blob: 8a31a4c868f1c0eb0f2ea364563f369120104915 [file] [log] [blame]
Mario Six7cab1472018-08-06 10:23:36 +02001/* SPDX-License-Identifier: GPL-2.0+ */
2/*
3 * (C) Copyright 2018
4 * Mario Six, Guntermann & Drunck GmbH, mario.six@gdsys.cc
5 */
6
7/**
8 * enum ratio - Description of a core clock ratio
9 * @RAT_UNK: Unknown ratio
10 * @RAT_BYP: Bypass
11 * @RAT_1_TO_8: Ratio 1:8
12 * @RAT_1_TO_4: Ratio 1:4
13 * @RAT_1_TO_2: Ratio 1:2
14 * @RAT_1_TO_1: Ratio 1:1
15 * @RAT_1_5_TO_1: Ratio 1.5:1
16 * @RAT_2_TO_1: Ratio 2:1
17 * @RAT_2_5_TO_1: Ratio 2.5:1
18 * @RAT_3_TO_1: Ratio 3:1
19 */
Simon Glass4dcacfc2020-05-10 11:40:13 -060020#include <linux/bitops.h>
Mario Six7cab1472018-08-06 10:23:36 +020021enum ratio {
22 RAT_UNK,
23 RAT_BYP,
24 RAT_1_TO_8,
25 RAT_1_TO_4,
26 RAT_1_TO_2,
27 RAT_1_TO_1,
28 RAT_1_5_TO_1,
29 RAT_2_TO_1,
30 RAT_2_5_TO_1,
31 RAT_3_TO_1
32};
33
34/**
35 * struct corecnf - Description for a core clock configuration
36 * @core_csb_ratio: Core clock frequency to CSB clock frequency ratio
37 * @vco_divider: VCO divider (Core VCO frequency = Core frequency * VCO divider)
38 */
39struct corecnf {
40 int core_csb_ratio;
41 int vco_divider;
42};
43
44/*
45 * Table with all valid Core CSB frequency ratio / VCO divider combinations as
46 * indexed by the COREPLL field of the SPMR
47 */
48static const struct corecnf corecnf_tab[] = {
49 {RAT_BYP, RAT_BYP}, /* 0x00 */
50 {RAT_BYP, RAT_BYP}, /* 0x01 */
51 {RAT_BYP, RAT_BYP}, /* 0x02 */
52 {RAT_BYP, RAT_BYP}, /* 0x03 */
53 {RAT_BYP, RAT_BYP}, /* 0x04 */
54 {RAT_BYP, RAT_BYP}, /* 0x05 */
55 {RAT_BYP, RAT_BYP}, /* 0x06 */
56 {RAT_BYP, RAT_BYP}, /* 0x07 */
57 {RAT_1_TO_1, RAT_1_TO_2}, /* 0x08 */
58 {RAT_1_TO_1, RAT_1_TO_4}, /* 0x09 */
59 {RAT_1_TO_1, RAT_1_TO_8}, /* 0x0A */
60 {RAT_1_TO_1, RAT_1_TO_8}, /* 0x0B */
61 {RAT_1_5_TO_1, RAT_1_TO_2}, /* 0x0C */
62 {RAT_1_5_TO_1, RAT_1_TO_4}, /* 0x0D */
63 {RAT_1_5_TO_1, RAT_1_TO_8}, /* 0x0E */
64 {RAT_1_5_TO_1, RAT_1_TO_8}, /* 0x0F */
65 {RAT_2_TO_1, RAT_1_TO_2}, /* 0x10 */
66 {RAT_2_TO_1, RAT_1_TO_4}, /* 0x11 */
67 {RAT_2_TO_1, RAT_1_TO_8}, /* 0x12 */
68 {RAT_2_TO_1, RAT_1_TO_8}, /* 0x13 */
69 {RAT_2_5_TO_1, RAT_1_TO_2}, /* 0x14 */
70 {RAT_2_5_TO_1, RAT_1_TO_4}, /* 0x15 */
71 {RAT_2_5_TO_1, RAT_1_TO_8}, /* 0x16 */
72 {RAT_2_5_TO_1, RAT_1_TO_8}, /* 0x17 */
73 {RAT_3_TO_1, RAT_1_TO_2}, /* 0x18 */
74 {RAT_3_TO_1, RAT_1_TO_4}, /* 0x19 */
75 {RAT_3_TO_1, RAT_1_TO_8}, /* 0x1A */
76 {RAT_3_TO_1, RAT_1_TO_8}, /* 0x1B */
77};
78
79/**
80 * enum reg_type - Register to read a field from
81 * @REG_SCCR: Use the SCCR register
82 * @REG_SPMR: Use the SPMR register
83 */
84enum reg_type {
85 REG_SCCR,
86 REG_SPMR,
87};
88
89/**
90 * enum mode_type - Description of how to read a specific frequency value
91 * @TYPE_INVALID: Unknown type, will provoke error
92 * @TYPE_SCCR_STANDARD: Read a field from the SCCR register, and use it
93 * as a divider for the CSB clock to compute the
94 * frequency
95 * @TYPE_SCCR_ONOFF: The field describes a bit flag that can turn the
96 * clock on or off
97 * @TYPE_SPMR_DIRECT_MULTIPLY: Read a field from the SPMR register, and use it
98 * as a multiplier for the CSB clock to compute the
99 * frequency
100 * @TYPE_SPECIAL: The frequency is calculated in a non-standard way
101 */
102enum mode_type {
103 TYPE_INVALID = 0,
104 TYPE_SCCR_STANDARD,
105 TYPE_SCCR_ONOFF,
106 TYPE_SPMR_DIRECT_MULTIPLY,
107 TYPE_SPECIAL,
108};
109
110/* Map of each clock index to its human-readable name */
111static const char * const names[] = {
112 [MPC83XX_CLK_CORE] = "Core",
113 [MPC83XX_CLK_CSB] = "Coherent System Bus",
114 [MPC83XX_CLK_QE] = "QE",
115 [MPC83XX_CLK_BRG] = "BRG",
116 [MPC83XX_CLK_LBIU] = "Local Bus Controller",
117 [MPC83XX_CLK_LCLK] = "Local Bus",
118 [MPC83XX_CLK_MEM] = "DDR",
119 [MPC83XX_CLK_MEM_SEC] = "DDR Secondary",
120 [MPC83XX_CLK_ENC] = "SEC",
121 [MPC83XX_CLK_I2C1] = "I2C1",
122 [MPC83XX_CLK_I2C2] = "I2C2",
123 [MPC83XX_CLK_TDM] = "TDM",
124 [MPC83XX_CLK_SDHC] = "SDHC",
125 [MPC83XX_CLK_TSEC1] = "TSEC1",
126 [MPC83XX_CLK_TSEC2] = "TSEC2",
127 [MPC83XX_CLK_USBDR] = "USB DR",
128 [MPC83XX_CLK_USBMPH] = "USB MPH",
129 [MPC83XX_CLK_PCIEXP1] = "PCIEXP1",
130 [MPC83XX_CLK_PCIEXP2] = "PCIEXP2",
131 [MPC83XX_CLK_SATA] = "SATA",
132 [MPC83XX_CLK_DMAC] = "DMAC",
133 [MPC83XX_CLK_PCI] = "PCI",
134};
135
136/**
137 * struct clk_mode - Structure for clock mode descriiptions
138 * @low: The low bit of the data field to read for this mode (may not apply to
139 * some modes)
140 * @high: The high bit of the data field to read for this mode (may not apply to
141 * some modes)
142 * @type: The type of the mode description (one of enum mode_type)
143 */
144struct clk_mode {
145 u8 low;
146 u8 high;
147 int type;
148};
149
150/**
151 * set_mode() - Build a clock mode description from data
152 * @mode: The clock mode description to be filled out
153 * @low: The low bit of the data field to read for this mode (may not apply to
154 * some modes)
155 * @high: The high bit of the data field to read for this mode (may not apply to
156 * some modes)
157 * @type: The type of the mode description (one of enum mode_type)
158 *
159 * Clock mode descriptions are a succinct description of how to read a specific
160 * clock's rate from the hardware; usually by reading a specific field of a
161 * register, such a s the SCCR register, but some types use different methods
162 * for obtaining the clock rate.
163 */
164static void set_mode(struct clk_mode *mode, u8 low, u8 high, int type)
165{
166 mode->low = low;
167 mode->high = high;
168 mode->type = type;
169}
170
171/**
172 * retrieve_mode() - Get the clock mode description for a specific clock
173 * @clk: The identifier of the clock for which the clock description should
174 * be retrieved
175 * @soc_type: The type of MPC83xx SoC for which the clock description should be
176 * retrieved
177 * @mode: Pointer to a clk_mode structure to be filled with data for the
178 * clock
179 *
180 * Since some clock rate are stored in different places on different MPC83xx
181 * SoCs, the SoC type has to be supplied along with the clock's identifier.
182 *
183 * Return: 0 if OK, -ve on error
184 */
185static int retrieve_mode(int clk, int soc_type, struct clk_mode *mode)
186{
187 switch (clk) {
188 case MPC83XX_CLK_CORE:
189 case MPC83XX_CLK_CSB:
190 case MPC83XX_CLK_QE:
191 case MPC83XX_CLK_BRG:
192 case MPC83XX_CLK_LCLK:
193 case MPC83XX_CLK_I2C2:
194 set_mode(mode, 0, 0, TYPE_SPECIAL);
195 break;
196 case MPC83XX_CLK_MEM:
197 set_mode(mode, 1, 1, TYPE_SPMR_DIRECT_MULTIPLY);
198 break;
199 case MPC83XX_CLK_LBIU:
200 case MPC83XX_CLK_MEM_SEC:
201 set_mode(mode, 0, 0, TYPE_SPMR_DIRECT_MULTIPLY);
202 break;
203 case MPC83XX_CLK_TSEC1:
204 set_mode(mode, 0, 1, TYPE_SCCR_STANDARD);
205 break;
206 case MPC83XX_CLK_TSEC2:
207 if (soc_type == SOC_MPC8313) /* I2C and TSEC2 are the same register */
208 set_mode(mode, 2, 3, TYPE_SCCR_STANDARD);
209 else /* FIXME(mario.six@gdsys.cc): This has separate enable/disable bit! */
210 set_mode(mode, 0, 1, TYPE_SCCR_STANDARD);
211 break;
212 case MPC83XX_CLK_SDHC:
213 set_mode(mode, 4, 5, TYPE_SCCR_STANDARD);
214 break;
215 case MPC83XX_CLK_ENC:
216 set_mode(mode, 6, 7, TYPE_SCCR_STANDARD);
217 break;
218 case MPC83XX_CLK_I2C1:
219 if (soc_type == SOC_MPC8349)
220 set_mode(mode, 2, 3, TYPE_SCCR_STANDARD);
221 else /* I2C and ENC are the same register */
222 set_mode(mode, 6, 7, TYPE_SCCR_STANDARD);
223 break;
224 case MPC83XX_CLK_PCIEXP1:
225 set_mode(mode, 10, 11, TYPE_SCCR_STANDARD);
226 break;
227 case MPC83XX_CLK_PCIEXP2:
228 set_mode(mode, 12, 13, TYPE_SCCR_STANDARD);
229 break;
230 case MPC83XX_CLK_USBDR:
231 if (soc_type == SOC_MPC8313 || soc_type == SOC_MPC8349)
232 set_mode(mode, 10, 11, TYPE_SCCR_STANDARD);
233 else
234 set_mode(mode, 8, 9, TYPE_SCCR_STANDARD);
235 break;
236 case MPC83XX_CLK_USBMPH:
237 set_mode(mode, 8, 9, TYPE_SCCR_STANDARD);
238 break;
239 case MPC83XX_CLK_PCI:
240 set_mode(mode, 15, 15, TYPE_SCCR_ONOFF);
241 break;
242 case MPC83XX_CLK_DMAC:
243 set_mode(mode, 26, 27, TYPE_SCCR_STANDARD);
244 break;
245 case MPC83XX_CLK_SATA:
246 /* FIXME(mario.six@gdsys.cc): All SATA controllers must have the same clock ratio */
247 if (soc_type == SOC_MPC8379) {
248 set_mode(mode, 24, 25, TYPE_SCCR_STANDARD);
249 set_mode(mode, 26, 27, TYPE_SCCR_STANDARD);
250 set_mode(mode, 28, 29, TYPE_SCCR_STANDARD);
251 set_mode(mode, 30, 31, TYPE_SCCR_STANDARD);
252 } else {
253 set_mode(mode, 18, 19, TYPE_SCCR_STANDARD);
254 set_mode(mode, 20, 21, TYPE_SCCR_STANDARD);
255 }
256 break;
257 case MPC83XX_CLK_TDM:
258 set_mode(mode, 26, 27, TYPE_SCCR_STANDARD);
259 break;
260 default:
261 debug("%s: Unknown clock type %d on soc type %d\n",
262 __func__, clk, soc_type);
263 set_mode(mode, 0, 0, TYPE_INVALID);
264 return -EINVAL;
265 }
266
267 return 0;
268}
269
270/**
271 * get_spmr() - Read the SPMR (System PLL Mode Register)
272 * @im: Pointer to the MPC83xx main register map in question
273 *
274 * Return: The SPMR value as a 32-bit number.
275 */
276static inline u32 get_spmr(immap_t *im)
277{
278 u32 res = in_be32(&im->clk.spmr);
279
280 return res;
281}
282
283/**
284 * get_sccr() - Read the SCCR (System Clock Control Register)
285 * @im: Pointer to the MPC83xx main register map in question
286 *
287 * Return: The SCCR value as a 32-bit number.
288 */
289static inline u32 get_sccr(immap_t *im)
290{
291 u32 res = in_be32(&im->clk.sccr);
292
293 return res;
294}
295
296/**
297 * get_lcrr() - Read the LCRR (Clock Ratio Register)
298 * @im: Pointer to the MPC83xx main register map in question
299 *
300 * Return: The LCRR value as a 32-bit number.
301 */
302static inline u32 get_lcrr(immap_t *im)
303{
304 u32 res = in_be32(&im->im_lbc.lcrr);
305
306 return res;
307}
308
309/**
310 * get_pci_sync_in() - Read the PCI synchronization clock speed
311 * @im: Pointer to the MPC83xx main register map in question
312 *
313 * Return: The PCI synchronization clock speed value as a 32-bit number.
314 */
315static inline u32 get_pci_sync_in(immap_t *im)
316{
317 u8 clkin_div;
318
319 clkin_div = (get_spmr(im) & SPMR_CKID) >> SPMR_CKID_SHIFT;
320 return CONFIG_SYS_CLK_FREQ / (1 + clkin_div);
321}
322
323/**
324 * get_csb_clk() - Read the CSB (Coheren System Bus) clock speed
325 * @im: Pointer to the MPC83xx main register map in question
326 *
327 * Return: The CSB clock speed value as a 32-bit number.
328 */
329static inline u32 get_csb_clk(immap_t *im)
330{
331 u8 spmf;
332
333 spmf = (get_spmr(im) & SPMR_SPMF) >> SPMR_SPMF_SHIFT;
334 return CONFIG_SYS_CLK_FREQ * spmf;
335}
336
337/**
338 * spmr_field() - Read a specific SPMR field
339 * @im: Pointer to the MPC83xx main register map in question
340 * @mask: A bitmask that describes the bitfield to be read
341 *
342 * Return: The value of the bit field as a 32-bit number.
343 */
344static inline uint spmr_field(immap_t *im, u32 mask)
345{
346 /* Extract shift from bitmask */
347 uint shift = mask ? ffs(mask) - 1 : 0;
348
349 return (get_spmr(im) & mask) >> shift;
350}
351
352/**
353 * sccr_field() - Read a specific SCCR field
354 * @im: Pointer to the MPC83xx main register map in question
355 * @mask: A bitmask that describes the bitfield to be read
356 *
357 * Return: The value of the bit field as a 32-bit number.
358 */
359static inline uint sccr_field(immap_t *im, u32 mask)
360{
361 /* Extract shift from bitmask */
362 uint shift = mask ? ffs(mask) - 1 : 0;
363
364 return (get_sccr(im) & mask) >> shift;
365}
366
367/**
368 * lcrr_field() - Read a specific LCRR field
369 * @im: Pointer to the MPC83xx main register map in question
370 * @mask: A bitmask that describes the bitfield to be read
371 *
372 * Return: The value of the bit field as a 32-bit number.
373 */
374static inline uint lcrr_field(immap_t *im, u32 mask)
375{
376 /* Extract shift from bitmask */
377 uint shift = mask ? ffs(mask) - 1 : 0;
378
379 return (get_lcrr(im) & mask) >> shift;
380}