Keerthy | ff14a05 | 2022-01-27 13:16:56 +0100 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * IPU remoteproc driver for various SoCs |
| 4 | * |
Nishanth Menon | eaa39c6 | 2023-11-01 15:56:03 -0500 | [diff] [blame^] | 5 | * Copyright (C) 2019 Texas Instruments Incorporated - https://www.ti.com/ |
Keerthy | ff14a05 | 2022-01-27 13:16:56 +0100 | [diff] [blame] | 6 | * Angela Stegmaier <angelabaker@ti.com> |
| 7 | * Venkateswara Rao Mandela <venkat.mandela@ti.com> |
| 8 | * Keerthy <j-keerthy@ti.com> |
| 9 | */ |
| 10 | |
| 11 | #include <common.h> |
| 12 | #include <hang.h> |
| 13 | #include <cpu_func.h> |
| 14 | #include <dm.h> |
| 15 | #include <dm/device_compat.h> |
| 16 | #include <elf.h> |
| 17 | #include <env.h> |
| 18 | #include <dm/of_access.h> |
| 19 | #include <fs_loader.h> |
| 20 | #include <remoteproc.h> |
| 21 | #include <errno.h> |
| 22 | #include <clk.h> |
| 23 | #include <reset.h> |
| 24 | #include <regmap.h> |
| 25 | #include <syscon.h> |
| 26 | #include <asm/io.h> |
| 27 | #include <misc.h> |
| 28 | #include <power-domain.h> |
| 29 | #include <timer.h> |
| 30 | #include <fs.h> |
| 31 | #include <spl.h> |
| 32 | #include <timer.h> |
| 33 | #include <reset.h> |
| 34 | #include <linux/bitmap.h> |
| 35 | |
| 36 | #define IPU1_LOAD_ADDR (0xa17ff000) |
| 37 | #define MAX_REMOTECORE_BIN_SIZE (8 * 0x100000) |
| 38 | |
| 39 | enum ipu_num { |
| 40 | IPU1 = 0, |
| 41 | IPU2, |
| 42 | RPROC_END_ENUMS, |
| 43 | }; |
| 44 | |
| 45 | #define IPU2_LOAD_ADDR (IPU1_LOAD_ADDR + MAX_REMOTECORE_BIN_SIZE) |
| 46 | |
| 47 | #define PAGE_SHIFT 12 |
| 48 | #define PAGESIZE_1M 0x0 |
| 49 | #define PAGESIZE_64K 0x1 |
| 50 | #define PAGESIZE_4K 0x2 |
| 51 | #define PAGESIZE_16M 0x3 |
| 52 | #define LE 0 |
| 53 | #define BE 1 |
| 54 | #define ELEMSIZE_8 0x0 |
| 55 | #define ELEMSIZE_16 0x1 |
| 56 | #define ELEMSIZE_32 0x2 |
| 57 | #define MIXED_TLB 0x0 |
| 58 | #define MIXED_CPU 0x1 |
| 59 | |
| 60 | #define PGT_SMALLPAGE_SIZE 0x00001000 |
| 61 | #define PGT_LARGEPAGE_SIZE 0x00010000 |
| 62 | #define PGT_SECTION_SIZE 0x00100000 |
| 63 | #define PGT_SUPERSECTION_SIZE 0x01000000 |
| 64 | |
| 65 | #define PGT_L1_DESC_PAGE 0x00001 |
| 66 | #define PGT_L1_DESC_SECTION 0x00002 |
| 67 | #define PGT_L1_DESC_SUPERSECTION 0x40002 |
| 68 | |
| 69 | #define PGT_L1_DESC_PAGE_MASK 0xfffffC00 |
| 70 | #define PGT_L1_DESC_SECTION_MASK 0xfff00000 |
| 71 | #define PGT_L1_DESC_SUPERSECTION_MASK 0xff000000 |
| 72 | |
| 73 | #define PGT_L1_DESC_SMALLPAGE_INDEX_SHIFT 12 |
| 74 | #define PGT_L1_DESC_LARGEPAGE_INDEX_SHIFT 16 |
| 75 | #define PGT_L1_DESC_SECTION_INDEX_SHIFT 20 |
| 76 | #define PGT_L1_DESC_SUPERSECTION_INDEX_SHIFT 24 |
| 77 | |
| 78 | #define PGT_L2_DESC_SMALLPAGE 0x02 |
| 79 | #define PGT_L2_DESC_LARGEPAGE 0x01 |
| 80 | |
| 81 | #define PGT_L2_DESC_SMALLPAGE_MASK 0xfffff000 |
| 82 | #define PGT_L2_DESC_LARGEPAGE_MASK 0xffff0000 |
| 83 | |
| 84 | /* |
| 85 | * The memory for the page tables (256 KB per IPU) is placed just before |
| 86 | * the carveout memories for the remote processors. 16 KB of memory is |
| 87 | * needed for the L1 page table (4096 entries * 4 bytes per 1 MB section). |
| 88 | * Any smaller page (64 KB or 4 KB) entries are supported through L2 page |
| 89 | * tables (1 KB per table). The remaining 240 KB can provide support for |
| 90 | * 240 L2 page tables. Any remoteproc firmware image requiring more than |
| 91 | * 240 L2 page table entries would need more memory to be reserved. |
| 92 | */ |
| 93 | #define PAGE_TABLE_SIZE_L1 (0x00004000) |
| 94 | #define PAGE_TABLE_SIZE_L2 (0x400) |
| 95 | #define MAX_NUM_L2_PAGE_TABLES (240) |
| 96 | #define PAGE_TABLE_SIZE_L2_TOTAL (MAX_NUM_L2_PAGE_TABLES * PAGE_TABLE_SIZE_L2) |
| 97 | #define PAGE_TABLE_SIZE (PAGE_TABLE_SIZE_L1 + (PAGE_TABLE_SIZE_L2_TOTAL)) |
| 98 | |
| 99 | /** |
| 100 | * struct omap_rproc_mem - internal memory structure |
| 101 | * @cpu_addr: MPU virtual address of the memory region |
| 102 | * @bus_addr: bus address used to access the memory region |
| 103 | * @dev_addr: device address of the memory region from DSP view |
| 104 | * @size: size of the memory region |
| 105 | */ |
| 106 | struct omap_rproc_mem { |
| 107 | void __iomem *cpu_addr; |
| 108 | phys_addr_t bus_addr; |
| 109 | u32 dev_addr; |
| 110 | size_t size; |
| 111 | }; |
| 112 | |
| 113 | struct ipu_privdata { |
| 114 | struct omap_rproc_mem mem; |
| 115 | struct list_head mappings; |
| 116 | const char *fw_name; |
| 117 | u32 bootaddr; |
| 118 | int id; |
| 119 | struct udevice *rdev; |
| 120 | }; |
| 121 | |
| 122 | typedef int (*handle_resource_t) (void *, int offset, int avail); |
| 123 | |
| 124 | unsigned int *page_table_l1 = (unsigned int *)0x0; |
| 125 | unsigned int *page_table_l2 = (unsigned int *)0x0; |
| 126 | |
| 127 | /* |
| 128 | * Set maximum carveout size to 96 MB |
| 129 | */ |
| 130 | #define DRA7_RPROC_MAX_CO_SIZE (96 * 0x100000) |
| 131 | |
| 132 | /* |
| 133 | * These global variables are used for deriving the MMU page tables. They |
| 134 | * are initialized for each core with the appropriate values. The length |
| 135 | * of the array mem_bitmap is set as per a 96 MB carveout which the |
| 136 | * maximum set aside in the current memory map. |
| 137 | */ |
| 138 | unsigned long mem_base; |
| 139 | unsigned long mem_size; |
| 140 | unsigned long |
| 141 | |
| 142 | mem_bitmap[BITS_TO_LONGS(DRA7_RPROC_MAX_CO_SIZE >> PAGE_SHIFT)]; |
| 143 | unsigned long mem_count; |
| 144 | |
| 145 | unsigned int pgtable_l2_map[MAX_NUM_L2_PAGE_TABLES]; |
| 146 | unsigned int pgtable_l2_cnt; |
| 147 | |
| 148 | void *ipu_alloc_mem(struct udevice *dev, unsigned long len, unsigned long align) |
| 149 | { |
| 150 | unsigned long mask; |
| 151 | unsigned long pageno; |
| 152 | int count; |
| 153 | |
| 154 | count = ((len + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1)) >> PAGE_SHIFT; |
| 155 | mask = (1 << align) - 1; |
| 156 | pageno = |
| 157 | bitmap_find_next_zero_area(mem_bitmap, mem_count, 0, count, mask); |
| 158 | debug("%s: count %d mask %#lx pageno %#lx\n", __func__, count, mask, |
| 159 | pageno); |
| 160 | |
| 161 | if (pageno >= mem_count) { |
| 162 | debug("%s: %s Error allocating memory; " |
| 163 | "Please check carveout size\n", __FILE__, __func__); |
| 164 | return NULL; |
| 165 | } |
| 166 | |
| 167 | bitmap_set(mem_bitmap, pageno, count); |
| 168 | return (void *)(mem_base + (pageno << PAGE_SHIFT)); |
| 169 | } |
| 170 | |
| 171 | int find_pagesz(unsigned int virt, unsigned int phys, unsigned int len) |
| 172 | { |
| 173 | int pg_sz_ind = -1; |
| 174 | unsigned int min_align = __ffs(virt); |
| 175 | |
| 176 | if (min_align > __ffs(phys)) |
| 177 | min_align = __ffs(phys); |
| 178 | |
| 179 | if (min_align >= PGT_L1_DESC_SUPERSECTION_INDEX_SHIFT && |
| 180 | len >= 0x1000000) { |
| 181 | pg_sz_ind = PAGESIZE_16M; |
| 182 | goto ret_block; |
| 183 | } |
| 184 | if (min_align >= PGT_L1_DESC_SECTION_INDEX_SHIFT && |
| 185 | len >= 0x100000) { |
| 186 | pg_sz_ind = PAGESIZE_1M; |
| 187 | goto ret_block; |
| 188 | } |
| 189 | if (min_align >= PGT_L1_DESC_LARGEPAGE_INDEX_SHIFT && |
| 190 | len >= 0x10000) { |
| 191 | pg_sz_ind = PAGESIZE_64K; |
| 192 | goto ret_block; |
| 193 | } |
| 194 | if (min_align >= PGT_L1_DESC_SMALLPAGE_INDEX_SHIFT && |
| 195 | len >= 0x1000) { |
| 196 | pg_sz_ind = PAGESIZE_4K; |
| 197 | goto ret_block; |
| 198 | } |
| 199 | |
| 200 | ret_block: |
| 201 | return pg_sz_ind; |
| 202 | } |
| 203 | |
| 204 | int get_l2_pg_tbl_addr(unsigned int virt, unsigned int *pg_tbl_addr) |
| 205 | { |
| 206 | int ret = -1; |
| 207 | int i = 0; |
| 208 | int match_found = 0; |
| 209 | unsigned int tag = (virt & PGT_L1_DESC_SECTION_MASK); |
| 210 | |
| 211 | *pg_tbl_addr = 0; |
| 212 | for (i = 0; (i < pgtable_l2_cnt) && (match_found == 0); i++) { |
| 213 | if (tag == pgtable_l2_map[i]) { |
| 214 | *pg_tbl_addr = |
| 215 | ((unsigned int)page_table_l2) + |
| 216 | (i * PAGE_TABLE_SIZE_L2); |
| 217 | match_found = 1; |
| 218 | ret = 0; |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | if (match_found == 0 && i < MAX_NUM_L2_PAGE_TABLES) { |
| 223 | pgtable_l2_map[i] = tag; |
| 224 | pgtable_l2_cnt++; |
| 225 | *pg_tbl_addr = |
| 226 | ((unsigned int)page_table_l2) + (i * PAGE_TABLE_SIZE_L2); |
| 227 | ret = 0; |
| 228 | } |
| 229 | |
| 230 | return ret; |
| 231 | } |
| 232 | |
| 233 | int |
| 234 | config_l2_pagetable(unsigned int virt, unsigned int phys, |
| 235 | unsigned int pg_sz, unsigned int pg_tbl_addr) |
| 236 | { |
| 237 | int ret = -1; |
| 238 | unsigned int desc = 0; |
| 239 | int i = 0; |
| 240 | unsigned int *pg_tbl = (unsigned int *)pg_tbl_addr; |
| 241 | |
| 242 | /* |
| 243 | * Pick bit 19:12 of the virtual address as index |
| 244 | */ |
| 245 | unsigned int index = (virt & (~PGT_L1_DESC_SECTION_MASK)) >> PAGE_SHIFT; |
| 246 | |
| 247 | switch (pg_sz) { |
| 248 | case PAGESIZE_64K: |
| 249 | desc = |
| 250 | (phys & PGT_L2_DESC_LARGEPAGE_MASK) | PGT_L2_DESC_LARGEPAGE; |
| 251 | for (i = 0; i < 16; i++) |
| 252 | pg_tbl[index + i] = desc; |
| 253 | ret = 0; |
| 254 | break; |
| 255 | case PAGESIZE_4K: |
| 256 | desc = |
| 257 | (phys & PGT_L2_DESC_SMALLPAGE_MASK) | PGT_L2_DESC_SMALLPAGE; |
| 258 | pg_tbl[index] = desc; |
| 259 | ret = 0; |
| 260 | break; |
| 261 | default: |
| 262 | break; |
| 263 | } |
| 264 | |
| 265 | return ret; |
| 266 | } |
| 267 | |
| 268 | unsigned int |
| 269 | ipu_config_pagetable(struct udevice *dev, unsigned int virt, unsigned int phys, |
| 270 | unsigned int len) |
| 271 | { |
| 272 | unsigned int index; |
| 273 | unsigned int l = len; |
| 274 | unsigned int desc; |
| 275 | int pg_sz = 0; |
| 276 | int i = 0, err = 0; |
| 277 | unsigned int pg_tbl_l2_addr = 0; |
| 278 | unsigned int tmp_pgsz; |
| 279 | |
| 280 | if ((len & 0x0FFF) != 0) |
| 281 | return 0; |
| 282 | |
| 283 | while (l > 0) { |
| 284 | pg_sz = find_pagesz(virt, phys, l); |
| 285 | index = virt >> PGT_L1_DESC_SECTION_INDEX_SHIFT; |
| 286 | switch (pg_sz) { |
| 287 | /* |
| 288 | * 16 MB super section |
| 289 | */ |
| 290 | case PAGESIZE_16M: |
| 291 | /* |
| 292 | * Program the next 16 descriptors |
| 293 | */ |
| 294 | desc = |
| 295 | (phys & PGT_L1_DESC_SUPERSECTION_MASK) | |
| 296 | PGT_L1_DESC_SUPERSECTION; |
| 297 | for (i = 0; i < 16; i++) |
| 298 | page_table_l1[index + i] = desc; |
| 299 | l -= PGT_SUPERSECTION_SIZE; |
| 300 | phys += PGT_SUPERSECTION_SIZE; |
| 301 | virt += PGT_SUPERSECTION_SIZE; |
| 302 | break; |
| 303 | /* |
| 304 | * 1 MB section |
| 305 | */ |
| 306 | case PAGESIZE_1M: |
| 307 | desc = |
| 308 | (phys & PGT_L1_DESC_SECTION_MASK) | |
| 309 | PGT_L1_DESC_SECTION; |
| 310 | page_table_l1[index] = desc; |
| 311 | l -= PGT_SECTION_SIZE; |
| 312 | phys += PGT_SECTION_SIZE; |
| 313 | virt += PGT_SECTION_SIZE; |
| 314 | break; |
| 315 | /* |
| 316 | * 64 KB large page |
| 317 | */ |
| 318 | case PAGESIZE_64K: |
| 319 | case PAGESIZE_4K: |
| 320 | if (pg_sz == PAGESIZE_64K) |
| 321 | tmp_pgsz = 0x10000; |
| 322 | else |
| 323 | tmp_pgsz = 0x1000; |
| 324 | |
| 325 | err = get_l2_pg_tbl_addr(virt, &pg_tbl_l2_addr); |
| 326 | if (err != 0) { |
| 327 | debug |
| 328 | ("Unable to get level 2 PT address\n"); |
| 329 | hang(); |
| 330 | } |
| 331 | err = |
| 332 | config_l2_pagetable(virt, phys, pg_sz, |
| 333 | pg_tbl_l2_addr); |
| 334 | desc = |
| 335 | (pg_tbl_l2_addr & PGT_L1_DESC_PAGE_MASK) | |
| 336 | PGT_L1_DESC_PAGE; |
| 337 | page_table_l1[index] = desc; |
| 338 | l -= tmp_pgsz; |
| 339 | phys += tmp_pgsz; |
| 340 | virt += tmp_pgsz; |
| 341 | break; |
| 342 | case -1: |
| 343 | default: |
| 344 | return 0; |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | return len; |
| 349 | } |
| 350 | |
| 351 | int da_to_pa(struct udevice *dev, int da) |
| 352 | { |
| 353 | struct rproc_mem_entry *maps = NULL; |
| 354 | struct ipu_privdata *priv = dev_get_priv(dev); |
| 355 | |
| 356 | list_for_each_entry(maps, &priv->mappings, node) { |
| 357 | if (da >= maps->da && da < (maps->da + maps->len)) |
| 358 | return maps->dma + (da - maps->da); |
| 359 | } |
| 360 | |
| 361 | return 0; |
| 362 | } |
| 363 | |
| 364 | u32 ipu_config_mmu(u32 core_id, struct rproc *cfg) |
| 365 | { |
| 366 | u32 i = 0; |
| 367 | u32 reg = 0; |
| 368 | |
| 369 | /* |
| 370 | * Clear the entire pagetable location before programming the |
| 371 | * address into the MMU |
| 372 | */ |
| 373 | memset((void *)cfg->page_table_addr, 0x00, PAGE_TABLE_SIZE); |
| 374 | |
| 375 | for (i = 0; i < cfg->num_iommus; i++) { |
| 376 | u32 mmu_base = cfg->mmu_base_addr[i]; |
| 377 | |
| 378 | __raw_writel((int)cfg->page_table_addr, mmu_base + 0x4c); |
| 379 | reg = __raw_readl(mmu_base + 0x88); |
| 380 | |
| 381 | /* |
| 382 | * enable bus-error back |
| 383 | */ |
| 384 | __raw_writel(reg | 0x1, mmu_base + 0x88); |
| 385 | |
| 386 | /* |
| 387 | * Enable the MMU IRQs during MMU programming for the |
| 388 | * late attachcase. This is to allow the MMU fault to be |
| 389 | * detected by the kernel. |
| 390 | * |
| 391 | * MULTIHITFAULT|EMMUMISS|TRANSLATIONFAULT|TABLEWALKFAULT |
| 392 | */ |
| 393 | __raw_writel(0x1E, mmu_base + 0x1c); |
| 394 | |
| 395 | /* |
| 396 | * emutlbupdate|TWLENABLE|MMUENABLE |
| 397 | */ |
| 398 | __raw_writel(0x6, mmu_base + 0x44); |
| 399 | } |
| 400 | |
| 401 | return 0; |
| 402 | } |
| 403 | |
| 404 | /** |
| 405 | * enum ipu_mem - PRU core memory range identifiers |
| 406 | */ |
| 407 | enum ipu_mem { |
| 408 | PRU_MEM_IRAM = 0, |
| 409 | PRU_MEM_CTRL, |
| 410 | PRU_MEM_DEBUG, |
| 411 | PRU_MEM_MAX, |
| 412 | }; |
| 413 | |
| 414 | static int ipu_start(struct udevice *dev) |
| 415 | { |
| 416 | struct ipu_privdata *priv; |
| 417 | struct reset_ctl reset; |
| 418 | struct rproc *cfg = NULL; |
| 419 | int ret; |
| 420 | |
| 421 | priv = dev_get_priv(dev); |
| 422 | |
| 423 | cfg = rproc_cfg_arr[priv->id]; |
| 424 | if (cfg->config_peripherals) |
| 425 | cfg->config_peripherals(priv->id, cfg); |
| 426 | |
| 427 | /* |
| 428 | * Start running the remote core |
| 429 | */ |
| 430 | ret = reset_get_by_index(dev, 0, &reset); |
| 431 | if (ret < 0) { |
| 432 | dev_err(dev, "%s: error getting reset index %d\n", __func__, 0); |
| 433 | return ret; |
| 434 | } |
| 435 | |
| 436 | ret = reset_deassert(&reset); |
| 437 | if (ret < 0) { |
| 438 | dev_err(dev, "%s: error deasserting reset %d\n", __func__, 0); |
| 439 | return ret; |
| 440 | } |
| 441 | |
| 442 | ret = reset_get_by_index(dev, 1, &reset); |
| 443 | if (ret < 0) { |
| 444 | dev_err(dev, "%s: error getting reset index %d\n", __func__, 1); |
| 445 | return ret; |
| 446 | } |
| 447 | |
| 448 | ret = reset_deassert(&reset); |
| 449 | if (ret < 0) { |
| 450 | dev_err(dev, "%s: error deasserting reset %d\n", __func__, 1); |
| 451 | return ret; |
| 452 | } |
| 453 | |
| 454 | return 0; |
| 455 | } |
| 456 | |
| 457 | static int ipu_stop(struct udevice *dev) |
| 458 | { |
| 459 | return 0; |
| 460 | } |
| 461 | |
| 462 | /** |
| 463 | * ipu_init() - Initialize the remote processor |
| 464 | * @dev: rproc device pointer |
| 465 | * |
| 466 | * Return: 0 if all went ok, else return appropriate error |
| 467 | */ |
| 468 | static int ipu_init(struct udevice *dev) |
| 469 | { |
| 470 | return 0; |
| 471 | } |
| 472 | |
| 473 | static int ipu_add_res(struct udevice *dev, struct rproc_mem_entry *mapping) |
| 474 | { |
| 475 | struct ipu_privdata *priv = dev_get_priv(dev); |
| 476 | |
| 477 | list_add_tail(&mapping->node, &priv->mappings); |
| 478 | return 0; |
| 479 | } |
| 480 | |
| 481 | static int ipu_load(struct udevice *dev, ulong addr, ulong size) |
| 482 | { |
| 483 | Elf32_Ehdr *ehdr; /* Elf header structure pointer */ |
| 484 | Elf32_Phdr *phdr; /* Program header structure pointer */ |
| 485 | Elf32_Phdr proghdr; |
| 486 | int va; |
| 487 | int pa; |
| 488 | int i; |
| 489 | |
| 490 | ehdr = (Elf32_Ehdr *)addr; |
| 491 | phdr = (Elf32_Phdr *)(addr + ehdr->e_phoff); |
| 492 | /* |
| 493 | * Load each program header |
| 494 | */ |
| 495 | for (i = 0; i < ehdr->e_phnum; ++i) { |
| 496 | memcpy(&proghdr, phdr, sizeof(Elf32_Phdr)); |
| 497 | |
| 498 | if (proghdr.p_type != PT_LOAD) { |
| 499 | ++phdr; |
| 500 | continue; |
| 501 | } |
| 502 | |
| 503 | va = proghdr.p_paddr; |
| 504 | pa = da_to_pa(dev, va); |
| 505 | if (pa) |
| 506 | proghdr.p_paddr = pa; |
| 507 | |
| 508 | void *dst = (void *)(uintptr_t)proghdr.p_paddr; |
| 509 | void *src = (void *)addr + proghdr.p_offset; |
| 510 | |
| 511 | debug("Loading phdr %i to 0x%p (%i bytes)\n", i, dst, |
| 512 | proghdr.p_filesz); |
| 513 | if (proghdr.p_filesz) |
| 514 | memcpy(dst, src, proghdr.p_filesz); |
| 515 | |
| 516 | flush_cache((unsigned long)dst, proghdr.p_memsz); |
| 517 | |
| 518 | ++phdr; |
| 519 | } |
| 520 | |
| 521 | return 0; |
| 522 | } |
| 523 | |
| 524 | static const struct dm_rproc_ops ipu_ops = { |
| 525 | .init = ipu_init, |
| 526 | .start = ipu_start, |
| 527 | .stop = ipu_stop, |
| 528 | .load = ipu_load, |
| 529 | .add_res = ipu_add_res, |
| 530 | .config_pagetable = ipu_config_pagetable, |
| 531 | .alloc_mem = ipu_alloc_mem, |
| 532 | }; |
| 533 | |
| 534 | /* |
| 535 | * If the remotecore binary expects any peripherals to be setup before it has |
| 536 | * booted, configure them here. |
| 537 | * |
| 538 | * These functions are left empty by default as their operation is usecase |
| 539 | * specific. |
| 540 | */ |
| 541 | |
| 542 | u32 ipu1_config_peripherals(u32 core_id, struct rproc *cfg) |
| 543 | { |
| 544 | return 0; |
| 545 | } |
| 546 | |
| 547 | u32 ipu2_config_peripherals(u32 core_id, struct rproc *cfg) |
| 548 | { |
| 549 | return 0; |
| 550 | } |
| 551 | |
| 552 | struct rproc_intmem_to_l3_mapping ipu1_intmem_to_l3_mapping = { |
| 553 | .num_entries = 1, |
| 554 | .mappings = { |
| 555 | /* |
| 556 | * L2 SRAM |
| 557 | */ |
| 558 | { |
| 559 | .priv_addr = 0x55020000, |
| 560 | .l3_addr = 0x58820000, |
| 561 | .len = (64 * 1024)}, |
| 562 | } |
| 563 | }; |
| 564 | |
| 565 | struct rproc_intmem_to_l3_mapping ipu2_intmem_to_l3_mapping = { |
| 566 | .num_entries = 1, |
| 567 | .mappings = { |
| 568 | /* |
| 569 | * L2 SRAM |
| 570 | */ |
| 571 | { |
| 572 | .priv_addr = 0x55020000, |
| 573 | .l3_addr = 0x55020000, |
| 574 | .len = (64 * 1024)}, |
| 575 | } |
| 576 | }; |
| 577 | |
| 578 | struct rproc ipu1_config = { |
| 579 | .num_iommus = 1, |
| 580 | .mmu_base_addr = {0x58882000, 0}, |
| 581 | .load_addr = IPU1_LOAD_ADDR, |
| 582 | .core_name = "IPU1", |
| 583 | .firmware_name = "dra7-ipu1-fw.xem4", |
| 584 | .config_mmu = ipu_config_mmu, |
| 585 | .config_peripherals = ipu1_config_peripherals, |
| 586 | .intmem_to_l3_mapping = &ipu1_intmem_to_l3_mapping |
| 587 | }; |
| 588 | |
| 589 | struct rproc ipu2_config = { |
| 590 | .num_iommus = 1, |
| 591 | .mmu_base_addr = {0x55082000, 0}, |
| 592 | .load_addr = IPU2_LOAD_ADDR, |
| 593 | .core_name = "IPU2", |
| 594 | .firmware_name = "dra7-ipu2-fw.xem4", |
| 595 | .config_mmu = ipu_config_mmu, |
| 596 | .config_peripherals = ipu2_config_peripherals, |
| 597 | .intmem_to_l3_mapping = &ipu2_intmem_to_l3_mapping |
| 598 | }; |
| 599 | |
| 600 | struct rproc *rproc_cfg_arr[2] = { |
| 601 | [IPU2] = &ipu2_config, |
| 602 | [IPU1] = &ipu1_config, |
| 603 | }; |
| 604 | |
| 605 | u32 spl_pre_boot_core(struct udevice *dev, u32 core_id) |
| 606 | { |
| 607 | struct rproc *cfg = NULL; |
| 608 | unsigned long load_elf_status = 0; |
| 609 | int tablesz; |
| 610 | |
| 611 | cfg = rproc_cfg_arr[core_id]; |
| 612 | /* |
| 613 | * Check for valid elf image |
| 614 | */ |
| 615 | if (!valid_elf_image(cfg->load_addr)) |
| 616 | return 1; |
| 617 | |
| 618 | if (rproc_find_resource_table(dev, cfg->load_addr, &tablesz)) |
| 619 | cfg->has_rsc_table = 1; |
| 620 | else |
| 621 | cfg->has_rsc_table = 0; |
| 622 | |
| 623 | /* |
| 624 | * Configure the MMU |
| 625 | */ |
| 626 | if (cfg->config_mmu && cfg->has_rsc_table) |
| 627 | cfg->config_mmu(core_id, cfg); |
| 628 | |
| 629 | /* |
| 630 | * Load the remote core. Fill the page table of the first(possibly |
| 631 | * only) IOMMU during ELF loading. Copy the page table to the second |
| 632 | * IOMMU before running the remote core. |
| 633 | */ |
| 634 | |
| 635 | page_table_l1 = (unsigned int *)cfg->page_table_addr; |
| 636 | page_table_l2 = |
| 637 | (unsigned int *)(cfg->page_table_addr + PAGE_TABLE_SIZE_L1); |
| 638 | mem_base = cfg->cma_base; |
| 639 | mem_size = cfg->cma_size; |
| 640 | memset(mem_bitmap, 0x00, sizeof(mem_bitmap)); |
| 641 | mem_count = (cfg->cma_size >> PAGE_SHIFT); |
| 642 | |
| 643 | /* |
| 644 | * Clear variables used for level 2 page table allocation |
| 645 | */ |
| 646 | memset(pgtable_l2_map, 0x00, sizeof(pgtable_l2_map)); |
| 647 | pgtable_l2_cnt = 0; |
| 648 | |
| 649 | load_elf_status = rproc_parse_resource_table(dev, cfg); |
| 650 | if (load_elf_status == 0) { |
| 651 | debug("load_elf_image_phdr returned error for core %s\n", |
| 652 | cfg->core_name); |
| 653 | return 1; |
| 654 | } |
| 655 | |
| 656 | flush_cache(cfg->page_table_addr, PAGE_TABLE_SIZE); |
| 657 | |
| 658 | return 0; |
| 659 | } |
| 660 | |
| 661 | static fdt_addr_t ipu_parse_mem_nodes(struct udevice *dev, char *name, |
| 662 | int privid, fdt_size_t *sizep) |
| 663 | { |
| 664 | int ret; |
| 665 | u32 sp; |
| 666 | ofnode mem_node; |
| 667 | |
| 668 | ret = ofnode_read_u32(dev_ofnode(dev), name, &sp); |
| 669 | if (ret) { |
| 670 | dev_err(dev, "memory-region node fetch failed %d\n", ret); |
| 671 | return ret; |
| 672 | } |
| 673 | |
| 674 | mem_node = ofnode_get_by_phandle(sp); |
| 675 | if (!ofnode_valid(mem_node)) |
| 676 | return -EINVAL; |
| 677 | |
| 678 | return ofnode_get_addr_size_index(mem_node, 0, sizep); |
| 679 | } |
| 680 | |
| 681 | /** |
| 682 | * ipu_probe() - Basic probe |
| 683 | * @dev: corresponding k3 remote processor device |
| 684 | * |
| 685 | * Return: 0 if all goes good, else appropriate error message. |
| 686 | */ |
| 687 | static int ipu_probe(struct udevice *dev) |
| 688 | { |
| 689 | struct ipu_privdata *priv; |
| 690 | struct rproc *cfg = NULL; |
| 691 | struct reset_ctl reset; |
| 692 | static const char *const ipu_mem_names[] = { "l2ram" }; |
| 693 | int ret; |
| 694 | fdt_size_t sizep; |
| 695 | |
| 696 | priv = dev_get_priv(dev); |
| 697 | |
| 698 | priv->mem.bus_addr = |
| 699 | devfdt_get_addr_size_name(dev, |
| 700 | ipu_mem_names[0], |
| 701 | (fdt_addr_t *)&priv->mem.size); |
| 702 | |
| 703 | ret = reset_get_by_index(dev, 2, &reset); |
| 704 | if (ret < 0) { |
| 705 | dev_err(dev, "%s: error getting reset index %d\n", __func__, 2); |
| 706 | return ret; |
| 707 | } |
| 708 | |
| 709 | ret = reset_deassert(&reset); |
| 710 | if (ret < 0) { |
| 711 | dev_err(dev, "%s: error deasserting reset %d\n", __func__, 2); |
| 712 | return ret; |
| 713 | } |
| 714 | |
| 715 | if (priv->mem.bus_addr == FDT_ADDR_T_NONE) { |
| 716 | dev_err(dev, "%s bus address not found\n", ipu_mem_names[0]); |
| 717 | return -EINVAL; |
| 718 | } |
| 719 | priv->mem.cpu_addr = map_physmem(priv->mem.bus_addr, |
| 720 | priv->mem.size, MAP_NOCACHE); |
| 721 | |
| 722 | if (devfdt_get_addr(dev) == 0x58820000) |
| 723 | priv->id = 0; |
| 724 | else |
| 725 | priv->id = 1; |
| 726 | |
| 727 | cfg = rproc_cfg_arr[priv->id]; |
| 728 | cfg->cma_base = ipu_parse_mem_nodes(dev, "memory-region", priv->id, |
| 729 | &sizep); |
| 730 | cfg->cma_size = sizep; |
| 731 | |
| 732 | cfg->page_table_addr = ipu_parse_mem_nodes(dev, "pg-tbl", priv->id, |
| 733 | &sizep); |
| 734 | |
| 735 | dev_info(dev, |
| 736 | "ID %d memory %8s: bus addr %pa size 0x%zx va %p da 0x%x\n", |
| 737 | priv->id, ipu_mem_names[0], &priv->mem.bus_addr, |
| 738 | priv->mem.size, priv->mem.cpu_addr, priv->mem.dev_addr); |
| 739 | |
| 740 | INIT_LIST_HEAD(&priv->mappings); |
| 741 | if (spl_pre_boot_core(dev, priv->id)) |
| 742 | return -EINVAL; |
| 743 | |
| 744 | return 0; |
| 745 | } |
| 746 | |
| 747 | static const struct udevice_id ipu_ids[] = { |
| 748 | {.compatible = "ti,dra7-ipu"}, |
| 749 | {} |
| 750 | }; |
| 751 | |
| 752 | U_BOOT_DRIVER(ipu) = { |
| 753 | .name = "ipu", |
| 754 | .of_match = ipu_ids, |
| 755 | .id = UCLASS_REMOTEPROC, |
| 756 | .ops = &ipu_ops, |
| 757 | .probe = ipu_probe, |
| 758 | .priv_auto = sizeof(struct ipu_privdata), |
| 759 | }; |