blob: 58ecbb9835605c600a67e3ad26e73a6c1fc48c44 [file] [log] [blame]
Tom Rini10e47792018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Philipp Tomsichd36af1c2016-10-28 18:21:28 +08002/*
3 * sun9i dram controller initialisation
4 *
5 * (C) Copyright 2007-2015
6 * Allwinner Technology Co., Ltd. <www.allwinnertech.com>
7 * Jerry Wang <wangflord@allwinnertech.com>
8 *
9 * (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
10 * Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
Philipp Tomsichd36af1c2016-10-28 18:21:28 +080011 */
12
Philipp Tomsichd36af1c2016-10-28 18:21:28 +080013#include <dm.h>
14#include <errno.h>
Simon Glass97589732020-05-10 11:40:02 -060015#include <init.h>
Simon Glass0f2af882020-05-10 11:40:05 -060016#include <log.h>
Philipp Tomsichd36af1c2016-10-28 18:21:28 +080017#include <ram.h>
18#include <asm/io.h>
19#include <asm/arch/clock.h>
20#include <asm/arch/dram.h>
21#include <asm/arch/sys_proto.h>
22
Philipp Tomsichd36af1c2016-10-28 18:21:28 +080023#define DRAM_CLK (CONFIG_DRAM_CLK * 1000000)
24
25/*
26 * The following amounts to an extensive rewrite of the code received from
27 * Allwinner as part of the open-source bootloader release (refer to
28 * https://github.com/allwinner-zh/bootloader.git) and augments the upstream
29 * sources (which act as the primary reference point for the inner workings
30 * of the 'underdocumented' DRAM controller in the A80) using the following
31 * documentation for other memory controllers based on the (Synopsys)
32 * Designware IP (DDR memory protocol controller and DDR PHY)
33 * * TI Keystone II Architecture: DDR3 Memory Controller, User's Guide
34 * Document 'SPRUHN7C', Oct 2013 (revised March 2015)
35 * * Xilinx Zynq UltraScale+ MPSoC Register Reference
36 * document ug1087 (v1.0)
37 * Note that the Zynq-documentation provides a very close match for the DDR
38 * memory protocol controller (and provides a very good guide to the rounding
39 * rules for various timings), whereas the TI Keystone II document should be
40 * referred to for DDR PHY specifics only.
41 *
42 * The DRAM controller in the A80 runs at half the frequency of the DDR PHY
43 * (i.e. the rules for MEMC_FREQ_RATIO=2 from the Zynq-documentation apply).
44 *
45 * Known limitations
46 * =================
47 * In the current state, the following features are not fully supported and
48 * a number of simplifying assumptions have been made:
49 * 1) Only DDR3 support is implemented, as our test platform (the A80-Q7
50 * module) is designed to accomodate DDR3/DDR3L.
51 * 2) Only 2T-mode has been implemented and tested.
52 * 3) The controller supports two different clocking strategies (PLL6 can
53 * either be 2*CK or CK/2)... we only support the 2*CK clock at this
54 * time and haven't verified whether the alternative clocking strategy
55 * works. If you are interested in porting this over/testing this,
56 * please refer to cases where bit 0 of 'dram_tpr8' is tested in the
57 * original code from Allwinner.
58 * 4) Support for 2 ranks per controller is not implemented (as we don't
59 * the hardware to test it).
60 *
61 * Future directions
62 * =================
63 * The driver should be driven from a device-tree based configuration that
64 * can dynamically provide the necessary timing parameters (i.e. target
65 * frequency and speed-bin information)---the data structures used in the
66 * calculation of the timing parameters are already designed to capture
67 * similar information as the device tree would provide.
68 *
69 * To enable a device-tree based configuration of the sun9i platform, we
70 * will need to enable CONFIG_TPL and bootstrap in 3 stages: initially
71 * into SRAM A1 (40KB) and next into SRAM A2 (160KB)---which would be the
72 * stage to initialise the platform via the device-tree---before having
73 * the full U-Boot run from DDR.
74 */
75
76/*
77 * A number of DDR3 timings are given as "the greater of a fixed number of
78 * clock cycles (CK) or nanoseconds. We express these using a structure
79 * that holds a cycle count and a duration in picoseconds (so we can model
80 * sub-ns timings, such as 7.5ns without losing precision or resorting to
81 * rounding up early.
82 */
83struct dram_sun9i_timing {
84 u32 ck;
85 u32 ps;
86};
87
88/* */
89struct dram_sun9i_cl_cwl_timing {
90 u32 CL;
91 u32 CWL;
92 u32 tCKmin; /* in ps */
93 u32 tCKmax; /* in ps */
94};
95
96struct dram_sun9i_para {
97 u32 dram_type;
98
99 u8 bus_width;
100 u8 chan;
101 u8 rank;
102 u8 rows;
103 u16 page_size;
104
105 /* Timing information for each speed-bin */
106 struct dram_sun9i_cl_cwl_timing *cl_cwl_table;
107 u32 cl_cwl_numentries;
108
109 /*
110 * For the timings, we try to keep the order and grouping used in
111 * JEDEC Standard No. 79-3F
112 */
113
114 /* timings */
115 u32 tREFI; /* in ns */
116 u32 tRFC; /* in ns */
117
118 u32 tRAS; /* in ps */
119
120 /* command and address timing */
121 u32 tDLLK; /* in nCK */
122 struct dram_sun9i_timing tRTP;
123 struct dram_sun9i_timing tWTR;
124 u32 tWR; /* in nCK */
125 u32 tMRD; /* in nCK */
126 struct dram_sun9i_timing tMOD;
127 u32 tRCD; /* in ps */
128 u32 tRP; /* in ps */
129 u32 tRC; /* in ps */
130 u32 tCCD; /* in nCK */
131 struct dram_sun9i_timing tRRD;
132 u32 tFAW; /* in ps */
133
134 /* calibration timing */
135 /* struct dram_sun9i_timing tZQinit; */
136 struct dram_sun9i_timing tZQoper;
137 struct dram_sun9i_timing tZQCS;
138
139 /* reset timing */
140 /* struct dram_sun9i_timing tXPR; */
141
142 /* self-refresh timings */
143 struct dram_sun9i_timing tXS;
144 u32 tXSDLL; /* in nCK */
145 /* struct dram_sun9i_timing tCKESR; */
146 struct dram_sun9i_timing tCKSRE;
147 struct dram_sun9i_timing tCKSRX;
148
149 /* power-down timings */
150 struct dram_sun9i_timing tXP;
151 struct dram_sun9i_timing tXPDLL;
152 struct dram_sun9i_timing tCKE;
153
154 /* write leveling timings */
155 u32 tWLMRD; /* min, in nCK */
156 /* u32 tWLDQSEN; min, in nCK */
157 u32 tWLO; /* max, in ns */
158 /* u32 tWLOE; max, in ns */
159
160 /* u32 tCKDPX; in nCK */
161 /* u32 tCKCSX; in nCK */
162};
163
164static void mctl_sys_init(void);
165
166#define SCHED_RDWR_IDLE_GAP(n) ((n & 0xff) << 24)
167#define SCHED_GO2CRITICAL_HYSTERESIS(n) ((n & 0xff) << 16)
168#define SCHED_LPR_NUM_ENTRIES(n) ((n & 0xff) << 8)
169#define SCHED_PAGECLOSE (1 << 2)
170#define SCHED_PREFER_WRITE (1 << 1)
171#define SCHED_FORCE_LOW_PRI_N (1 << 0)
172
173#define SCHED_CONFIG (SCHED_RDWR_IDLE_GAP(0xf) | \
174 SCHED_GO2CRITICAL_HYSTERESIS(0x80) | \
175 SCHED_LPR_NUM_ENTRIES(0x20) | \
176 SCHED_FORCE_LOW_PRI_N)
177#define PERFHPR0_CONFIG 0x0000001f
178#define PERFHPR1_CONFIG 0x1f00001f
179#define PERFLPR0_CONFIG 0x000000ff
180#define PERFLPR1_CONFIG 0x0f0000ff
181#define PERFWR0_CONFIG 0x000000ff
182#define PERFWR1_CONFIG 0x0f0001ff
183
184static void mctl_ctl_sched_init(unsigned long base)
185{
186 struct sunxi_mctl_ctl_reg *mctl_ctl =
187 (struct sunxi_mctl_ctl_reg *)base;
188
189 /* Needs to be done before the global clk enable... */
190 writel(SCHED_CONFIG, &mctl_ctl->sched);
191 writel(PERFHPR0_CONFIG, &mctl_ctl->perfhpr0);
192 writel(PERFHPR1_CONFIG, &mctl_ctl->perfhpr1);
193 writel(PERFLPR0_CONFIG, &mctl_ctl->perflpr0);
194 writel(PERFLPR1_CONFIG, &mctl_ctl->perflpr1);
195 writel(PERFWR0_CONFIG, &mctl_ctl->perfwr0);
196 writel(PERFWR1_CONFIG, &mctl_ctl->perfwr1);
197}
198
199static void mctl_sys_init(void)
200{
201 struct sunxi_ccm_reg * const ccm =
202 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
203 struct sunxi_mctl_com_reg * const mctl_com =
204 (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
205
206 debug("Setting PLL6 to %d\n", DRAM_CLK * 2);
207 clock_set_pll6(DRAM_CLK * 2);
208
209 /* Original dram init code which may come in handy later
210 ********************************************************
211 clock_set_pll6(use_2channelPLL ? (DRAM_CLK * 2) :
212 (DRAM_CLK / 2), false);
213
214 if ((para->dram_clk <= 400)|((para->dram_tpr8 & 0x1)==0)) {
215 * PLL6 should be 2*CK *
216 * ccm_setup_pll6_ddr_clk(PLL6_DDR_CLK); *
217 ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) * 2), 0);
218 } else {
219 * PLL6 should be CK/2 *
220 ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) / 2), 1);
221 }
222
223 if (para->dram_tpr13 & (0xf<<18)) {
224 *
225 * bit21:bit18=0001:pll swing 0.4
226 * bit21:bit18=0010:pll swing 0.3
227 * bit21:bit18=0100:pll swing 0.2
228 * bit21:bit18=1000:pll swing 0.1
229 *
230 dram_dbg("DRAM fre extend open !\n");
231 reg_val=mctl_read_w(CCM_PLL6_DDR_REG);
232 reg_val&=(0x1<<16);
233 reg_val=reg_val>>16;
234
235 if(para->dram_tpr13 & (0x1<<18))
236 {
237 mctl_write_w(CCM_PLL_BASE + 0x114,
238 (0x3333U|(0x3<<17)|(reg_val<<19)|(0x120U<<20)|
239 (0x2U<<29)|(0x1U<<31)));
240 }
241 else if(para->dram_tpr13 & (0x1<<19))
242 {
243 mctl_write_w(CCM_PLL_BASE + 0x114,
244 (0x6666U|(0x3U<<17)|(reg_val<<19)|(0xD8U<<20)|
245 (0x2U<<29)|(0x1U<<31)));
246 }
247 else if(para->dram_tpr13 & (0x1<<20))
248 {
249 mctl_write_w(CCM_PLL_BASE + 0x114,
250 (0x9999U|(0x3U<<17)|(reg_val<<19)|(0x90U<<20)|
251 (0x2U<<29)|(0x1U<<31)));
252 }
253 else if(para->dram_tpr13 & (0x1<<21))
254 {
255 mctl_write_w(CCM_PLL_BASE + 0x114,
256 (0xccccU|(0x3U<<17)|(reg_val<<19)|(0x48U<<20)|
257 (0x2U<<29)|(0x1U<<31)));
258 }
259
260 //frequency extend open
261 reg_val = mctl_read_w(CCM_PLL6_DDR_REG);
262 reg_val |= ((0x1<<24)|(0x1<<30));
263 mctl_write_w(CCM_PLL6_DDR_REG, reg_val);
264
Philipp Tomsichd36af1c2016-10-28 18:21:28 +0800265 while(mctl_read_w(CCM_PLL6_DDR_REG) & (0x1<<30));
266 }
267
268 aw_delay(0x20000); //make some delay
269 ********************************************************
270 */
271
272 /* assert mctl reset */
273 clrbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL);
274 /* stop mctl clock */
275 clrbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL);
276
277 sdelay(2000);
278
279 /* deassert mctl reset */
280 setbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL);
281 /* enable mctl clock */
282 setbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL);
283
284 /* set up the transactions scheduling before enabling the global clk */
285 mctl_ctl_sched_init(SUNXI_DRAM_CTL0_BASE);
286 mctl_ctl_sched_init(SUNXI_DRAM_CTL1_BASE);
287 sdelay(1000);
288
289 debug("2\n");
290
291 /* (3 << 12): PLL_DDR */
292 writel((3 << 12) | (1 << 16), &ccm->dram_clk_cfg);
293 do {
294 debug("Waiting for DRAM_CLK_CFG\n");
295 sdelay(10000);
296 } while (readl(&ccm->dram_clk_cfg) & (1 << 16));
297 setbits_le32(&ccm->dram_clk_cfg, (1 << 31));
298
299 /* TODO: we only support the common case ... i.e. 2*CK */
300 setbits_le32(&mctl_com->ccr, (1 << 14) | (1 << 30));
301 writel(2, &mctl_com->rmcr); /* controller clock is PLL6/4 */
302
303 sdelay(2000);
304
305 /* Original dram init code which may come in handy later
306 ********************************************************
307 if ((para->dram_clk <= 400) | ((para->dram_tpr8 & 0x1) == 0)) {
308 * PLL6 should be 2*CK *
309 * gating 2 channel pll *
310 reg_val = mctl_read_w(MC_CCR);
311 reg_val |= ((0x1 << 14) | (0x1U << 30));
312 mctl_write_w(MC_CCR, reg_val);
313 mctl_write_w(MC_RMCR, 0x2); * controller clock use pll6/4 *
314 } else {
315 * enable 2 channel pll *
316 reg_val = mctl_read_w(MC_CCR);
317 reg_val &= ~((0x1 << 14) | (0x1U << 30));
318 mctl_write_w(MC_CCR, reg_val);
319 mctl_write_w(MC_RMCR, 0x0); * controller clock use pll6 *
320 }
321
322 reg_val = mctl_read_w(MC_CCR);
323 reg_val &= ~((0x1<<15)|(0x1U<<31));
324 mctl_write_w(MC_CCR, reg_val);
325 aw_delay(20);
326 //aw_delay(0x10);
327 ********************************************************
328 */
329
330 clrbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN | MCTL_CCR_CH1_CLK_EN);
331 sdelay(1000);
332
333 setbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN);
334 /* TODO if (para->chan == 2) */
335 setbits_le32(&mctl_com->ccr, MCTL_CCR_CH1_CLK_EN);
336}
337
338static void mctl_com_init(struct dram_sun9i_para *para)
339{
340 struct sunxi_mctl_com_reg * const mctl_com =
341 (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
342
343 /* TODO: hard-wired for DDR3 now */
344 writel(((para->chan == 2) ? MCTL_CR_CHANNEL_DUAL :
345 MCTL_CR_CHANNEL_SINGLE)
346 | MCTL_CR_DRAMTYPE_DDR3 | MCTL_CR_BANK(1)
347 | MCTL_CR_ROW(para->rows)
348 | ((para->bus_width == 32) ? MCTL_CR_BUSW32 : MCTL_CR_BUSW16)
349 | MCTL_CR_PAGE_SIZE(para->page_size) | MCTL_CR_RANK(para->rank),
350 &mctl_com->cr);
351
352 debug("CR: %d\n", readl(&mctl_com->cr));
353}
354
355static u32 mctl_channel_init(u32 ch_index, struct dram_sun9i_para *para)
356{
357 struct sunxi_mctl_ctl_reg *mctl_ctl;
358 struct sunxi_mctl_phy_reg *mctl_phy;
359
360 u32 CL = 0;
361 u32 CWL = 0;
362 u16 mr[4] = { 0, };
363
364#define PS2CYCLES_FLOOR(n) ((n * CONFIG_DRAM_CLK) / 1000000)
365#define PS2CYCLES_ROUNDUP(n) ((n * CONFIG_DRAM_CLK + 999999) / 1000000)
366#define NS2CYCLES_FLOOR(n) ((n * CONFIG_DRAM_CLK) / 1000)
367#define NS2CYCLES_ROUNDUP(n) ((n * CONFIG_DRAM_CLK + 999) / 1000)
368#define MAX(a, b) ((a) > (b) ? (a) : (b))
369
370 /*
371 * Convert the values to cycle counts (nCK) from what is provided
372 * by the definition of each speed bin.
373 */
374 /* const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI); */
375 const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI);
376 const u32 tRFC = NS2CYCLES_ROUNDUP(para->tRFC);
377 const u32 tRCD = PS2CYCLES_ROUNDUP(para->tRCD);
378 const u32 tRP = PS2CYCLES_ROUNDUP(para->tRP);
379 const u32 tRC = PS2CYCLES_ROUNDUP(para->tRC);
380 const u32 tRAS = PS2CYCLES_ROUNDUP(para->tRAS);
381
382 /* command and address timing */
383 const u32 tDLLK = para->tDLLK;
384 const u32 tRTP = MAX(para->tRTP.ck, PS2CYCLES_ROUNDUP(para->tRTP.ps));
385 const u32 tWTR = MAX(para->tWTR.ck, PS2CYCLES_ROUNDUP(para->tWTR.ps));
386 const u32 tWR = NS2CYCLES_FLOOR(para->tWR);
387 const u32 tMRD = para->tMRD;
388 const u32 tMOD = MAX(para->tMOD.ck, PS2CYCLES_ROUNDUP(para->tMOD.ps));
389 const u32 tCCD = para->tCCD;
390 const u32 tRRD = MAX(para->tRRD.ck, PS2CYCLES_ROUNDUP(para->tRRD.ps));
391 const u32 tFAW = PS2CYCLES_ROUNDUP(para->tFAW);
392
393 /* calibration timings */
394 /* const u32 tZQinit = MAX(para->tZQinit.ck,
395 PS2CYCLES_ROUNDUP(para->tZQinit.ps)); */
396 const u32 tZQoper = MAX(para->tZQoper.ck,
397 PS2CYCLES_ROUNDUP(para->tZQoper.ps));
398 const u32 tZQCS = MAX(para->tZQCS.ck,
399 PS2CYCLES_ROUNDUP(para->tZQCS.ps));
400
401 /* reset timing */
402 /* const u32 tXPR = MAX(para->tXPR.ck,
403 PS2CYCLES_ROUNDUP(para->tXPR.ps)); */
404
405 /* power-down timings */
406 const u32 tXP = MAX(para->tXP.ck, PS2CYCLES_ROUNDUP(para->tXP.ps));
407 const u32 tXPDLL = MAX(para->tXPDLL.ck,
408 PS2CYCLES_ROUNDUP(para->tXPDLL.ps));
409 const u32 tCKE = MAX(para->tCKE.ck, PS2CYCLES_ROUNDUP(para->tCKE.ps));
410
411 /*
412 * self-refresh timings (keep below power-down timings, as tCKESR
413 * needs to be calculated based on the nCK value of tCKE)
414 */
415 const u32 tXS = MAX(para->tXS.ck, PS2CYCLES_ROUNDUP(para->tXS.ps));
416 const u32 tXSDLL = para->tXSDLL;
417 const u32 tCKSRE = MAX(para->tCKSRE.ck,
418 PS2CYCLES_ROUNDUP(para->tCKSRE.ps));
419 const u32 tCKESR = tCKE + 1;
420 const u32 tCKSRX = MAX(para->tCKSRX.ck,
421 PS2CYCLES_ROUNDUP(para->tCKSRX.ps));
422
423 /* write leveling timings */
424 const u32 tWLMRD = para->tWLMRD;
425 /* const u32 tWLDQSEN = para->tWLDQSEN; */
426 const u32 tWLO = PS2CYCLES_FLOOR(para->tWLO);
427 /* const u32 tWLOE = PS2CYCLES_FLOOR(para->tWLOE); */
428
429 const u32 tRASmax = tREFI * 9;
430 int i;
431
432 for (i = 0; i < para->cl_cwl_numentries; ++i) {
433 const u32 tCK = 1000000 / CONFIG_DRAM_CLK;
434
435 if ((para->cl_cwl_table[i].tCKmin <= tCK) &&
436 (tCK < para->cl_cwl_table[i].tCKmax)) {
437 CL = para->cl_cwl_table[i].CL;
438 CWL = para->cl_cwl_table[i].CWL;
439
440 debug("found CL/CWL: CL = %d, CWL = %d\n", CL, CWL);
441 break;
442 }
443 }
444
445 if ((CL == 0) && (CWL == 0)) {
446 printf("failed to find valid CL/CWL for operating point %d MHz\n",
447 CONFIG_DRAM_CLK);
448 return 0;
449 }
450
451 if (ch_index == 0) {
452 mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
453 mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
454 } else {
455 mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL1_BASE;
456 mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY1_BASE;
457 }
458
459 if (para->dram_type == DRAM_TYPE_DDR3) {
460 mr[0] = DDR3_MR0_PPD_FAST_EXIT | DDR3_MR0_WR(tWR) |
461 DDR3_MR0_CL(CL);
462 mr[1] = DDR3_MR1_RTT120OHM;
463 mr[2] = DDR3_MR2_TWL(CWL);
464 mr[3] = 0;
465
466 /*
467 * DRAM3 initialisation requires holding CKE LOW for
468 * at least 500us prior to starting the initialisation
469 * sequence and at least 10ns after driving CKE HIGH
470 * before the initialisation sequence may be started).
471 *
472 * Refer to Micron document "TN-41-07: DDR3 Power-Up,
473 * Initialization, and Reset DDR3 Initialization
474 * Routine" for details).
475 */
476 writel(MCTL_INIT0_POST_CKE_x1024(1) |
477 MCTL_INIT0_PRE_CKE_x1024(
478 (500 * CONFIG_DRAM_CLK + 1023) / 1024), /* 500us */
479 &mctl_ctl->init[0]);
480 writel(MCTL_INIT1_DRAM_RSTN_x1024(1),
481 &mctl_ctl->init[1]);
482 /* INIT2 is not used for DDR3 */
483 writel(MCTL_INIT3_MR(mr[0]) | MCTL_INIT3_EMR(mr[1]),
484 &mctl_ctl->init[3]);
485 writel(MCTL_INIT4_EMR2(mr[2]) | MCTL_INIT4_EMR3(mr[3]),
486 &mctl_ctl->init[4]);
487 writel(MCTL_INIT5_DEV_ZQINIT_x32(512 / 32), /* 512 cycles */
488 &mctl_ctl->init[5]);
489 } else {
490 /* !!! UNTESTED !!! */
491 /*
492 * LPDDR2 and/or LPDDR3 require a 200us minimum delay
493 * after driving CKE HIGH in the initialisation sequence.
494 */
495 writel(MCTL_INIT0_POST_CKE_x1024(
496 (200 * CONFIG_DRAM_CLK + 1023) / 1024),
497 &mctl_ctl->init[0]);
498 writel(MCTL_INIT1_DRAM_RSTN_x1024(1),
499 &mctl_ctl->init[1]);
500 writel(MCTL_INIT2_IDLE_AFTER_RESET_x32(
501 (CONFIG_DRAM_CLK + 31) / 32) /* 1us */
502 | MCTL_INIT2_MIN_STABLE_CLOCK_x1(5), /* 5 cycles */
503 &mctl_ctl->init[2]);
504 writel(MCTL_INIT3_MR(mr[1]) | MCTL_INIT3_EMR(mr[2]),
505 &mctl_ctl->init[3]);
506 writel(MCTL_INIT4_EMR2(mr[3]),
507 &mctl_ctl->init[4]);
508 writel(MCTL_INIT5_DEV_ZQINIT_x32(
509 (CONFIG_DRAM_CLK + 31) / 32) /* 1us */
510 | MCTL_INIT5_MAX_AUTO_INIT_x1024(
511 (10 * CONFIG_DRAM_CLK + 1023) / 1024),
512 &mctl_ctl->init[5]);
513 }
514
515 /* (DDR3) We always use a burst-length of 8. */
516#define MCTL_BL 8
517 /* wr2pre: WL + BL/2 + tWR */
518#define WR2PRE (MCTL_BL/2 + CWL + tWTR)
519 /* wr2rd = CWL + BL/2 + tWTR */
520#define WR2RD (MCTL_BL/2 + CWL + tWTR)
521 /*
522 * rd2wr = RL + BL/2 + 2 - WL (for DDR3)
523 * rd2wr = RL + BL/2 + RU(tDQSCKmax/tCK) + 1 - WL (for LPDDR2/LPDDR3)
524 */
525#define RD2WR (CL + MCTL_BL/2 + 2 - CWL)
526#define MCTL_PHY_TRTW 0
527#define MCTL_PHY_TRTODT 0
528
529#define MCTL_DIV2(n) ((n + 1)/2)
530#define MCTL_DIV32(n) (n/32)
531#define MCTL_DIV1024(n) (n/1024)
532
533 writel((MCTL_DIV2(WR2PRE) << 24) | (MCTL_DIV2(tFAW) << 16) |
534 (MCTL_DIV1024(tRASmax) << 8) | (MCTL_DIV2(tRAS) << 0),
535 &mctl_ctl->dramtmg[0]);
536 writel((MCTL_DIV2(tXP) << 16) | (MCTL_DIV2(tRTP) << 8) |
537 (MCTL_DIV2(tRC) << 0),
538 &mctl_ctl->dramtmg[1]);
539 writel((MCTL_DIV2(CWL) << 24) | (MCTL_DIV2(CL) << 16) |
540 (MCTL_DIV2(RD2WR) << 8) | (MCTL_DIV2(WR2RD) << 0),
541 &mctl_ctl->dramtmg[2]);
542 /*
543 * Note: tMRW is located at bit 16 (and up) in DRAMTMG3...
544 * this is only relevant for LPDDR2/LPDDR3
545 */
546 writel((MCTL_DIV2(tMRD) << 12) | (MCTL_DIV2(tMOD) << 0),
547 &mctl_ctl->dramtmg[3]);
548 writel((MCTL_DIV2(tRCD) << 24) | (MCTL_DIV2(tCCD) << 16) |
549 (MCTL_DIV2(tRRD) << 8) | (MCTL_DIV2(tRP) << 0),
550 &mctl_ctl->dramtmg[4]);
551 writel((MCTL_DIV2(tCKSRX) << 24) | (MCTL_DIV2(tCKSRE) << 16) |
552 (MCTL_DIV2(tCKESR) << 8) | (MCTL_DIV2(tCKE) << 0),
553 &mctl_ctl->dramtmg[5]);
554
555 /* These timings are relevant for LPDDR2/LPDDR3 only */
556 /* writel((MCTL_TCKDPDE << 24) | (MCTL_TCKDPX << 16) |
557 (MCTL_TCKCSX << 0), &mctl_ctl->dramtmg[6]); */
558
559 /* printf("DRAMTMG7 reset value: 0x%x\n",
560 readl(&mctl_ctl->dramtmg[7])); */
561 /* DRAMTMG7 reset value: 0x202 */
562 /* DRAMTMG7 should contain t_ckpde and t_ckpdx: check reset values!!! */
563 /* printf("DRAMTMG8 reset value: 0x%x\n",
564 readl(&mctl_ctl->dramtmg[8])); */
565 /* DRAMTMG8 reset value: 0x44 */
566
567 writel((MCTL_DIV32(tXSDLL) << 0), &mctl_ctl->dramtmg[8]);
568
569 writel((MCTL_DIV32(tREFI) << 16) | (MCTL_DIV2(tRFC) << 0),
570 &mctl_ctl->rfshtmg);
571
572 if (para->dram_type == DRAM_TYPE_DDR3) {
573 writel((2 << 24) | ((MCTL_DIV2(CL) - 2) << 16) |
574 (1 << 8) | ((MCTL_DIV2(CWL) - 2) << 0),
575 &mctl_ctl->dfitmg[0]);
576 } else {
577 /* TODO */
578 }
579
580 /* TODO: handle the case of the write latency domain going to 0 ... */
581
582 /*
583 * Disable dfi_init_complete_en (the triggering of the SDRAM
584 * initialisation when the PHY initialisation completes).
585 */
586 clrbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN);
587 /* Disable the automatic generation of DLL calibration requests */
588 setbits_le32(&mctl_ctl->dfiupd[0], MCTL_DFIUPD0_DIS_AUTO_CTRLUPD);
589
590 /* A80-Q7: 2T, 1 rank, DDR3, full-32bit-DQ */
591 /* TODO: make 2T and BUSWIDTH configurable */
592 writel(MCTL_MSTR_DEVICETYPE(para->dram_type) |
593 MCTL_MSTR_BURSTLENGTH(para->dram_type) |
594 MCTL_MSTR_ACTIVERANKS(para->rank) |
595 MCTL_MSTR_2TMODE | MCTL_MSTR_BUSWIDTH32,
596 &mctl_ctl->mstr);
597
598 if (para->dram_type == DRAM_TYPE_DDR3) {
599 writel(MCTL_ZQCTRL0_TZQCL(MCTL_DIV2(tZQoper)) |
600 (MCTL_DIV2(tZQCS)), &mctl_ctl->zqctrl[0]);
601 /*
602 * TODO: is the following really necessary as the bottom
603 * half should already be 0x100 and the upper half should
604 * be ignored for a DDR3 device???
605 */
606 writel(MCTL_ZQCTRL1_TZQSI_x1024(0x100),
607 &mctl_ctl->zqctrl[1]);
608 } else {
609 writel(MCTL_ZQCTRL0_TZQCL(0x200) | MCTL_ZQCTRL0_TZQCS(0x40),
610 &mctl_ctl->zqctrl[0]);
611 writel(MCTL_ZQCTRL1_TZQRESET(0x28) |
612 MCTL_ZQCTRL1_TZQSI_x1024(0x100),
613 &mctl_ctl->zqctrl[1]);
614 }
615
616 /* Assert dfi_init_complete signal */
617 setbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN);
618 /* Disable auto-refresh */
619 setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
620
621 /* PHY initialisation */
622
623 /* TODO: make 2T and 8-bank mode configurable */
624 writel(MCTL_PHY_DCR_BYTEMASK | MCTL_PHY_DCR_2TMODE |
625 MCTL_PHY_DCR_DDR8BNK | MCTL_PHY_DRAMMODE_DDR3,
626 &mctl_phy->dcr);
627
628 /* For LPDDR2 or LPDDR3, set DQSGX to 0 before training. */
629 if (para->dram_type != DRAM_TYPE_DDR3)
630 clrbits_le32(&mctl_phy->dsgcr, (3 << 6));
631
632 writel(mr[0], &mctl_phy->mr0);
633 writel(mr[1], &mctl_phy->mr1);
634 writel(mr[2], &mctl_phy->mr2);
635 writel(mr[3], &mctl_phy->mr3);
636
637 /*
638 * The DFI PHY is running at full rate. We thus use the actual
639 * timings in clock cycles here.
640 */
641 writel((tRC << 26) | (tRRD << 22) | (tRAS << 16) |
642 (tRCD << 12) | (tRP << 8) | (tWTR << 4) | (tRTP << 0),
643 &mctl_phy->dtpr[0]);
644 writel((tMRD << 0) | ((tMOD - 12) << 2) | (tFAW << 5) |
645 (tRFC << 11) | (tWLMRD << 20) | (tWLO << 26),
646 &mctl_phy->dtpr[1]);
647 writel((tXS << 0) | (MAX(tXP, tXPDLL) << 10) |
648 (tCKE << 15) | (tDLLK << 19) |
649 (MCTL_PHY_TRTODT << 29) | (MCTL_PHY_TRTW << 30) |
650 (((tCCD - 4) & 0x1) << 31),
651 &mctl_phy->dtpr[2]);
652
653 /* tDQSCK and tDQSCKmax are used LPDDR2/LPDDR3 */
654 /* writel((tDQSCK << 0) | (tDQSCKMAX << 3), &mctl_phy->dtpr[3]); */
655
656 /*
657 * We use the same values used by Allwinner's Boot0 for the PTR
658 * (PHY timing register) configuration that is tied to the PHY
659 * implementation.
660 */
661 writel(0x42C21590, &mctl_phy->ptr[0]);
662 writel(0xD05612C0, &mctl_phy->ptr[1]);
663 if (para->dram_type == DRAM_TYPE_DDR3) {
664 const unsigned int tdinit0 = 500 * CONFIG_DRAM_CLK; /* 500us */
665 const unsigned int tdinit1 = (360 * CONFIG_DRAM_CLK + 999) /
666 1000; /* 360ns */
667 const unsigned int tdinit2 = 200 * CONFIG_DRAM_CLK; /* 200us */
668 const unsigned int tdinit3 = CONFIG_DRAM_CLK; /* 1us */
669
670 writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]);
671 writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]);
672 } else {
673 /* LPDDR2 or LPDDR3 */
674 const unsigned int tdinit0 = (100 * CONFIG_DRAM_CLK + 999) /
675 1000; /* 100ns */
676 const unsigned int tdinit1 = 200 * CONFIG_DRAM_CLK; /* 200us */
677 const unsigned int tdinit2 = 22 * CONFIG_DRAM_CLK; /* 11us */
678 const unsigned int tdinit3 = 2 * CONFIG_DRAM_CLK; /* 2us */
679
680 writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]);
681 writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]);
682 }
683
684 /* TEST ME */
685 writel(0x00203131, &mctl_phy->acmdlr);
686
687 /* TODO: can we enable this for 2 ranks, even when we don't know yet */
688 writel(MCTL_DTCR_DEFAULT | MCTL_DTCR_RANKEN(para->rank),
689 &mctl_phy->dtcr);
690
691 /* TODO: half width */
692 debug("DX2GCR0 reset: 0x%x\n", readl(&mctl_phy->dx[2].gcr[0]));
693 writel(0x7C000285, &mctl_phy->dx[2].gcr[0]);
694 writel(0x7C000285, &mctl_phy->dx[3].gcr[0]);
695
696 clrsetbits_le32(&mctl_phy->zq[0].pr, 0xff,
697 (CONFIG_DRAM_ZQ >> 0) & 0xff); /* CK/CA */
698 clrsetbits_le32(&mctl_phy->zq[1].pr, 0xff,
699 (CONFIG_DRAM_ZQ >> 8) & 0xff); /* DX0/DX1 */
700 clrsetbits_le32(&mctl_phy->zq[2].pr, 0xff,
701 (CONFIG_DRAM_ZQ >> 16) & 0xff); /* DX2/DX3 */
702
703 /* TODO: make configurable & implement non-ODT path */
704 if (1) {
705 int lane;
706 for (lane = 0; lane < 4; ++lane) {
707 clrbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff);
708 clrbits_le32(&mctl_phy->dx[lane].gcr[3],
709 (0x3<<12) | (0x3<<4));
710 }
711 } else {
712 /* TODO: check */
713 int lane;
714 for (lane = 0; lane < 4; ++lane) {
715 clrsetbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff,
716 0xaaaa);
717 if (para->dram_type == DRAM_TYPE_DDR3)
718 setbits_le32(&mctl_phy->dx[lane].gcr[3],
719 (0x3<<12) | (0x3<<4));
720 else
721 setbits_le32(&mctl_phy->dx[lane].gcr[3],
722 0x00000012);
723 }
724 }
725
726 writel(0x04058D02, &mctl_phy->zq[0].cr); /* CK/CA */
727 writel(0x04058D02, &mctl_phy->zq[1].cr); /* DX0/DX1 */
728 writel(0x04058D02, &mctl_phy->zq[2].cr); /* DX2/DX3 */
729
730 /* Disable auto-refresh prior to data training */
731 setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
732
733 setbits_le32(&mctl_phy->dsgcr, 0xf << 24); /* unclear what this is... */
734 /* TODO: IODDRM (IO DDR-MODE) for DDR3L */
735 clrsetbits_le32(&mctl_phy->pgcr[1],
736 MCTL_PGCR1_ZCKSEL_MASK,
737 MCTL_PGCR1_IODDRM_DDR3 | MCTL_PGCR1_INHVT_EN);
738
739 setbits_le32(&mctl_phy->pllcr, 0x3 << 19); /* PLL frequency select */
740 /* TODO: single-channel PLL mode??? missing */
741 setbits_le32(&mctl_phy->pllcr,
742 MCTL_PLLGCR_PLL_BYPASS | MCTL_PLLGCR_PLL_POWERDOWN);
743 /* setbits_le32(&mctl_phy->pir, MCTL_PIR_PLL_BYPASS); included below */
744
745 /* Disable VT compensation */
746 clrbits_le32(&mctl_phy->pgcr[0], 0x3f);
747
748 /* TODO: "other" PLL mode ... 0x20000 seems to be the PLL Bypass */
749 if (para->dram_type == DRAM_TYPE_DDR3)
750 clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x20df3);
751 else
752 clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x2c573);
753
754 sdelay(10000); /* XXX necessary? */
755
756 /* Wait for the INIT bit to clear itself... */
757 while ((readl(&mctl_phy->pir) & MCTL_PIR_INIT) != MCTL_PIR_INIT) {
758 /* not done yet -- keep spinning */
759 debug("MCTL_PIR_INIT not set\n");
760 sdelay(1000);
761 /* TODO: implement timeout */
762 }
763
764 /* TODO: not used --- there's a "2rank debug" section here */
765
766 /* Original dram init code which may come in handy later
767 ********************************************************
768 * LPDDR2 and LPDDR3 *
769 if ((para->dram_type) == 6 || (para->dram_type) == 7) {
770 reg_val = mctl_read_w(P0_DSGCR + ch_offset);
771 reg_val &= (~(0x3<<6)); * set DQSGX to 1 *
772 reg_val |= (0x1<<6); * dqs gate extend *
773 mctl_write_w(P0_DSGCR + ch_offset, reg_val);
774 dram_dbg("DQS Gate Extend Enable!\n", ch_index);
775 }
776
777 * Disable ZCAL after initial--for nand dma debug--20140330 by YSZ *
778 if (para->dram_tpr13 & (0x1<<31)) {
779 reg_val = mctl_read_w(P0_ZQ0CR + ch_offset);
780 reg_val |= (0x7<<11);
781 mctl_write_w(P0_ZQ0CR + ch_offset, reg_val);
782 }
783 ********************************************************
784 */
785
786 /*
787 * TODO: more 2-rank support
788 * (setting the "dqs gate delay to average between 2 rank")
789 */
790
791 /* check if any errors are set */
792 if (readl(&mctl_phy->pgsr[0]) & MCTL_PGSR0_ERRORS) {
793 debug("Channel %d unavailable!\n", ch_index);
794 return 0;
795 } else{
796 /* initial OK */
797 debug("Channel %d OK!\n", ch_index);
798 /* return 1; */
799 }
800
801 while ((readl(&mctl_ctl->stat) & 0x1) != 0x1) {
802 debug("Waiting for INIT to be done (controller to come up into 'normal operating' mode\n");
803 sdelay(100000);
804 /* init not done */
805 /* TODO: implement time-out */
806 }
807 debug("done\n");
808
809 /* "DDR is controller by contoller" */
810 clrbits_le32(&mctl_phy->pgcr[3], (1 << 25));
811
812 /* TODO: is the following necessary? */
813 debug("DFIMISC before writing 0: 0x%x\n", readl(&mctl_ctl->dfimisc));
814 writel(0, &mctl_ctl->dfimisc);
815
816 /* Enable auto-refresh */
817 clrbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
818
819 debug("channel_init complete\n");
820 return 1;
821}
822
823signed int DRAMC_get_dram_size(void)
824{
825 struct sunxi_mctl_com_reg * const mctl_com =
826 (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
827
828 unsigned int reg_val;
829 unsigned int dram_size;
830 unsigned int temp;
831
832 reg_val = readl(&mctl_com->cr);
833
834 temp = (reg_val >> 8) & 0xf; /* page size code */
835 dram_size = (temp - 6); /* (1 << dram_size) * 512Bytes */
836
837 temp = (reg_val >> 4) & 0xf; /* row width code */
838 dram_size += (temp + 1); /* (1 << dram_size) * 512Bytes */
839
840 temp = (reg_val >> 2) & 0x3; /* bank number code */
841 dram_size += (temp + 2); /* (1 << dram_size) * 512Bytes */
842
843 temp = reg_val & 0x3; /* rank number code */
844 dram_size += temp; /* (1 << dram_size) * 512Bytes */
845
846 temp = (reg_val >> 19) & 0x1; /* channel number code */
847 dram_size += temp; /* (1 << dram_size) * 512Bytes */
848
849 dram_size = dram_size - 11; /* (1 << dram_size) MBytes */
850
851 return 1 << dram_size;
852}
853
854unsigned long sunxi_dram_init(void)
855{
856 struct sunxi_mctl_com_reg * const mctl_com =
857 (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
858
859 struct dram_sun9i_cl_cwl_timing cl_cwl[] = {
860 { .CL = 5, .CWL = 5, .tCKmin = 3000, .tCKmax = 3300 },
861 { .CL = 6, .CWL = 5, .tCKmin = 2500, .tCKmax = 3300 },
862 { .CL = 8, .CWL = 6, .tCKmin = 1875, .tCKmax = 2500 },
863 { .CL = 10, .CWL = 7, .tCKmin = 1500, .tCKmax = 1875 },
864 { .CL = 11, .CWL = 8, .tCKmin = 1250, .tCKmax = 1500 }
865 };
866
867 /* Set initial parameters, these get modified by the autodetect code */
868 struct dram_sun9i_para para = {
869 .dram_type = DRAM_TYPE_DDR3,
870 .bus_width = 32,
871 .chan = 2,
872 .rank = 1,
873 /* .rank = 2, */
874 .page_size = 4096,
875 /* .rows = 16, */
876 .rows = 15,
877
878 /* CL/CWL table for the speed bin */
879 .cl_cwl_table = cl_cwl,
880 .cl_cwl_numentries = sizeof(cl_cwl) /
881 sizeof(struct dram_sun9i_cl_cwl_timing),
882
883 /* timings */
884 .tREFI = 7800, /* 7.8us (up to 85 degC) */
885 .tRFC = 260, /* 260ns for 4GBit devices */
886 /* 350ns @ 8GBit */
887
888 .tRCD = 13750,
889 .tRP = 13750,
890 .tRC = 48750,
891 .tRAS = 35000,
892
893 .tDLLK = 512,
894 .tRTP = { .ck = 4, .ps = 7500 },
895 .tWTR = { .ck = 4, .ps = 7500 },
896 .tWR = 15,
897 .tMRD = 4,
898 .tMOD = { .ck = 12, .ps = 15000 },
899 .tCCD = 4,
900 .tRRD = { .ck = 4, .ps = 7500 },
901 .tFAW = 40,
902
903 /* calibration timing */
904 /* .tZQinit = { .ck = 512, .ps = 640000 }, */
905 .tZQoper = { .ck = 256, .ps = 320000 },
906 .tZQCS = { .ck = 64, .ps = 80000 },
907
908 /* reset timing */
909 /* .tXPR = { .ck = 5, .ps = 10000 }, */
910
911 /* self-refresh timings */
912 .tXS = { .ck = 5, .ps = 10000 },
913 .tXSDLL = 512,
914 .tCKSRE = { .ck = 5, .ps = 10000 },
915 .tCKSRX = { .ck = 5, .ps = 10000 },
916
917 /* power-down timings */
918 .tXP = { .ck = 3, .ps = 6000 },
919 .tXPDLL = { .ck = 10, .ps = 24000 },
920 .tCKE = { .ck = 3, .ps = 5000 },
921
922 /* write leveling timings */
923 .tWLMRD = 40,
924 /* .tWLDQSEN = 25, */
925 .tWLO = 7500,
926 /* .tWLOE = 2000, */
927 };
928
929 /*
930 * Disable A80 internal 240 ohm resistor.
931 *
932 * This code sequence is adapated from Allwinner's Boot0 (see
933 * https://github.com/allwinner-zh/bootloader.git), as there
934 * is no documentation for these two registers in the R_PRCM
935 * block.
936 */
937 setbits_le32(SUNXI_PRCM_BASE + 0x1e0, (0x3 << 8));
938 writel(0, SUNXI_PRCM_BASE + 0x1e8);
939
940 mctl_sys_init();
941
942 if (!mctl_channel_init(0, &para))
943 return 0;
944
945 /* dual-channel */
946 if (!mctl_channel_init(1, &para)) {
947 /* disable channel 1 */
948 clrsetbits_le32(&mctl_com->cr, MCTL_CR_CHANNEL_MASK,
949 MCTL_CR_CHANNEL_SINGLE);
950 /* disable channel 1 global clock */
951 clrbits_le32(&mctl_com->cr, MCTL_CCR_CH1_CLK_EN);
952 }
953
954 mctl_com_init(&para);
955
956 /* return the proper RAM size */
957 return DRAMC_get_dram_size() << 20;
958}