Aaron Tseng | ebcdddd | 2021-01-14 13:34:11 -0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | |
| 3 | /* |
| 4 | * Copyright (C) 2020 Cortina Access Inc. |
| 5 | * Author: Aaron Tseng <aaron.tseng@cortina-access.com> |
| 6 | * |
| 7 | * Ethernet MAC Driver for all supported CAxxxx SoCs |
| 8 | */ |
| 9 | |
Tom Rini | abb9a04 | 2024-05-18 20:20:43 -0600 | [diff] [blame] | 10 | #include <common.h> |
Aaron Tseng | ebcdddd | 2021-01-14 13:34:11 -0800 | [diff] [blame] | 11 | #include <command.h> |
| 12 | #include <malloc.h> |
| 13 | #include <net.h> |
| 14 | #include <miiphy.h> |
| 15 | #include <env.h> |
| 16 | #include <linux/delay.h> |
| 17 | #include <linux/bitops.h> |
| 18 | #include <u-boot/crc.h> |
| 19 | #include <led.h> |
| 20 | |
| 21 | #include "cortina_ni.h" |
| 22 | |
| 23 | #define HEADER_A_SIZE 8 |
| 24 | |
| 25 | enum ca_led_state_t { |
| 26 | CA_LED_OFF = 0, |
| 27 | CA_LED_ON = 1, |
| 28 | }; |
| 29 | |
| 30 | enum ca_port_t { |
| 31 | NI_PORT_0 = 0, |
| 32 | NI_PORT_1, |
| 33 | NI_PORT_2, |
| 34 | NI_PORT_3, |
| 35 | NI_PORT_4, |
| 36 | NI_PORT_5, |
| 37 | NI_PORT_MAX, |
| 38 | }; |
| 39 | |
| 40 | static struct udevice *curr_dev; |
| 41 | |
| 42 | static u32 *ca_rdwrptr_adv_one(u32 *x, unsigned long base, unsigned long max) |
| 43 | { |
| 44 | if (x + 1 >= (u32 *)max) |
| 45 | return (u32 *)base; |
| 46 | else |
| 47 | return (x + 1); |
| 48 | } |
| 49 | |
| 50 | static void ca_reg_read(void *reg, u64 base, u64 offset) |
| 51 | { |
| 52 | u32 *val = (u32 *)reg; |
| 53 | |
| 54 | *val = readl(KSEG1_ATU_XLAT(base + offset)); |
| 55 | } |
| 56 | |
| 57 | static void ca_reg_write(void *reg, u64 base, u64 offset) |
| 58 | { |
| 59 | u32 val = *(u32 *)reg; |
| 60 | |
| 61 | writel(val, KSEG1_ATU_XLAT(base + offset)); |
| 62 | } |
| 63 | |
| 64 | static int ca_mdio_write_rgmii(u32 addr, u32 offset, u16 data) |
| 65 | { |
| 66 | /* up to 10000 cycles*/ |
| 67 | u32 loop_wait = __MDIO_ACCESS_TIMEOUT; |
| 68 | struct PER_MDIO_ADDR_t mdio_addr; |
| 69 | struct PER_MDIO_CTRL_t mdio_ctrl; |
| 70 | struct cortina_ni_priv *priv = dev_get_priv(curr_dev); |
| 71 | |
| 72 | memset(&mdio_addr, 0, sizeof(mdio_addr)); |
| 73 | mdio_addr.mdio_addr = addr; |
| 74 | mdio_addr.mdio_offset = offset; |
| 75 | mdio_addr.mdio_rd_wr = __MDIO_WR_FLAG; |
| 76 | ca_reg_write(&mdio_addr, (u64)priv->per_mdio_base_addr, |
| 77 | PER_MDIO_ADDR_OFFSET); |
| 78 | ca_reg_write(&data, (u64)priv->per_mdio_base_addr, |
| 79 | PER_MDIO_WRDATA_OFFSET); |
| 80 | |
| 81 | memset(&mdio_ctrl, 0, sizeof(mdio_ctrl)); |
| 82 | mdio_ctrl.mdiostart = 1; |
| 83 | ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr, |
| 84 | PER_MDIO_CTRL_OFFSET); |
| 85 | |
| 86 | debug("%s: phy_addr=%d, offset=%d, data=0x%x\n", |
| 87 | __func__, addr, offset, data); |
| 88 | |
| 89 | do { |
| 90 | ca_reg_read(&mdio_ctrl, (u64)priv->per_mdio_base_addr, |
| 91 | PER_MDIO_CTRL_OFFSET); |
| 92 | if (mdio_ctrl.mdiodone) { |
| 93 | ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr, |
| 94 | PER_MDIO_CTRL_OFFSET); |
| 95 | return 0; |
| 96 | } |
| 97 | } while (--loop_wait); |
| 98 | |
| 99 | printf("CA NI %s: PHY write timeout!!!\n", __func__); |
| 100 | return -ETIMEDOUT; |
| 101 | } |
| 102 | |
| 103 | int ca_mdio_write(u32 addr, u32 offset, u16 data) |
| 104 | { |
| 105 | u32 reg_addr, reg_val; |
| 106 | struct NI_MDIO_OPER_T mdio_oper; |
| 107 | |
| 108 | /* support range: 1~31*/ |
| 109 | if (addr < CA_MDIO_ADDR_MIN || addr > CA_MDIO_ADDR_MAX) |
| 110 | return -EINVAL; |
| 111 | |
| 112 | /* the phy addr 5 is connect to RGMII */ |
| 113 | if (addr >= 5) |
| 114 | return ca_mdio_write_rgmii(addr, offset, data); |
| 115 | |
| 116 | memset(&mdio_oper, 0, sizeof(mdio_oper)); |
| 117 | mdio_oper.reg_off = offset; |
| 118 | mdio_oper.phy_addr = addr; |
| 119 | mdio_oper.reg_base = CA_NI_MDIO_REG_BASE; |
| 120 | reg_val = data; |
| 121 | memcpy(®_addr, &mdio_oper, sizeof(reg_addr)); |
| 122 | ca_reg_write(®_val, (u64)reg_addr, 0); |
| 123 | |
| 124 | return 0; |
| 125 | } |
| 126 | |
| 127 | static int ca_mdio_read_rgmii(u32 addr, u32 offset, u16 *data) |
| 128 | { |
| 129 | u32 loop_wait = __MDIO_ACCESS_TIMEOUT; |
| 130 | struct PER_MDIO_ADDR_t mdio_addr; |
| 131 | struct PER_MDIO_CTRL_t mdio_ctrl; |
| 132 | struct PER_MDIO_RDDATA_t read_data; |
| 133 | struct cortina_ni_priv *priv = dev_get_priv(curr_dev); |
| 134 | |
| 135 | memset(&mdio_addr, 0, sizeof(mdio_addr)); |
| 136 | mdio_addr.mdio_addr = addr; |
| 137 | mdio_addr.mdio_offset = offset; |
| 138 | mdio_addr.mdio_rd_wr = __MDIO_RD_FLAG; |
| 139 | ca_reg_write(&mdio_addr, (u64)priv->per_mdio_base_addr, |
| 140 | PER_MDIO_ADDR_OFFSET); |
| 141 | |
| 142 | memset(&mdio_ctrl, 0, sizeof(mdio_ctrl)); |
| 143 | mdio_ctrl.mdiostart = 1; |
| 144 | ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr, |
| 145 | PER_MDIO_CTRL_OFFSET); |
| 146 | |
| 147 | do { |
| 148 | ca_reg_read(&mdio_ctrl, (u64)priv->per_mdio_base_addr, |
| 149 | PER_MDIO_CTRL_OFFSET); |
| 150 | if (mdio_ctrl.mdiodone) { |
| 151 | ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr, |
| 152 | PER_MDIO_CTRL_OFFSET); |
| 153 | ca_reg_read(&read_data, (u64)priv->per_mdio_base_addr, |
| 154 | PER_MDIO_RDDATA_OFFSET); |
| 155 | *data = read_data.mdio_rddata; |
| 156 | return 0; |
| 157 | } |
| 158 | } while (--loop_wait); |
| 159 | |
| 160 | printf("CA NI %s: TIMEOUT!!\n", __func__); |
| 161 | return -ETIMEDOUT; |
| 162 | } |
| 163 | |
| 164 | int ca_mdio_read(u32 addr, u32 offset, u16 *data) |
| 165 | { |
| 166 | u32 reg_addr, reg_val; |
| 167 | struct NI_MDIO_OPER_T mdio_oper; |
| 168 | |
| 169 | if (!data) |
| 170 | return -EINVAL; |
| 171 | |
| 172 | /* support range: 1~31*/ |
| 173 | if (addr < CA_MDIO_ADDR_MIN || addr > CA_MDIO_ADDR_MAX) |
| 174 | return -EINVAL; |
| 175 | |
| 176 | /* the phy addr 5 is connect to RGMII */ |
| 177 | if (addr >= 5) |
| 178 | return ca_mdio_read_rgmii(addr, offset, data); |
| 179 | |
| 180 | memset(&mdio_oper, 0, sizeof(mdio_oper)); |
| 181 | mdio_oper.reg_off = offset; |
| 182 | mdio_oper.phy_addr = addr; |
| 183 | mdio_oper.reg_base = CA_NI_MDIO_REG_BASE; |
| 184 | reg_val = *data; |
| 185 | memcpy(®_addr, &mdio_oper, sizeof(reg_addr)); |
| 186 | ca_reg_read(®_val, (u64)reg_addr, 0); |
| 187 | *data = reg_val; |
| 188 | return 0; |
| 189 | } |
| 190 | |
| 191 | int ca_miiphy_read(const char *devname, u8 addr, u8 reg, u16 *value) |
| 192 | { |
| 193 | return ca_mdio_read(addr, reg, value); |
| 194 | } |
| 195 | |
| 196 | int ca_miiphy_write(const char *devname, u8 addr, u8 reg, u16 value) |
| 197 | { |
| 198 | return ca_mdio_write(addr, reg, value); |
| 199 | } |
| 200 | |
| 201 | static int cortina_mdio_read(struct mii_dev *bus, int addr, int devad, int reg) |
| 202 | { |
| 203 | u16 data; |
| 204 | |
| 205 | ca_mdio_read(addr, reg, &data); |
| 206 | return data; |
| 207 | } |
| 208 | |
| 209 | static int cortina_mdio_write(struct mii_dev *bus, int addr, int devad, int reg, |
| 210 | u16 val) |
| 211 | { |
| 212 | return ca_mdio_write(addr, reg, val); |
| 213 | } |
| 214 | |
| 215 | static void ca_ni_setup_mac_addr(void) |
| 216 | { |
| 217 | u8 mac[6]; |
| 218 | struct NI_HV_GLB_MAC_ADDR_CFG0_t mac_addr_cfg0; |
| 219 | struct NI_HV_GLB_MAC_ADDR_CFG1_t mac_addr_cfg1; |
| 220 | struct NI_HV_PT_PORT_STATIC_CFG_t port_static_cfg; |
| 221 | struct NI_HV_XRAM_CPUXRAM_CFG_t cpuxram_cfg; |
| 222 | struct cortina_ni_priv *priv = dev_get_priv(curr_dev); |
| 223 | |
| 224 | /* parsing ethaddr and set to NI registers. */ |
| 225 | if (eth_env_get_enetaddr("ethaddr", mac)) { |
| 226 | /* The complete MAC address consists of |
| 227 | * {MAC_ADDR0_mac_addr0[0-3], MAC_ADDR1_mac_addr1[4], |
| 228 | * PT_PORT_STATIC_CFG_mac_addr6[5]}. |
| 229 | */ |
| 230 | mac_addr_cfg0.mac_addr0 = (mac[0] << 24) + (mac[1] << 16) + |
| 231 | (mac[2] << 8) + mac[3]; |
| 232 | ca_reg_write(&mac_addr_cfg0, (u64)priv->ni_hv_base_addr, |
| 233 | NI_HV_GLB_MAC_ADDR_CFG0_OFFSET); |
| 234 | |
| 235 | memset(&mac_addr_cfg1, 0, sizeof(mac_addr_cfg1)); |
| 236 | mac_addr_cfg1.mac_addr1 = mac[4]; |
| 237 | ca_reg_write(&mac_addr_cfg1, (u64)priv->ni_hv_base_addr, |
| 238 | NI_HV_GLB_MAC_ADDR_CFG1_OFFSET); |
| 239 | |
| 240 | ca_reg_read(&port_static_cfg, (u64)priv->ni_hv_base_addr, |
| 241 | NI_HV_PT_PORT_STATIC_CFG_OFFSET + |
| 242 | (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| 243 | |
| 244 | port_static_cfg.mac_addr6 = mac[5]; |
| 245 | ca_reg_write(&port_static_cfg, (u64)priv->ni_hv_base_addr, |
| 246 | NI_HV_PT_PORT_STATIC_CFG_OFFSET + |
| 247 | (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| 248 | |
| 249 | /* received only Broadcast and Address matched packets */ |
| 250 | ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, |
| 251 | NI_HV_XRAM_CPUXRAM_CFG_OFFSET); |
| 252 | cpuxram_cfg.xram_mgmt_promisc_mode = 0; |
| 253 | cpuxram_cfg.rx_0_cpu_pkt_dis = 0; |
| 254 | cpuxram_cfg.tx_0_cpu_pkt_dis = 0; |
| 255 | ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, |
| 256 | NI_HV_XRAM_CPUXRAM_CFG_OFFSET); |
| 257 | } else { |
| 258 | /* received all packets(promiscuous mode) */ |
| 259 | ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, |
| 260 | NI_HV_XRAM_CPUXRAM_CFG_OFFSET); |
| 261 | cpuxram_cfg.xram_mgmt_promisc_mode = 3; |
| 262 | cpuxram_cfg.rx_0_cpu_pkt_dis = 0; |
| 263 | cpuxram_cfg.tx_0_cpu_pkt_dis = 0; |
| 264 | ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, |
| 265 | NI_HV_XRAM_CPUXRAM_CFG_OFFSET); |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | static void ca_ni_enable_tx_rx(void) |
| 270 | { |
| 271 | struct NI_HV_PT_RXMAC_CFG_t rxmac_cfg; |
| 272 | struct NI_HV_PT_TXMAC_CFG_t txmac_cfg; |
| 273 | struct cortina_ni_priv *priv = dev_get_priv(curr_dev); |
| 274 | |
| 275 | /* Enable TX and RX functions */ |
| 276 | ca_reg_read(&rxmac_cfg, (u64)priv->ni_hv_base_addr, |
| 277 | NI_HV_PT_RXMAC_CFG_OFFSET + |
| 278 | (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| 279 | rxmac_cfg.rx_en = 1; |
| 280 | ca_reg_write(&rxmac_cfg, (u64)priv->ni_hv_base_addr, |
| 281 | NI_HV_PT_RXMAC_CFG_OFFSET + |
| 282 | (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| 283 | |
| 284 | ca_reg_read(&txmac_cfg, (u64)priv->ni_hv_base_addr, |
| 285 | NI_HV_PT_TXMAC_CFG_OFFSET + |
| 286 | (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| 287 | txmac_cfg.tx_en = 1; |
| 288 | ca_reg_write(&txmac_cfg, (u64)priv->ni_hv_base_addr, |
| 289 | NI_HV_PT_TXMAC_CFG_OFFSET + |
| 290 | (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| 291 | } |
| 292 | |
| 293 | #define AUTO_SCAN_TIMEOUT 3000 /* 3 seconds */ |
| 294 | static int ca_ni_auto_scan_active_port(struct cortina_ni_priv *priv) |
| 295 | { |
| 296 | u8 i; |
| 297 | u16 data; |
| 298 | u32 start_time; |
| 299 | |
| 300 | start_time = get_timer(0); |
| 301 | while (get_timer(start_time) < AUTO_SCAN_TIMEOUT) { |
| 302 | for (i = 0; i < priv->valid_port_num; i++) { |
| 303 | if (!priv->port_map[i].phy_addr) |
| 304 | continue; |
| 305 | |
| 306 | ca_mdio_read(priv->port_map[i].phy_addr, 1, &data); |
| 307 | if (data & 0x04) { |
| 308 | priv->active_port = priv->port_map[i].port; |
| 309 | return 0; |
| 310 | } |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | printf("CA NI %s: auto scan active_port timeout.\n", __func__); |
| 315 | return -1; |
| 316 | } |
| 317 | |
| 318 | static void ca_ni_led(int port, int status) |
| 319 | { |
| 320 | char label[10]; |
| 321 | struct udevice *led_dev; |
| 322 | |
| 323 | if (IS_ENABLED(CONFIG_LED_CORTINA)) { |
| 324 | snprintf(label, sizeof(label), "led%d", port); |
| 325 | debug("%s: set port %d led %s.\n", |
| 326 | __func__, port, status ? "on" : "off"); |
| 327 | led_get_by_label(label, &led_dev); |
| 328 | led_set_state(led_dev, status); |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | static void ca_ni_reset(void) |
| 333 | { |
| 334 | int i; |
| 335 | struct NI_HV_GLB_INIT_DONE_t init_done; |
| 336 | struct NI_HV_GLB_INTF_RST_CONFIG_t intf_rst_config; |
| 337 | struct NI_HV_GLB_STATIC_CFG_t static_cfg; |
| 338 | struct GLOBAL_BLOCK_RESET_t glb_blk_reset; |
| 339 | struct cortina_ni_priv *priv = dev_get_priv(curr_dev); |
| 340 | |
| 341 | /* NI global resets */ |
| 342 | ca_reg_read(&glb_blk_reset, (u64)priv->glb_base_addr, |
| 343 | GLOBAL_BLOCK_RESET_OFFSET); |
| 344 | glb_blk_reset.reset_ni = 1; |
| 345 | ca_reg_write(&glb_blk_reset, (u64)priv->glb_base_addr, |
| 346 | GLOBAL_BLOCK_RESET_OFFSET); |
| 347 | /* Remove resets */ |
| 348 | glb_blk_reset.reset_ni = 0; |
| 349 | ca_reg_write(&glb_blk_reset, (u64)priv->glb_base_addr, |
| 350 | GLOBAL_BLOCK_RESET_OFFSET); |
| 351 | |
| 352 | /* check the ready bit of NI module */ |
| 353 | for (i = 0; i < NI_READ_POLL_COUNT; i++) { |
| 354 | ca_reg_read(&init_done, (u64)priv->ni_hv_base_addr, |
| 355 | NI_HV_GLB_INIT_DONE_OFFSET); |
| 356 | if (init_done.ni_init_done) |
| 357 | break; |
| 358 | } |
| 359 | if (i == NI_READ_POLL_COUNT) { |
| 360 | printf("CA NI %s: NI init done not ready, init_done=0x%x!!!\n", |
| 361 | __func__, init_done.ni_init_done); |
| 362 | } |
| 363 | |
| 364 | ca_reg_read(&intf_rst_config, (u64)priv->ni_hv_base_addr, |
| 365 | NI_HV_GLB_INTF_RST_CONFIG_OFFSET); |
| 366 | switch (priv->active_port) { |
| 367 | case NI_PORT_0: |
| 368 | intf_rst_config.intf_rst_p0 = 0; |
| 369 | intf_rst_config.mac_rx_rst_p0 = 0; |
| 370 | intf_rst_config.mac_tx_rst_p0 = 0; |
| 371 | break; |
| 372 | case NI_PORT_1: |
| 373 | intf_rst_config.intf_rst_p1 = 0; |
| 374 | intf_rst_config.mac_rx_rst_p1 = 0; |
| 375 | intf_rst_config.mac_tx_rst_p1 = 0; |
| 376 | break; |
| 377 | case NI_PORT_2: |
| 378 | intf_rst_config.intf_rst_p2 = 0; |
| 379 | intf_rst_config.mac_rx_rst_p2 = 0; |
| 380 | intf_rst_config.mac_tx_rst_p2 = 0; |
| 381 | break; |
| 382 | case NI_PORT_3: |
| 383 | intf_rst_config.intf_rst_p3 = 0; |
| 384 | intf_rst_config.mac_tx_rst_p3 = 0; |
| 385 | intf_rst_config.mac_rx_rst_p3 = 0; |
| 386 | break; |
| 387 | case NI_PORT_4: |
| 388 | intf_rst_config.intf_rst_p4 = 0; |
| 389 | intf_rst_config.mac_tx_rst_p4 = 0; |
| 390 | intf_rst_config.mac_rx_rst_p4 = 0; |
| 391 | break; |
| 392 | } |
| 393 | |
| 394 | ca_reg_write(&intf_rst_config, (u64)priv->ni_hv_base_addr, |
| 395 | NI_HV_GLB_INTF_RST_CONFIG_OFFSET); |
| 396 | |
| 397 | /* Only one GMAC can connect to CPU */ |
| 398 | ca_reg_read(&static_cfg, (u64)priv->ni_hv_base_addr, |
| 399 | NI_HV_GLB_STATIC_CFG_OFFSET); |
| 400 | static_cfg.port_to_cpu = priv->active_port; |
| 401 | static_cfg.txmib_mode = 1; |
| 402 | static_cfg.rxmib_mode = 1; |
| 403 | |
| 404 | ca_reg_write(&static_cfg, (u64)priv->ni_hv_base_addr, |
| 405 | NI_HV_GLB_STATIC_CFG_OFFSET); |
| 406 | } |
| 407 | |
| 408 | static void ca_internal_gphy_cal(struct cortina_ni_priv *priv) |
| 409 | { |
| 410 | int i, port, num; |
| 411 | u32 reg_off, value; |
| 412 | |
| 413 | num = priv->gphy_num; |
| 414 | for (port = 0; port < 4; port++) { |
| 415 | for (i = 0; i < num; i++) { |
| 416 | reg_off = priv->gphy_values[i].reg_off + (port * 0x80); |
| 417 | value = priv->gphy_values[i].value; |
| 418 | ca_reg_write(&value, reg_off, 0); |
| 419 | mdelay(50); |
| 420 | } |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | static int ca_mdio_register(struct udevice *dev) |
| 425 | { |
| 426 | int ret; |
| 427 | struct cortina_ni_priv *priv = dev_get_priv(dev); |
| 428 | struct mii_dev *mdio_bus = mdio_alloc(); |
| 429 | |
| 430 | if (!mdio_bus) |
| 431 | return -ENOMEM; |
| 432 | |
| 433 | mdio_bus->read = cortina_mdio_read; |
| 434 | mdio_bus->write = cortina_mdio_write; |
| 435 | snprintf(mdio_bus->name, sizeof(mdio_bus->name), dev->name); |
| 436 | |
| 437 | mdio_bus->priv = (void *)priv; |
| 438 | |
| 439 | ret = mdio_register(mdio_bus); |
| 440 | if (ret) |
| 441 | return ret; |
| 442 | |
| 443 | priv->mdio_bus = mdio_bus; |
| 444 | return 0; |
| 445 | } |
| 446 | |
| 447 | static void ca_rgmii_init(struct cortina_ni_priv *priv) |
| 448 | { |
| 449 | struct GLOBAL_GLOBAL_CONFIG_t glb_config; |
| 450 | struct GLOBAL_IO_DRIVE_CONTROL_t io_drive_control; |
| 451 | |
| 452 | /* Generating 25Mhz reference clock for switch */ |
| 453 | ca_reg_read(&glb_config, (u64)priv->glb_base_addr, |
| 454 | GLOBAL_GLOBAL_CONFIG_OFFSET); |
| 455 | glb_config.refclk_sel = 0x01; |
| 456 | glb_config.ext_reset = 0x01; |
| 457 | ca_reg_write(&glb_config, (u64)priv->glb_base_addr, |
| 458 | GLOBAL_GLOBAL_CONFIG_OFFSET); |
| 459 | |
| 460 | mdelay(20); |
| 461 | |
| 462 | /* Do external reset */ |
| 463 | ca_reg_read(&glb_config, (u64)priv->glb_base_addr, |
| 464 | GLOBAL_GLOBAL_CONFIG_OFFSET); |
| 465 | glb_config.ext_reset = 0x0; |
| 466 | ca_reg_write(&glb_config, (u64)priv->glb_base_addr, |
| 467 | GLOBAL_GLOBAL_CONFIG_OFFSET); |
| 468 | |
| 469 | ca_reg_read(&io_drive_control, (u64)priv->glb_base_addr, |
| 470 | GLOBAL_IO_DRIVE_CONTROL_OFFSET); |
| 471 | io_drive_control.gmac_mode = 2; |
| 472 | io_drive_control.gmac_dn = 1; |
| 473 | io_drive_control.gmac_dp = 1; |
| 474 | ca_reg_write(&io_drive_control, (u64)priv->glb_base_addr, |
| 475 | GLOBAL_IO_DRIVE_CONTROL_OFFSET); |
| 476 | } |
| 477 | |
| 478 | static int ca_phy_probe(struct udevice *dev) |
| 479 | { |
| 480 | int auto_scan_active_port = 0, tmp_port; |
| 481 | char *buf; |
| 482 | struct cortina_ni_priv *priv = dev_get_priv(dev); |
| 483 | struct phy_device *int_phydev, *ext_phydev; |
| 484 | |
| 485 | /* Initialize internal phy device */ |
| 486 | int_phydev = phy_connect(priv->mdio_bus, |
| 487 | priv->port_map[NI_PORT_3].phy_addr, |
| 488 | dev, priv->phy_interface); |
| 489 | if (int_phydev) { |
| 490 | int_phydev->supported &= PHY_GBIT_FEATURES; |
| 491 | int_phydev->advertising = int_phydev->supported; |
| 492 | phy_config(int_phydev); |
| 493 | } else { |
| 494 | printf("CA NI %s: There is no internal phy device\n", __func__); |
| 495 | } |
| 496 | |
| 497 | /* Initialize external phy device */ |
| 498 | ext_phydev = phy_connect(priv->mdio_bus, |
| 499 | priv->port_map[NI_PORT_4].phy_addr, |
| 500 | dev, priv->phy_interface); |
| 501 | if (ext_phydev) { |
| 502 | ext_phydev->supported &= PHY_GBIT_FEATURES; |
| 503 | ext_phydev->advertising = int_phydev->supported; |
| 504 | phy_config(ext_phydev); |
| 505 | } else { |
| 506 | printf("CA NI %s: There is no external phy device\n", __func__); |
| 507 | } |
| 508 | |
| 509 | /* auto scan the first link up port as active_port */ |
| 510 | buf = env_get("auto_scan_active_port"); |
| 511 | if (buf != 0) { |
| 512 | auto_scan_active_port = simple_strtoul(buf, NULL, 0); |
| 513 | printf("CA NI %s: auto_scan_active_port=%d\n", __func__, |
| 514 | auto_scan_active_port); |
| 515 | } |
| 516 | |
| 517 | if (auto_scan_active_port) { |
| 518 | ca_ni_auto_scan_active_port(priv); |
| 519 | } else { |
| 520 | buf = env_get("active_port"); |
| 521 | if (buf != 0) { |
| 522 | tmp_port = simple_strtoul(buf, NULL, 0); |
| 523 | if (tmp_port < 0 && |
| 524 | !(priv->valid_port_map && BIT(tmp_port))) { |
| 525 | printf("CA NI ERROR: not support this port."); |
| 526 | free(dev); |
| 527 | free(priv); |
| 528 | return 1; |
| 529 | } |
| 530 | |
| 531 | priv->active_port = tmp_port; |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | printf("CA NI %s: active_port=%d\n", __func__, priv->active_port); |
| 536 | if (priv->active_port == NI_PORT_4) |
| 537 | priv->phydev = ext_phydev; |
| 538 | else |
| 539 | priv->phydev = int_phydev; |
| 540 | |
| 541 | return 0; |
| 542 | } |
| 543 | |
| 544 | static int cortina_eth_start(struct udevice *dev) |
| 545 | { |
| 546 | int ret; |
| 547 | struct NI_HV_XRAM_CPUXRAM_ADRCFG_RX_t cpuxram_adrcfg_rx; |
| 548 | struct NI_HV_XRAM_CPUXRAM_ADRCFG_TX_0_t cpuxram_adrcfg_tx; |
| 549 | struct NI_HV_XRAM_CPUXRAM_CFG_t cpuxram_cfg; |
| 550 | struct NI_HV_PT_PORT_STATIC_CFG_t port_static_cfg; |
| 551 | struct NI_HV_PT_PORT_GLB_CFG_t port_glb_cfg; |
| 552 | struct cortina_ni_priv *priv = dev_get_priv(dev); |
| 553 | struct phy_device *phydev = priv->phydev; |
| 554 | |
| 555 | ret = phy_startup(priv->phydev); |
| 556 | if (ret) { |
| 557 | ca_ni_led(priv->active_port, CA_LED_OFF); |
| 558 | printf("CA NI Could not initialize PHY %s, active_port=%d\n", |
| 559 | priv->phydev->dev->name, priv->active_port); |
| 560 | return ret; |
| 561 | } |
| 562 | |
| 563 | if (!priv->phydev->link) { |
| 564 | printf("CA NI %s: link down.\n", priv->phydev->dev->name); |
| 565 | return 0; |
| 566 | } |
| 567 | |
| 568 | ca_ni_led(priv->active_port, CA_LED_ON); |
| 569 | printf("CA NI PHY ID 0x%08X %dMbps %s duplex\n", |
| 570 | phydev->phy_id, phydev->speed, |
| 571 | phydev->duplex == DUPLEX_HALF ? "half" : "full"); |
| 572 | |
| 573 | /* RX XRAM ADDRESS CONFIG (start and end address) */ |
| 574 | memset(&cpuxram_adrcfg_rx, 0, sizeof(cpuxram_adrcfg_rx)); |
| 575 | cpuxram_adrcfg_rx.rx_top_addr = RX_TOP_ADDR; |
| 576 | cpuxram_adrcfg_rx.rx_base_addr = RX_BASE_ADDR; |
| 577 | ca_reg_write(&cpuxram_adrcfg_rx, (u64)priv->ni_hv_base_addr, |
| 578 | NI_HV_XRAM_CPUXRAM_ADRCFG_RX_OFFSET); |
| 579 | |
| 580 | /* TX XRAM ADDRESS CONFIG (start and end address) */ |
| 581 | memset(&cpuxram_adrcfg_tx, 0, sizeof(cpuxram_adrcfg_tx)); |
| 582 | cpuxram_adrcfg_tx.tx_top_addr = TX_TOP_ADDR; |
| 583 | cpuxram_adrcfg_tx.tx_base_addr = TX_BASE_ADDR; |
| 584 | ca_reg_write(&cpuxram_adrcfg_tx, (u64)priv->ni_hv_base_addr, |
| 585 | NI_HV_XRAM_CPUXRAM_ADRCFG_TX_0_OFFSET); |
| 586 | |
| 587 | /* |
| 588 | * Configuration for Management Ethernet Interface: |
| 589 | * - RGMII 1000 mode or RGMII 100 mode |
| 590 | * - MAC mode |
| 591 | */ |
| 592 | ca_reg_read(&port_static_cfg, (u64)priv->ni_hv_base_addr, |
| 593 | NI_HV_PT_PORT_STATIC_CFG_OFFSET + |
| 594 | (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| 595 | if (phydev->speed == SPEED_1000) { |
| 596 | /* port 4 connects to RGMII PHY */ |
| 597 | if (phydev->addr == 5) |
| 598 | port_static_cfg.int_cfg = GE_MAC_INTF_RGMII_1000; |
| 599 | else |
| 600 | port_static_cfg.int_cfg = GE_MAC_INTF_GMII; |
| 601 | } else { |
| 602 | /* port 4 connects to RGMII PHY */ |
| 603 | if (phydev->addr == 5) |
| 604 | port_static_cfg.int_cfg = GE_MAC_INTF_RGMII_100; |
| 605 | else |
| 606 | port_static_cfg.int_cfg = GE_MAC_INTF_MII; |
| 607 | } |
| 608 | |
| 609 | ca_reg_write(&port_static_cfg, (u64)priv->ni_hv_base_addr, |
| 610 | NI_HV_PT_PORT_STATIC_CFG_OFFSET + |
| 611 | (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| 612 | |
| 613 | ca_reg_read(&port_glb_cfg, (u64)priv->ni_hv_base_addr, |
| 614 | NI_HV_PT_PORT_GLB_CFG_OFFSET + |
| 615 | (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| 616 | port_glb_cfg.speed = phydev->speed == SPEED_10 ? 1 : 0; |
| 617 | port_glb_cfg.duplex = phydev->duplex == DUPLEX_HALF ? 1 : 0; |
| 618 | ca_reg_write(&port_glb_cfg, (u64)priv->ni_hv_base_addr, |
| 619 | NI_HV_PT_PORT_GLB_CFG_OFFSET + |
| 620 | (APB0_NI_HV_PT_STRIDE * priv->active_port)); |
| 621 | |
| 622 | /* Need to toggle the tx and rx cpu_pkt_dis bit */ |
| 623 | /* after changing Address config register. */ |
| 624 | ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, |
| 625 | NI_HV_XRAM_CPUXRAM_CFG_OFFSET); |
| 626 | cpuxram_cfg.rx_0_cpu_pkt_dis = 1; |
| 627 | cpuxram_cfg.tx_0_cpu_pkt_dis = 1; |
| 628 | ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, |
| 629 | NI_HV_XRAM_CPUXRAM_CFG_OFFSET); |
| 630 | |
| 631 | ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, |
| 632 | NI_HV_XRAM_CPUXRAM_CFG_OFFSET); |
| 633 | cpuxram_cfg.rx_0_cpu_pkt_dis = 0; |
| 634 | cpuxram_cfg.tx_0_cpu_pkt_dis = 0; |
| 635 | ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, |
| 636 | NI_HV_XRAM_CPUXRAM_CFG_OFFSET); |
| 637 | |
| 638 | ca_ni_enable_tx_rx(); |
| 639 | |
| 640 | return 0; |
| 641 | } |
| 642 | |
| 643 | /********************************************* |
| 644 | * Packet receive routine from Management FE |
| 645 | * Expects a previously allocated buffer and |
| 646 | * fills the length |
| 647 | * Retruns 0 on success -1 on failure |
| 648 | *******************************************/ |
| 649 | static int cortina_eth_recv(struct udevice *dev, int flags, uchar **packetp) |
| 650 | { |
| 651 | u8 *ptr; |
| 652 | u32 next_link, pktlen = 0; |
| 653 | u32 sw_rx_rd_ptr, hw_rx_wr_ptr, *rx_xram_ptr, *data_ptr; |
| 654 | int loop, index = 0, blk_num; |
| 655 | struct cortina_ni_priv *priv = dev_get_priv(dev); |
| 656 | struct NI_HEADER_X_T header_x; |
| 657 | struct NI_PACKET_STATUS packet_status; |
| 658 | struct NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_t cpuxram_cpu_sta_rx; |
| 659 | struct NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_t cpuxram_cpu_cfg_rx; |
| 660 | |
| 661 | /* get the hw write pointer */ |
| 662 | memset(&cpuxram_cpu_sta_rx, 0, sizeof(cpuxram_cpu_sta_rx)); |
| 663 | ca_reg_read(&cpuxram_cpu_sta_rx, (u64)priv->ni_hv_base_addr, |
| 664 | NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET); |
| 665 | hw_rx_wr_ptr = cpuxram_cpu_sta_rx.pkt_wr_ptr; |
| 666 | |
| 667 | /* get the sw read pointer */ |
| 668 | memset(&cpuxram_cpu_cfg_rx, 0, sizeof(cpuxram_cpu_cfg_rx)); |
| 669 | ca_reg_read(&cpuxram_cpu_cfg_rx, (u64)priv->ni_hv_base_addr, |
| 670 | NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); |
| 671 | sw_rx_rd_ptr = cpuxram_cpu_cfg_rx.pkt_rd_ptr; |
| 672 | |
| 673 | debug("%s: NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0 = 0x%p, ", __func__, |
| 674 | priv->ni_hv_base_addr + NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET); |
| 675 | debug("NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0 = 0x%p\n", |
| 676 | priv->ni_hv_base_addr + NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); |
| 677 | debug("%s : RX hw_wr_ptr = %d, sw_rd_ptr = %d\n", |
| 678 | __func__, hw_rx_wr_ptr, sw_rx_rd_ptr); |
| 679 | |
| 680 | while (sw_rx_rd_ptr != hw_rx_wr_ptr) { |
| 681 | /* Point to the absolute memory address of XRAM |
| 682 | * where read pointer is |
| 683 | */ |
| 684 | rx_xram_ptr = (u32 *) |
| 685 | ((unsigned long)priv->ni_xram_base |
| 686 | + sw_rx_rd_ptr * 8); |
| 687 | |
| 688 | /* Wrap around if required */ |
| 689 | if (rx_xram_ptr >= (u32 *)(unsigned long)priv->rx_xram_end_adr) |
| 690 | rx_xram_ptr = (u32 *) |
| 691 | (unsigned long)priv->rx_xram_base_adr; |
| 692 | |
| 693 | /* Checking header XR. Do not update the read pointer yet */ |
| 694 | /* skip unused 32-bit in Header XR */ |
| 695 | rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr, |
| 696 | priv->rx_xram_base_adr, |
| 697 | priv->rx_xram_end_adr); |
| 698 | |
| 699 | memcpy(&header_x, rx_xram_ptr, sizeof(header_x)); |
| 700 | next_link = header_x.next_link; |
| 701 | /* Header XR [31:0] */ |
| 702 | |
| 703 | if (*rx_xram_ptr == 0xffffffff) |
| 704 | printf("CA NI %s: XRAM Error !\n", __func__); |
| 705 | |
| 706 | debug("%s : RX next link 0x%x\n", __func__, next_link); |
| 707 | debug("%s : bytes_valid %x\n", __func__, header_x.bytes_valid); |
| 708 | |
| 709 | if (header_x.ownership == 0) { |
| 710 | /* point to Packet status [31:0] */ |
| 711 | rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr, |
| 712 | priv->rx_xram_base_adr, |
| 713 | priv->rx_xram_end_adr); |
| 714 | |
| 715 | memcpy(&packet_status, rx_xram_ptr, |
Heinrich Schuchardt | 00aeaa0 | 2021-02-20 10:44:04 +0100 | [diff] [blame] | 716 | sizeof(*rx_xram_ptr)); |
Aaron Tseng | ebcdddd | 2021-01-14 13:34:11 -0800 | [diff] [blame] | 717 | if (packet_status.valid == 0) { |
| 718 | debug("%s: Invalid Packet !!, ", __func__); |
| 719 | debug("next_link=%d\n", next_link); |
| 720 | |
| 721 | /* Update the software read pointer */ |
| 722 | ca_reg_write(&next_link, |
| 723 | (u64)priv->ni_hv_base_addr, |
| 724 | NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); |
| 725 | return 0; |
| 726 | } |
| 727 | |
| 728 | if (packet_status.drop || |
| 729 | packet_status.runt || |
| 730 | packet_status.oversize || |
| 731 | packet_status.jabber || |
| 732 | packet_status.crc_error || |
| 733 | packet_status.jumbo) { |
| 734 | debug("%s: Error Packet!!, ", __func__); |
| 735 | debug("next_link=%d\n", next_link); |
| 736 | |
| 737 | /* Update the software read pointer */ |
| 738 | ca_reg_write(&next_link, |
| 739 | (u64)priv->ni_hv_base_addr, |
| 740 | NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); |
| 741 | return 0; |
| 742 | } |
| 743 | |
| 744 | /* check whether packet size is larger than 1514 */ |
| 745 | if (packet_status.packet_size > 1518) { |
| 746 | debug("%s: Error Packet !! Packet size=%d, ", |
| 747 | __func__, packet_status.packet_size); |
| 748 | debug("larger than 1518, next_link=%d\n", |
| 749 | next_link); |
| 750 | |
| 751 | /* Update the software read pointer */ |
| 752 | ca_reg_write(&next_link, |
| 753 | (u64)priv->ni_hv_base_addr, |
| 754 | NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); |
| 755 | return 0; |
| 756 | } |
| 757 | |
| 758 | rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr, |
| 759 | priv->rx_xram_base_adr, |
| 760 | priv->rx_xram_end_adr); |
| 761 | |
| 762 | pktlen = packet_status.packet_size; |
| 763 | |
| 764 | debug("%s : rx packet length = %d\n", |
| 765 | __func__, packet_status.packet_size); |
| 766 | |
| 767 | rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr, |
| 768 | priv->rx_xram_base_adr, |
| 769 | priv->rx_xram_end_adr); |
| 770 | |
| 771 | data_ptr = (u32 *)net_rx_packets[index]; |
| 772 | |
| 773 | /* Read out the packet */ |
| 774 | /* Data is in little endian form in the XRAM */ |
| 775 | |
| 776 | /* Send the packet to upper layer */ |
| 777 | |
| 778 | debug("%s: packet data[]=", __func__); |
| 779 | |
| 780 | for (loop = 0; loop <= pktlen / 4; loop++) { |
| 781 | ptr = (u8 *)rx_xram_ptr; |
| 782 | if (loop < 10) |
| 783 | debug("[0x%x]-[0x%x]-[0x%x]-[0x%x]", |
| 784 | ptr[0], ptr[1], ptr[2], ptr[3]); |
| 785 | *data_ptr++ = *rx_xram_ptr++; |
| 786 | /* Wrap around if required */ |
| 787 | if (rx_xram_ptr >= (u32 *) |
| 788 | (unsigned long)priv->rx_xram_end_adr) { |
| 789 | rx_xram_ptr = (u32 *)(unsigned long) |
| 790 | (priv->rx_xram_base_adr); |
| 791 | } |
| 792 | } |
| 793 | |
| 794 | debug("\n"); |
| 795 | net_process_received_packet(net_rx_packets[index], |
| 796 | pktlen); |
| 797 | if (++index >= PKTBUFSRX) |
| 798 | index = 0; |
| 799 | blk_num = net_rx_packets[index][0x2c] * 255 + |
| 800 | net_rx_packets[index][0x2d]; |
| 801 | debug("%s: tftp block number=%d\n", __func__, blk_num); |
| 802 | |
| 803 | /* Update the software read pointer */ |
| 804 | ca_reg_write(&next_link, |
| 805 | (u64)priv->ni_hv_base_addr, |
| 806 | NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); |
| 807 | } |
| 808 | |
| 809 | /* get the hw write pointer */ |
| 810 | ca_reg_read(&cpuxram_cpu_sta_rx, (u64)priv->ni_hv_base_addr, |
| 811 | NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET); |
| 812 | hw_rx_wr_ptr = cpuxram_cpu_sta_rx.pkt_wr_ptr; |
| 813 | |
| 814 | /* get the sw read pointer */ |
| 815 | ca_reg_read(&sw_rx_rd_ptr, (u64)priv->ni_hv_base_addr, |
| 816 | NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); |
| 817 | } |
| 818 | return 0; |
| 819 | } |
| 820 | |
| 821 | static int cortina_eth_send(struct udevice *dev, void *packet, int length) |
| 822 | { |
| 823 | u32 hw_tx_rd_ptr = 0, sw_tx_wr_ptr = 0; |
| 824 | u32 loop, new_pkt_len, ca_crc32; |
| 825 | u32 *tx_xram_ptr, *data_ptr; |
| 826 | u16 next_link = 0; |
| 827 | u8 *ptr, *pkt_buf_ptr, valid_bytes = 0; |
| 828 | int pad = 0; |
| 829 | static u8 pkt_buf[2048]; |
| 830 | struct NI_HEADER_X_T hdr_xt; |
| 831 | struct NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_t cpuxram_cpu_cfg_tx; |
| 832 | struct cortina_ni_priv *priv = dev_get_priv(dev); |
| 833 | |
| 834 | if (!packet || length > 2032) |
| 835 | return -1; |
| 836 | |
| 837 | /* Get the hardware read pointer */ |
| 838 | ca_reg_read(&hw_tx_rd_ptr, (u64)priv->ni_hv_base_addr, |
| 839 | NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0_OFFSET); |
| 840 | |
| 841 | /* Get the software write pointer */ |
| 842 | ca_reg_read(&sw_tx_wr_ptr, (u64)priv->ni_hv_base_addr, |
| 843 | NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET); |
| 844 | |
| 845 | debug("%s: NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0=0x%p, ", |
| 846 | __func__, |
| 847 | KSEG1_ATU_XLAT(priv->ni_hv_base_addr + |
| 848 | NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0_OFFSET)); |
| 849 | debug("NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0=0x%p\n", |
| 850 | KSEG1_ATU_XLAT(priv->ni_hv_base_addr + |
| 851 | NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET)); |
| 852 | debug("%s : hw_tx_rd_ptr = %d\n", __func__, hw_tx_rd_ptr); |
| 853 | debug("%s : sw_tx_wr_ptr = %d\n", __func__, sw_tx_wr_ptr); |
| 854 | |
| 855 | if (hw_tx_rd_ptr != sw_tx_wr_ptr) { |
| 856 | printf("CA NI %s: Tx FIFO is not available!\n", __func__); |
| 857 | return 1; |
| 858 | } |
| 859 | |
| 860 | /* a workaround on 2015/10/01 |
| 861 | * the packet size+CRC should be 8-byte alignment |
| 862 | */ |
| 863 | if (((length + 4) % 8) != 0) |
| 864 | length += (8 - ((length + 4) % 8)); |
| 865 | |
| 866 | memset(pkt_buf, 0x00, sizeof(pkt_buf)); |
| 867 | |
| 868 | /* add 8-byte header_A at the beginning of packet */ |
| 869 | memcpy(&pkt_buf[HEADER_A_SIZE], (const void *)packet, length); |
| 870 | |
| 871 | pad = 64 - (length + 4); /* if packet length < 60 */ |
| 872 | pad = (pad < 0) ? 0 : pad; |
| 873 | |
| 874 | debug("%s: length=%d, pad=%d\n", __func__, length, pad); |
| 875 | |
| 876 | new_pkt_len = length + pad; /* new packet length */ |
| 877 | |
| 878 | pkt_buf_ptr = (u8 *)pkt_buf; |
| 879 | |
| 880 | /* Calculate the CRC32, skip 8-byte header_A */ |
| 881 | ca_crc32 = crc32(0, (u8 *)(pkt_buf_ptr + HEADER_A_SIZE), new_pkt_len); |
| 882 | |
| 883 | debug("%s: crc32 is 0x%x\n", __func__, ca_crc32); |
| 884 | debug("%s: ~crc32 is 0x%x\n", __func__, ~ca_crc32); |
| 885 | debug("%s: pkt len %d\n", __func__, new_pkt_len); |
| 886 | /* should add 8-byte header_! */ |
| 887 | /* CRC will re-calculated by hardware */ |
| 888 | memcpy((pkt_buf_ptr + new_pkt_len + HEADER_A_SIZE), |
| 889 | (u8 *)(&ca_crc32), sizeof(ca_crc32)); |
| 890 | new_pkt_len = new_pkt_len + 4; /* add CRC */ |
| 891 | |
| 892 | valid_bytes = new_pkt_len % 8; |
| 893 | valid_bytes = valid_bytes ? valid_bytes : 0; |
| 894 | debug("%s: valid_bytes %d\n", __func__, valid_bytes); |
| 895 | |
| 896 | /* should add 8-byte headerA */ |
| 897 | next_link = sw_tx_wr_ptr + |
| 898 | (new_pkt_len + 7 + HEADER_A_SIZE) / 8; /* for headr XT */ |
| 899 | /* add header */ |
| 900 | next_link = next_link + 1; |
| 901 | /* Wrap around if required */ |
| 902 | if (next_link > priv->tx_xram_end) { |
| 903 | next_link = priv->tx_xram_start + |
| 904 | (next_link - (priv->tx_xram_end + 1)); |
| 905 | } |
| 906 | |
| 907 | debug("%s: TX next_link %x\n", __func__, next_link); |
| 908 | memset(&hdr_xt, 0, sizeof(hdr_xt)); |
| 909 | hdr_xt.ownership = 1; |
| 910 | hdr_xt.bytes_valid = valid_bytes; |
| 911 | hdr_xt.next_link = next_link; |
| 912 | |
| 913 | tx_xram_ptr = (u32 *)((unsigned long)priv->ni_xram_base |
| 914 | + sw_tx_wr_ptr * 8); |
| 915 | |
| 916 | /* Wrap around if required */ |
| 917 | if (tx_xram_ptr >= (u32 *)(unsigned long)priv->tx_xram_end_adr) |
| 918 | tx_xram_ptr = (u32 *)(unsigned long)priv->tx_xram_base_adr; |
| 919 | |
| 920 | tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr, |
| 921 | priv->tx_xram_base_adr, |
| 922 | priv->tx_xram_end_adr); |
| 923 | |
| 924 | memcpy(tx_xram_ptr, &hdr_xt, sizeof(*tx_xram_ptr)); |
| 925 | |
| 926 | tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr, |
| 927 | priv->tx_xram_base_adr, |
| 928 | priv->tx_xram_end_adr); |
| 929 | |
| 930 | /* Now to copy the data. The first byte on the line goes first */ |
| 931 | data_ptr = (u32 *)pkt_buf_ptr; |
| 932 | debug("%s: packet data[]=", __func__); |
| 933 | |
| 934 | /* copy header_A to XRAM */ |
| 935 | for (loop = 0; loop <= (new_pkt_len + HEADER_A_SIZE) / 4; loop++) { |
| 936 | ptr = (u8 *)data_ptr; |
| 937 | if ((loop % 4) == 0) |
| 938 | debug("\n"); |
| 939 | debug("[0x%x]-[0x%x]-[0x%x]-[0x%x]-", |
| 940 | ptr[0], ptr[1], ptr[2], ptr[3]); |
| 941 | |
| 942 | *tx_xram_ptr = *data_ptr++; |
| 943 | tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr, |
| 944 | priv->tx_xram_base_adr, |
| 945 | priv->tx_xram_end_adr); |
| 946 | } |
| 947 | debug("\n"); |
| 948 | |
| 949 | /* Publish the software write pointer */ |
| 950 | cpuxram_cpu_cfg_tx.pkt_wr_ptr = next_link; |
| 951 | ca_reg_write(&cpuxram_cpu_cfg_tx, |
| 952 | (u64)priv->ni_hv_base_addr, |
| 953 | NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET); |
| 954 | |
| 955 | return 0; |
| 956 | } |
| 957 | |
| 958 | static void cortina_eth_stop(struct udevice *netdev) |
| 959 | { |
| 960 | /* Nothing to do for now. */ |
| 961 | } |
| 962 | |
| 963 | static int cortina_eth_probe(struct udevice *dev) |
| 964 | { |
| 965 | int ret, reg_value; |
| 966 | struct cortina_ni_priv *priv; |
| 967 | |
| 968 | priv = dev_get_priv(dev); |
| 969 | priv->rx_xram_base_adr = priv->ni_xram_base + (RX_BASE_ADDR * 8); |
| 970 | priv->rx_xram_end_adr = priv->ni_xram_base + ((RX_TOP_ADDR + 1) * 8); |
| 971 | priv->rx_xram_start = RX_BASE_ADDR; |
| 972 | priv->rx_xram_end = RX_TOP_ADDR; |
| 973 | priv->tx_xram_base_adr = priv->ni_xram_base + (TX_BASE_ADDR * 8); |
| 974 | priv->tx_xram_end_adr = priv->ni_xram_base + ((TX_TOP_ADDR + 1) * 8); |
| 975 | priv->tx_xram_start = TX_BASE_ADDR; |
| 976 | priv->tx_xram_end = TX_TOP_ADDR; |
| 977 | |
| 978 | curr_dev = dev; |
| 979 | debug("%s: rx_base_addr:%x\t rx_top_addr %x\n", |
| 980 | __func__, priv->rx_xram_start, priv->rx_xram_end); |
| 981 | debug("%s: tx_base_addr:%x\t tx_top_addr %x\n", |
| 982 | __func__, priv->tx_xram_start, priv->tx_xram_end); |
| 983 | debug("%s: rx physical start address = %x end address = %x\n", |
| 984 | __func__, priv->rx_xram_base_adr, priv->rx_xram_end_adr); |
| 985 | debug("%s: tx physical start address = %x end address = %x\n", |
| 986 | __func__, priv->tx_xram_base_adr, priv->tx_xram_end_adr); |
| 987 | |
| 988 | /* MDIO register */ |
| 989 | ret = ca_mdio_register(dev); |
| 990 | if (ret) |
| 991 | return ret; |
| 992 | |
| 993 | /* set MDIO pre-scale value */ |
| 994 | ca_reg_read(®_value, (u64)priv->per_mdio_base_addr, |
| 995 | PER_MDIO_CFG_OFFSET); |
| 996 | reg_value = reg_value | 0x00280000; |
| 997 | ca_reg_write(®_value, (u64)priv->per_mdio_base_addr, |
| 998 | PER_MDIO_CFG_OFFSET); |
| 999 | |
| 1000 | ca_phy_probe(dev); |
| 1001 | priv->phydev->addr = priv->port_map[priv->active_port].phy_addr; |
| 1002 | |
| 1003 | ca_ni_led(priv->active_port, CA_LED_ON); |
| 1004 | |
| 1005 | ca_ni_reset(); |
| 1006 | |
| 1007 | printf("CA NI %s: active_port=%d, phy_addr=%d\n", |
| 1008 | __func__, priv->active_port, priv->phydev->addr); |
| 1009 | printf("CA NI %s: phy_id=0x%x, phy_id & PHY_ID_MASK=0x%x\n", __func__, |
| 1010 | priv->phydev->phy_id, priv->phydev->phy_id & 0xFFFFFFF0); |
| 1011 | |
| 1012 | /* parsing ethaddr and set to NI registers. */ |
| 1013 | ca_ni_setup_mac_addr(); |
| 1014 | |
| 1015 | #ifdef MIIPHY_REGISTER |
| 1016 | /* the phy_read and phy_write |
| 1017 | * should meet the proto type of miiphy_register |
| 1018 | */ |
| 1019 | miiphy_register(dev->name, ca_miiphy_read, ca_miiphy_write); |
| 1020 | #endif |
| 1021 | |
| 1022 | if (priv->init_rgmii) { |
| 1023 | /* hardware settings for RGMII port */ |
| 1024 | ca_rgmii_init(priv); |
| 1025 | } |
| 1026 | |
| 1027 | if (priv->gphy_num > 0) { |
| 1028 | /* do internal gphy calibration */ |
| 1029 | ca_internal_gphy_cal(priv); |
| 1030 | } |
| 1031 | return 0; |
| 1032 | } |
| 1033 | |
| 1034 | static int ca_ni_of_to_plat(struct udevice *dev) |
| 1035 | { |
| 1036 | int i, ret; |
| 1037 | struct cortina_ni_priv *priv = dev_get_priv(dev); |
| 1038 | |
| 1039 | memset(priv, 0, sizeof(struct cortina_ni_priv)); |
| 1040 | priv->glb_base_addr = dev_remap_addr_index(dev, 0); |
| 1041 | if (!priv->glb_base_addr) |
| 1042 | return -ENOENT; |
| 1043 | printf("CA NI %s: priv->glb_base_addr for index 0 is 0x%p\n", |
| 1044 | __func__, priv->glb_base_addr); |
| 1045 | |
| 1046 | priv->per_mdio_base_addr = dev_remap_addr_index(dev, 1); |
| 1047 | if (!priv->per_mdio_base_addr) |
| 1048 | return -ENOENT; |
| 1049 | printf("CA NI %s: priv->per_mdio_base_addr for index 1 is 0x%p\n", |
| 1050 | __func__, priv->per_mdio_base_addr); |
| 1051 | |
| 1052 | priv->ni_hv_base_addr = dev_remap_addr_index(dev, 2); |
| 1053 | if (!priv->ni_hv_base_addr) |
| 1054 | return -ENOENT; |
| 1055 | printf("CA NI %s: priv->ni_hv_base_addr for index 2 is 0x%p\n", |
| 1056 | __func__, priv->ni_hv_base_addr); |
| 1057 | |
| 1058 | priv->valid_port_map = dev_read_u32_default(dev, "valid-port-map", 1); |
| 1059 | priv->valid_port_num = dev_read_u32_default(dev, "valid-port-num", 1); |
| 1060 | |
| 1061 | for (i = 0; i < priv->valid_port_num; i++) { |
| 1062 | ret = dev_read_u32_index(dev, "valid-ports", i * 2, |
| 1063 | &priv->port_map[i].phy_addr); |
| 1064 | ret = dev_read_u32_index(dev, "valid-ports", (i * 2) + 1, |
| 1065 | &priv->port_map[i].port); |
| 1066 | } |
| 1067 | |
| 1068 | priv->gphy_num = dev_read_u32_default(dev, "inter-gphy-num", 1); |
| 1069 | for (i = 0; i < priv->gphy_num; i++) { |
| 1070 | ret = dev_read_u32_index(dev, "inter-gphy-val", i * 2, |
| 1071 | &priv->gphy_values[i].reg_off); |
| 1072 | ret = dev_read_u32_index(dev, "inter-gphy-val", (i * 2) + 1, |
| 1073 | &priv->gphy_values[i].value); |
| 1074 | } |
| 1075 | |
| 1076 | priv->active_port = dev_read_u32_default(dev, "def-active-port", 1); |
| 1077 | priv->init_rgmii = dev_read_u32_default(dev, "init-rgmii", 1); |
| 1078 | priv->ni_xram_base = dev_read_u32_default(dev, "ni-xram-base", 1); |
| 1079 | return 0; |
| 1080 | } |
| 1081 | |
| 1082 | static const struct eth_ops cortina_eth_ops = { |
| 1083 | .start = cortina_eth_start, |
| 1084 | .send = cortina_eth_send, |
| 1085 | .recv = cortina_eth_recv, |
| 1086 | .stop = cortina_eth_stop, |
| 1087 | }; |
| 1088 | |
| 1089 | static const struct udevice_id cortina_eth_ids[] = { |
| 1090 | { .compatible = "eth_cortina" }, |
| 1091 | { } |
| 1092 | }; |
| 1093 | |
| 1094 | U_BOOT_DRIVER(eth_cortina) = { |
| 1095 | .name = "eth_cortina", |
| 1096 | .id = UCLASS_ETH, |
| 1097 | .of_match = cortina_eth_ids, |
| 1098 | .probe = cortina_eth_probe, |
| 1099 | .ops = &cortina_eth_ops, |
| 1100 | .priv_auto = sizeof(struct cortina_ni_priv), |
| 1101 | .plat_auto = sizeof(struct eth_pdata), |
| 1102 | .of_to_plat = ca_ni_of_to_plat, |
| 1103 | }; |