERR_EEPROM;
Roy Zang28f7a052009-07-31 13:34:02 +0800877 }
878
Kyle Moffett70946bc2011-10-18 11:05:27 +0000879 /* Read the EEPROM */
880 if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
881 E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
Roy Zang28f7a052009-07-31 13:34:02 +0800882 return -E1000_ERR_EEPROM;
883 }
Kyle Moffett70946bc2011-10-18 11:05:27 +0000884
885 /* Compute the checksum */
Wolfgang Denk15690332011-10-28 07:37:04 +0200886 checksum = 0;
Kyle Moffett70946bc2011-10-18 11:05:27 +0000887 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
888 checksum += buf[i];
889 checksum = ((uint16_t)EEPROM_SUM) - checksum;
890 checksum_reg = buf[i];
891
892 /* Verify it! */
893 if (checksum == checksum_reg)
894 return 0;
895
896 /* Hrm, verification failed, print an error */
897 E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
898 E1000_ERR(hw->nic, " ...register was 0x%04hx, calculated 0x%04hx\n",
899 checksum_reg, checksum);
900
901 return -E1000_ERR_EEPROM;
Roy Zang9b7c4302009-08-11 03:48:05 +0800902}
903
904/*****************************************************************************
905 * Set PHY to class A mode
906 * Assumes the following operations will follow to enable the new class mode.
907 * 1. Do a PHY soft reset
908 * 2. Restart auto-negotiation or force link.
909 *
910 * hw - Struct containing variables accessed by shared code
911 ****************************************************************************/
912static int32_t
913e1000_set_phy_mode(struct e1000_hw *hw)
914{
915 int32_t ret_val;
916 uint16_t eeprom_data;
917
918 DEBUGFUNC();
919
920 if ((hw->mac_type == e1000_82545_rev_3) &&
921 (hw->media_type == e1000_media_type_copper)) {
922 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
923 1, &eeprom_data);
924 if (ret_val)
925 return ret_val;
926
927 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
928 (eeprom_data & EEPROM_PHY_CLASS_A)) {
929 ret_val = e1000_write_phy_reg(hw,
930 M88E1000_PHY_PAGE_SELECT, 0x000B);
931 if (ret_val)
932 return ret_val;
933 ret_val = e1000_write_phy_reg(hw,
934 M88E1000_PHY_GEN_CONTROL, 0x8104);
935 if (ret_val)
936 return ret_val;
937
938 hw->phy_reset_disable = FALSE;
939 }
940 }
941
942 return E1000_SUCCESS;
Roy Zang28f7a052009-07-31 13:34:02 +0800943}
Roy Zang28f7a052009-07-31 13:34:02 +0800944
945/***************************************************************************
946 *
947 * Obtaining software semaphore bit (SMBI) before resetting PHY.
948 *
949 * hw: Struct containing variables accessed by shared code
950 *
951 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
952 * E1000_SUCCESS at any other case.
953 *
954 ***************************************************************************/
955static int32_t
956e1000_get_software_semaphore(struct e1000_hw *hw)
957{
958 int32_t timeout = hw->eeprom.word_size + 1;
959 uint32_t swsm;
960
961 DEBUGFUNC();
962
963 if (hw->mac_type != e1000_80003es2lan)
964 return E1000_SUCCESS;
965
966 while (timeout) {
967 swsm = E1000_READ_REG(hw, SWSM);
968 /* If SMBI bit cleared, it is now set and we hold
969 * the semaphore */
970 if (!(swsm & E1000_SWSM_SMBI))
971 break;
972 mdelay(1);
973 timeout--;
974 }
975
976 if (!timeout) {
977 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
978 return -E1000_ERR_RESET;
979 }
980
981 return E1000_SUCCESS;
982}
983
984/***************************************************************************
985 * This function clears HW semaphore bits.
986 *
987 * hw: Struct containing variables accessed by shared code
988 *
989 * returns: - None.
990 *
991 ***************************************************************************/
992static void
993e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
994{
995 uint32_t swsm;
996
997 DEBUGFUNC();
998
999 if (!hw->eeprom_semaphore_present)
1000 return;
1001
1002 swsm = E1000_READ_REG(hw, SWSM);
1003 if (hw->mac_type == e1000_80003es2lan) {
1004 /* Release both semaphores. */
1005 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1006 } else
1007 swsm &= ~(E1000_SWSM_SWESMBI);
1008 E1000_WRITE_REG(hw, SWSM, swsm);
1009}
1010
1011/***************************************************************************
1012 *
1013 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1014 * adapter or Eeprom access.
1015 *
1016 * hw: Struct containing variables accessed by shared code
1017 *
1018 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1019 * E1000_SUCCESS at any other case.
1020 *
1021 ***************************************************************************/
1022static int32_t
1023e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1024{
1025 int32_t timeout;
1026 uint32_t swsm;
1027
1028 DEBUGFUNC();
1029
1030 if (!hw->eeprom_semaphore_present)
1031 return E1000_SUCCESS;
1032
1033 if (hw->mac_type == e1000_80003es2lan) {
1034 /* Get the SW semaphore. */
1035 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1036 return -E1000_ERR_EEPROM;
1037 }
1038
1039 /* Get the FW semaphore. */
1040 timeout = hw->eeprom.word_size + 1;
1041 while (timeout) {
1042 swsm = E1000_READ_REG(hw, SWSM);
1043 swsm |= E1000_SWSM_SWESMBI;
1044 E1000_WRITE_REG(hw, SWSM, swsm);
1045 /* if we managed to set the bit we got the semaphore. */
1046 swsm = E1000_READ_REG(hw, SWSM);
1047 if (swsm & E1000_SWSM_SWESMBI)
1048 break;
1049
1050 udelay(50);
1051 timeout--;
1052 }
1053
1054 if (!timeout) {
1055 /* Release semaphores */
1056 e1000_put_hw_eeprom_semaphore(hw);
1057 DEBUGOUT("Driver can't access the Eeprom - "
1058 "SWESMBI bit is set.\n");
1059 return -E1000_ERR_EEPROM;
1060 }
1061
1062 return E1000_SUCCESS;
1063}
1064
1065static int32_t
1066e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1067{
1068 uint32_t swfw_sync = 0;
1069 uint32_t swmask = mask;
1070 uint32_t fwmask = mask << 16;
1071 int32_t timeout = 200;
1072
1073 DEBUGFUNC();
1074 while (timeout) {
1075 if (e1000_get_hw_eeprom_semaphore(hw))
1076 return -E1000_ERR_SWFW_SYNC;
1077
1078 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1079 if (!(swfw_sync & (fwmask | swmask)))
1080 break;
1081
1082 /* firmware currently using resource (fwmask) */
1083 /* or other software thread currently using resource (swmask) */
1084 e1000_put_hw_eeprom_semaphore(hw);
1085 mdelay(5);
1086 timeout--;
1087 }
1088
1089 if (!timeout) {
1090 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1091 return -E1000_ERR_SWFW_SYNC;
1092 }
1093
1094 swfw_sync |= swmask;
1095 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1096
1097 e1000_put_hw_eeprom_semaphore(hw);
1098 return E1000_SUCCESS;
1099}
1100
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001101static boolean_t e1000_is_second_port(struct e1000_hw *hw)
1102{
1103 switch (hw->mac_type) {
1104 case e1000_80003es2lan:
1105 case e1000_82546:
1106 case e1000_82571:
1107 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1108 return TRUE;
1109 /* Fallthrough */
1110 default:
1111 return FALSE;
1112 }
1113}
1114
Roy Zang28f7a052009-07-31 13:34:02 +08001115/******************************************************************************
1116 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1117 * second function of dual function devices
1118 *
1119 * nic - Struct containing variables accessed by shared code
1120 *****************************************************************************/
1121static int
1122e1000_read_mac_addr(struct eth_device *nic)
1123{
Roy Zang28f7a052009-07-31 13:34:02 +08001124 struct e1000_hw *hw = nic->priv;
1125 uint16_t offset;
1126 uint16_t eeprom_data;
1127 int i;
1128
1129 DEBUGFUNC();
1130
1131 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
wdenk4e112c12003-06-03 23:54:09 +00001132 offset = i >> 1;
Roy Zang28f7a052009-07-31 13:34:02 +08001133 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
wdenk4e112c12003-06-03 23:54:09 +00001134 DEBUGOUT("EEPROM Read Error\n");
1135 return -E1000_ERR_EEPROM;
1136 }
1137 nic->enetaddr[i] = eeprom_data & 0xff;
1138 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1139 }
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001140
1141 /* Invert the last bit if this is the second device */
1142 if (e1000_is_second_port(hw))
1143 nic->enetaddr[5] ^= 1;
1144
Andre Schwarz68c2a302008-03-06 16:45:44 +01001145#ifdef CONFIG_E1000_FALLBACK_MAC
Anatolij Gustschin25826ae2011-12-20 07:36:39 +00001146 if (!is_valid_ether_addr(nic->enetaddr)) {
Stefan Roese37628252008-08-06 14:05:38 +02001147 unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1148
1149 memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1150 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01001151#endif
wdenk4e112c12003-06-03 23:54:09 +00001152 return 0;
1153}
1154
1155/******************************************************************************
1156 * Initializes receive address filters.
1157 *
wdenk57b2d802003-06-27 21:31:46 +00001158 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +00001159 *
1160 * Places the MAC address in receive address register 0 and clears the rest
1161 * of the receive addresss registers. Clears the multicast table. Assumes
1162 * the receiver is in reset when the routine is called.
1163 *****************************************************************************/
1164static void
1165e1000_init_rx_addrs(struct eth_device *nic)
1166{
1167 struct e1000_hw *hw = nic->priv;
1168 uint32_t i;
1169 uint32_t addr_low;
1170 uint32_t addr_high;
1171
1172 DEBUGFUNC();
1173
1174 /* Setup the receive address. */
1175 DEBUGOUT("Programming MAC Address into RAR[0]\n");
1176 addr_low = (nic->enetaddr[0] |
1177 (nic->enetaddr[1] << 8) |
1178 (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1179
1180 addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1181
1182 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1183 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1184
1185 /* Zero out the other 15 receive addresses. */
1186 DEBUGOUT("Clearing RAR[1-15]\n");
1187 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1188 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1189 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1190 }
1191}
1192
1193/******************************************************************************
1194 * Clears the VLAN filer table
1195 *
1196 * hw - Struct containing variables accessed by shared code
1197 *****************************************************************************/
1198static void
1199e1000_clear_vfta(struct e1000_hw *hw)
1200{
1201 uint32_t offset;
1202
1203 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1204 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1205}
1206
1207/******************************************************************************
1208 * Set the mac type member in the hw struct.
wdenk57b2d802003-06-27 21:31:46 +00001209 *
wdenk4e112c12003-06-03 23:54:09 +00001210 * hw - Struct containing variables accessed by shared code
1211 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08001212int32_t
wdenk4e112c12003-06-03 23:54:09 +00001213e1000_set_mac_type(struct e1000_hw *hw)
1214{
1215 DEBUGFUNC();
1216
1217 switch (hw->device_id) {
1218 case E1000_DEV_ID_82542:
1219 switch (hw->revision_id) {
1220 case E1000_82542_2_0_REV_ID:
1221 hw->mac_type = e1000_82542_rev2_0;
1222 break;
1223 case E1000_82542_2_1_REV_ID:
1224 hw->mac_type = e1000_82542_rev2_1;
1225 break;
1226 default:
1227 /* Invalid 82542 revision ID */
1228 return -E1000_ERR_MAC_TYPE;
1229 }
1230 break;
1231 case E1000_DEV_ID_82543GC_FIBER:
1232 case E1000_DEV_ID_82543GC_COPPER:
1233 hw->mac_type = e1000_82543;
1234 break;
1235 case E1000_DEV_ID_82544EI_COPPER:
1236 case E1000_DEV_ID_82544EI_FIBER:
1237 case E1000_DEV_ID_82544GC_COPPER:
1238 case E1000_DEV_ID_82544GC_LOM:
1239 hw->mac_type = e1000_82544;
1240 break;
1241 case E1000_DEV_ID_82540EM:
1242 case E1000_DEV_ID_82540EM_LOM:
Roy Zang28f7a052009-07-31 13:34:02 +08001243 case E1000_DEV_ID_82540EP:
1244 case E1000_DEV_ID_82540EP_LOM:
1245 case E1000_DEV_ID_82540EP_LP:
wdenk4e112c12003-06-03 23:54:09 +00001246 hw->mac_type = e1000_82540;
1247 break;
1248 case E1000_DEV_ID_82545EM_COPPER:
1249 case E1000_DEV_ID_82545EM_FIBER:
1250 hw->mac_type = e1000_82545;
1251 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001252 case E1000_DEV_ID_82545GM_COPPER:
1253 case E1000_DEV_ID_82545GM_FIBER:
1254 case E1000_DEV_ID_82545GM_SERDES:
1255 hw->mac_type = e1000_82545_rev_3;
1256 break;
wdenk4e112c12003-06-03 23:54:09 +00001257 case E1000_DEV_ID_82546EB_COPPER:
1258 case E1000_DEV_ID_82546EB_FIBER:
Roy Zang28f7a052009-07-31 13:34:02 +08001259 case E1000_DEV_ID_82546EB_QUAD_COPPER:
wdenk4e112c12003-06-03 23:54:09 +00001260 hw->mac_type = e1000_82546;
1261 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001262 case E1000_DEV_ID_82546GB_COPPER:
1263 case E1000_DEV_ID_82546GB_FIBER:
1264 case E1000_DEV_ID_82546GB_SERDES:
1265 case E1000_DEV_ID_82546GB_PCIE:
1266 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1267 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1268 hw->mac_type = e1000_82546_rev_3;
1269 break;
1270 case E1000_DEV_ID_82541EI:
1271 case E1000_DEV_ID_82541EI_MOBILE:
1272 case E1000_DEV_ID_82541ER_LOM:
1273 hw->mac_type = e1000_82541;
1274 break;
Andre Schwarz68c2a302008-03-06 16:45:44 +01001275 case E1000_DEV_ID_82541ER:
Roy Zang28f7a052009-07-31 13:34:02 +08001276 case E1000_DEV_ID_82541GI:
Wolfgang Grandegger8562c382008-05-28 19:55:19 +02001277 case E1000_DEV_ID_82541GI_LF:
Roy Zang28f7a052009-07-31 13:34:02 +08001278 case E1000_DEV_ID_82541GI_MOBILE:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07001279 hw->mac_type = e1000_82541_rev_2;
1280 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001281 case E1000_DEV_ID_82547EI:
1282 case E1000_DEV_ID_82547EI_MOBILE:
1283 hw->mac_type = e1000_82547;
1284 break;
1285 case E1000_DEV_ID_82547GI:
1286 hw->mac_type = e1000_82547_rev_2;
1287 break;
1288 case E1000_DEV_ID_82571EB_COPPER:
1289 case E1000_DEV_ID_82571EB_FIBER:
1290 case E1000_DEV_ID_82571EB_SERDES:
1291 case E1000_DEV_ID_82571EB_SERDES_DUAL:
1292 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1293 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1294 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1295 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1296 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1297 hw->mac_type = e1000_82571;
1298 break;
1299 case E1000_DEV_ID_82572EI_COPPER:
1300 case E1000_DEV_ID_82572EI_FIBER:
1301 case E1000_DEV_ID_82572EI_SERDES:
1302 case E1000_DEV_ID_82572EI:
1303 hw->mac_type = e1000_82572;
1304 break;
1305 case E1000_DEV_ID_82573E:
1306 case E1000_DEV_ID_82573E_IAMT:
1307 case E1000_DEV_ID_82573L:
1308 hw->mac_type = e1000_82573;
1309 break;
Roy Zang181119b2011-01-21 11:29:38 +08001310 case E1000_DEV_ID_82574L:
1311 hw->mac_type = e1000_82574;
1312 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001313 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1314 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1315 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1316 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1317 hw->mac_type = e1000_80003es2lan;
1318 break;
1319 case E1000_DEV_ID_ICH8_IGP_M_AMT:
1320 case E1000_DEV_ID_ICH8_IGP_AMT:
1321 case E1000_DEV_ID_ICH8_IGP_C:
1322 case E1000_DEV_ID_ICH8_IFE:
1323 case E1000_DEV_ID_ICH8_IFE_GT:
1324 case E1000_DEV_ID_ICH8_IFE_G:
1325 case E1000_DEV_ID_ICH8_IGP_M:
1326 hw->mac_type = e1000_ich8lan;
1327 break;
wdenk4e112c12003-06-03 23:54:09 +00001328 default:
1329 /* Should never have loaded on this device */
1330 return -E1000_ERR_MAC_TYPE;
1331 }
1332 return E1000_SUCCESS;
1333}
1334
1335/******************************************************************************
1336 * Reset the transmit and receive units; mask and clear all interrupts.
1337 *
1338 * hw - Struct containing variables accessed by shared code
1339 *****************************************************************************/
1340void
1341e1000_reset_hw(struct e1000_hw *hw)
1342{
1343 uint32_t ctrl;
1344 uint32_t ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00001345 uint32_t manc;
Roy Zang966172e2009-08-22 03:49:52 +08001346 uint32_t pba = 0;
wdenk4e112c12003-06-03 23:54:09 +00001347
1348 DEBUGFUNC();
1349
Roy Zang966172e2009-08-22 03:49:52 +08001350 /* get the correct pba value for both PCI and PCIe*/
1351 if (hw->mac_type < e1000_82571)
1352 pba = E1000_DEFAULT_PCI_PBA;
1353 else
1354 pba = E1000_DEFAULT_PCIE_PBA;
1355
wdenk4e112c12003-06-03 23:54:09 +00001356 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1357 if (hw->mac_type == e1000_82542_rev2_0) {
1358 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1359 pci_write_config_word(hw->pdev, PCI_COMMAND,
Roy Zang28f7a052009-07-31 13:34:02 +08001360 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
wdenk4e112c12003-06-03 23:54:09 +00001361 }
1362
1363 /* Clear interrupt mask to stop board from generating interrupts */
1364 DEBUGOUT("Masking off all interrupts\n");
1365 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1366
1367 /* Disable the Transmit and Receive units. Then delay to allow
1368 * any pending transactions to complete before we hit the MAC with
1369 * the global reset.
1370 */
1371 E1000_WRITE_REG(hw, RCTL, 0);
1372 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1373 E1000_WRITE_FLUSH(hw);
1374
1375 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1376 hw->tbi_compatibility_on = FALSE;
1377
1378 /* Delay to allow any outstanding PCI transactions to complete before
1379 * resetting the device
1380 */
1381 mdelay(10);
1382
1383 /* Issue a global reset to the MAC. This will reset the chip's
1384 * transmit, receive, DMA, and link units. It will not effect
1385 * the current PCI configuration. The global reset bit is self-
1386 * clearing, and should clear within a microsecond.
1387 */
1388 DEBUGOUT("Issuing a global reset to MAC\n");
1389 ctrl = E1000_READ_REG(hw, CTRL);
1390
Roy Zang28f7a052009-07-31 13:34:02 +08001391 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
wdenk4e112c12003-06-03 23:54:09 +00001392
1393 /* Force a reload from the EEPROM if necessary */
1394 if (hw->mac_type < e1000_82540) {
1395 /* Wait for reset to complete */
1396 udelay(10);
1397 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1398 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1399 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1400 E1000_WRITE_FLUSH(hw);
1401 /* Wait for EEPROM reload */
1402 mdelay(2);
1403 } else {
1404 /* Wait for EEPROM reload (it happens automatically) */
1405 mdelay(4);
1406 /* Dissable HW ARPs on ASF enabled adapters */
1407 manc = E1000_READ_REG(hw, MANC);
1408 manc &= ~(E1000_MANC_ARP_EN);
1409 E1000_WRITE_REG(hw, MANC, manc);
1410 }
1411
1412 /* Clear interrupt mask to stop board from generating interrupts */
1413 DEBUGOUT("Masking off all interrupts\n");
1414 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1415
1416 /* Clear any pending interrupt events. */
Zang Roy-R61911e36d67c2011-11-06 22:22:36 +00001417 E1000_READ_REG(hw, ICR);
wdenk4e112c12003-06-03 23:54:09 +00001418
1419 /* If MWI was previously enabled, reenable it. */
1420 if (hw->mac_type == e1000_82542_rev2_0) {
1421 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1422 }
Roy Zang966172e2009-08-22 03:49:52 +08001423 E1000_WRITE_REG(hw, PBA, pba);
Roy Zang28f7a052009-07-31 13:34:02 +08001424}
1425
1426/******************************************************************************
1427 *
1428 * Initialize a number of hardware-dependent bits
1429 *
1430 * hw: Struct containing variables accessed by shared code
1431 *
1432 * This function contains hardware limitation workarounds for PCI-E adapters
1433 *
1434 *****************************************************************************/
1435static void
1436e1000_initialize_hardware_bits(struct e1000_hw *hw)
1437{
1438 if ((hw->mac_type >= e1000_82571) &&
1439 (!hw->initialize_hw_bits_disable)) {
1440 /* Settings common to all PCI-express silicon */
1441 uint32_t reg_ctrl, reg_ctrl_ext;
1442 uint32_t reg_tarc0, reg_tarc1;
1443 uint32_t reg_tctl;
1444 uint32_t reg_txdctl, reg_txdctl1;
1445
1446 /* link autonegotiation/sync workarounds */
1447 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1448 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1449
1450 /* Enable not-done TX descriptor counting */
1451 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1452 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1453 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1454
1455 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1456 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1457 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1458
1459 switch (hw->mac_type) {
1460 case e1000_82571:
1461 case e1000_82572:
1462 /* Clear PHY TX compatible mode bits */
1463 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1464 reg_tarc1 &= ~((1 << 30)|(1 << 29));
1465
1466 /* link autonegotiation/sync workarounds */
1467 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1468
1469 /* TX ring control fixes */
1470 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1471
1472 /* Multiple read bit is reversed polarity */
1473 reg_tctl = E1000_READ_REG(hw, TCTL);
1474 if (reg_tctl & E1000_TCTL_MULR)
1475 reg_tarc1 &= ~(1 << 28);
1476 else
1477 reg_tarc1 |= (1 << 28);
1478
1479 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1480 break;
1481 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08001482 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +08001483 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1484 reg_ctrl_ext &= ~(1 << 23);
1485 reg_ctrl_ext |= (1 << 22);
1486
1487 /* TX byte count fix */
1488 reg_ctrl = E1000_READ_REG(hw, CTRL);
1489 reg_ctrl &= ~(1 << 29);
1490
1491 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1492 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1493 break;
1494 case e1000_80003es2lan:
1495 /* improve small packet performace for fiber/serdes */
1496 if ((hw->media_type == e1000_media_type_fiber)
1497 || (hw->media_type ==
1498 e1000_media_type_internal_serdes)) {
1499 reg_tarc0 &= ~(1 << 20);
1500 }
1501
1502 /* Multiple read bit is reversed polarity */
1503 reg_tctl = E1000_READ_REG(hw, TCTL);
1504 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1505 if (reg_tctl & E1000_TCTL_MULR)
1506 reg_tarc1 &= ~(1 << 28);
1507 else
1508 reg_tarc1 |= (1 << 28);
1509
1510 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1511 break;
1512 case e1000_ich8lan:
1513 /* Reduce concurrent DMA requests to 3 from 4 */
1514 if ((hw->revision_id < 3) ||
1515 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1516 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1517 reg_tarc0 |= ((1 << 29)|(1 << 28));
1518
1519 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1520 reg_ctrl_ext |= (1 << 22);
1521 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1522
1523 /* workaround TX hang with TSO=on */
1524 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1525
1526 /* Multiple read bit is reversed polarity */
1527 reg_tctl = E1000_READ_REG(hw, TCTL);
1528 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1529 if (reg_tctl & E1000_TCTL_MULR)
1530 reg_tarc1 &= ~(1 << 28);
1531 else
1532 reg_tarc1 |= (1 << 28);
1533
1534 /* workaround TX hang with TSO=on */
1535 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1536
1537 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1538 break;
1539 default:
1540 break;
1541 }
1542
1543 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1544 }
wdenk4e112c12003-06-03 23:54:09 +00001545}
1546
1547/******************************************************************************
1548 * Performs basic configuration of the adapter.
1549 *
1550 * hw - Struct containing variables accessed by shared code
wdenk57b2d802003-06-27 21:31:46 +00001551 *
1552 * Assumes that the controller has previously been reset and is in a
wdenk4e112c12003-06-03 23:54:09 +00001553 * post-reset uninitialized state. Initializes the receive address registers,
1554 * multicast table, and VLAN filter table. Calls routines to setup link
1555 * configuration and flow control settings. Clears all on-chip counters. Leaves
1556 * the transmit and receive units disabled and uninitialized.
1557 *****************************************************************************/
1558static int
1559e1000_init_hw(struct eth_device *nic)
1560{
1561 struct e1000_hw *hw = nic->priv;
Roy Zang28f7a052009-07-31 13:34:02 +08001562 uint32_t ctrl;
wdenk4e112c12003-06-03 23:54:09 +00001563 uint32_t i;
1564 int32_t ret_val;
1565 uint16_t pcix_cmd_word;
1566 uint16_t pcix_stat_hi_word;
1567 uint16_t cmd_mmrbc;
1568 uint16_t stat_mmrbc;
Roy Zang28f7a052009-07-31 13:34:02 +08001569 uint32_t mta_size;
1570 uint32_t reg_data;
1571 uint32_t ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00001572 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +08001573 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1574 if ((hw->mac_type == e1000_ich8lan) &&
1575 ((hw->revision_id < 3) ||
1576 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1577 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1578 reg_data = E1000_READ_REG(hw, STATUS);
1579 reg_data &= ~0x80000000;
1580 E1000_WRITE_REG(hw, STATUS, reg_data);
wdenk4e112c12003-06-03 23:54:09 +00001581 }
Roy Zang28f7a052009-07-31 13:34:02 +08001582 /* Do not need initialize Identification LED */
wdenk4e112c12003-06-03 23:54:09 +00001583
Roy Zang28f7a052009-07-31 13:34:02 +08001584 /* Set the media type and TBI compatibility */
1585 e1000_set_media_type(hw);
1586
1587 /* Must be called after e1000_set_media_type
1588 * because media_type is used */
1589 e1000_initialize_hardware_bits(hw);
wdenk4e112c12003-06-03 23:54:09 +00001590
1591 /* Disabling VLAN filtering. */
1592 DEBUGOUT("Initializing the IEEE VLAN\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001593 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1594 if (hw->mac_type != e1000_ich8lan) {
1595 if (hw->mac_type < e1000_82545_rev_3)
1596 E1000_WRITE_REG(hw, VET, 0);
1597 e1000_clear_vfta(hw);
1598 }
wdenk4e112c12003-06-03 23:54:09 +00001599
1600 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1601 if (hw->mac_type == e1000_82542_rev2_0) {
1602 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1603 pci_write_config_word(hw->pdev, PCI_COMMAND,
1604 hw->
1605 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1606 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1607 E1000_WRITE_FLUSH(hw);
1608 mdelay(5);
1609 }
1610
1611 /* Setup the receive address. This involves initializing all of the Receive
1612 * Address Registers (RARs 0 - 15).
1613 */
1614 e1000_init_rx_addrs(nic);
1615
1616 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1617 if (hw->mac_type == e1000_82542_rev2_0) {
1618 E1000_WRITE_REG(hw, RCTL, 0);
1619 E1000_WRITE_FLUSH(hw);
1620 mdelay(1);
1621 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1622 }
1623
1624 /* Zero out the Multicast HASH table */
1625 DEBUGOUT("Zeroing the MTA\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001626 mta_size = E1000_MC_TBL_SIZE;
1627 if (hw->mac_type == e1000_ich8lan)
1628 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1629 for (i = 0; i < mta_size; i++) {
wdenk4e112c12003-06-03 23:54:09 +00001630 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
Roy Zang28f7a052009-07-31 13:34:02 +08001631 /* use write flush to prevent Memory Write Block (MWB) from
1632 * occuring when accessing our register space */
1633 E1000_WRITE_FLUSH(hw);
1634 }
wdenk4e112c12003-06-03 23:54:09 +00001635#if 0
1636 /* Set the PCI priority bit correctly in the CTRL register. This
1637 * determines if the adapter gives priority to receives, or if it
Roy Zang28f7a052009-07-31 13:34:02 +08001638 * gives equal priority to transmits and receives. Valid only on
1639 * 82542 and 82543 silicon.
wdenk4e112c12003-06-03 23:54:09 +00001640 */
Roy Zang28f7a052009-07-31 13:34:02 +08001641 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
wdenk4e112c12003-06-03 23:54:09 +00001642 ctrl = E1000_READ_REG(hw, CTRL);
1643 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1644 }
1645#endif
Roy Zang28f7a052009-07-31 13:34:02 +08001646 switch (hw->mac_type) {
1647 case e1000_82545_rev_3:
1648 case e1000_82546_rev_3:
1649 break;
1650 default:
wdenk4e112c12003-06-03 23:54:09 +00001651 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
Roy Zang28f7a052009-07-31 13:34:02 +08001652 if (hw->bus_type == e1000_bus_type_pcix) {
wdenk4e112c12003-06-03 23:54:09 +00001653 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1654 &pcix_cmd_word);
1655 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1656 &pcix_stat_hi_word);
1657 cmd_mmrbc =
1658 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1659 PCIX_COMMAND_MMRBC_SHIFT;
1660 stat_mmrbc =
1661 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1662 PCIX_STATUS_HI_MMRBC_SHIFT;
1663 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1664 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1665 if (cmd_mmrbc > stat_mmrbc) {
1666 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1667 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1668 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1669 pcix_cmd_word);
1670 }
1671 }
Roy Zang28f7a052009-07-31 13:34:02 +08001672 break;
1673 }
wdenk4e112c12003-06-03 23:54:09 +00001674
Roy Zang28f7a052009-07-31 13:34:02 +08001675 /* More time needed for PHY to initialize */
1676 if (hw->mac_type == e1000_ich8lan)
1677 mdelay(15);
1678
wdenk4e112c12003-06-03 23:54:09 +00001679 /* Call a subroutine to configure the link and setup flow control. */
1680 ret_val = e1000_setup_link(nic);
1681
1682 /* Set the transmit descriptor write-back policy */
1683 if (hw->mac_type > e1000_82544) {
1684 ctrl = E1000_READ_REG(hw, TXDCTL);
1685 ctrl =
1686 (ctrl & ~E1000_TXDCTL_WTHRESH) |
1687 E1000_TXDCTL_FULL_TX_DESC_WB;
1688 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1689 }
Roy Zang28f7a052009-07-31 13:34:02 +08001690
1691 switch (hw->mac_type) {
1692 default:
1693 break;
1694 case e1000_80003es2lan:
1695 /* Enable retransmit on late collisions */
1696 reg_data = E1000_READ_REG(hw, TCTL);
1697 reg_data |= E1000_TCTL_RTLC;
1698 E1000_WRITE_REG(hw, TCTL, reg_data);
1699
1700 /* Configure Gigabit Carry Extend Padding */
1701 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1702 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1703 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1704 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1705
1706 /* Configure Transmit Inter-Packet Gap */
1707 reg_data = E1000_READ_REG(hw, TIPG);
1708 reg_data &= ~E1000_TIPG_IPGT_MASK;
1709 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1710 E1000_WRITE_REG(hw, TIPG, reg_data);
1711
1712 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1713 reg_data &= ~0x00100000;
1714 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1715 /* Fall through */
1716 case e1000_82571:
1717 case e1000_82572:
1718 case e1000_ich8lan:
1719 ctrl = E1000_READ_REG(hw, TXDCTL1);
1720 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1721 | E1000_TXDCTL_FULL_TX_DESC_WB;
1722 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1723 break;
Roy Zang181119b2011-01-21 11:29:38 +08001724 case e1000_82573:
1725 case e1000_82574:
1726 reg_data = E1000_READ_REG(hw, GCR);
1727 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1728 E1000_WRITE_REG(hw, GCR, reg_data);
Roy Zang28f7a052009-07-31 13:34:02 +08001729 }
1730
wdenk4e112c12003-06-03 23:54:09 +00001731#if 0
1732 /* Clear all of the statistics registers (clear on read). It is
1733 * important that we do this after we have tried to establish link
1734 * because the symbol error count will increment wildly if there
1735 * is no link.
1736 */
1737 e1000_clear_hw_cntrs(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08001738
1739 /* ICH8 No-snoop bits are opposite polarity.
1740 * Set to snoop by default after reset. */
1741 if (hw->mac_type == e1000_ich8lan)
1742 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
wdenk4e112c12003-06-03 23:54:09 +00001743#endif
1744
Roy Zang28f7a052009-07-31 13:34:02 +08001745 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1746 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1747 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1748 /* Relaxed ordering must be disabled to avoid a parity
1749 * error crash in a PCI slot. */
1750 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1751 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1752 }
1753
1754 return ret_val;
1755}
wdenk4e112c12003-06-03 23:54:09 +00001756
1757/******************************************************************************
1758 * Configures flow control and link settings.
wdenk57b2d802003-06-27 21:31:46 +00001759 *
wdenk4e112c12003-06-03 23:54:09 +00001760 * hw - Struct containing variables accessed by shared code
wdenk57b2d802003-06-27 21:31:46 +00001761 *
wdenk4e112c12003-06-03 23:54:09 +00001762 * Determines which flow control settings to use. Calls the apropriate media-
1763 * specific link configuration function. Configures the flow control settings.
1764 * Assuming the adapter has a valid link partner, a valid link should be
wdenk57b2d802003-06-27 21:31:46 +00001765 * established. Assumes the hardware has previously been reset and the
wdenk4e112c12003-06-03 23:54:09 +00001766 * transmitter and receiver are not enabled.
1767 *****************************************************************************/
1768static int
1769e1000_setup_link(struct eth_device *nic)
1770{
1771 struct e1000_hw *hw = nic->priv;
1772 uint32_t ctrl_ext;
1773 int32_t ret_val;
1774 uint16_t eeprom_data;
1775
1776 DEBUGFUNC();
1777
Roy Zang28f7a052009-07-31 13:34:02 +08001778 /* In the case of the phy reset being blocked, we already have a link.
1779 * We do not have to set it up again. */
1780 if (e1000_check_phy_reset_block(hw))
1781 return E1000_SUCCESS;
1782
wdenk4e112c12003-06-03 23:54:09 +00001783 /* Read and store word 0x0F of the EEPROM. This word contains bits
1784 * that determine the hardware's default PAUSE (flow control) mode,
1785 * a bit that determines whether the HW defaults to enabling or
1786 * disabling auto-negotiation, and the direction of the
1787 * SW defined pins. If there is no SW over-ride of the flow
1788 * control setting, then the variable hw->fc will
1789 * be initialized based on a value in the EEPROM.
1790 */
Roy Zang28f7a052009-07-31 13:34:02 +08001791 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1792 &eeprom_data) < 0) {
wdenk4e112c12003-06-03 23:54:09 +00001793 DEBUGOUT("EEPROM Read Error\n");
1794 return -E1000_ERR_EEPROM;
1795 }
1796
1797 if (hw->fc == e1000_fc_default) {
Roy Zang28f7a052009-07-31 13:34:02 +08001798 switch (hw->mac_type) {
1799 case e1000_ich8lan:
1800 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08001801 case e1000_82574:
wdenk4e112c12003-06-03 23:54:09 +00001802 hw->fc = e1000_fc_full;
Roy Zang28f7a052009-07-31 13:34:02 +08001803 break;
1804 default:
Roy Zang28f7a052009-07-31 13:34:02 +08001805 ret_val = e1000_read_eeprom(hw,
1806 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1807 if (ret_val) {
1808 DEBUGOUT("EEPROM Read Error\n");
1809 return -E1000_ERR_EEPROM;
1810 }
Roy Zang28f7a052009-07-31 13:34:02 +08001811 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1812 hw->fc = e1000_fc_none;
1813 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1814 EEPROM_WORD0F_ASM_DIR)
1815 hw->fc = e1000_fc_tx_pause;
1816 else
1817 hw->fc = e1000_fc_full;
1818 break;
1819 }
wdenk4e112c12003-06-03 23:54:09 +00001820 }
1821
1822 /* We want to save off the original Flow Control configuration just
1823 * in case we get disconnected and then reconnected into a different
1824 * hub or switch with different Flow Control capabilities.
1825 */
1826 if (hw->mac_type == e1000_82542_rev2_0)
1827 hw->fc &= (~e1000_fc_tx_pause);
1828
1829 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1830 hw->fc &= (~e1000_fc_rx_pause);
1831
1832 hw->original_fc = hw->fc;
1833
1834 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1835
1836 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1837 * polarity value for the SW controlled pins, and setup the
1838 * Extended Device Control reg with that info.
1839 * This is needed because one of the SW controlled pins is used for
1840 * signal detection. So this should be done before e1000_setup_pcs_link()
1841 * or e1000_phy_setup() is called.
1842 */
1843 if (hw->mac_type == e1000_82543) {
1844 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1845 SWDPIO__EXT_SHIFT);
1846 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1847 }
1848
1849 /* Call the necessary subroutine to configure the link. */
1850 ret_val = (hw->media_type == e1000_media_type_fiber) ?
1851 e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1852 if (ret_val < 0) {
1853 return ret_val;
1854 }
1855
1856 /* Initialize the flow control address, type, and PAUSE timer
1857 * registers to their default values. This is done even if flow
1858 * control is disabled, because it does not hurt anything to
1859 * initialize these registers.
1860 */
Roy Zang28f7a052009-07-31 13:34:02 +08001861 DEBUGOUT("Initializing the Flow Control address, type"
1862 "and timer regs\n");
1863
1864 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1865 if (hw->mac_type != e1000_ich8lan) {
1866 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1867 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1868 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1869 }
wdenk4e112c12003-06-03 23:54:09 +00001870
wdenk4e112c12003-06-03 23:54:09 +00001871 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1872
1873 /* Set the flow control receive threshold registers. Normally,
1874 * these registers will be set to a default threshold that may be
1875 * adjusted later by the driver's runtime code. However, if the
1876 * ability to transmit pause frames in not enabled, then these
wdenk57b2d802003-06-27 21:31:46 +00001877 * registers will be set to 0.
wdenk4e112c12003-06-03 23:54:09 +00001878 */
1879 if (!(hw->fc & e1000_fc_tx_pause)) {
1880 E1000_WRITE_REG(hw, FCRTL, 0);
1881 E1000_WRITE_REG(hw, FCRTH, 0);
1882 } else {
1883 /* We need to set up the Receive Threshold high and low water marks
1884 * as well as (optionally) enabling the transmission of XON frames.
1885 */
1886 if (hw->fc_send_xon) {
1887 E1000_WRITE_REG(hw, FCRTL,
1888 (hw->fc_low_water | E1000_FCRTL_XONE));
1889 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1890 } else {
1891 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1892 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1893 }
1894 }
1895 return ret_val;
1896}
1897
1898/******************************************************************************
1899 * Sets up link for a fiber based adapter
1900 *
1901 * hw - Struct containing variables accessed by shared code
1902 *
1903 * Manipulates Physical Coding Sublayer functions in order to configure
1904 * link. Assumes the hardware has been previously reset and the transmitter
1905 * and receiver are not enabled.
1906 *****************************************************************************/
1907static int
1908e1000_setup_fiber_link(struct eth_device *nic)
1909{
1910 struct e1000_hw *hw = nic->priv;
1911 uint32_t ctrl;
1912 uint32_t status;
1913 uint32_t txcw = 0;
1914 uint32_t i;
1915 uint32_t signal;
1916 int32_t ret_val;
1917
1918 DEBUGFUNC();
wdenk57b2d802003-06-27 21:31:46 +00001919 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1920 * set when the optics detect a signal. On older adapters, it will be
wdenk4e112c12003-06-03 23:54:09 +00001921 * cleared when there is a signal
1922 */
1923 ctrl = E1000_READ_REG(hw, CTRL);
1924 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1925 signal = E1000_CTRL_SWDPIN1;
1926 else
1927 signal = 0;
1928
1929 printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1930 ctrl);
1931 /* Take the link out of reset */
1932 ctrl &= ~(E1000_CTRL_LRST);
1933
1934 e1000_config_collision_dist(hw);
1935
1936 /* Check for a software override of the flow control settings, and setup
1937 * the device accordingly. If auto-negotiation is enabled, then software
1938 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1939 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
wdenk57b2d802003-06-27 21:31:46 +00001940 * auto-negotiation is disabled, then software will have to manually
wdenk4e112c12003-06-03 23:54:09 +00001941 * configure the two flow control enable bits in the CTRL register.
1942 *
1943 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07001944 * 0: Flow control is completely disabled
1945 * 1: Rx flow control is enabled (we can receive pause frames, but
1946 * not send pause frames).
1947 * 2: Tx flow control is enabled (we can send pause frames but we do
1948 * not support receiving pause frames).
1949 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk4e112c12003-06-03 23:54:09 +00001950 */
1951 switch (hw->fc) {
1952 case e1000_fc_none:
1953 /* Flow control is completely disabled by a software over-ride. */
1954 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1955 break;
1956 case e1000_fc_rx_pause:
wdenk57b2d802003-06-27 21:31:46 +00001957 /* RX Flow control is enabled and TX Flow control is disabled by a
1958 * software over-ride. Since there really isn't a way to advertise
wdenk4e112c12003-06-03 23:54:09 +00001959 * that we are capable of RX Pause ONLY, we will advertise that we
1960 * support both symmetric and asymmetric RX PAUSE. Later, we will
1961 * disable the adapter's ability to send PAUSE frames.
1962 */
1963 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1964 break;
1965 case e1000_fc_tx_pause:
wdenk57b2d802003-06-27 21:31:46 +00001966 /* TX Flow control is enabled, and RX Flow control is disabled, by a
wdenk4e112c12003-06-03 23:54:09 +00001967 * software over-ride.
1968 */
1969 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1970 break;
1971 case e1000_fc_full:
1972 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1973 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1974 break;
1975 default:
1976 DEBUGOUT("Flow control param set incorrectly\n");
1977 return -E1000_ERR_CONFIG;
1978 break;
1979 }
1980
1981 /* Since auto-negotiation is enabled, take the link out of reset (the link
1982 * will be in reset, because we previously reset the chip). This will
1983 * restart auto-negotiation. If auto-neogtiation is successful then the
1984 * link-up status bit will be set and the flow control enable bits (RFCE
1985 * and TFCE) will be set according to their negotiated value.
1986 */
1987 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
1988
1989 E1000_WRITE_REG(hw, TXCW, txcw);
1990 E1000_WRITE_REG(hw, CTRL, ctrl);
1991 E1000_WRITE_FLUSH(hw);
1992
1993 hw->txcw = txcw;
1994 mdelay(1);
1995
1996 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
wdenk57b2d802003-06-27 21:31:46 +00001997 * indication in the Device Status Register. Time-out if a link isn't
1998 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
wdenk4e112c12003-06-03 23:54:09 +00001999 * less than 500 milliseconds even if the other end is doing it in SW).
2000 */
2001 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2002 DEBUGOUT("Looking for Link\n");
2003 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2004 mdelay(10);
2005 status = E1000_READ_REG(hw, STATUS);
2006 if (status & E1000_STATUS_LU)
2007 break;
2008 }
2009 if (i == (LINK_UP_TIMEOUT / 10)) {
wdenk57b2d802003-06-27 21:31:46 +00002010 /* AutoNeg failed to achieve a link, so we'll call
wdenk4e112c12003-06-03 23:54:09 +00002011 * e1000_check_for_link. This routine will force the link up if we
2012 * detect a signal. This will allow us to communicate with
2013 * non-autonegotiating link partners.
2014 */
2015 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2016 hw->autoneg_failed = 1;
2017 ret_val = e1000_check_for_link(nic);
2018 if (ret_val < 0) {
2019 DEBUGOUT("Error while checking for link\n");
2020 return ret_val;
2021 }
2022 hw->autoneg_failed = 0;
2023 } else {
2024 hw->autoneg_failed = 0;
2025 DEBUGOUT("Valid Link Found\n");
2026 }
2027 } else {
2028 DEBUGOUT("No Signal Detected\n");
2029 return -E1000_ERR_NOLINK;
2030 }
2031 return 0;
2032}
2033
2034/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +08002035* Make sure we have a valid PHY and change PHY mode before link setup.
wdenk4e112c12003-06-03 23:54:09 +00002036*
2037* hw - Struct containing variables accessed by shared code
2038******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08002039static int32_t
2040e1000_copper_link_preconfig(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00002041{
wdenk4e112c12003-06-03 23:54:09 +00002042 uint32_t ctrl;
2043 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002044 uint16_t phy_data;
2045
2046 DEBUGFUNC();
2047
2048 ctrl = E1000_READ_REG(hw, CTRL);
2049 /* With 82543, we need to force speed and duplex on the MAC equal to what
2050 * the PHY speed and duplex configuration is. In addition, we need to
2051 * perform a hardware reset on the PHY to take it out of reset.
2052 */
2053 if (hw->mac_type > e1000_82543) {
2054 ctrl |= E1000_CTRL_SLU;
2055 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2056 E1000_WRITE_REG(hw, CTRL, ctrl);
2057 } else {
Roy Zang28f7a052009-07-31 13:34:02 +08002058 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2059 | E1000_CTRL_SLU);
wdenk4e112c12003-06-03 23:54:09 +00002060 E1000_WRITE_REG(hw, CTRL, ctrl);
Roy Zang28f7a052009-07-31 13:34:02 +08002061 ret_val = e1000_phy_hw_reset(hw);
2062 if (ret_val)
2063 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002064 }
2065
2066 /* Make sure we have a valid PHY */
2067 ret_val = e1000_detect_gig_phy(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002068 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002069 DEBUGOUT("Error, did not detect valid phy.\n");
2070 return ret_val;
2071 }
2072 DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2073
Roy Zang28f7a052009-07-31 13:34:02 +08002074 /* Set PHY to class A mode (if necessary) */
2075 ret_val = e1000_set_phy_mode(hw);
2076 if (ret_val)
2077 return ret_val;
Roy Zang28f7a052009-07-31 13:34:02 +08002078 if ((hw->mac_type == e1000_82545_rev_3) ||
2079 (hw->mac_type == e1000_82546_rev_3)) {
2080 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2081 &phy_data);
2082 phy_data |= 0x00000008;
2083 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2084 phy_data);
2085 }
2086
2087 if (hw->mac_type <= e1000_82543 ||
2088 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2089 hw->mac_type == e1000_82541_rev_2
2090 || hw->mac_type == e1000_82547_rev_2)
2091 hw->phy_reset_disable = FALSE;
2092
2093 return E1000_SUCCESS;
2094}
2095
2096/*****************************************************************************
2097 *
2098 * This function sets the lplu state according to the active flag. When
2099 * activating lplu this function also disables smart speed and vise versa.
2100 * lplu will not be activated unless the device autonegotiation advertisment
2101 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2102 * hw: Struct containing variables accessed by shared code
2103 * active - true to enable lplu false to disable lplu.
2104 *
2105 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2106 * E1000_SUCCESS at any other case.
2107 *
2108 ****************************************************************************/
2109
2110static int32_t
2111e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active)
2112{
2113 uint32_t phy_ctrl = 0;
2114 int32_t ret_val;
2115 uint16_t phy_data;
2116 DEBUGFUNC();
2117
2118 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2119 && hw->phy_type != e1000_phy_igp_3)
2120 return E1000_SUCCESS;
2121
2122 /* During driver activity LPLU should not be used or it will attain link
2123 * from the lowest speeds starting from 10Mbps. The capability is used
2124 * for Dx transitions and states */
2125 if (hw->mac_type == e1000_82541_rev_2
2126 || hw->mac_type == e1000_82547_rev_2) {
2127 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2128 &phy_data);
2129 if (ret_val)
2130 return ret_val;
2131 } else if (hw->mac_type == e1000_ich8lan) {
2132 /* MAC writes into PHY register based on the state transition
2133 * and start auto-negotiation. SW driver can overwrite the
2134 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2135 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2136 } else {
2137 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2138 &phy_data);
2139 if (ret_val)
2140 return ret_val;
2141 }
2142
2143 if (!active) {
2144 if (hw->mac_type == e1000_82541_rev_2 ||
2145 hw->mac_type == e1000_82547_rev_2) {
2146 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2147 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2148 phy_data);
2149 if (ret_val)
2150 return ret_val;
2151 } else {
2152 if (hw->mac_type == e1000_ich8lan) {
2153 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2154 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2155 } else {
2156 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2157 ret_val = e1000_write_phy_reg(hw,
2158 IGP02E1000_PHY_POWER_MGMT, phy_data);
2159 if (ret_val)
2160 return ret_val;
2161 }
2162 }
2163
2164 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2165 * Dx states where the power conservation is most important. During
2166 * driver activity we should enable SmartSpeed, so performance is
2167 * maintained. */
2168 if (hw->smart_speed == e1000_smart_speed_on) {
2169 ret_val = e1000_read_phy_reg(hw,
2170 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2171 if (ret_val)
2172 return ret_val;
2173
2174 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2175 ret_val = e1000_write_phy_reg(hw,
2176 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2177 if (ret_val)
2178 return ret_val;
2179 } else if (hw->smart_speed == e1000_smart_speed_off) {
2180 ret_val = e1000_read_phy_reg(hw,
2181 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2182 if (ret_val)
2183 return ret_val;
2184
2185 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2186 ret_val = e1000_write_phy_reg(hw,
2187 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2188 if (ret_val)
2189 return ret_val;
2190 }
2191
2192 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2193 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2194 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2195
2196 if (hw->mac_type == e1000_82541_rev_2 ||
2197 hw->mac_type == e1000_82547_rev_2) {
2198 phy_data |= IGP01E1000_GMII_FLEX_SPD;
2199 ret_val = e1000_write_phy_reg(hw,
2200 IGP01E1000_GMII_FIFO, phy_data);
2201 if (ret_val)
2202 return ret_val;
2203 } else {
2204 if (hw->mac_type == e1000_ich8lan) {
2205 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2206 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2207 } else {
2208 phy_data |= IGP02E1000_PM_D3_LPLU;
2209 ret_val = e1000_write_phy_reg(hw,
2210 IGP02E1000_PHY_POWER_MGMT, phy_data);
2211 if (ret_val)
2212 return ret_val;
2213 }
2214 }
2215
2216 /* When LPLU is enabled we should disable SmartSpeed */
2217 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2218 &phy_data);
2219 if (ret_val)
2220 return ret_val;
2221
2222 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2223 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2224 phy_data);
2225 if (ret_val)
2226 return ret_val;
2227 }
2228 return E1000_SUCCESS;
2229}
2230
2231/*****************************************************************************
2232 *
2233 * This function sets the lplu d0 state according to the active flag. When
2234 * activating lplu this function also disables smart speed and vise versa.
2235 * lplu will not be activated unless the device autonegotiation advertisment
2236 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2237 * hw: Struct containing variables accessed by shared code
2238 * active - true to enable lplu false to disable lplu.
2239 *
2240 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2241 * E1000_SUCCESS at any other case.
2242 *
2243 ****************************************************************************/
2244
2245static int32_t
2246e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active)
2247{
2248 uint32_t phy_ctrl = 0;
2249 int32_t ret_val;
2250 uint16_t phy_data;
2251 DEBUGFUNC();
2252
2253 if (hw->mac_type <= e1000_82547_rev_2)
2254 return E1000_SUCCESS;
2255
2256 if (hw->mac_type == e1000_ich8lan) {
2257 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2258 } else {
2259 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2260 &phy_data);
2261 if (ret_val)
2262 return ret_val;
2263 }
2264
2265 if (!active) {
2266 if (hw->mac_type == e1000_ich8lan) {
2267 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2268 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2269 } else {
2270 phy_data &= ~IGP02E1000_PM_D0_LPLU;
2271 ret_val = e1000_write_phy_reg(hw,
2272 IGP02E1000_PHY_POWER_MGMT, phy_data);
2273 if (ret_val)
2274 return ret_val;
2275 }
2276
2277 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2278 * Dx states where the power conservation is most important. During
2279 * driver activity we should enable SmartSpeed, so performance is
2280 * maintained. */
2281 if (hw->smart_speed == e1000_smart_speed_on) {
2282 ret_val = e1000_read_phy_reg(hw,
2283 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2284 if (ret_val)
2285 return ret_val;
2286
2287 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2288 ret_val = e1000_write_phy_reg(hw,
2289 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2290 if (ret_val)
2291 return ret_val;
2292 } else if (hw->smart_speed == e1000_smart_speed_off) {
2293 ret_val = e1000_read_phy_reg(hw,
2294 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2295 if (ret_val)
2296 return ret_val;
2297
2298 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2299 ret_val = e1000_write_phy_reg(hw,
2300 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2301 if (ret_val)
2302 return ret_val;
2303 }
2304
2305
2306 } else {
2307
2308 if (hw->mac_type == e1000_ich8lan) {
2309 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2310 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2311 } else {
2312 phy_data |= IGP02E1000_PM_D0_LPLU;
2313 ret_val = e1000_write_phy_reg(hw,
2314 IGP02E1000_PHY_POWER_MGMT, phy_data);
2315 if (ret_val)
2316 return ret_val;
2317 }
2318
2319 /* When LPLU is enabled we should disable SmartSpeed */
2320 ret_val = e1000_read_phy_reg(hw,
2321 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2322 if (ret_val)
2323 return ret_val;
2324
2325 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2326 ret_val = e1000_write_phy_reg(hw,
2327 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2328 if (ret_val)
2329 return ret_val;
2330
2331 }
2332 return E1000_SUCCESS;
2333}
2334
2335/********************************************************************
2336* Copper link setup for e1000_phy_igp series.
2337*
2338* hw - Struct containing variables accessed by shared code
2339*********************************************************************/
2340static int32_t
2341e1000_copper_link_igp_setup(struct e1000_hw *hw)
2342{
2343 uint32_t led_ctrl;
2344 int32_t ret_val;
2345 uint16_t phy_data;
2346
Timur Tabiedc45b52009-08-17 15:55:38 -05002347 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +08002348
2349 if (hw->phy_reset_disable)
2350 return E1000_SUCCESS;
2351
2352 ret_val = e1000_phy_reset(hw);
2353 if (ret_val) {
2354 DEBUGOUT("Error Resetting the PHY\n");
2355 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002356 }
Roy Zang28f7a052009-07-31 13:34:02 +08002357
2358 /* Wait 15ms for MAC to configure PHY from eeprom settings */
2359 mdelay(15);
2360 if (hw->mac_type != e1000_ich8lan) {
2361 /* Configure activity LED after PHY reset */
2362 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2363 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2364 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2365 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2366 }
2367
2368 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2369 if (hw->phy_type == e1000_phy_igp) {
2370 /* disable lplu d3 during driver init */
2371 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
2372 if (ret_val) {
2373 DEBUGOUT("Error Disabling LPLU D3\n");
2374 return ret_val;
2375 }
2376 }
2377
2378 /* disable lplu d0 during driver init */
2379 ret_val = e1000_set_d0_lplu_state(hw, FALSE);
2380 if (ret_val) {
2381 DEBUGOUT("Error Disabling LPLU D0\n");
2382 return ret_val;
2383 }
2384 /* Configure mdi-mdix settings */
2385 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2386 if (ret_val)
2387 return ret_val;
2388
2389 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2390 hw->dsp_config_state = e1000_dsp_config_disabled;
2391 /* Force MDI for earlier revs of the IGP PHY */
2392 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2393 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2394 hw->mdix = 1;
2395
2396 } else {
2397 hw->dsp_config_state = e1000_dsp_config_enabled;
2398 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2399
2400 switch (hw->mdix) {
2401 case 1:
2402 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2403 break;
2404 case 2:
2405 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2406 break;
2407 case 0:
2408 default:
2409 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2410 break;
2411 }
2412 }
2413 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2414 if (ret_val)
2415 return ret_val;
2416
2417 /* set auto-master slave resolution settings */
2418 if (hw->autoneg) {
2419 e1000_ms_type phy_ms_setting = hw->master_slave;
2420
2421 if (hw->ffe_config_state == e1000_ffe_config_active)
2422 hw->ffe_config_state = e1000_ffe_config_enabled;
2423
2424 if (hw->dsp_config_state == e1000_dsp_config_activated)
2425 hw->dsp_config_state = e1000_dsp_config_enabled;
2426
2427 /* when autonegotiation advertisment is only 1000Mbps then we
2428 * should disable SmartSpeed and enable Auto MasterSlave
2429 * resolution as hardware default. */
2430 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2431 /* Disable SmartSpeed */
2432 ret_val = e1000_read_phy_reg(hw,
2433 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2434 if (ret_val)
2435 return ret_val;
2436 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2437 ret_val = e1000_write_phy_reg(hw,
2438 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2439 if (ret_val)
2440 return ret_val;
2441 /* Set auto Master/Slave resolution process */
2442 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2443 &phy_data);
2444 if (ret_val)
2445 return ret_val;
2446 phy_data &= ~CR_1000T_MS_ENABLE;
2447 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2448 phy_data);
2449 if (ret_val)
2450 return ret_val;
2451 }
2452
2453 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2454 if (ret_val)
2455 return ret_val;
2456
2457 /* load defaults for future use */
2458 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2459 ((phy_data & CR_1000T_MS_VALUE) ?
2460 e1000_ms_force_master :
2461 e1000_ms_force_slave) :
2462 e1000_ms_auto;
2463
2464 switch (phy_ms_setting) {
2465 case e1000_ms_force_master:
2466 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2467 break;
2468 case e1000_ms_force_slave:
2469 phy_data |= CR_1000T_MS_ENABLE;
2470 phy_data &= ~(CR_1000T_MS_VALUE);
2471 break;
2472 case e1000_ms_auto:
2473 phy_data &= ~CR_1000T_MS_ENABLE;
2474 default:
2475 break;
2476 }
2477 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2478 if (ret_val)
2479 return ret_val;
2480 }
2481
2482 return E1000_SUCCESS;
2483}
2484
2485/*****************************************************************************
2486 * This function checks the mode of the firmware.
2487 *
2488 * returns - TRUE when the mode is IAMT or FALSE.
2489 ****************************************************************************/
2490boolean_t
2491e1000_check_mng_mode(struct e1000_hw *hw)
2492{
2493 uint32_t fwsm;
2494 DEBUGFUNC();
2495
2496 fwsm = E1000_READ_REG(hw, FWSM);
2497
2498 if (hw->mac_type == e1000_ich8lan) {
2499 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2500 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2501 return TRUE;
2502 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2503 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2504 return TRUE;
2505
2506 return FALSE;
2507}
2508
2509static int32_t
2510e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2511{
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002512 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zang28f7a052009-07-31 13:34:02 +08002513 uint32_t reg_val;
Roy Zang28f7a052009-07-31 13:34:02 +08002514 DEBUGFUNC();
2515
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002516 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08002517 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002518
Roy Zang28f7a052009-07-31 13:34:02 +08002519 if (e1000_swfw_sync_acquire(hw, swfw))
2520 return -E1000_ERR_SWFW_SYNC;
2521
2522 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2523 & E1000_KUMCTRLSTA_OFFSET) | data;
2524 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2525 udelay(2);
2526
2527 return E1000_SUCCESS;
2528}
2529
2530static int32_t
2531e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2532{
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002533 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zang28f7a052009-07-31 13:34:02 +08002534 uint32_t reg_val;
Roy Zang28f7a052009-07-31 13:34:02 +08002535 DEBUGFUNC();
2536
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002537 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08002538 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002539
Roy Zang28f7a052009-07-31 13:34:02 +08002540 if (e1000_swfw_sync_acquire(hw, swfw))
2541 return -E1000_ERR_SWFW_SYNC;
2542
2543 /* Write register address */
2544 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2545 E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2546 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2547 udelay(2);
2548
2549 /* Read the data returned */
2550 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2551 *data = (uint16_t)reg_val;
2552
2553 return E1000_SUCCESS;
2554}
2555
2556/********************************************************************
2557* Copper link setup for e1000_phy_gg82563 series.
2558*
2559* hw - Struct containing variables accessed by shared code
2560*********************************************************************/
2561static int32_t
2562e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2563{
2564 int32_t ret_val;
2565 uint16_t phy_data;
2566 uint32_t reg_data;
2567
2568 DEBUGFUNC();
2569
2570 if (!hw->phy_reset_disable) {
2571 /* Enable CRS on TX for half-duplex operation. */
2572 ret_val = e1000_read_phy_reg(hw,
2573 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2574 if (ret_val)
2575 return ret_val;
2576
2577 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2578 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2579 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2580
2581 ret_val = e1000_write_phy_reg(hw,
2582 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2583 if (ret_val)
2584 return ret_val;
2585
2586 /* Options:
2587 * MDI/MDI-X = 0 (default)
2588 * 0 - Auto for all speeds
2589 * 1 - MDI mode
2590 * 2 - MDI-X mode
2591 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2592 */
2593 ret_val = e1000_read_phy_reg(hw,
2594 GG82563_PHY_SPEC_CTRL, &phy_data);
2595 if (ret_val)
2596 return ret_val;
2597
2598 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2599
2600 switch (hw->mdix) {
2601 case 1:
2602 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2603 break;
2604 case 2:
2605 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2606 break;
2607 case 0:
2608 default:
2609 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2610 break;
2611 }
2612
2613 /* Options:
2614 * disable_polarity_correction = 0 (default)
2615 * Automatic Correction for Reversed Cable Polarity
2616 * 0 - Disabled
2617 * 1 - Enabled
2618 */
2619 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2620 ret_val = e1000_write_phy_reg(hw,
2621 GG82563_PHY_SPEC_CTRL, phy_data);
2622
2623 if (ret_val)
2624 return ret_val;
2625
2626 /* SW Reset the PHY so all changes take effect */
2627 ret_val = e1000_phy_reset(hw);
2628 if (ret_val) {
2629 DEBUGOUT("Error Resetting the PHY\n");
2630 return ret_val;
2631 }
2632 } /* phy_reset_disable */
2633
2634 if (hw->mac_type == e1000_80003es2lan) {
2635 /* Bypass RX and TX FIFO's */
2636 ret_val = e1000_write_kmrn_reg(hw,
2637 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2638 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2639 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2640 if (ret_val)
2641 return ret_val;
2642
2643 ret_val = e1000_read_phy_reg(hw,
2644 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2645 if (ret_val)
2646 return ret_val;
2647
2648 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2649 ret_val = e1000_write_phy_reg(hw,
2650 GG82563_PHY_SPEC_CTRL_2, phy_data);
2651
2652 if (ret_val)
2653 return ret_val;
2654
2655 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2656 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2657 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2658
2659 ret_val = e1000_read_phy_reg(hw,
2660 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2661 if (ret_val)
2662 return ret_val;
2663
2664 /* Do not init these registers when the HW is in IAMT mode, since the
2665 * firmware will have already initialized them. We only initialize
2666 * them if the HW is not in IAMT mode.
2667 */
2668 if (e1000_check_mng_mode(hw) == FALSE) {
2669 /* Enable Electrical Idle on the PHY */
2670 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2671 ret_val = e1000_write_phy_reg(hw,
2672 GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2673 if (ret_val)
2674 return ret_val;
2675
2676 ret_val = e1000_read_phy_reg(hw,
2677 GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2678 if (ret_val)
2679 return ret_val;
2680
2681 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2682 ret_val = e1000_write_phy_reg(hw,
2683 GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2684
2685 if (ret_val)
2686 return ret_val;
2687 }
2688
2689 /* Workaround: Disable padding in Kumeran interface in the MAC
2690 * and in the PHY to avoid CRC errors.
2691 */
2692 ret_val = e1000_read_phy_reg(hw,
2693 GG82563_PHY_INBAND_CTRL, &phy_data);
2694 if (ret_val)
2695 return ret_val;
2696 phy_data |= GG82563_ICR_DIS_PADDING;
2697 ret_val = e1000_write_phy_reg(hw,
2698 GG82563_PHY_INBAND_CTRL, phy_data);
2699 if (ret_val)
2700 return ret_val;
2701 }
2702 return E1000_SUCCESS;
2703}
2704
2705/********************************************************************
2706* Copper link setup for e1000_phy_m88 series.
2707*
2708* hw - Struct containing variables accessed by shared code
2709*********************************************************************/
2710static int32_t
2711e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2712{
2713 int32_t ret_val;
2714 uint16_t phy_data;
2715
2716 DEBUGFUNC();
2717
2718 if (hw->phy_reset_disable)
2719 return E1000_SUCCESS;
2720
2721 /* Enable CRS on TX. This must be set for half-duplex operation. */
2722 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2723 if (ret_val)
2724 return ret_val;
2725
wdenk4e112c12003-06-03 23:54:09 +00002726 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2727
wdenk4e112c12003-06-03 23:54:09 +00002728 /* Options:
2729 * MDI/MDI-X = 0 (default)
2730 * 0 - Auto for all speeds
2731 * 1 - MDI mode
2732 * 2 - MDI-X mode
2733 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2734 */
2735 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
Roy Zang28f7a052009-07-31 13:34:02 +08002736
wdenk4e112c12003-06-03 23:54:09 +00002737 switch (hw->mdix) {
2738 case 1:
2739 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2740 break;
2741 case 2:
2742 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2743 break;
2744 case 3:
2745 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2746 break;
2747 case 0:
2748 default:
2749 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2750 break;
2751 }
wdenk4e112c12003-06-03 23:54:09 +00002752
wdenk4e112c12003-06-03 23:54:09 +00002753 /* Options:
2754 * disable_polarity_correction = 0 (default)
Roy Zang28f7a052009-07-31 13:34:02 +08002755 * Automatic Correction for Reversed Cable Polarity
wdenk4e112c12003-06-03 23:54:09 +00002756 * 0 - Disabled
2757 * 1 - Enabled
2758 */
2759 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
Roy Zang28f7a052009-07-31 13:34:02 +08002760 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2761 if (ret_val)
2762 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002763
Roy Zang28f7a052009-07-31 13:34:02 +08002764 if (hw->phy_revision < M88E1011_I_REV_4) {
2765 /* Force TX_CLK in the Extended PHY Specific Control Register
2766 * to 25MHz clock.
2767 */
2768 ret_val = e1000_read_phy_reg(hw,
2769 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2770 if (ret_val)
2771 return ret_val;
2772
2773 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2774
2775 if ((hw->phy_revision == E1000_REVISION_2) &&
2776 (hw->phy_id == M88E1111_I_PHY_ID)) {
2777 /* Vidalia Phy, set the downshift counter to 5x */
2778 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2779 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2780 ret_val = e1000_write_phy_reg(hw,
2781 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2782 if (ret_val)
2783 return ret_val;
2784 } else {
2785 /* Configure Master and Slave downshift values */
2786 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2787 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2788 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2789 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2790 ret_val = e1000_write_phy_reg(hw,
2791 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2792 if (ret_val)
2793 return ret_val;
2794 }
wdenk4e112c12003-06-03 23:54:09 +00002795 }
2796
2797 /* SW Reset the PHY so all changes take effect */
2798 ret_val = e1000_phy_reset(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002799 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002800 DEBUGOUT("Error Resetting the PHY\n");
2801 return ret_val;
2802 }
2803
Roy Zang28f7a052009-07-31 13:34:02 +08002804 return E1000_SUCCESS;
2805}
wdenk4e112c12003-06-03 23:54:09 +00002806
Roy Zang28f7a052009-07-31 13:34:02 +08002807/********************************************************************
2808* Setup auto-negotiation and flow control advertisements,
2809* and then perform auto-negotiation.
2810*
2811* hw - Struct containing variables accessed by shared code
2812*********************************************************************/
2813static int32_t
2814e1000_copper_link_autoneg(struct e1000_hw *hw)
2815{
2816 int32_t ret_val;
2817 uint16_t phy_data;
2818
2819 DEBUGFUNC();
2820
wdenk4e112c12003-06-03 23:54:09 +00002821 /* Perform some bounds checking on the hw->autoneg_advertised
2822 * parameter. If this variable is zero, then set it to the default.
2823 */
2824 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2825
2826 /* If autoneg_advertised is zero, we assume it was not defaulted
2827 * by the calling code so we set to advertise full capability.
2828 */
2829 if (hw->autoneg_advertised == 0)
2830 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2831
Roy Zang28f7a052009-07-31 13:34:02 +08002832 /* IFE phy only supports 10/100 */
2833 if (hw->phy_type == e1000_phy_ife)
2834 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2835
wdenk4e112c12003-06-03 23:54:09 +00002836 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2837 ret_val = e1000_phy_setup_autoneg(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002838 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002839 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2840 return ret_val;
2841 }
2842 DEBUGOUT("Restarting Auto-Neg\n");
2843
2844 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2845 * the Auto Neg Restart bit in the PHY control register.
2846 */
Roy Zang28f7a052009-07-31 13:34:02 +08002847 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2848 if (ret_val)
2849 return ret_val;
2850
wdenk4e112c12003-06-03 23:54:09 +00002851 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
Roy Zang28f7a052009-07-31 13:34:02 +08002852 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2853 if (ret_val)
2854 return ret_val;
2855
wdenk4e112c12003-06-03 23:54:09 +00002856 /* Does the user want to wait for Auto-Neg to complete here, or
2857 * check at a later time (for example, callback routine).
2858 */
Roy Zang28f7a052009-07-31 13:34:02 +08002859 /* If we do not wait for autonegtation to complete I
2860 * do not see a valid link status.
2861 * wait_autoneg_complete = 1 .
2862 */
wdenk4e112c12003-06-03 23:54:09 +00002863 if (hw->wait_autoneg_complete) {
2864 ret_val = e1000_wait_autoneg(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002865 if (ret_val) {
2866 DEBUGOUT("Error while waiting for autoneg"
2867 "to complete\n");
wdenk4e112c12003-06-03 23:54:09 +00002868 return ret_val;
2869 }
2870 }
Roy Zang28f7a052009-07-31 13:34:02 +08002871
2872 hw->get_link_status = TRUE;
2873
2874 return E1000_SUCCESS;
2875}
2876
2877/******************************************************************************
2878* Config the MAC and the PHY after link is up.
2879* 1) Set up the MAC to the current PHY speed/duplex
2880* if we are on 82543. If we
2881* are on newer silicon, we only need to configure
2882* collision distance in the Transmit Control Register.
2883* 2) Set up flow control on the MAC to that established with
2884* the link partner.
2885* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
2886*
2887* hw - Struct containing variables accessed by shared code
2888******************************************************************************/
2889static int32_t
2890e1000_copper_link_postconfig(struct e1000_hw *hw)
2891{
2892 int32_t ret_val;
2893 DEBUGFUNC();
2894
2895 if (hw->mac_type >= e1000_82544) {
2896 e1000_config_collision_dist(hw);
2897 } else {
2898 ret_val = e1000_config_mac_to_phy(hw);
2899 if (ret_val) {
2900 DEBUGOUT("Error configuring MAC to PHY settings\n");
2901 return ret_val;
2902 }
2903 }
2904 ret_val = e1000_config_fc_after_link_up(hw);
2905 if (ret_val) {
2906 DEBUGOUT("Error Configuring Flow Control\n");
wdenk4e112c12003-06-03 23:54:09 +00002907 return ret_val;
2908 }
Roy Zang28f7a052009-07-31 13:34:02 +08002909 return E1000_SUCCESS;
2910}
2911
2912/******************************************************************************
2913* Detects which PHY is present and setup the speed and duplex
2914*
2915* hw - Struct containing variables accessed by shared code
2916******************************************************************************/
2917static int
2918e1000_setup_copper_link(struct eth_device *nic)
2919{
2920 struct e1000_hw *hw = nic->priv;
2921 int32_t ret_val;
2922 uint16_t i;
2923 uint16_t phy_data;
2924 uint16_t reg_data;
2925
2926 DEBUGFUNC();
2927
2928 switch (hw->mac_type) {
2929 case e1000_80003es2lan:
2930 case e1000_ich8lan:
2931 /* Set the mac to wait the maximum time between each
2932 * iteration and increase the max iterations when
2933 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2934 ret_val = e1000_write_kmrn_reg(hw,
2935 GG82563_REG(0x34, 4), 0xFFFF);
2936 if (ret_val)
2937 return ret_val;
2938 ret_val = e1000_read_kmrn_reg(hw,
2939 GG82563_REG(0x34, 9), &reg_data);
2940 if (ret_val)
2941 return ret_val;
2942 reg_data |= 0x3F;
2943 ret_val = e1000_write_kmrn_reg(hw,
2944 GG82563_REG(0x34, 9), reg_data);
2945 if (ret_val)
2946 return ret_val;
2947 default:
2948 break;
2949 }
2950
2951 /* Check if it is a valid PHY and set PHY mode if necessary. */
2952 ret_val = e1000_copper_link_preconfig(hw);
2953 if (ret_val)
2954 return ret_val;
2955 switch (hw->mac_type) {
2956 case e1000_80003es2lan:
2957 /* Kumeran registers are written-only */
2958 reg_data =
2959 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
2960 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
2961 ret_val = e1000_write_kmrn_reg(hw,
2962 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
2963 if (ret_val)
2964 return ret_val;
2965 break;
2966 default:
2967 break;
2968 }
2969
2970 if (hw->phy_type == e1000_phy_igp ||
2971 hw->phy_type == e1000_phy_igp_3 ||
2972 hw->phy_type == e1000_phy_igp_2) {
2973 ret_val = e1000_copper_link_igp_setup(hw);
2974 if (ret_val)
2975 return ret_val;
2976 } else if (hw->phy_type == e1000_phy_m88) {
2977 ret_val = e1000_copper_link_mgp_setup(hw);
2978 if (ret_val)
2979 return ret_val;
2980 } else if (hw->phy_type == e1000_phy_gg82563) {
2981 ret_val = e1000_copper_link_ggp_setup(hw);
2982 if (ret_val)
2983 return ret_val;
2984 }
2985
2986 /* always auto */
2987 /* Setup autoneg and flow control advertisement
2988 * and perform autonegotiation */
2989 ret_val = e1000_copper_link_autoneg(hw);
2990 if (ret_val)
2991 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002992
2993 /* Check link status. Wait up to 100 microseconds for link to become
2994 * valid.
2995 */
2996 for (i = 0; i < 10; i++) {
Roy Zang28f7a052009-07-31 13:34:02 +08002997 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2998 if (ret_val)
2999 return ret_val;
3000 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3001 if (ret_val)
3002 return ret_val;
3003
wdenk4e112c12003-06-03 23:54:09 +00003004 if (phy_data & MII_SR_LINK_STATUS) {
Roy Zang28f7a052009-07-31 13:34:02 +08003005 /* Config the MAC and PHY after link is up */
3006 ret_val = e1000_copper_link_postconfig(hw);
3007 if (ret_val)
wdenk4e112c12003-06-03 23:54:09 +00003008 return ret_val;
Roy Zang28f7a052009-07-31 13:34:02 +08003009
wdenk4e112c12003-06-03 23:54:09 +00003010 DEBUGOUT("Valid link established!!!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08003011 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003012 }
3013 udelay(10);
3014 }
3015
3016 DEBUGOUT("Unable to establish link!!!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08003017 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003018}
3019
3020/******************************************************************************
3021* Configures PHY autoneg and flow control advertisement settings
3022*
3023* hw - Struct containing variables accessed by shared code
3024******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003025int32_t
wdenk4e112c12003-06-03 23:54:09 +00003026e1000_phy_setup_autoneg(struct e1000_hw *hw)
3027{
Roy Zang28f7a052009-07-31 13:34:02 +08003028 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003029 uint16_t mii_autoneg_adv_reg;
3030 uint16_t mii_1000t_ctrl_reg;
3031
3032 DEBUGFUNC();
3033
3034 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
Roy Zang28f7a052009-07-31 13:34:02 +08003035 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3036 if (ret_val)
3037 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003038
Roy Zang28f7a052009-07-31 13:34:02 +08003039 if (hw->phy_type != e1000_phy_ife) {
3040 /* Read the MII 1000Base-T Control Register (Address 9). */
3041 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3042 &mii_1000t_ctrl_reg);
3043 if (ret_val)
3044 return ret_val;
3045 } else
3046 mii_1000t_ctrl_reg = 0;
wdenk4e112c12003-06-03 23:54:09 +00003047
3048 /* Need to parse both autoneg_advertised and fc and set up
3049 * the appropriate PHY registers. First we will parse for
3050 * autoneg_advertised software override. Since we can advertise
3051 * a plethora of combinations, we need to check each bit
3052 * individually.
3053 */
3054
3055 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3056 * Advertisement Register (Address 4) and the 1000 mb speed bits in
Roy Zang28f7a052009-07-31 13:34:02 +08003057 * the 1000Base-T Control Register (Address 9).
wdenk4e112c12003-06-03 23:54:09 +00003058 */
3059 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3060 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3061
3062 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3063
3064 /* Do we want to advertise 10 Mb Half Duplex? */
3065 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3066 DEBUGOUT("Advertise 10mb Half duplex\n");
3067 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3068 }
3069
3070 /* Do we want to advertise 10 Mb Full Duplex? */
3071 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3072 DEBUGOUT("Advertise 10mb Full duplex\n");
3073 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3074 }
3075
3076 /* Do we want to advertise 100 Mb Half Duplex? */
3077 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3078 DEBUGOUT("Advertise 100mb Half duplex\n");
3079 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3080 }
3081
3082 /* Do we want to advertise 100 Mb Full Duplex? */
3083 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3084 DEBUGOUT("Advertise 100mb Full duplex\n");
3085 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3086 }
3087
3088 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3089 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3090 DEBUGOUT
3091 ("Advertise 1000mb Half duplex requested, request denied!\n");
3092 }
3093
3094 /* Do we want to advertise 1000 Mb Full Duplex? */
3095 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3096 DEBUGOUT("Advertise 1000mb Full duplex\n");
3097 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3098 }
3099
3100 /* Check for a software override of the flow control settings, and
3101 * setup the PHY advertisement registers accordingly. If
3102 * auto-negotiation is enabled, then software will have to set the
3103 * "PAUSE" bits to the correct value in the Auto-Negotiation
3104 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3105 *
3106 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003107 * 0: Flow control is completely disabled
3108 * 1: Rx flow control is enabled (we can receive pause frames
3109 * but not send pause frames).
3110 * 2: Tx flow control is enabled (we can send pause frames
3111 * but we do not support receiving pause frames).
3112 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk4e112c12003-06-03 23:54:09 +00003113 * other: No software override. The flow control configuration
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003114 * in the EEPROM is used.
wdenk4e112c12003-06-03 23:54:09 +00003115 */
3116 switch (hw->fc) {
3117 case e1000_fc_none: /* 0 */
3118 /* Flow control (RX & TX) is completely disabled by a
3119 * software over-ride.
3120 */
3121 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3122 break;
3123 case e1000_fc_rx_pause: /* 1 */
3124 /* RX Flow control is enabled, and TX Flow control is
3125 * disabled, by a software over-ride.
3126 */
3127 /* Since there really isn't a way to advertise that we are
3128 * capable of RX Pause ONLY, we will advertise that we
3129 * support both symmetric and asymmetric RX PAUSE. Later
3130 * (in e1000_config_fc_after_link_up) we will disable the
3131 *hw's ability to send PAUSE frames.
3132 */
3133 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3134 break;
3135 case e1000_fc_tx_pause: /* 2 */
3136 /* TX Flow control is enabled, and RX Flow control is
3137 * disabled, by a software over-ride.
3138 */
3139 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3140 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3141 break;
3142 case e1000_fc_full: /* 3 */
3143 /* Flow control (both RX and TX) is enabled by a software
3144 * over-ride.
3145 */
3146 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3147 break;
3148 default:
3149 DEBUGOUT("Flow control param set incorrectly\n");
3150 return -E1000_ERR_CONFIG;
3151 }
3152
Roy Zang28f7a052009-07-31 13:34:02 +08003153 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3154 if (ret_val)
3155 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003156
3157 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3158
Roy Zang28f7a052009-07-31 13:34:02 +08003159 if (hw->phy_type != e1000_phy_ife) {
3160 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3161 mii_1000t_ctrl_reg);
3162 if (ret_val)
3163 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003164 }
Roy Zang28f7a052009-07-31 13:34:02 +08003165
3166 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003167}
3168
3169/******************************************************************************
3170* Sets the collision distance in the Transmit Control register
3171*
3172* hw - Struct containing variables accessed by shared code
3173*
3174* Link should have been established previously. Reads the speed and duplex
3175* information from the Device Status register.
3176******************************************************************************/
3177static void
3178e1000_config_collision_dist(struct e1000_hw *hw)
3179{
Roy Zang28f7a052009-07-31 13:34:02 +08003180 uint32_t tctl, coll_dist;
3181
3182 DEBUGFUNC();
3183
3184 if (hw->mac_type < e1000_82543)
3185 coll_dist = E1000_COLLISION_DISTANCE_82542;
3186 else
3187 coll_dist = E1000_COLLISION_DISTANCE;
wdenk4e112c12003-06-03 23:54:09 +00003188
3189 tctl = E1000_READ_REG(hw, TCTL);
3190
3191 tctl &= ~E1000_TCTL_COLD;
Roy Zang28f7a052009-07-31 13:34:02 +08003192 tctl |= coll_dist << E1000_COLD_SHIFT;
wdenk4e112c12003-06-03 23:54:09 +00003193
3194 E1000_WRITE_REG(hw, TCTL, tctl);
3195 E1000_WRITE_FLUSH(hw);
3196}
3197
3198/******************************************************************************
3199* Sets MAC speed and duplex settings to reflect the those in the PHY
3200*
3201* hw - Struct containing variables accessed by shared code
3202* mii_reg - data to write to the MII control register
3203*
3204* The contents of the PHY register containing the needed information need to
3205* be passed in.
3206******************************************************************************/
3207static int
3208e1000_config_mac_to_phy(struct e1000_hw *hw)
3209{
3210 uint32_t ctrl;
3211 uint16_t phy_data;
3212
3213 DEBUGFUNC();
3214
3215 /* Read the Device Control Register and set the bits to Force Speed
3216 * and Duplex.
3217 */
3218 ctrl = E1000_READ_REG(hw, CTRL);
3219 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3220 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3221
3222 /* Set up duplex in the Device Control and Transmit Control
3223 * registers depending on negotiated values.
3224 */
3225 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3226 DEBUGOUT("PHY Read Error\n");
3227 return -E1000_ERR_PHY;
3228 }
3229 if (phy_data & M88E1000_PSSR_DPLX)
3230 ctrl |= E1000_CTRL_FD;
3231 else
3232 ctrl &= ~E1000_CTRL_FD;
3233
3234 e1000_config_collision_dist(hw);
3235
3236 /* Set up speed in the Device Control register depending on
3237 * negotiated values.
3238 */
3239 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3240 ctrl |= E1000_CTRL_SPD_1000;
3241 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3242 ctrl |= E1000_CTRL_SPD_100;
3243 /* Write the configured values back to the Device Control Reg. */
3244 E1000_WRITE_REG(hw, CTRL, ctrl);
3245 return 0;
3246}
3247
3248/******************************************************************************
3249 * Forces the MAC's flow control settings.
wdenk57b2d802003-06-27 21:31:46 +00003250 *
wdenk4e112c12003-06-03 23:54:09 +00003251 * hw - Struct containing variables accessed by shared code
3252 *
3253 * Sets the TFCE and RFCE bits in the device control register to reflect
3254 * the adapter settings. TFCE and RFCE need to be explicitly set by
3255 * software when a Copper PHY is used because autonegotiation is managed
3256 * by the PHY rather than the MAC. Software must also configure these
3257 * bits when link is forced on a fiber connection.
3258 *****************************************************************************/
3259static int
3260e1000_force_mac_fc(struct e1000_hw *hw)
3261{
3262 uint32_t ctrl;
3263
3264 DEBUGFUNC();
3265
3266 /* Get the current configuration of the Device Control Register */
3267 ctrl = E1000_READ_REG(hw, CTRL);
3268
3269 /* Because we didn't get link via the internal auto-negotiation
3270 * mechanism (we either forced link or we got link via PHY
3271 * auto-neg), we have to manually enable/disable transmit an
3272 * receive flow control.
3273 *
3274 * The "Case" statement below enables/disable flow control
3275 * according to the "hw->fc" parameter.
3276 *
3277 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003278 * 0: Flow control is completely disabled
3279 * 1: Rx flow control is enabled (we can receive pause
3280 * frames but not send pause frames).
3281 * 2: Tx flow control is enabled (we can send pause frames
3282 * frames but we do not receive pause frames).
3283 * 3: Both Rx and TX flow control (symmetric) is enabled.
wdenk4e112c12003-06-03 23:54:09 +00003284 * other: No other values should be possible at this point.
3285 */
3286
3287 switch (hw->fc) {
3288 case e1000_fc_none:
3289 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3290 break;
3291 case e1000_fc_rx_pause:
3292 ctrl &= (~E1000_CTRL_TFCE);
3293 ctrl |= E1000_CTRL_RFCE;
3294 break;
3295 case e1000_fc_tx_pause:
3296 ctrl &= (~E1000_CTRL_RFCE);
3297 ctrl |= E1000_CTRL_TFCE;
3298 break;
3299 case e1000_fc_full:
3300 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3301 break;
3302 default:
3303 DEBUGOUT("Flow control param set incorrectly\n");
3304 return -E1000_ERR_CONFIG;
3305 }
3306
3307 /* Disable TX Flow Control for 82542 (rev 2.0) */
3308 if (hw->mac_type == e1000_82542_rev2_0)
3309 ctrl &= (~E1000_CTRL_TFCE);
3310
3311 E1000_WRITE_REG(hw, CTRL, ctrl);
3312 return 0;
3313}
3314
3315/******************************************************************************
3316 * Configures flow control settings after link is established
wdenk57b2d802003-06-27 21:31:46 +00003317 *
wdenk4e112c12003-06-03 23:54:09 +00003318 * hw - Struct containing variables accessed by shared code
3319 *
3320 * Should be called immediately after a valid link has been established.
3321 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3322 * and autonegotiation is enabled, the MAC flow control settings will be set
3323 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3324 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3325 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003326static int32_t
wdenk4e112c12003-06-03 23:54:09 +00003327e1000_config_fc_after_link_up(struct e1000_hw *hw)
3328{
3329 int32_t ret_val;
3330 uint16_t mii_status_reg;
3331 uint16_t mii_nway_adv_reg;
3332 uint16_t mii_nway_lp_ability_reg;
3333 uint16_t speed;
3334 uint16_t duplex;
3335
3336 DEBUGFUNC();
3337
3338 /* Check for the case where we have fiber media and auto-neg failed
3339 * so we had to force link. In this case, we need to force the
3340 * configuration of the MAC to match the "fc" parameter.
3341 */
Roy Zang28f7a052009-07-31 13:34:02 +08003342 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3343 || ((hw->media_type == e1000_media_type_internal_serdes)
3344 && (hw->autoneg_failed))
3345 || ((hw->media_type == e1000_media_type_copper)
3346 && (!hw->autoneg))) {
wdenk4e112c12003-06-03 23:54:09 +00003347 ret_val = e1000_force_mac_fc(hw);
3348 if (ret_val < 0) {
3349 DEBUGOUT("Error forcing flow control settings\n");
3350 return ret_val;
3351 }
3352 }
3353
3354 /* Check for the case where we have copper media and auto-neg is
3355 * enabled. In this case, we need to check and see if Auto-Neg
3356 * has completed, and if so, how the PHY and link partner has
3357 * flow control configured.
3358 */
3359 if (hw->media_type == e1000_media_type_copper) {
3360 /* Read the MII Status Register and check to see if AutoNeg
3361 * has completed. We read this twice because this reg has
3362 * some "sticky" (latched) bits.
3363 */
3364 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3365 DEBUGOUT("PHY Read Error \n");
3366 return -E1000_ERR_PHY;
3367 }
3368 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3369 DEBUGOUT("PHY Read Error \n");
3370 return -E1000_ERR_PHY;
3371 }
3372
3373 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3374 /* The AutoNeg process has completed, so we now need to
3375 * read both the Auto Negotiation Advertisement Register
3376 * (Address 4) and the Auto_Negotiation Base Page Ability
3377 * Register (Address 5) to determine how flow control was
3378 * negotiated.
3379 */
3380 if (e1000_read_phy_reg
3381 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3382 DEBUGOUT("PHY Read Error\n");
3383 return -E1000_ERR_PHY;
3384 }
3385 if (e1000_read_phy_reg
3386 (hw, PHY_LP_ABILITY,
3387 &mii_nway_lp_ability_reg) < 0) {
3388 DEBUGOUT("PHY Read Error\n");
3389 return -E1000_ERR_PHY;
3390 }
3391
3392 /* Two bits in the Auto Negotiation Advertisement Register
3393 * (Address 4) and two bits in the Auto Negotiation Base
3394 * Page Ability Register (Address 5) determine flow control
3395 * for both the PHY and the link partner. The following
3396 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3397 * 1999, describes these PAUSE resolution bits and how flow
3398 * control is determined based upon these settings.
3399 * NOTE: DC = Don't Care
3400 *
3401 * LOCAL DEVICE | LINK PARTNER
3402 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3403 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003404 * 0 | 0 | DC | DC | e1000_fc_none
3405 * 0 | 1 | 0 | DC | e1000_fc_none
3406 * 0 | 1 | 1 | 0 | e1000_fc_none
3407 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3408 * 1 | 0 | 0 | DC | e1000_fc_none
3409 * 1 | DC | 1 | DC | e1000_fc_full
3410 * 1 | 1 | 0 | 0 | e1000_fc_none
3411 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk4e112c12003-06-03 23:54:09 +00003412 *
3413 */
3414 /* Are both PAUSE bits set to 1? If so, this implies
3415 * Symmetric Flow Control is enabled at both ends. The
3416 * ASM_DIR bits are irrelevant per the spec.
3417 *
3418 * For Symmetric Flow Control:
3419 *
3420 * LOCAL DEVICE | LINK PARTNER
3421 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3422 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003423 * 1 | DC | 1 | DC | e1000_fc_full
wdenk4e112c12003-06-03 23:54:09 +00003424 *
3425 */
3426 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3427 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3428 /* Now we need to check if the user selected RX ONLY
3429 * of pause frames. In this case, we had to advertise
3430 * FULL flow control because we could not advertise RX
3431 * ONLY. Hence, we must now check to see if we need to
3432 * turn OFF the TRANSMISSION of PAUSE frames.
3433 */
3434 if (hw->original_fc == e1000_fc_full) {
3435 hw->fc = e1000_fc_full;
3436 DEBUGOUT("Flow Control = FULL.\r\n");
3437 } else {
3438 hw->fc = e1000_fc_rx_pause;
3439 DEBUGOUT
3440 ("Flow Control = RX PAUSE frames only.\r\n");
3441 }
3442 }
3443 /* For receiving PAUSE frames ONLY.
3444 *
3445 * LOCAL DEVICE | LINK PARTNER
3446 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3447 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003448 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
wdenk4e112c12003-06-03 23:54:09 +00003449 *
3450 */
3451 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3452 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3453 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3454 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3455 {
3456 hw->fc = e1000_fc_tx_pause;
3457 DEBUGOUT
3458 ("Flow Control = TX PAUSE frames only.\r\n");
3459 }
3460 /* For transmitting PAUSE frames ONLY.
3461 *
3462 * LOCAL DEVICE | LINK PARTNER
3463 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3464 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003465 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk4e112c12003-06-03 23:54:09 +00003466 *
3467 */
3468 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3469 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3470 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3471 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3472 {
3473 hw->fc = e1000_fc_rx_pause;
3474 DEBUGOUT
3475 ("Flow Control = RX PAUSE frames only.\r\n");
3476 }
3477 /* Per the IEEE spec, at this point flow control should be
3478 * disabled. However, we want to consider that we could
3479 * be connected to a legacy switch that doesn't advertise
3480 * desired flow control, but can be forced on the link
3481 * partner. So if we advertised no flow control, that is
3482 * what we will resolve to. If we advertised some kind of
3483 * receive capability (Rx Pause Only or Full Flow Control)
3484 * and the link partner advertised none, we will configure
3485 * ourselves to enable Rx Flow Control only. We can do
3486 * this safely for two reasons: If the link partner really
3487 * didn't want flow control enabled, and we enable Rx, no
3488 * harm done since we won't be receiving any PAUSE frames
3489 * anyway. If the intent on the link partner was to have
3490 * flow control enabled, then by us enabling RX only, we
3491 * can at least receive pause frames and process them.
3492 * This is a good idea because in most cases, since we are
3493 * predominantly a server NIC, more times than not we will
3494 * be asked to delay transmission of packets than asking
3495 * our link partner to pause transmission of frames.
3496 */
3497 else if (hw->original_fc == e1000_fc_none ||
3498 hw->original_fc == e1000_fc_tx_pause) {
3499 hw->fc = e1000_fc_none;
3500 DEBUGOUT("Flow Control = NONE.\r\n");
3501 } else {
3502 hw->fc = e1000_fc_rx_pause;
3503 DEBUGOUT
3504 ("Flow Control = RX PAUSE frames only.\r\n");
3505 }
3506
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003507 /* Now we need to do one last check... If we auto-
wdenk4e112c12003-06-03 23:54:09 +00003508 * negotiated to HALF DUPLEX, flow control should not be
3509 * enabled per IEEE 802.3 spec.
3510 */
3511 e1000_get_speed_and_duplex(hw, &speed, &duplex);
3512
3513 if (duplex == HALF_DUPLEX)
3514 hw->fc = e1000_fc_none;
3515
3516 /* Now we call a subroutine to actually force the MAC
3517 * controller to use the correct flow control settings.
3518 */
3519 ret_val = e1000_force_mac_fc(hw);
3520 if (ret_val < 0) {
3521 DEBUGOUT
3522 ("Error forcing flow control settings\n");
3523 return ret_val;
3524 }
3525 } else {
3526 DEBUGOUT
3527 ("Copper PHY and Auto Neg has not completed.\r\n");
3528 }
3529 }
Roy Zang28f7a052009-07-31 13:34:02 +08003530 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003531}
3532
3533/******************************************************************************
3534 * Checks to see if the link status of the hardware has changed.
3535 *
3536 * hw - Struct containing variables accessed by shared code
3537 *
3538 * Called by any function that needs to check the link status of the adapter.
3539 *****************************************************************************/
3540static int
3541e1000_check_for_link(struct eth_device *nic)
3542{
3543 struct e1000_hw *hw = nic->priv;
3544 uint32_t rxcw;
3545 uint32_t ctrl;
3546 uint32_t status;
3547 uint32_t rctl;
3548 uint32_t signal;
3549 int32_t ret_val;
3550 uint16_t phy_data;
3551 uint16_t lp_capability;
3552
3553 DEBUGFUNC();
3554
wdenk57b2d802003-06-27 21:31:46 +00003555 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3556 * set when the optics detect a signal. On older adapters, it will be
wdenk4e112c12003-06-03 23:54:09 +00003557 * cleared when there is a signal
3558 */
3559 ctrl = E1000_READ_REG(hw, CTRL);
3560 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3561 signal = E1000_CTRL_SWDPIN1;
3562 else
3563 signal = 0;
3564
3565 status = E1000_READ_REG(hw, STATUS);
3566 rxcw = E1000_READ_REG(hw, RXCW);
3567 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3568
3569 /* If we have a copper PHY then we only want to go out to the PHY
3570 * registers to see if Auto-Neg has completed and/or if our link
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003571 * status has changed. The get_link_status flag will be set if we
wdenk4e112c12003-06-03 23:54:09 +00003572 * receive a Link Status Change interrupt or we have Rx Sequence
3573 * Errors.
3574 */
3575 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3576 /* First we want to see if the MII Status Register reports
3577 * link. If so, then we want to get the current speed/duplex
3578 * of the PHY.
3579 * Read the register twice since the link bit is sticky.
3580 */
3581 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3582 DEBUGOUT("PHY Read Error\n");
3583 return -E1000_ERR_PHY;
3584 }
3585 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3586 DEBUGOUT("PHY Read Error\n");
3587 return -E1000_ERR_PHY;
3588 }
3589
3590 if (phy_data & MII_SR_LINK_STATUS) {
3591 hw->get_link_status = FALSE;
3592 } else {
3593 /* No link detected */
3594 return -E1000_ERR_NOLINK;
3595 }
3596
3597 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
3598 * have Si on board that is 82544 or newer, Auto
3599 * Speed Detection takes care of MAC speed/duplex
3600 * configuration. So we only need to configure Collision
3601 * Distance in the MAC. Otherwise, we need to force
3602 * speed/duplex on the MAC to the current PHY speed/duplex
3603 * settings.
3604 */
3605 if (hw->mac_type >= e1000_82544)
3606 e1000_config_collision_dist(hw);
3607 else {
3608 ret_val = e1000_config_mac_to_phy(hw);
3609 if (ret_val < 0) {
3610 DEBUGOUT
3611 ("Error configuring MAC to PHY settings\n");
3612 return ret_val;
3613 }
3614 }
3615
wdenk57b2d802003-06-27 21:31:46 +00003616 /* Configure Flow Control now that Auto-Neg has completed. First, we
wdenk4e112c12003-06-03 23:54:09 +00003617 * need to restore the desired flow control settings because we may
3618 * have had to re-autoneg with a different link partner.
3619 */
3620 ret_val = e1000_config_fc_after_link_up(hw);
3621 if (ret_val < 0) {
3622 DEBUGOUT("Error configuring flow control\n");
3623 return ret_val;
3624 }
3625
3626 /* At this point we know that we are on copper and we have
3627 * auto-negotiated link. These are conditions for checking the link
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003628 * parter capability register. We use the link partner capability to
wdenk4e112c12003-06-03 23:54:09 +00003629 * determine if TBI Compatibility needs to be turned on or off. If
3630 * the link partner advertises any speed in addition to Gigabit, then
3631 * we assume that they are GMII-based, and TBI compatibility is not
3632 * needed. If no other speeds are advertised, we assume the link
3633 * partner is TBI-based, and we turn on TBI Compatibility.
3634 */
3635 if (hw->tbi_compatibility_en) {
3636 if (e1000_read_phy_reg
3637 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3638 DEBUGOUT("PHY Read Error\n");
3639 return -E1000_ERR_PHY;
3640 }
3641 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3642 NWAY_LPAR_10T_FD_CAPS |
3643 NWAY_LPAR_100TX_HD_CAPS |
3644 NWAY_LPAR_100TX_FD_CAPS |
3645 NWAY_LPAR_100T4_CAPS)) {
wdenk57b2d802003-06-27 21:31:46 +00003646 /* If our link partner advertises anything in addition to
wdenk4e112c12003-06-03 23:54:09 +00003647 * gigabit, we do not need to enable TBI compatibility.
3648 */
3649 if (hw->tbi_compatibility_on) {
3650 /* If we previously were in the mode, turn it off. */
3651 rctl = E1000_READ_REG(hw, RCTL);
3652 rctl &= ~E1000_RCTL_SBP;
3653 E1000_WRITE_REG(hw, RCTL, rctl);
3654 hw->tbi_compatibility_on = FALSE;
3655 }
3656 } else {
3657 /* If TBI compatibility is was previously off, turn it on. For
3658 * compatibility with a TBI link partner, we will store bad
3659 * packets. Some frames have an additional byte on the end and
3660 * will look like CRC errors to to the hardware.
3661 */
3662 if (!hw->tbi_compatibility_on) {
3663 hw->tbi_compatibility_on = TRUE;
3664 rctl = E1000_READ_REG(hw, RCTL);
3665 rctl |= E1000_RCTL_SBP;
3666 E1000_WRITE_REG(hw, RCTL, rctl);
3667 }
3668 }
3669 }
3670 }
3671 /* If we don't have link (auto-negotiation failed or link partner cannot
3672 * auto-negotiate), the cable is plugged in (we have signal), and our
3673 * link partner is not trying to auto-negotiate with us (we are receiving
3674 * idles or data), we need to force link up. We also need to give
3675 * auto-negotiation time to complete, in case the cable was just plugged
3676 * in. The autoneg_failed flag does this.
3677 */
3678 else if ((hw->media_type == e1000_media_type_fiber) &&
3679 (!(status & E1000_STATUS_LU)) &&
3680 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3681 (!(rxcw & E1000_RXCW_C))) {
3682 if (hw->autoneg_failed == 0) {
3683 hw->autoneg_failed = 1;
3684 return 0;
3685 }
3686 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3687
3688 /* Disable auto-negotiation in the TXCW register */
3689 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3690
3691 /* Force link-up and also force full-duplex. */
3692 ctrl = E1000_READ_REG(hw, CTRL);
3693 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3694 E1000_WRITE_REG(hw, CTRL, ctrl);
3695
3696 /* Configure Flow Control after forcing link up. */
3697 ret_val = e1000_config_fc_after_link_up(hw);
3698 if (ret_val < 0) {
3699 DEBUGOUT("Error configuring flow control\n");
3700 return ret_val;
3701 }
3702 }
3703 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3704 * auto-negotiation in the TXCW register and disable forced link in the
3705 * Device Control register in an attempt to auto-negotiate with our link
3706 * partner.
3707 */
3708 else if ((hw->media_type == e1000_media_type_fiber) &&
3709 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3710 DEBUGOUT
3711 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3712 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3713 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3714 }
3715 return 0;
3716}
3717
3718/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +08003719* Configure the MAC-to-PHY interface for 10/100Mbps
3720*
3721* hw - Struct containing variables accessed by shared code
3722******************************************************************************/
3723static int32_t
3724e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3725{
3726 int32_t ret_val = E1000_SUCCESS;
3727 uint32_t tipg;
3728 uint16_t reg_data;
3729
3730 DEBUGFUNC();
3731
3732 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3733 ret_val = e1000_write_kmrn_reg(hw,
3734 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3735 if (ret_val)
3736 return ret_val;
3737
3738 /* Configure Transmit Inter-Packet Gap */
3739 tipg = E1000_READ_REG(hw, TIPG);
3740 tipg &= ~E1000_TIPG_IPGT_MASK;
3741 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3742 E1000_WRITE_REG(hw, TIPG, tipg);
3743
3744 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3745
3746 if (ret_val)
3747 return ret_val;
3748
3749 if (duplex == HALF_DUPLEX)
3750 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3751 else
3752 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3753
3754 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3755
3756 return ret_val;
3757}
3758
3759static int32_t
3760e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3761{
3762 int32_t ret_val = E1000_SUCCESS;
3763 uint16_t reg_data;
3764 uint32_t tipg;
3765
3766 DEBUGFUNC();
3767
3768 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3769 ret_val = e1000_write_kmrn_reg(hw,
3770 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3771 if (ret_val)
3772 return ret_val;
3773
3774 /* Configure Transmit Inter-Packet Gap */
3775 tipg = E1000_READ_REG(hw, TIPG);
3776 tipg &= ~E1000_TIPG_IPGT_MASK;
3777 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3778 E1000_WRITE_REG(hw, TIPG, tipg);
3779
3780 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3781
3782 if (ret_val)
3783 return ret_val;
3784
3785 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3786 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3787
3788 return ret_val;
3789}
3790
3791/******************************************************************************
wdenk4e112c12003-06-03 23:54:09 +00003792 * Detects the current speed and duplex settings of the hardware.
3793 *
3794 * hw - Struct containing variables accessed by shared code
3795 * speed - Speed of the connection
3796 * duplex - Duplex setting of the connection
3797 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003798static int
3799e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3800 uint16_t *duplex)
wdenk4e112c12003-06-03 23:54:09 +00003801{
3802 uint32_t status;
Roy Zang28f7a052009-07-31 13:34:02 +08003803 int32_t ret_val;
3804 uint16_t phy_data;
wdenk4e112c12003-06-03 23:54:09 +00003805
3806 DEBUGFUNC();
3807
3808 if (hw->mac_type >= e1000_82543) {
3809 status = E1000_READ_REG(hw, STATUS);
3810 if (status & E1000_STATUS_SPEED_1000) {
3811 *speed = SPEED_1000;
3812 DEBUGOUT("1000 Mbs, ");
3813 } else if (status & E1000_STATUS_SPEED_100) {
3814 *speed = SPEED_100;
3815 DEBUGOUT("100 Mbs, ");
3816 } else {
3817 *speed = SPEED_10;
3818 DEBUGOUT("10 Mbs, ");
3819 }
3820
3821 if (status & E1000_STATUS_FD) {
3822 *duplex = FULL_DUPLEX;
3823 DEBUGOUT("Full Duplex\r\n");
3824 } else {
3825 *duplex = HALF_DUPLEX;
3826 DEBUGOUT(" Half Duplex\r\n");
3827 }
3828 } else {
3829 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3830 *speed = SPEED_1000;
3831 *duplex = FULL_DUPLEX;
3832 }
Roy Zang28f7a052009-07-31 13:34:02 +08003833
3834 /* IGP01 PHY may advertise full duplex operation after speed downgrade
3835 * even if it is operating at half duplex. Here we set the duplex
3836 * settings to match the duplex in the link partner's capabilities.
3837 */
3838 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3839 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3840 if (ret_val)
3841 return ret_val;
3842
3843 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3844 *duplex = HALF_DUPLEX;
3845 else {
3846 ret_val = e1000_read_phy_reg(hw,
3847 PHY_LP_ABILITY, &phy_data);
3848 if (ret_val)
3849 return ret_val;
3850 if ((*speed == SPEED_100 &&
3851 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3852 || (*speed == SPEED_10
3853 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3854 *duplex = HALF_DUPLEX;
3855 }
3856 }
3857
3858 if ((hw->mac_type == e1000_80003es2lan) &&
3859 (hw->media_type == e1000_media_type_copper)) {
3860 if (*speed == SPEED_1000)
3861 ret_val = e1000_configure_kmrn_for_1000(hw);
3862 else
3863 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3864 if (ret_val)
3865 return ret_val;
3866 }
3867 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003868}
3869
3870/******************************************************************************
3871* Blocks until autoneg completes or times out (~4.5 seconds)
3872*
3873* hw - Struct containing variables accessed by shared code
3874******************************************************************************/
3875static int
3876e1000_wait_autoneg(struct e1000_hw *hw)
3877{
3878 uint16_t i;
3879 uint16_t phy_data;
3880
3881 DEBUGFUNC();
3882 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3883
3884 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3885 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3886 /* Read the MII Status Register and wait for Auto-Neg
3887 * Complete bit to be set.
3888 */
3889 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3890 DEBUGOUT("PHY Read Error\n");
3891 return -E1000_ERR_PHY;
3892 }
3893 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3894 DEBUGOUT("PHY Read Error\n");
3895 return -E1000_ERR_PHY;
3896 }
3897 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3898 DEBUGOUT("Auto-Neg complete.\n");
3899 return 0;
3900 }
3901 mdelay(100);
3902 }
3903 DEBUGOUT("Auto-Neg timedout.\n");
3904 return -E1000_ERR_TIMEOUT;
3905}
3906
3907/******************************************************************************
3908* Raises the Management Data Clock
3909*
3910* hw - Struct containing variables accessed by shared code
3911* ctrl - Device control register's current value
3912******************************************************************************/
3913static void
3914e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3915{
3916 /* Raise the clock input to the Management Data Clock (by setting the MDC
3917 * bit), and then delay 2 microseconds.
3918 */
3919 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3920 E1000_WRITE_FLUSH(hw);
3921 udelay(2);
3922}
3923
3924/******************************************************************************
3925* Lowers the Management Data Clock
3926*
3927* hw - Struct containing variables accessed by shared code
3928* ctrl - Device control register's current value
3929******************************************************************************/
3930static void
3931e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3932{
3933 /* Lower the clock input to the Management Data Clock (by clearing the MDC
3934 * bit), and then delay 2 microseconds.
3935 */
3936 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3937 E1000_WRITE_FLUSH(hw);
3938 udelay(2);
3939}
3940
3941/******************************************************************************
3942* Shifts data bits out to the PHY
3943*
3944* hw - Struct containing variables accessed by shared code
3945* data - Data to send out to the PHY
3946* count - Number of bits to shift out
3947*
3948* Bits are shifted out in MSB to LSB order.
3949******************************************************************************/
3950static void
3951e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3952{
3953 uint32_t ctrl;
3954 uint32_t mask;
3955
3956 /* We need to shift "count" number of bits out to the PHY. So, the value
wdenk57b2d802003-06-27 21:31:46 +00003957 * in the "data" parameter will be shifted out to the PHY one bit at a
wdenk4e112c12003-06-03 23:54:09 +00003958 * time. In order to do this, "data" must be broken down into bits.
3959 */
3960 mask = 0x01;
3961 mask <<= (count - 1);
3962
3963 ctrl = E1000_READ_REG(hw, CTRL);
3964
3965 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3966 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3967
3968 while (mask) {
3969 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3970 * then raising and lowering the Management Data Clock. A "0" is
3971 * shifted out to the PHY by setting the MDIO bit to "0" and then
3972 * raising and lowering the clock.
3973 */
3974 if (data & mask)
3975 ctrl |= E1000_CTRL_MDIO;
3976 else
3977 ctrl &= ~E1000_CTRL_MDIO;
3978
3979 E1000_WRITE_REG(hw, CTRL, ctrl);
3980 E1000_WRITE_FLUSH(hw);
3981
3982 udelay(2);
3983
3984 e1000_raise_mdi_clk(hw, &ctrl);
3985 e1000_lower_mdi_clk(hw, &ctrl);
3986
3987 mask = mask >> 1;
3988 }
3989}
3990
3991/******************************************************************************
3992* Shifts data bits in from the PHY
3993*
3994* hw - Struct containing variables accessed by shared code
3995*
wdenk57b2d802003-06-27 21:31:46 +00003996* Bits are shifted in in MSB to LSB order.
wdenk4e112c12003-06-03 23:54:09 +00003997******************************************************************************/
3998static uint16_t
3999e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4000{
4001 uint32_t ctrl;
4002 uint16_t data = 0;
4003 uint8_t i;
4004
4005 /* In order to read a register from the PHY, we need to shift in a total
4006 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4007 * to avoid contention on the MDIO pin when a read operation is performed.
4008 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4009 * by raising the input to the Management Data Clock (setting the MDC bit),
4010 * and then reading the value of the MDIO bit.
4011 */
4012 ctrl = E1000_READ_REG(hw, CTRL);
4013
4014 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4015 ctrl &= ~E1000_CTRL_MDIO_DIR;
4016 ctrl &= ~E1000_CTRL_MDIO;
4017
4018 E1000_WRITE_REG(hw, CTRL, ctrl);
4019 E1000_WRITE_FLUSH(hw);
4020
4021 /* Raise and Lower the clock before reading in the data. This accounts for
4022 * the turnaround bits. The first clock occurred when we clocked out the
4023 * last bit of the Register Address.
4024 */
4025 e1000_raise_mdi_clk(hw, &ctrl);
4026 e1000_lower_mdi_clk(hw, &ctrl);
4027
4028 for (data = 0, i = 0; i < 16; i++) {
4029 data = data << 1;
4030 e1000_raise_mdi_clk(hw, &ctrl);
4031 ctrl = E1000_READ_REG(hw, CTRL);
4032 /* Check to see if we shifted in a "1". */
4033 if (ctrl & E1000_CTRL_MDIO)
4034 data |= 1;
4035 e1000_lower_mdi_clk(hw, &ctrl);
4036 }
4037
4038 e1000_raise_mdi_clk(hw, &ctrl);
4039 e1000_lower_mdi_clk(hw, &ctrl);
4040
4041 return data;
4042}
4043
4044/*****************************************************************************
4045* Reads the value from a PHY register
4046*
4047* hw - Struct containing variables accessed by shared code
4048* reg_addr - address of the PHY register to read
4049******************************************************************************/
4050static int
4051e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4052{
4053 uint32_t i;
4054 uint32_t mdic = 0;
4055 const uint32_t phy_addr = 1;
4056
4057 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4058 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4059 return -E1000_ERR_PARAM;
4060 }
4061
4062 if (hw->mac_type > e1000_82543) {
4063 /* Set up Op-code, Phy Address, and register address in the MDI
4064 * Control register. The MAC will take care of interfacing with the
4065 * PHY to retrieve the desired data.
4066 */
4067 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4068 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4069 (E1000_MDIC_OP_READ));
4070
4071 E1000_WRITE_REG(hw, MDIC, mdic);
4072
4073 /* Poll the ready bit to see if the MDI read completed */
4074 for (i = 0; i < 64; i++) {
4075 udelay(10);
4076 mdic = E1000_READ_REG(hw, MDIC);
4077 if (mdic & E1000_MDIC_READY)
4078 break;
4079 }
4080 if (!(mdic & E1000_MDIC_READY)) {
4081 DEBUGOUT("MDI Read did not complete\n");
4082 return -E1000_ERR_PHY;
4083 }
4084 if (mdic & E1000_MDIC_ERROR) {
4085 DEBUGOUT("MDI Error\n");
4086 return -E1000_ERR_PHY;
4087 }
4088 *phy_data = (uint16_t) mdic;
4089 } else {
4090 /* We must first send a preamble through the MDIO pin to signal the
4091 * beginning of an MII instruction. This is done by sending 32
4092 * consecutive "1" bits.
4093 */
4094 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4095
4096 /* Now combine the next few fields that are required for a read
4097 * operation. We use this method instead of calling the
4098 * e1000_shift_out_mdi_bits routine five different times. The format of
4099 * a MII read instruction consists of a shift out of 14 bits and is
4100 * defined as follows:
4101 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4102 * followed by a shift in of 18 bits. This first two bits shifted in
4103 * are TurnAround bits used to avoid contention on the MDIO pin when a
4104 * READ operation is performed. These two bits are thrown away
4105 * followed by a shift in of 16 bits which contains the desired data.
4106 */
4107 mdic = ((reg_addr) | (phy_addr << 5) |
4108 (PHY_OP_READ << 10) | (PHY_SOF << 12));
4109
4110 e1000_shift_out_mdi_bits(hw, mdic, 14);
4111
4112 /* Now that we've shifted out the read command to the MII, we need to
4113 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4114 * register address.
4115 */
4116 *phy_data = e1000_shift_in_mdi_bits(hw);
4117 }
4118 return 0;
4119}
4120
4121/******************************************************************************
4122* Writes a value to a PHY register
4123*
4124* hw - Struct containing variables accessed by shared code
4125* reg_addr - address of the PHY register to write
4126* data - data to write to the PHY
4127******************************************************************************/
4128static int
4129e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4130{
4131 uint32_t i;
4132 uint32_t mdic = 0;
4133 const uint32_t phy_addr = 1;
4134
4135 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4136 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4137 return -E1000_ERR_PARAM;
4138 }
4139
4140 if (hw->mac_type > e1000_82543) {
4141 /* Set up Op-code, Phy Address, register address, and data intended
4142 * for the PHY register in the MDI Control register. The MAC will take
4143 * care of interfacing with the PHY to send the desired data.
4144 */
4145 mdic = (((uint32_t) phy_data) |
4146 (reg_addr << E1000_MDIC_REG_SHIFT) |
4147 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4148 (E1000_MDIC_OP_WRITE));
4149
4150 E1000_WRITE_REG(hw, MDIC, mdic);
4151
4152 /* Poll the ready bit to see if the MDI read completed */
4153 for (i = 0; i < 64; i++) {
4154 udelay(10);
4155 mdic = E1000_READ_REG(hw, MDIC);
4156 if (mdic & E1000_MDIC_READY)
4157 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004158 }
4159 if (!(mdic & E1000_MDIC_READY)) {
4160 DEBUGOUT("MDI Write did not complete\n");
4161 return -E1000_ERR_PHY;
4162 }
4163 } else {
4164 /* We'll need to use the SW defined pins to shift the write command
4165 * out to the PHY. We first send a preamble to the PHY to signal the
4166 * beginning of the MII instruction. This is done by sending 32
4167 * consecutive "1" bits.
4168 */
4169 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4170
4171 /* Now combine the remaining required fields that will indicate a
4172 * write operation. We use this method instead of calling the
4173 * e1000_shift_out_mdi_bits routine for each field in the command. The
4174 * format of a MII write instruction is as follows:
4175 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4176 */
4177 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4178 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4179 mdic <<= 16;
4180 mdic |= (uint32_t) phy_data;
4181
4182 e1000_shift_out_mdi_bits(hw, mdic, 32);
4183 }
4184 return 0;
4185}
4186
4187/******************************************************************************
4188 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4189 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
4190 * the caller to figure out how to deal with it.
4191 *
4192 * hw - Struct containing variables accessed by shared code
4193 *
4194 * returns: - E1000_BLK_PHY_RESET
4195 * E1000_SUCCESS
4196 *
4197 *****************************************************************************/
4198int32_t
4199e1000_check_phy_reset_block(struct e1000_hw *hw)
4200{
4201 uint32_t manc = 0;
4202 uint32_t fwsm = 0;
4203
4204 if (hw->mac_type == e1000_ich8lan) {
4205 fwsm = E1000_READ_REG(hw, FWSM);
4206 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4207 : E1000_BLK_PHY_RESET;
4208 }
4209
4210 if (hw->mac_type > e1000_82547_rev_2)
4211 manc = E1000_READ_REG(hw, MANC);
4212 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4213 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4214}
4215
4216/***************************************************************************
4217 * Checks if the PHY configuration is done
4218 *
4219 * hw: Struct containing variables accessed by shared code
4220 *
4221 * returns: - E1000_ERR_RESET if fail to reset MAC
4222 * E1000_SUCCESS at any other case.
4223 *
4224 ***************************************************************************/
4225static int32_t
4226e1000_get_phy_cfg_done(struct e1000_hw *hw)
4227{
4228 int32_t timeout = PHY_CFG_TIMEOUT;
4229 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4230
4231 DEBUGFUNC();
4232
4233 switch (hw->mac_type) {
4234 default:
4235 mdelay(10);
4236 break;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004237
Roy Zang28f7a052009-07-31 13:34:02 +08004238 case e1000_80003es2lan:
4239 /* Separate *_CFG_DONE_* bit for each port */
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004240 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08004241 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004242 /* Fall Through */
4243
Roy Zang28f7a052009-07-31 13:34:02 +08004244 case e1000_82571:
4245 case e1000_82572:
4246 while (timeout) {
4247 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4248 break;
4249 else
4250 mdelay(1);
4251 timeout--;
wdenk4e112c12003-06-03 23:54:09 +00004252 }
Roy Zang28f7a052009-07-31 13:34:02 +08004253 if (!timeout) {
4254 DEBUGOUT("MNG configuration cycle has not "
4255 "completed.\n");
4256 return -E1000_ERR_RESET;
wdenk4e112c12003-06-03 23:54:09 +00004257 }
Roy Zang28f7a052009-07-31 13:34:02 +08004258 break;
wdenk4e112c12003-06-03 23:54:09 +00004259 }
Roy Zang28f7a052009-07-31 13:34:02 +08004260
4261 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004262}
4263
4264/******************************************************************************
4265* Returns the PHY to the power-on reset state
4266*
4267* hw - Struct containing variables accessed by shared code
4268******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004269int32_t
wdenk4e112c12003-06-03 23:54:09 +00004270e1000_phy_hw_reset(struct e1000_hw *hw)
4271{
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004272 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zang28f7a052009-07-31 13:34:02 +08004273 uint32_t ctrl, ctrl_ext;
4274 uint32_t led_ctrl;
4275 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004276
4277 DEBUGFUNC();
4278
Roy Zang28f7a052009-07-31 13:34:02 +08004279 /* In the case of the phy reset being blocked, it's not an error, we
4280 * simply return success without performing the reset. */
4281 ret_val = e1000_check_phy_reset_block(hw);
4282 if (ret_val)
4283 return E1000_SUCCESS;
4284
wdenk4e112c12003-06-03 23:54:09 +00004285 DEBUGOUT("Resetting Phy...\n");
4286
4287 if (hw->mac_type > e1000_82543) {
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004288 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08004289 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004290
Roy Zang28f7a052009-07-31 13:34:02 +08004291 if (e1000_swfw_sync_acquire(hw, swfw)) {
4292 DEBUGOUT("Unable to acquire swfw sync\n");
4293 return -E1000_ERR_SWFW_SYNC;
4294 }
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004295
wdenk4e112c12003-06-03 23:54:09 +00004296 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4297 * bit. Then, take it out of reset.
4298 */
4299 ctrl = E1000_READ_REG(hw, CTRL);
4300 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4301 E1000_WRITE_FLUSH(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004302
4303 if (hw->mac_type < e1000_82571)
4304 udelay(10);
4305 else
4306 udelay(100);
4307
wdenk4e112c12003-06-03 23:54:09 +00004308 E1000_WRITE_REG(hw, CTRL, ctrl);
4309 E1000_WRITE_FLUSH(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004310
4311 if (hw->mac_type >= e1000_82571)
4312 mdelay(10);
4313
wdenk4e112c12003-06-03 23:54:09 +00004314 } else {
4315 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4316 * bit to put the PHY into reset. Then, take it out of reset.
4317 */
4318 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4319 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4320 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4321 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4322 E1000_WRITE_FLUSH(hw);
4323 mdelay(10);
4324 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4325 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4326 E1000_WRITE_FLUSH(hw);
4327 }
4328 udelay(150);
Roy Zang28f7a052009-07-31 13:34:02 +08004329
4330 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4331 /* Configure activity LED after PHY reset */
4332 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4333 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4334 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4335 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4336 }
4337
4338 /* Wait for FW to finish PHY configuration. */
4339 ret_val = e1000_get_phy_cfg_done(hw);
4340 if (ret_val != E1000_SUCCESS)
4341 return ret_val;
4342
4343 return ret_val;
4344}
4345
4346/******************************************************************************
4347 * IGP phy init script - initializes the GbE PHY
4348 *
4349 * hw - Struct containing variables accessed by shared code
4350 *****************************************************************************/
4351static void
4352e1000_phy_init_script(struct e1000_hw *hw)
4353{
4354 uint32_t ret_val;
4355 uint16_t phy_saved_data;
4356 DEBUGFUNC();
4357
4358 if (hw->phy_init_script) {
4359 mdelay(20);
4360
4361 /* Save off the current value of register 0x2F5B to be
4362 * restored at the end of this routine. */
4363 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4364
4365 /* Disabled the PHY transmitter */
4366 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4367
4368 mdelay(20);
4369
4370 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4371
4372 mdelay(5);
4373
4374 switch (hw->mac_type) {
4375 case e1000_82541:
4376 case e1000_82547:
4377 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4378
4379 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4380
4381 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4382
4383 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4384
4385 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4386
4387 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4388
4389 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4390
4391 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4392
4393 e1000_write_phy_reg(hw, 0x2010, 0x0008);
4394 break;
4395
4396 case e1000_82541_rev_2:
4397 case e1000_82547_rev_2:
4398 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4399 break;
4400 default:
4401 break;
4402 }
4403
4404 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4405
4406 mdelay(20);
4407
4408 /* Now enable the transmitter */
Zang Roy-R61911e36d67c2011-11-06 22:22:36 +00004409 if (!ret_val)
4410 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
Roy Zang28f7a052009-07-31 13:34:02 +08004411
4412 if (hw->mac_type == e1000_82547) {
4413 uint16_t fused, fine, coarse;
4414
4415 /* Move to analog registers page */
4416 e1000_read_phy_reg(hw,
4417 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4418
4419 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4420 e1000_read_phy_reg(hw,
4421 IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4422
4423 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4424 coarse = fused
4425 & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4426
4427 if (coarse >
4428 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4429 coarse -=
4430 IGP01E1000_ANALOG_FUSE_COARSE_10;
4431 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4432 } else if (coarse
4433 == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4434 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4435
4436 fused = (fused
4437 & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4438 (fine
4439 & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4440 (coarse
4441 & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4442
4443 e1000_write_phy_reg(hw,
4444 IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4445 e1000_write_phy_reg(hw,
4446 IGP01E1000_ANALOG_FUSE_BYPASS,
4447 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4448 }
4449 }
4450 }
wdenk4e112c12003-06-03 23:54:09 +00004451}
4452
4453/******************************************************************************
4454* Resets the PHY
4455*
4456* hw - Struct containing variables accessed by shared code
4457*
Roy Zang28f7a052009-07-31 13:34:02 +08004458* Sets bit 15 of the MII Control register
wdenk4e112c12003-06-03 23:54:09 +00004459******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004460int32_t
wdenk4e112c12003-06-03 23:54:09 +00004461e1000_phy_reset(struct e1000_hw *hw)
4462{
Roy Zang28f7a052009-07-31 13:34:02 +08004463 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004464 uint16_t phy_data;
4465
4466 DEBUGFUNC();
4467
Roy Zang28f7a052009-07-31 13:34:02 +08004468 /* In the case of the phy reset being blocked, it's not an error, we
4469 * simply return success without performing the reset. */
4470 ret_val = e1000_check_phy_reset_block(hw);
4471 if (ret_val)
4472 return E1000_SUCCESS;
4473
4474 switch (hw->phy_type) {
4475 case e1000_phy_igp:
4476 case e1000_phy_igp_2:
4477 case e1000_phy_igp_3:
4478 case e1000_phy_ife:
4479 ret_val = e1000_phy_hw_reset(hw);
4480 if (ret_val)
4481 return ret_val;
4482 break;
4483 default:
4484 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4485 if (ret_val)
4486 return ret_val;
4487
4488 phy_data |= MII_CR_RESET;
4489 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4490 if (ret_val)
4491 return ret_val;
4492
4493 udelay(1);
4494 break;
wdenk4e112c12003-06-03 23:54:09 +00004495 }
Roy Zang28f7a052009-07-31 13:34:02 +08004496
4497 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4498 e1000_phy_init_script(hw);
4499
4500 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004501}
4502
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004503static int e1000_set_phy_type (struct e1000_hw *hw)
Andre Schwarz68c2a302008-03-06 16:45:44 +01004504{
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004505 DEBUGFUNC ();
Andre Schwarz68c2a302008-03-06 16:45:44 +01004506
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004507 if (hw->mac_type == e1000_undefined)
4508 return -E1000_ERR_PHY_TYPE;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004509
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004510 switch (hw->phy_id) {
4511 case M88E1000_E_PHY_ID:
4512 case M88E1000_I_PHY_ID:
4513 case M88E1011_I_PHY_ID:
Roy Zang28f7a052009-07-31 13:34:02 +08004514 case M88E1111_I_PHY_ID:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004515 hw->phy_type = e1000_phy_m88;
4516 break;
4517 case IGP01E1000_I_PHY_ID:
4518 if (hw->mac_type == e1000_82541 ||
Roy Zang28f7a052009-07-31 13:34:02 +08004519 hw->mac_type == e1000_82541_rev_2 ||
4520 hw->mac_type == e1000_82547 ||
4521 hw->mac_type == e1000_82547_rev_2) {
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004522 hw->phy_type = e1000_phy_igp;
Roy Zang28f7a052009-07-31 13:34:02 +08004523 hw->phy_type = e1000_phy_igp;
4524 break;
4525 }
4526 case IGP03E1000_E_PHY_ID:
4527 hw->phy_type = e1000_phy_igp_3;
4528 break;
4529 case IFE_E_PHY_ID:
4530 case IFE_PLUS_E_PHY_ID:
4531 case IFE_C_E_PHY_ID:
4532 hw->phy_type = e1000_phy_ife;
4533 break;
4534 case GG82563_E_PHY_ID:
4535 if (hw->mac_type == e1000_80003es2lan) {
4536 hw->phy_type = e1000_phy_gg82563;
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004537 break;
4538 }
Roy Zang181119b2011-01-21 11:29:38 +08004539 case BME1000_E_PHY_ID:
4540 hw->phy_type = e1000_phy_bm;
4541 break;
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004542 /* Fall Through */
4543 default:
4544 /* Should never have loaded on this device */
4545 hw->phy_type = e1000_phy_undefined;
4546 return -E1000_ERR_PHY_TYPE;
4547 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01004548
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004549 return E1000_SUCCESS;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004550}
4551
wdenk4e112c12003-06-03 23:54:09 +00004552/******************************************************************************
4553* Probes the expected PHY address for known PHY IDs
4554*
4555* hw - Struct containing variables accessed by shared code
4556******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004557static int32_t
wdenk4e112c12003-06-03 23:54:09 +00004558e1000_detect_gig_phy(struct e1000_hw *hw)
4559{
Roy Zang28f7a052009-07-31 13:34:02 +08004560 int32_t phy_init_status, ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004561 uint16_t phy_id_high, phy_id_low;
Roy Zang28f7a052009-07-31 13:34:02 +08004562 boolean_t match = FALSE;
wdenk4e112c12003-06-03 23:54:09 +00004563
4564 DEBUGFUNC();
4565
Roy Zang28f7a052009-07-31 13:34:02 +08004566 /* The 82571 firmware may still be configuring the PHY. In this
4567 * case, we cannot access the PHY until the configuration is done. So
4568 * we explicitly set the PHY values. */
4569 if (hw->mac_type == e1000_82571 ||
4570 hw->mac_type == e1000_82572) {
4571 hw->phy_id = IGP01E1000_I_PHY_ID;
4572 hw->phy_type = e1000_phy_igp_2;
4573 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004574 }
Roy Zang28f7a052009-07-31 13:34:02 +08004575
4576 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4577 * work- around that forces PHY page 0 to be set or the reads fail.
4578 * The rest of the code in this routine uses e1000_read_phy_reg to
4579 * read the PHY ID. So for ESB-2 we need to have this set so our
4580 * reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
4581 * the routines below will figure this out as well. */
4582 if (hw->mac_type == e1000_80003es2lan)
4583 hw->phy_type = e1000_phy_gg82563;
4584
4585 /* Read the PHY ID Registers to identify which PHY is onboard. */
4586 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4587 if (ret_val)
4588 return ret_val;
4589
wdenk4e112c12003-06-03 23:54:09 +00004590 hw->phy_id = (uint32_t) (phy_id_high << 16);
Roy Zang28f7a052009-07-31 13:34:02 +08004591 udelay(20);
4592 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4593 if (ret_val)
4594 return ret_val;
4595
wdenk4e112c12003-06-03 23:54:09 +00004596 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
Roy Zang28f7a052009-07-31 13:34:02 +08004597 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
wdenk4e112c12003-06-03 23:54:09 +00004598
4599 switch (hw->mac_type) {
4600 case e1000_82543:
4601 if (hw->phy_id == M88E1000_E_PHY_ID)
4602 match = TRUE;
4603 break;
4604 case e1000_82544:
4605 if (hw->phy_id == M88E1000_I_PHY_ID)
4606 match = TRUE;
4607 break;
4608 case e1000_82540:
4609 case e1000_82545:
Roy Zang28f7a052009-07-31 13:34:02 +08004610 case e1000_82545_rev_3:
wdenk4e112c12003-06-03 23:54:09 +00004611 case e1000_82546:
Roy Zang28f7a052009-07-31 13:34:02 +08004612 case e1000_82546_rev_3:
wdenk4e112c12003-06-03 23:54:09 +00004613 if (hw->phy_id == M88E1011_I_PHY_ID)
4614 match = TRUE;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004615 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004616 case e1000_82541:
Andre Schwarz68c2a302008-03-06 16:45:44 +01004617 case e1000_82541_rev_2:
Roy Zang28f7a052009-07-31 13:34:02 +08004618 case e1000_82547:
4619 case e1000_82547_rev_2:
Andre Schwarz68c2a302008-03-06 16:45:44 +01004620 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4621 match = TRUE;
4622
wdenk4e112c12003-06-03 23:54:09 +00004623 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004624 case e1000_82573:
4625 if (hw->phy_id == M88E1111_I_PHY_ID)
4626 match = TRUE;
4627 break;
Roy Zang181119b2011-01-21 11:29:38 +08004628 case e1000_82574:
4629 if (hw->phy_id == BME1000_E_PHY_ID)
4630 match = TRUE;
4631 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004632 case e1000_80003es2lan:
4633 if (hw->phy_id == GG82563_E_PHY_ID)
4634 match = TRUE;
4635 break;
4636 case e1000_ich8lan:
4637 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4638 match = TRUE;
4639 if (hw->phy_id == IFE_E_PHY_ID)
4640 match = TRUE;
4641 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4642 match = TRUE;
4643 if (hw->phy_id == IFE_C_E_PHY_ID)
4644 match = TRUE;
4645 break;
wdenk4e112c12003-06-03 23:54:09 +00004646 default:
4647 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4648 return -E1000_ERR_CONFIG;
4649 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01004650
4651 phy_init_status = e1000_set_phy_type(hw);
4652
4653 if ((match) && (phy_init_status == E1000_SUCCESS)) {
wdenk4e112c12003-06-03 23:54:09 +00004654 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4655 return 0;
4656 }
4657 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4658 return -E1000_ERR_PHY;
4659}
4660
Roy Zang28f7a052009-07-31 13:34:02 +08004661/*****************************************************************************
4662 * Set media type and TBI compatibility.
4663 *
4664 * hw - Struct containing variables accessed by shared code
4665 * **************************************************************************/
4666void
4667e1000_set_media_type(struct e1000_hw *hw)
4668{
4669 uint32_t status;
4670
4671 DEBUGFUNC();
4672
4673 if (hw->mac_type != e1000_82543) {
4674 /* tbi_compatibility is only valid on 82543 */
4675 hw->tbi_compatibility_en = FALSE;
4676 }
4677
4678 switch (hw->device_id) {
4679 case E1000_DEV_ID_82545GM_SERDES:
4680 case E1000_DEV_ID_82546GB_SERDES:
4681 case E1000_DEV_ID_82571EB_SERDES:
4682 case E1000_DEV_ID_82571EB_SERDES_DUAL:
4683 case E1000_DEV_ID_82571EB_SERDES_QUAD:
4684 case E1000_DEV_ID_82572EI_SERDES:
4685 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4686 hw->media_type = e1000_media_type_internal_serdes;
4687 break;
4688 default:
4689 switch (hw->mac_type) {
4690 case e1000_82542_rev2_0:
4691 case e1000_82542_rev2_1:
4692 hw->media_type = e1000_media_type_fiber;
4693 break;
4694 case e1000_ich8lan:
4695 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08004696 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +08004697 /* The STATUS_TBIMODE bit is reserved or reused
4698 * for the this device.
4699 */
4700 hw->media_type = e1000_media_type_copper;
4701 break;
4702 default:
4703 status = E1000_READ_REG(hw, STATUS);
4704 if (status & E1000_STATUS_TBIMODE) {
4705 hw->media_type = e1000_media_type_fiber;
4706 /* tbi_compatibility not valid on fiber */
4707 hw->tbi_compatibility_en = FALSE;
4708 } else {
4709 hw->media_type = e1000_media_type_copper;
4710 }
4711 break;
4712 }
4713 }
4714}
4715
wdenk4e112c12003-06-03 23:54:09 +00004716/**
4717 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4718 *
4719 * e1000_sw_init initializes the Adapter private data structure.
4720 * Fields are initialized based on PCI device information and
4721 * OS network device settings (MTU size).
4722 **/
4723
4724static int
Kyle Moffett7b698d52011-10-18 11:05:26 +00004725e1000_sw_init(struct eth_device *nic)
wdenk4e112c12003-06-03 23:54:09 +00004726{
4727 struct e1000_hw *hw = (typeof(hw)) nic->priv;
4728 int result;
4729
4730 /* PCI config space info */
4731 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4732 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4733 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4734 &hw->subsystem_vendor_id);
4735 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4736
4737 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4738 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4739
4740 /* identify the MAC */
4741 result = e1000_set_mac_type(hw);
4742 if (result) {
Kyle Moffett7b698d52011-10-18 11:05:26 +00004743 E1000_ERR(hw->nic, "Unknown MAC Type\n");
wdenk4e112c12003-06-03 23:54:09 +00004744 return result;
4745 }
4746
Roy Zang28f7a052009-07-31 13:34:02 +08004747 switch (hw->mac_type) {
4748 default:
4749 break;
4750 case e1000_82541:
4751 case e1000_82547:
4752 case e1000_82541_rev_2:
4753 case e1000_82547_rev_2:
4754 hw->phy_init_script = 1;
4755 break;
4756 }
4757
wdenk4e112c12003-06-03 23:54:09 +00004758 /* flow control settings */
4759 hw->fc_high_water = E1000_FC_HIGH_THRESH;
4760 hw->fc_low_water = E1000_FC_LOW_THRESH;
4761 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4762 hw->fc_send_xon = 1;
4763
4764 /* Media type - copper or fiber */
Roy Zang28f7a052009-07-31 13:34:02 +08004765 e1000_set_media_type(hw);
wdenk4e112c12003-06-03 23:54:09 +00004766
4767 if (hw->mac_type >= e1000_82543) {
4768 uint32_t status = E1000_READ_REG(hw, STATUS);
4769
4770 if (status & E1000_STATUS_TBIMODE) {
4771 DEBUGOUT("fiber interface\n");
4772 hw->media_type = e1000_media_type_fiber;
4773 } else {
4774 DEBUGOUT("copper interface\n");
4775 hw->media_type = e1000_media_type_copper;
4776 }
4777 } else {
4778 hw->media_type = e1000_media_type_fiber;
4779 }
4780
Roy Zang28f7a052009-07-31 13:34:02 +08004781 hw->tbi_compatibility_en = TRUE;
4782 hw->wait_autoneg_complete = TRUE;
wdenk4e112c12003-06-03 23:54:09 +00004783 if (hw->mac_type < e1000_82543)
4784 hw->report_tx_early = 0;
4785 else
4786 hw->report_tx_early = 1;
4787
wdenk4e112c12003-06-03 23:54:09 +00004788 return E1000_SUCCESS;
4789}
4790
4791void
4792fill_rx(struct e1000_hw *hw)
4793{
4794 struct e1000_rx_desc *rd;
4795
4796 rx_last = rx_tail;
4797 rd = rx_base + rx_tail;
4798 rx_tail = (rx_tail + 1) % 8;
4799 memset(rd, 0, 16);
4800 rd->buffer_addr = cpu_to_le64((u32) & packet);
4801 E1000_WRITE_REG(hw, RDT, rx_tail);
4802}
4803
4804/**
4805 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4806 * @adapter: board private structure
4807 *
4808 * Configure the Tx unit of the MAC after a reset.
4809 **/
4810
4811static void
4812e1000_configure_tx(struct e1000_hw *hw)
4813{
4814 unsigned long ptr;
4815 unsigned long tctl;
Roy Zang28f7a052009-07-31 13:34:02 +08004816 unsigned long tipg, tarc;
4817 uint32_t ipgr1, ipgr2;
wdenk4e112c12003-06-03 23:54:09 +00004818
4819 ptr = (u32) tx_pool;
4820 if (ptr & 0xf)
4821 ptr = (ptr + 0x10) & (~0xf);
4822
4823 tx_base = (typeof(tx_base)) ptr;
4824
4825 E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4826 E1000_WRITE_REG(hw, TDBAH, 0);
4827
4828 E1000_WRITE_REG(hw, TDLEN, 128);
4829
4830 /* Setup the HW Tx Head and Tail descriptor pointers */
4831 E1000_WRITE_REG(hw, TDH, 0);
4832 E1000_WRITE_REG(hw, TDT, 0);
4833 tx_tail = 0;
4834
4835 /* Set the default values for the Tx Inter Packet Gap timer */
Roy Zang28f7a052009-07-31 13:34:02 +08004836 if (hw->mac_type <= e1000_82547_rev_2 &&
4837 (hw->media_type == e1000_media_type_fiber ||
4838 hw->media_type == e1000_media_type_internal_serdes))
4839 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4840 else
4841 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4842
4843 /* Set the default values for the Tx Inter Packet Gap timer */
wdenk4e112c12003-06-03 23:54:09 +00004844 switch (hw->mac_type) {
4845 case e1000_82542_rev2_0:
4846 case e1000_82542_rev2_1:
4847 tipg = DEFAULT_82542_TIPG_IPGT;
Roy Zang28f7a052009-07-31 13:34:02 +08004848 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4849 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4850 break;
4851 case e1000_80003es2lan:
4852 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4853 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
wdenk4e112c12003-06-03 23:54:09 +00004854 break;
4855 default:
Roy Zang28f7a052009-07-31 13:34:02 +08004856 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4857 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4858 break;
wdenk4e112c12003-06-03 23:54:09 +00004859 }
Roy Zang28f7a052009-07-31 13:34:02 +08004860 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4861 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
wdenk4e112c12003-06-03 23:54:09 +00004862 E1000_WRITE_REG(hw, TIPG, tipg);
wdenk4e112c12003-06-03 23:54:09 +00004863 /* Program the Transmit Control Register */
4864 tctl = E1000_READ_REG(hw, TCTL);
4865 tctl &= ~E1000_TCTL_CT;
4866 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4867 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
Roy Zang28f7a052009-07-31 13:34:02 +08004868
4869 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4870 tarc = E1000_READ_REG(hw, TARC0);
4871 /* set the speed mode bit, we'll clear it if we're not at
4872 * gigabit link later */
4873 /* git bit can be set to 1*/
4874 } else if (hw->mac_type == e1000_80003es2lan) {
4875 tarc = E1000_READ_REG(hw, TARC0);
4876 tarc |= 1;
4877 E1000_WRITE_REG(hw, TARC0, tarc);
4878 tarc = E1000_READ_REG(hw, TARC1);
4879 tarc |= 1;
4880 E1000_WRITE_REG(hw, TARC1, tarc);
4881 }
4882
wdenk4e112c12003-06-03 23:54:09 +00004883
4884 e1000_config_collision_dist(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004885 /* Setup Transmit Descriptor Settings for eop descriptor */
4886 hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
wdenk4e112c12003-06-03 23:54:09 +00004887
Roy Zang28f7a052009-07-31 13:34:02 +08004888 /* Need to set up RS bit */
4889 if (hw->mac_type < e1000_82543)
4890 hw->txd_cmd |= E1000_TXD_CMD_RPS;
wdenk4e112c12003-06-03 23:54:09 +00004891 else
Roy Zang28f7a052009-07-31 13:34:02 +08004892 hw->txd_cmd |= E1000_TXD_CMD_RS;
4893 E1000_WRITE_REG(hw, TCTL, tctl);
wdenk4e112c12003-06-03 23:54:09 +00004894}
4895
4896/**
4897 * e1000_setup_rctl - configure the receive control register
4898 * @adapter: Board private structure
4899 **/
4900static void
4901e1000_setup_rctl(struct e1000_hw *hw)
4902{
4903 uint32_t rctl;
4904
4905 rctl = E1000_READ_REG(hw, RCTL);
4906
4907 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4908
Roy Zang28f7a052009-07-31 13:34:02 +08004909 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4910 | E1000_RCTL_RDMTS_HALF; /* |
4911 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
wdenk4e112c12003-06-03 23:54:09 +00004912
4913 if (hw->tbi_compatibility_on == 1)
4914 rctl |= E1000_RCTL_SBP;
4915 else
4916 rctl &= ~E1000_RCTL_SBP;
4917
4918 rctl &= ~(E1000_RCTL_SZ_4096);
wdenk4e112c12003-06-03 23:54:09 +00004919 rctl |= E1000_RCTL_SZ_2048;
4920 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
wdenk4e112c12003-06-03 23:54:09 +00004921 E1000_WRITE_REG(hw, RCTL, rctl);
4922}
4923
4924/**
4925 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4926 * @adapter: board private structure
4927 *
4928 * Configure the Rx unit of the MAC after a reset.
4929 **/
4930static void
4931e1000_configure_rx(struct e1000_hw *hw)
4932{
4933 unsigned long ptr;
Roy Zang28f7a052009-07-31 13:34:02 +08004934 unsigned long rctl, ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00004935 rx_tail = 0;
4936 /* make sure receives are disabled while setting up the descriptors */
4937 rctl = E1000_READ_REG(hw, RCTL);
4938 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
wdenk4e112c12003-06-03 23:54:09 +00004939 if (hw->mac_type >= e1000_82540) {
wdenk4e112c12003-06-03 23:54:09 +00004940 /* Set the interrupt throttling rate. Value is calculated
4941 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004942#define MAX_INTS_PER_SEC 8000
4943#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
wdenk4e112c12003-06-03 23:54:09 +00004944 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4945 }
4946
Roy Zang28f7a052009-07-31 13:34:02 +08004947 if (hw->mac_type >= e1000_82571) {
4948 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4949 /* Reset delay timers after every interrupt */
4950 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4951 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4952 E1000_WRITE_FLUSH(hw);
4953 }
wdenk4e112c12003-06-03 23:54:09 +00004954 /* Setup the Base and Length of the Rx Descriptor Ring */
4955 ptr = (u32) rx_pool;
4956 if (ptr & 0xf)
4957 ptr = (ptr + 0x10) & (~0xf);
4958 rx_base = (typeof(rx_base)) ptr;
4959 E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
4960 E1000_WRITE_REG(hw, RDBAH, 0);
4961
4962 E1000_WRITE_REG(hw, RDLEN, 128);
4963
4964 /* Setup the HW Rx Head and Tail Descriptor Pointers */
4965 E1000_WRITE_REG(hw, RDH, 0);
4966 E1000_WRITE_REG(hw, RDT, 0);
wdenk4e112c12003-06-03 23:54:09 +00004967 /* Enable Receives */
4968
4969 E1000_WRITE_REG(hw, RCTL, rctl);
4970 fill_rx(hw);
4971}
4972
4973/**************************************************************************
4974POLL - Wait for a frame
4975***************************************************************************/
4976static int
4977e1000_poll(struct eth_device *nic)
4978{
4979 struct e1000_hw *hw = nic->priv;
4980 struct e1000_rx_desc *rd;
4981 /* return true if there's an ethernet packet ready to read */
4982 rd = rx_base + rx_last;
4983 if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
4984 return 0;
4985 /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
Wolfgang Denk7fb52662005-10-13 16:45:02 +02004986 NetReceive((uchar *)packet, le32_to_cpu(rd->length));
wdenk4e112c12003-06-03 23:54:09 +00004987 fill_rx(hw);
4988 return 1;
4989}
4990
4991/**************************************************************************
4992TRANSMIT - Transmit a frame
4993***************************************************************************/
Joe Hershberger4c7aa552012-05-22 07:56:14 +00004994static int e1000_transmit(struct eth_device *nic, void *packet, int length)
wdenk4e112c12003-06-03 23:54:09 +00004995{
Joe Hershberger4c7aa552012-05-22 07:56:14 +00004996 void *nv_packet = (void *)packet;
wdenk4e112c12003-06-03 23:54:09 +00004997 struct e1000_hw *hw = nic->priv;
4998 struct e1000_tx_desc *txp;
4999 int i = 0;
5000
5001 txp = tx_base + tx_tail;
5002 tx_tail = (tx_tail + 1) % 8;
5003
Wolfgang Denkf83102e2010-11-22 09:48:45 +01005004 txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
Roy Zang28f7a052009-07-31 13:34:02 +08005005 txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
wdenk4e112c12003-06-03 23:54:09 +00005006 txp->upper.data = 0;
5007 E1000_WRITE_REG(hw, TDT, tx_tail);
5008
Roy Zang28f7a052009-07-31 13:34:02 +08005009 E1000_WRITE_FLUSH(hw);
wdenk4e112c12003-06-03 23:54:09 +00005010 while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5011 if (i++ > TOUT_LOOP) {
5012 DEBUGOUT("e1000: tx timeout\n");
5013 return 0;
5014 }
5015 udelay(10); /* give the nic a chance to write to the register */
5016 }
5017 return 1;
5018}
5019
5020/*reset function*/
5021static inline int
5022e1000_reset(struct eth_device *nic)
5023{
5024 struct e1000_hw *hw = nic->priv;
5025
5026 e1000_reset_hw(hw);
5027 if (hw->mac_type >= e1000_82544) {
5028 E1000_WRITE_REG(hw, WUC, 0);
5029 }
5030 return e1000_init_hw(nic);
5031}
5032
5033/**************************************************************************
5034DISABLE - Turn off ethernet interface
5035***************************************************************************/
5036static void
5037e1000_disable(struct eth_device *nic)
5038{
5039 struct e1000_hw *hw = nic->priv;
5040
5041 /* Turn off the ethernet interface */
5042 E1000_WRITE_REG(hw, RCTL, 0);
5043 E1000_WRITE_REG(hw, TCTL, 0);
5044
5045 /* Clear the transmit ring */
5046 E1000_WRITE_REG(hw, TDH, 0);
5047 E1000_WRITE_REG(hw, TDT, 0);
5048
5049 /* Clear the receive ring */
5050 E1000_WRITE_REG(hw, RDH, 0);
5051 E1000_WRITE_REG(hw, RDT, 0);
5052
5053 /* put the card in its initial state */
5054#if 0
5055 E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5056#endif
5057 mdelay(10);
5058
5059}
5060
5061/**************************************************************************
5062INIT - set up ethernet interface(s)
5063***************************************************************************/
5064static int
5065e1000_init(struct eth_device *nic, bd_t * bis)
5066{
5067 struct e1000_hw *hw = nic->priv;
5068 int ret_val = 0;
5069
5070 ret_val = e1000_reset(nic);
5071 if (ret_val < 0) {
5072 if ((ret_val == -E1000_ERR_NOLINK) ||
5073 (ret_val == -E1000_ERR_TIMEOUT)) {
Kyle Moffett7b698d52011-10-18 11:05:26 +00005074 E1000_ERR(hw->nic, "Valid Link not detected\n");
wdenk4e112c12003-06-03 23:54:09 +00005075 } else {
Kyle Moffett7b698d52011-10-18 11:05:26 +00005076 E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
wdenk4e112c12003-06-03 23:54:09 +00005077 }
5078 return 0;
5079 }
5080 e1000_configure_tx(hw);
5081 e1000_setup_rctl(hw);
5082 e1000_configure_rx(hw);
5083 return 1;
5084}
5085
Roy Zang28f7a052009-07-31 13:34:02 +08005086/******************************************************************************
5087 * Gets the current PCI bus type of hardware
5088 *
5089 * hw - Struct containing variables accessed by shared code
5090 *****************************************************************************/
5091void e1000_get_bus_type(struct e1000_hw *hw)
5092{
5093 uint32_t status;
5094
5095 switch (hw->mac_type) {
5096 case e1000_82542_rev2_0:
5097 case e1000_82542_rev2_1:
5098 hw->bus_type = e1000_bus_type_pci;
5099 break;
5100 case e1000_82571:
5101 case e1000_82572:
5102 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08005103 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +08005104 case e1000_80003es2lan:
5105 hw->bus_type = e1000_bus_type_pci_express;
5106 break;
5107 case e1000_ich8lan:
5108 hw->bus_type = e1000_bus_type_pci_express;
5109 break;
5110 default:
5111 status = E1000_READ_REG(hw, STATUS);
5112 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5113 e1000_bus_type_pcix : e1000_bus_type_pci;
5114 break;
5115 }
5116}
5117
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005118/* A list of all registered e1000 devices */
5119static LIST_HEAD(e1000_hw_list);
5120
wdenk4e112c12003-06-03 23:54:09 +00005121/**************************************************************************
5122PROBE - Look for an adapter, this routine's visible to the outside
5123You should omit the last argument struct pci_device * for a non-PCI NIC
5124***************************************************************************/
5125int
5126e1000_initialize(bd_t * bis)
5127{
Kyle Moffett7b698d52011-10-18 11:05:26 +00005128 unsigned int i;
wdenk4e112c12003-06-03 23:54:09 +00005129 pci_dev_t devno;
wdenk4e112c12003-06-03 23:54:09 +00005130
Timur Tabiedc45b52009-08-17 15:55:38 -05005131 DEBUGFUNC();
5132
Kyle Moffett7b698d52011-10-18 11:05:26 +00005133 /* Find and probe all the matching PCI devices */
5134 for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5135 u32 val;
Kumar Gala76933572010-11-12 04:13:06 -06005136
Kyle Moffett7b698d52011-10-18 11:05:26 +00005137 /*
5138 * These will never get freed due to errors, this allows us to
5139 * perform SPI EEPROM programming from U-boot, for example.
5140 */
5141 struct eth_device *nic = malloc(sizeof(*nic));
5142 struct e1000_hw *hw = malloc(sizeof(*hw));
5143 if (!nic || !hw) {
5144 printf("e1000#%u: Out of Memory!\n", i);
Kumar Gala76933572010-11-12 04:13:06 -06005145 free(nic);
Kyle Moffett7b698d52011-10-18 11:05:26 +00005146 free(hw);
5147 continue;
Kumar Gala76933572010-11-12 04:13:06 -06005148 }
5149
Kyle Moffett7b698d52011-10-18 11:05:26 +00005150 /* Make sure all of the fields are initially zeroed */
Matthew McClintock5761ce42010-11-15 18:02:53 -06005151 memset(nic, 0, sizeof(*nic));
Kumar Gala76933572010-11-12 04:13:06 -06005152 memset(hw, 0, sizeof(*hw));
5153
Kyle Moffett7b698d52011-10-18 11:05:26 +00005154 /* Assign the passed-in values */
5155 hw->cardnum = i;
wdenk4e112c12003-06-03 23:54:09 +00005156 hw->pdev = devno;
Kyle Moffett7b698d52011-10-18 11:05:26 +00005157 hw->nic = nic;
wdenk4e112c12003-06-03 23:54:09 +00005158 nic->priv = hw;
wdenk4e112c12003-06-03 23:54:09 +00005159
Kyle Moffett7b698d52011-10-18 11:05:26 +00005160 /* Generate a card name */
5161 sprintf(nic->name, "e1000#%u", hw->cardnum);
5162
5163 /* Print a debug message with the IO base address */
5164 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5165 E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5166
5167 /* Try to enable I/O accesses and bus-mastering */
5168 val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5169 pci_write_config_dword(devno, PCI_COMMAND, val);
5170
5171 /* Make sure it worked */
5172 pci_read_config_dword(devno, PCI_COMMAND, &val);
5173 if (!(val & PCI_COMMAND_MEMORY)) {
5174 E1000_ERR(nic, "Can't enable I/O memory\n");
5175 continue;
5176 }
5177 if (!(val & PCI_COMMAND_MASTER)) {
5178 E1000_ERR(nic, "Can't enable bus-mastering\n");
5179 continue;
5180 }
wdenk4e112c12003-06-03 23:54:09 +00005181
5182 /* Are these variables needed? */
wdenk4e112c12003-06-03 23:54:09 +00005183 hw->fc = e1000_fc_default;
5184 hw->original_fc = e1000_fc_default;
wdenk4e112c12003-06-03 23:54:09 +00005185 hw->autoneg_failed = 0;
Roy Zang28f7a052009-07-31 13:34:02 +08005186 hw->autoneg = 1;
wdenk4e112c12003-06-03 23:54:09 +00005187 hw->get_link_status = TRUE;
Kyle Moffett7b698d52011-10-18 11:05:26 +00005188 hw->hw_addr = pci_map_bar(devno, PCI_BASE_ADDRESS_0,
5189 PCI_REGION_MEM);
wdenk4e112c12003-06-03 23:54:09 +00005190 hw->mac_type = e1000_undefined;
5191
5192 /* MAC and Phy settings */
Kyle Moffett7b698d52011-10-18 11:05:26 +00005193 if (e1000_sw_init(nic) < 0) {
5194 E1000_ERR(nic, "Software init failed\n");
5195 continue;
wdenk4e112c12003-06-03 23:54:09 +00005196 }
Roy Zang28f7a052009-07-31 13:34:02 +08005197 if (e1000_check_phy_reset_block(hw))
Kyle Moffett7b698d52011-10-18 11:05:26 +00005198 E1000_ERR(nic, "PHY Reset is blocked!\n");
5199
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005200 /* Basic init was OK, reset the hardware and allow SPI access */
Roy Zang28f7a052009-07-31 13:34:02 +08005201 e1000_reset_hw(hw);
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005202 list_add_tail(&hw->list_node, &e1000_hw_list);
Kyle Moffett7b698d52011-10-18 11:05:26 +00005203
5204 /* Validate the EEPROM and get chipset information */
Stefan Roesed47f07e2012-09-19 15:18:52 +02005205#if !defined(CONFIG_MVBC_1G)
Roy Zang28f7a052009-07-31 13:34:02 +08005206 if (e1000_init_eeprom_params(hw)) {
Kyle Moffett7b698d52011-10-18 11:05:26 +00005207 E1000_ERR(nic, "EEPROM is invalid!\n");
5208 continue;
Roy Zang28f7a052009-07-31 13:34:02 +08005209 }
Kyle Moffett70946bc2011-10-18 11:05:27 +00005210 if (e1000_validate_eeprom_checksum(hw))
Kyle Moffett7b698d52011-10-18 11:05:26 +00005211 continue;
Wolfgang Denk56811f62005-10-09 01:04:33 +02005212#endif
wdenk4e112c12003-06-03 23:54:09 +00005213 e1000_read_mac_addr(nic);
Roy Zang28f7a052009-07-31 13:34:02 +08005214 e1000_get_bus_type(hw);
wdenk4e112c12003-06-03 23:54:09 +00005215
Kyle Moffett7b698d52011-10-18 11:05:26 +00005216 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n ",
wdenk4e112c12003-06-03 23:54:09 +00005217 nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5218 nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5219
Kyle Moffett7b698d52011-10-18 11:05:26 +00005220 /* Set up the function pointers and register the device */
wdenk4e112c12003-06-03 23:54:09 +00005221 nic->init = e1000_init;
5222 nic->recv = e1000_poll;
5223 nic->send = e1000_transmit;
5224 nic->halt = e1000_disable;
wdenk4e112c12003-06-03 23:54:09 +00005225 eth_register(nic);
wdenk4e112c12003-06-03 23:54:09 +00005226 }
Kyle Moffett7b698d52011-10-18 11:05:26 +00005227
5228 return i;
wdenk4e112c12003-06-03 23:54:09 +00005229}
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005230
5231struct e1000_hw *e1000_find_card(unsigned int cardnum)
5232{
5233 struct e1000_hw *hw;
5234
5235 list_for_each_entry(hw, &e1000_hw_list, list_node)
5236 if (hw->cardnum == cardnum)
5237 return hw;
5238
5239 return NULL;
5240}
5241
5242#ifdef CONFIG_CMD_E1000
5243static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5244 int argc, char * const argv[])
5245{
5246 struct e1000_hw *hw;
5247
5248 if (argc < 3) {
5249 cmd_usage(cmdtp);
5250 return 1;
5251 }
5252
5253 /* Make sure we can find the requested e1000 card */
5254 hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5255 if (!hw) {
5256 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5257 return 1;
5258 }
5259
5260 if (!strcmp(argv[2], "print-mac-address")) {
5261 unsigned char *mac = hw->nic->enetaddr;
5262 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5263 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5264 return 0;
5265 }
5266
5267#ifdef CONFIG_E1000_SPI
5268 /* Handle the "SPI" subcommand */
5269 if (!strcmp(argv[2], "spi"))
5270 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5271#endif
5272
5273 cmd_usage(cmdtp);
5274 return 1;
5275}
5276
5277U_BOOT_CMD(
5278 e1000, 7, 0, do_e1000,
5279 "Intel e1000 controller management",
5280 /* */"<card#> print-mac-address\n"
5281#ifdef CONFIG_E1000_SPI
5282 "e1000 <card#> spi show [<offset> [<length>]]\n"
5283 "e1000 <card#> spi dump <addr> <offset> <length>\n"
5284 "e1000 <card#> spi program <addr> <offset> <length>\n"
5285 "e1000 <card#> spi checksum [update]\n"
5286#endif
5287 " - Manage the Intel E1000 PCI device"
5288);
5289#endif /* not CONFIG_CMD_E1000 */