Ralph Siemsen | 4ceb0d3 | 2023-05-12 21:36:53 -0400 | [diff] [blame] | 1 | // SPDX-License-Identifier: BSD-2-Clause |
| 2 | /* |
| 3 | * Cadence DDR Controller |
| 4 | * |
| 5 | * Copyright (C) 2015 Renesas Electronics Europe Ltd |
| 6 | */ |
| 7 | |
| 8 | /* |
| 9 | * The Cadence DDR Controller has a huge number of registers that principally |
| 10 | * cover two aspects, DDR specific timing information and AXI bus interfacing. |
| 11 | * Cadence's TCL script generates all of the register values for specific |
| 12 | * DDR devices operating at a specific frequency. The TCL script uses Denali |
| 13 | * SOMA files as inputs. The tool also generates the AXI bus register values as |
| 14 | * well, however this driver assumes that users will want to modifiy these to |
| 15 | * meet a specific application's needs. |
| 16 | * Therefore, this driver is passed two arrays containing register values for |
| 17 | * the DDR device specific information, and explicity sets the AXI registers. |
| 18 | * |
| 19 | * AXI bus interfacing: |
| 20 | * The controller has four AXI slaves connections, and each of these can be |
| 21 | * programmed to accept requests from specific AXI masters (using their IDs). |
| 22 | * The regions of DDR that can be accessed by each AXI slave can be set such |
| 23 | * as to isolate DDR used by one AXI master from another. Further, the maximum |
| 24 | * bandwidth allocated to each AXI slave can be set. |
| 25 | */ |
| 26 | |
Tom Rini | abb9a04 | 2024-05-18 20:20:43 -0600 | [diff] [blame] | 27 | #include <common.h> |
Ralph Siemsen | 4ceb0d3 | 2023-05-12 21:36:53 -0400 | [diff] [blame] | 28 | #include <linux/delay.h> |
| 29 | #include <linux/sizes.h> |
| 30 | #include <asm/io.h> |
| 31 | #include <wait_bit.h> |
| 32 | #include <renesas/ddr_ctrl.h> |
| 33 | |
| 34 | /* avoid warning for real pr_debug in <linux/printk.h> */ |
| 35 | #ifdef pr_debug |
| 36 | #undef pr_debug |
| 37 | #endif |
| 38 | |
| 39 | #ifdef DEBUG |
| 40 | #define pr_debug(fmt, args...) printf(fmt, ##args) |
| 41 | #define pr_debug2(fmt, args...) printf(fmt, ##args) |
| 42 | #else |
| 43 | #define pr_debug(fmt, args...) |
| 44 | #define pr_debug2(fmt, args...) |
| 45 | #endif |
| 46 | |
| 47 | #define DDR_NR_AXI_PORTS 4 |
| 48 | #define DDR_NR_ENTRIES 16 |
| 49 | |
| 50 | #define DDR_START_REG (0) /* DENALI_CTL_00 */ |
| 51 | #define DDR_CS0_MR1_REG (32 * 4) /* DENALI_CTL_32 */ |
| 52 | #define DDR_CS0_MR2_REG (32 * 4 + 2) /* DENALI_CTL_32 */ |
| 53 | #define DDR_CS1_MR1_REG (34 * 4 + 2) /* DENALI_CTL_34 */ |
| 54 | #define DDR_CS1_MR2_REG (35 * 4) /* DENALI_CTL_35 */ |
| 55 | #define DDR_ECC_ENABLE_REG (36 * 4 + 2) /* DENALI_CTL_36 */ |
| 56 | #define DDR_ECC_DISABLE_W_UC_ERR_REG (37 * 4 + 2) /* DENALI_CTL_37 */ |
| 57 | #define DDR_HALF_DATAPATH_REG (54 * 4) /* DENALI_CTL_54 */ |
| 58 | #define DDR_INTERRUPT_STATUS (56 * 4) /* DENALI_CTL_56 */ |
| 59 | #define DDR_INTERRUPT_ACK (57 * 4) /* DENALI_CTL_57 */ |
| 60 | #define DDR_INTERRUPT_MASK (58 * 4) /* DENALI_CTL_58 */ |
| 61 | #define DDR_CS0_ODT_MAP_REG (62 * 4 + 2) /* DENALI_CTL_62 */ |
| 62 | #define DDR_CS1_ODT_MAP_REG (63 * 4) /* DENALI_CTL_63 */ |
| 63 | #define DDR_ODT_TODTL_2CMD (63 * 4 + 2) /* DENALI_CTL_63 */ |
| 64 | #define DDR_ODT_TODTH_WR (63 * 4 + 3) /* DENALI_CTL_63 */ |
| 65 | #define DDR_ODT_TODTH_RD (64 * 4 + 0) /* DENALI_CTL_64 */ |
| 66 | #define DDR_ODT_EN (64 * 4 + 1) /* DENALI_CTL_64 */ |
| 67 | #define DDR_ODT_WR_TO_ODTH (64 * 4 + 2) /* DENALI_CTL_64 */ |
| 68 | #define DDR_ODT_RD_TO_ODTH (64 * 4 + 3) /* DENALI_CTL_64 */ |
| 69 | #define DDR_DIFF_CS_DELAY_REG (66 * 4) /* DENALI_CTL_66 */ |
| 70 | #define DDR_SAME_CS_DELAY_REG (67 * 4) /* DENALI_CTL_67 */ |
| 71 | #define DDR_RW_PRIORITY_REGS (87 * 4 + 2) /* DENALI_CTL_87 */ |
| 72 | #define DDR_RW_FIFO_TYPE_REGS (88 * 4) /* DENALI_CTL_88 */ |
| 73 | #define DDR_AXI_PORT_PROT_ENABLE_REG (90 * 4 + 3) /* DENALI_CTL_90 */ |
| 74 | #define DDR_ADDR_RANGE_REGS (91 * 4) /* DENALI_CTL_91 */ |
| 75 | #define DDR_RANGE_PROT_REGS (218 * 4 + 2) /* DENALI_CTL_218 */ |
| 76 | #define DDR_ARB_CMD_Q_THRESHOLD_REG (346 * 4 + 2) /* DENALI_CTL_346 */ |
| 77 | #define DDR_AXI_PORT_BANDWIDTH_REG (346 * 4 + 3) /* DENALI_CTL_346 */ |
| 78 | #define DDR_OPT_RMODW_REG (372 * 4 + 3) /* DENALI_CTL_372 */ |
| 79 | |
| 80 | static void ddrc_writeb(u8 val, void *p) |
| 81 | { |
| 82 | pr_debug2("DDR: %p = 0x%02x\n", p, val); |
| 83 | writeb(val, p); |
| 84 | } |
| 85 | |
| 86 | static void ddrc_writew(u16 val, void *p) |
| 87 | { |
| 88 | pr_debug2("DDR: %p = 0x%04x\n", p, val); |
| 89 | writew(val, p); |
| 90 | } |
| 91 | |
| 92 | static void ddrc_writel(u32 val, void *p) |
| 93 | { |
| 94 | pr_debug2("DDR: %p = 0x%08x\n", p, val); |
| 95 | writel(val, p); |
| 96 | } |
| 97 | |
| 98 | void cdns_ddr_set_mr1(void *base, int cs, u16 odt_impedance, u16 drive_strength) |
| 99 | { |
| 100 | void *reg; |
| 101 | u16 tmp; |
| 102 | |
| 103 | if (cs == 0) |
| 104 | reg = (u8 *)base + DDR_CS0_MR1_REG; |
| 105 | else |
| 106 | reg = (u8 *)base + DDR_CS1_MR1_REG; |
| 107 | |
| 108 | tmp = readw(reg); |
| 109 | |
| 110 | tmp &= ~MODE_REGISTER_MASK; |
| 111 | tmp |= MODE_REGISTER_MR1; |
| 112 | |
| 113 | tmp &= ~MR1_ODT_IMPEDANCE_MASK; |
| 114 | tmp |= odt_impedance; |
| 115 | |
| 116 | tmp &= ~MR1_DRIVE_STRENGTH_MASK; |
| 117 | tmp |= drive_strength; |
| 118 | |
| 119 | writew(tmp, reg); |
| 120 | } |
| 121 | |
| 122 | void cdns_ddr_set_mr2(void *base, int cs, u16 dynamic_odt, u16 self_refresh_temp) |
| 123 | { |
| 124 | void *reg; |
| 125 | u16 tmp; |
| 126 | |
| 127 | if (cs == 0) |
| 128 | reg = (u8 *)base + DDR_CS0_MR2_REG; |
| 129 | else |
| 130 | reg = (u8 *)base + DDR_CS1_MR2_REG; |
| 131 | |
| 132 | tmp = readw(reg); |
| 133 | |
| 134 | tmp &= ~MODE_REGISTER_MASK; |
| 135 | tmp |= MODE_REGISTER_MR2; |
| 136 | |
| 137 | tmp &= ~MR2_DYNAMIC_ODT_MASK; |
| 138 | tmp |= dynamic_odt; |
| 139 | |
| 140 | tmp &= ~MR2_SELF_REFRESH_TEMP_MASK; |
| 141 | tmp |= self_refresh_temp; |
| 142 | |
| 143 | writew(tmp, reg); |
| 144 | } |
| 145 | |
| 146 | void cdns_ddr_set_odt_map(void *base, int cs, u16 odt_map) |
| 147 | { |
| 148 | void *reg; |
| 149 | |
| 150 | if (cs == 0) |
| 151 | reg = (u8 *)base + DDR_CS0_ODT_MAP_REG; |
| 152 | else |
| 153 | reg = (u8 *)base + DDR_CS1_ODT_MAP_REG; |
| 154 | |
| 155 | writew(odt_map, reg); |
| 156 | } |
| 157 | |
| 158 | void cdns_ddr_set_odt_times(void *base, u8 TODTL_2CMD, u8 TODTH_WR, u8 TODTH_RD, |
| 159 | u8 WR_TO_ODTH, u8 RD_TO_ODTH) |
| 160 | { |
| 161 | writeb(TODTL_2CMD, (u8 *)base + DDR_ODT_TODTL_2CMD); |
| 162 | writeb(TODTH_WR, (u8 *)base + DDR_ODT_TODTH_WR); |
| 163 | writeb(TODTH_RD, (u8 *)base + DDR_ODT_TODTH_RD); |
| 164 | writeb(1, (u8 *)base + DDR_ODT_EN); |
| 165 | writeb(WR_TO_ODTH, (u8 *)base + DDR_ODT_WR_TO_ODTH); |
| 166 | writeb(RD_TO_ODTH, (u8 *)base + DDR_ODT_RD_TO_ODTH); |
| 167 | } |
| 168 | |
| 169 | void cdns_ddr_set_same_cs_delays(void *base, u8 r2r, u8 r2w, u8 w2r, u8 w2w) |
| 170 | { |
| 171 | u32 val = (w2w << 24) | (w2r << 16) | (r2w << 8) | r2r; |
| 172 | |
| 173 | writel(val, (u8 *)base + DDR_SAME_CS_DELAY_REG); |
| 174 | } |
| 175 | |
| 176 | void cdns_ddr_set_diff_cs_delays(void *base, u8 r2r, u8 r2w, u8 w2r, u8 w2w) |
| 177 | { |
| 178 | u32 val = (w2w << 24) | (w2r << 16) | (r2w << 8) | r2r; |
| 179 | |
| 180 | writel(val, (u8 *)base + DDR_DIFF_CS_DELAY_REG); |
| 181 | } |
| 182 | |
| 183 | void cdns_ddr_set_port_rw_priority(void *base, int port, |
| 184 | u8 read_pri, u8 write_pri) |
| 185 | { |
| 186 | u8 *reg8 = (u8 *)base + DDR_RW_PRIORITY_REGS; |
| 187 | |
| 188 | reg8 += (port * 3); |
| 189 | pr_debug("%s port %d (reg8=%p, DENALI_CTL_%d)\n", |
| 190 | __func__, port, reg8, (reg8 - (u8 *)base) / 4); |
| 191 | |
| 192 | ddrc_writeb(read_pri, reg8++); |
| 193 | ddrc_writeb(write_pri, reg8++); |
| 194 | } |
| 195 | |
| 196 | /* The DDR Controller has 16 entries. Each entry can specify an allowed address |
| 197 | * range (with 16KB resolution) for one of the 4 AXI slave ports. |
| 198 | */ |
| 199 | void cdns_ddr_enable_port_addr_range(void *base, int port, int entry, |
| 200 | u32 addr_start, u32 size) |
| 201 | { |
| 202 | u32 addr_end; |
| 203 | u32 *reg32 = (u32 *)((u8 *)base + DDR_ADDR_RANGE_REGS); |
| 204 | u32 tmp; |
| 205 | |
| 206 | reg32 += (port * DDR_NR_ENTRIES * 2); |
| 207 | reg32 += (entry * 2); |
| 208 | pr_debug("%s port %d, entry %d (reg32=%p, DENALI_CTL_%d)\n", |
| 209 | __func__, port, entry, reg32, ((u8 *)reg32 - (u8 *)base) / 4); |
| 210 | |
| 211 | /* These registers represent 16KB address blocks */ |
| 212 | addr_start /= SZ_16K; |
| 213 | size /= SZ_16K; |
| 214 | if (size) |
| 215 | addr_end = addr_start + size - 1; |
| 216 | else |
| 217 | addr_end = addr_start; |
| 218 | |
| 219 | ddrc_writel(addr_start, reg32++); |
| 220 | |
| 221 | /* |
| 222 | * end_addr: Ensure we only set the bottom 18-bits as DENALI_CTL_218 |
| 223 | * also contains the AXI0 range protection bits. |
| 224 | */ |
| 225 | tmp = readl(reg32); |
| 226 | tmp &= ~(BIT(18) - 1); |
| 227 | tmp |= addr_end; |
| 228 | ddrc_writel(tmp, reg32); |
| 229 | } |
| 230 | |
| 231 | void cdns_ddr_enable_addr_range(void *base, int entry, |
| 232 | u32 addr_start, u32 size) |
| 233 | { |
| 234 | int axi; |
| 235 | |
| 236 | for (axi = 0; axi < DDR_NR_AXI_PORTS; axi++) |
| 237 | cdns_ddr_enable_port_addr_range(base, axi, entry, |
| 238 | addr_start, size); |
| 239 | } |
| 240 | |
| 241 | void cdns_ddr_enable_port_prot(void *base, int port, int entry, |
| 242 | enum cdns_ddr_range_prot range_protection_bits, |
| 243 | u16 range_RID_check_bits, |
| 244 | u16 range_WID_check_bits, |
| 245 | u8 range_RID_check_bits_ID_lookup, |
| 246 | u8 range_WID_check_bits_ID_lookup) |
| 247 | { |
| 248 | /* |
| 249 | * Technically, the offset here points to the byte before the start of |
| 250 | * the range protection registers. However, all entries consist of 8 |
| 251 | * bytes, except the first one (which is missing a padding byte) so we |
| 252 | * work around that subtlely. |
| 253 | */ |
| 254 | u8 *reg8 = (u8 *)base + DDR_RANGE_PROT_REGS; |
| 255 | |
| 256 | reg8 += (port * DDR_NR_ENTRIES * 8); |
| 257 | reg8 += (entry * 8); |
| 258 | pr_debug("%s port %d, entry %d (reg8=%p, DENALI_CTL_%d)\n", |
| 259 | __func__, port, entry, reg8, (reg8 - (u8 *)base) / 4); |
| 260 | |
| 261 | if (port == 0 && entry == 0) |
| 262 | ddrc_writeb(range_protection_bits, reg8 + 1); |
| 263 | else |
| 264 | ddrc_writeb(range_protection_bits, reg8); |
| 265 | |
| 266 | ddrc_writew(range_RID_check_bits, reg8 + 2); |
| 267 | ddrc_writew(range_WID_check_bits, reg8 + 4); |
| 268 | ddrc_writeb(range_RID_check_bits_ID_lookup, reg8 + 6); |
| 269 | ddrc_writeb(range_WID_check_bits_ID_lookup, reg8 + 7); |
| 270 | } |
| 271 | |
| 272 | void cdns_ddr_enable_prot(void *base, int entry, |
| 273 | enum cdns_ddr_range_prot range_protection_bits, |
| 274 | u16 range_RID_check_bits, |
| 275 | u16 range_WID_check_bits, |
| 276 | u8 range_RID_check_bits_ID_lookup, |
| 277 | u8 range_WID_check_bits_ID_lookup) |
| 278 | { |
| 279 | int axi; |
| 280 | |
| 281 | for (axi = 0; axi < DDR_NR_AXI_PORTS; axi++) |
| 282 | cdns_ddr_enable_port_prot(base, axi, entry, |
| 283 | range_protection_bits, |
| 284 | range_RID_check_bits, |
| 285 | range_WID_check_bits, |
| 286 | range_RID_check_bits_ID_lookup, |
| 287 | range_WID_check_bits_ID_lookup); |
| 288 | } |
| 289 | |
| 290 | void cdns_ddr_set_port_bandwidth(void *base, int port, |
| 291 | u8 max_percent, u8 overflow_ok) |
| 292 | { |
| 293 | u8 *reg8 = (u8 *)base + DDR_AXI_PORT_BANDWIDTH_REG; |
| 294 | |
| 295 | reg8 += (port * 3); |
| 296 | pr_debug("%s port %d, (reg8=%p, DENALI_CTL_%d)\n", |
| 297 | __func__, port, reg8, (reg8 - (u8 *)base) / 4); |
| 298 | |
| 299 | ddrc_writeb(max_percent, reg8++); /* Maximum bandwidth percentage */ |
| 300 | ddrc_writeb(overflow_ok, reg8++); /* Bandwidth overflow allowed */ |
| 301 | } |
| 302 | |
| 303 | void cdns_ddr_ctrl_init(void *ddr_ctrl_basex, int async, |
| 304 | const u32 *reg0, const u32 *reg350, |
| 305 | u32 ddr_start_addr, u32 ddr_size, |
| 306 | int enable_ecc, int enable_8bit) |
| 307 | { |
| 308 | int i, axi, entry; |
| 309 | u32 *ddr_ctrl_base = (u32 *)ddr_ctrl_basex; |
| 310 | u8 *base8 = (u8 *)ddr_ctrl_basex; |
| 311 | |
| 312 | ddrc_writel(*reg0, ddr_ctrl_base + 0); |
| 313 | /* 1 to 6 are read only */ |
| 314 | for (i = 7; i <= 26; i++) |
| 315 | ddrc_writel(*(reg0 + i), ddr_ctrl_base + i); |
| 316 | /* 27 to 29 are not changed */ |
| 317 | for (i = 30; i <= 87; i++) |
| 318 | ddrc_writel(*(reg0 + i), ddr_ctrl_base + i); |
| 319 | |
| 320 | /* Enable/disable ECC */ |
| 321 | if (enable_ecc) { |
| 322 | pr_debug("%s enabling ECC\n", __func__); |
| 323 | ddrc_writeb(1, base8 + DDR_ECC_ENABLE_REG); |
| 324 | } else { |
| 325 | ddrc_writeb(0, base8 + DDR_ECC_ENABLE_REG); |
| 326 | } |
| 327 | |
| 328 | /* ECC: Disable corruption for read/modify/write operations */ |
| 329 | ddrc_writeb(1, base8 + DDR_ECC_DISABLE_W_UC_ERR_REG); |
| 330 | |
| 331 | /* Set 8/16-bit data width using reduce bit (enable half datapath)*/ |
| 332 | if (enable_8bit) { |
| 333 | pr_debug("%s using 8-bit data\n", __func__); |
| 334 | ddrc_writeb(1, base8 + DDR_HALF_DATAPATH_REG); |
| 335 | } else { |
| 336 | ddrc_writeb(0, base8 + DDR_HALF_DATAPATH_REG); |
| 337 | } |
| 338 | |
| 339 | /* Threshold for command queue */ |
| 340 | ddrc_writeb(4, base8 + DDR_ARB_CMD_Q_THRESHOLD_REG); |
| 341 | |
| 342 | /* AXI port protection => enable */ |
| 343 | ddrc_writeb(0x01, base8 + DDR_AXI_PORT_PROT_ENABLE_REG); |
| 344 | |
| 345 | /* Set port interface type, default port priority and bandwidths */ |
| 346 | for (axi = 0; axi < DDR_NR_AXI_PORTS; axi++) { |
| 347 | /* port interface type: synchronous or asynchronous AXI clock */ |
| 348 | u8 *fifo_reg = base8 + DDR_RW_FIFO_TYPE_REGS + (axi * 3); |
| 349 | |
| 350 | if (async) |
| 351 | ddrc_writeb(0, fifo_reg); |
| 352 | else |
| 353 | ddrc_writeb(3, fifo_reg); |
| 354 | |
| 355 | /* R/W priorities */ |
| 356 | cdns_ddr_set_port_rw_priority(ddr_ctrl_base, axi, 2, 2); |
| 357 | |
| 358 | /* AXI bandwidth */ |
| 359 | cdns_ddr_set_port_bandwidth(ddr_ctrl_base, axi, 50, 1); |
| 360 | } |
| 361 | |
| 362 | /* |
| 363 | * The hardware requires that the valid address ranges must not overlap. |
| 364 | * So, we initialise all address ranges to be above the DDR, length 0. |
| 365 | */ |
| 366 | for (entry = 0; entry < DDR_NR_ENTRIES; entry++) |
| 367 | cdns_ddr_enable_addr_range(ddr_ctrl_base, entry, |
| 368 | ddr_start_addr + ddr_size, 0); |
| 369 | |
| 370 | for (i = 350; i <= 374; i++) |
| 371 | ddrc_writel(*(reg350 - 350 + i), ddr_ctrl_base + i); |
| 372 | |
| 373 | /* Disable optimised read-modify-write logic */ |
| 374 | ddrc_writeb(0, base8 + DDR_OPT_RMODW_REG); |
| 375 | |
| 376 | /* |
| 377 | * Disable all interrupts, we are not handling them. |
| 378 | * For detail of the interrupt mask, ack and status bits, see the |
| 379 | * manual's description of the 'int_status' parameter. |
| 380 | */ |
| 381 | ddrc_writel(0, base8 + DDR_INTERRUPT_MASK); |
| 382 | |
| 383 | /* |
| 384 | * Default settings to enable full access to the entire DDR. |
| 385 | * Users can set different ranges and access rights by calling these |
| 386 | * functions before calling cdns_ddr_ctrl_start(). |
| 387 | */ |
| 388 | cdns_ddr_enable_addr_range(ddr_ctrl_base, 0, |
| 389 | ddr_start_addr, ddr_size); |
| 390 | cdns_ddr_enable_prot(ddr_ctrl_base, 0, CDNS_DDR_RANGE_PROT_BITS_FULL, |
| 391 | 0xffff, 0xffff, 0x0f, 0x0f); |
| 392 | } |
| 393 | |
| 394 | void cdns_ddr_ctrl_start(void *ddr_ctrl_basex) |
| 395 | { |
| 396 | u32 *ddr_ctrl_base = (u32 *)ddr_ctrl_basex; |
| 397 | u8 *base8 = (u8 *)ddr_ctrl_basex; |
| 398 | |
| 399 | /* Start */ |
| 400 | ddrc_writeb(1, base8 + DDR_START_REG); |
| 401 | |
| 402 | /* Wait for controller to be ready (interrupt status) */ |
| 403 | wait_for_bit_le32(base8 + DDR_INTERRUPT_STATUS, 0x100, true, 1000, false); |
| 404 | |
| 405 | /* clear all interrupts */ |
| 406 | ddrc_writel(~0, base8 + DDR_INTERRUPT_ACK); |
| 407 | |
| 408 | /* Step 19 Wait 500us from MRESETB=1 */ |
| 409 | udelay(500); |
| 410 | |
| 411 | /* Step 20 tCKSRX wait (From supply stable clock for MCK) */ |
| 412 | /* DENALI_CTL_19 TREF_ENABLE=0x1(=1), AREFRESH=0x1(=1) */ |
| 413 | ddrc_writel(0x01000100, ddr_ctrl_base + 19); |
| 414 | } |