blob: 6f8df55fa56ded0e7e17e78b93d8c7874683cf52 [file] [log] [blame]
Robert Markoe4b17a72020-10-08 22:05:09 +02001// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Driver for Qualcomm QUP SPI controller
4 * FIFO and Block modes supported, no DMA
5 * mode support
6 *
7 * Copyright (c) 2020 Sartura Ltd.
8 *
9 * Author: Robert Marko <robert.marko@sartura.hr>
10 * Author: Luka Kovacic <luka.kovacic@sartura.hr>
11 *
12 * Based on stock U-boot and Linux drivers
13 */
14
15#include <asm/gpio.h>
16#include <asm/io.h>
17#include <clk.h>
18#include <common.h>
19#include <dm.h>
20#include <errno.h>
21#include <linux/delay.h>
22#include <spi.h>
23
24#define QUP_CONFIG 0x0000
25#define QUP_STATE 0x0004
26#define QUP_IO_M_MODES 0x0008
27#define QUP_SW_RESET 0x000c
28#define QUP_OPERATIONAL 0x0018
29#define QUP_ERROR_FLAGS 0x001c
30#define QUP_ERROR_FLAGS_EN 0x0020
31#define QUP_OPERATIONAL_MASK 0x0028
32#define QUP_HW_VERSION 0x0030
33#define QUP_MX_OUTPUT_CNT 0x0100
34#define QUP_OUTPUT_FIFO 0x0110
35#define QUP_MX_WRITE_CNT 0x0150
36#define QUP_MX_INPUT_CNT 0x0200
37#define QUP_MX_READ_CNT 0x0208
38#define QUP_INPUT_FIFO 0x0218
39
40#define SPI_CONFIG 0x0300
41#define SPI_IO_CONTROL 0x0304
42#define SPI_ERROR_FLAGS 0x0308
43#define SPI_ERROR_FLAGS_EN 0x030c
44
45/* QUP_CONFIG fields */
46#define QUP_CONFIG_SPI_MODE BIT(8)
47#define QUP_CONFIG_CLOCK_AUTO_GATE BIT(13)
48#define QUP_CONFIG_NO_INPUT BIT(7)
49#define QUP_CONFIG_NO_OUTPUT BIT(6)
50#define QUP_CONFIG_N 0x001f
51
52/* QUP_STATE fields */
53#define QUP_STATE_VALID BIT(2)
54#define QUP_STATE_RESET 0
55#define QUP_STATE_RUN 1
56#define QUP_STATE_PAUSE 3
57#define QUP_STATE_MASK 3
58#define QUP_STATE_CLEAR 2
59
60/* QUP_IO_M_MODES fields */
61#define QUP_IO_M_PACK_EN BIT(15)
62#define QUP_IO_M_UNPACK_EN BIT(14)
63#define QUP_IO_M_INPUT_MODE_MASK_SHIFT 12
64#define QUP_IO_M_OUTPUT_MODE_MASK_SHIFT 10
65#define QUP_IO_M_INPUT_MODE_MASK (3 << QUP_IO_M_INPUT_MODE_MASK_SHIFT)
66#define QUP_IO_M_OUTPUT_MODE_MASK (3 << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT)
67
68#define QUP_IO_M_OUTPUT_BLOCK_SIZE(x) (((x) & (0x03 << 0)) >> 0)
69#define QUP_IO_M_OUTPUT_FIFO_SIZE(x) (((x) & (0x07 << 2)) >> 2)
70#define QUP_IO_M_INPUT_BLOCK_SIZE(x) (((x) & (0x03 << 5)) >> 5)
71#define QUP_IO_M_INPUT_FIFO_SIZE(x) (((x) & (0x07 << 7)) >> 7)
72
73#define QUP_IO_M_MODE_FIFO 0
74#define QUP_IO_M_MODE_BLOCK 1
75#define QUP_IO_M_MODE_DMOV 2
76#define QUP_IO_M_MODE_BAM 3
77
78/* QUP_OPERATIONAL fields */
79#define QUP_OP_IN_BLOCK_READ_REQ BIT(13)
80#define QUP_OP_OUT_BLOCK_WRITE_REQ BIT(12)
81#define QUP_OP_MAX_INPUT_DONE_FLAG BIT(11)
82#define QUP_OP_MAX_OUTPUT_DONE_FLAG BIT(10)
83#define QUP_OP_IN_SERVICE_FLAG BIT(9)
84#define QUP_OP_OUT_SERVICE_FLAG BIT(8)
85#define QUP_OP_IN_FIFO_FULL BIT(7)
86#define QUP_OP_OUT_FIFO_FULL BIT(6)
87#define QUP_OP_IN_FIFO_NOT_EMPTY BIT(5)
88#define QUP_OP_OUT_FIFO_NOT_EMPTY BIT(4)
89
90/* QUP_ERROR_FLAGS and QUP_ERROR_FLAGS_EN fields */
91#define QUP_ERROR_OUTPUT_OVER_RUN BIT(5)
92#define QUP_ERROR_INPUT_UNDER_RUN BIT(4)
93#define QUP_ERROR_OUTPUT_UNDER_RUN BIT(3)
94#define QUP_ERROR_INPUT_OVER_RUN BIT(2)
95
96/* SPI_CONFIG fields */
97#define SPI_CONFIG_HS_MODE BIT(10)
98#define SPI_CONFIG_INPUT_FIRST BIT(9)
99#define SPI_CONFIG_LOOPBACK BIT(8)
100
101/* SPI_IO_CONTROL fields */
102#define SPI_IO_C_FORCE_CS BIT(11)
103#define SPI_IO_C_CLK_IDLE_HIGH BIT(10)
104#define SPI_IO_C_MX_CS_MODE BIT(8)
105#define SPI_IO_C_CS_N_POLARITY_0 BIT(4)
106#define SPI_IO_C_CS_SELECT(x) (((x) & 3) << 2)
107#define SPI_IO_C_CS_SELECT_MASK 0x000c
108#define SPI_IO_C_TRISTATE_CS BIT(1)
109#define SPI_IO_C_NO_TRI_STATE BIT(0)
110
111/* SPI_ERROR_FLAGS and SPI_ERROR_FLAGS_EN fields */
112#define SPI_ERROR_CLK_OVER_RUN BIT(1)
113#define SPI_ERROR_CLK_UNDER_RUN BIT(0)
114
115#define SPI_NUM_CHIPSELECTS 4
116
117#define SPI_DELAY_THRESHOLD 1
118#define SPI_DELAY_RETRY 10
119
120#define SPI_RESET_STATE 0
121#define SPI_RUN_STATE 1
122#define SPI_CORE_RESET 0
123#define SPI_CORE_RUNNING 1
124
125#define DUMMY_DATA_VAL 0
126#define TIMEOUT_CNT 100
127
128#define QUP_STATE_VALID_BIT 2
129#define QUP_CONFIG_MINI_CORE_MSK (0x0F << 8)
130#define QUP_CONFIG_MINI_CORE_SPI BIT(8)
131#define QUP_CONF_INPUT_MSK BIT(7)
132#define QUP_CONF_INPUT_ENA (0 << 7)
133#define QUP_CONF_NO_INPUT BIT(7)
134#define QUP_CONF_OUTPUT_MSK BIT(6)
135#define QUP_CONF_OUTPUT_ENA (0 << 6)
136#define QUP_CONF_NO_OUTPUT BIT(6)
137#define QUP_STATE_RUN_STATE 0x1
138#define QUP_STATE_RESET_STATE 0x0
139#define QUP_STATE_PAUSE_STATE 0x3
140#define SPI_BIT_WORD_MSK 0x1F
141#define SPI_8_BIT_WORD 0x07
142#define LOOP_BACK_MSK BIT(8)
143#define NO_LOOP_BACK (0 << 8)
144#define SLAVE_OPERATION_MSK BIT(5)
145#define SLAVE_OPERATION (0 << 5)
146#define CLK_ALWAYS_ON (0 << 9)
147#define MX_CS_MODE BIT(8)
148#define CS_POLARITY_MASK BIT(4)
149#define NO_TRI_STATE BIT(0)
150#define FORCE_CS_MSK BIT(11)
151#define FORCE_CS_EN BIT(11)
152#define FORCE_CS_DIS (0 << 11)
153#define OUTPUT_BIT_SHIFT_MSK BIT(16)
154#define OUTPUT_BIT_SHIFT_EN BIT(16)
155#define INPUT_BLOCK_MODE_MSK (0x03 << 12)
156#define INPUT_BLOCK_MODE (0x01 << 12)
157#define OUTPUT_BLOCK_MODE_MSK (0x03 << 10)
158#define OUTPUT_BLOCK_MODE (0x01 << 10)
159#define INPUT_BAM_MODE (0x3 << 12)
160#define OUTPUT_BAM_MODE (0x3 << 10)
161#define PACK_EN (0x1 << 15)
162#define UNPACK_EN (0x1 << 14)
163#define PACK_EN_MSK (0x1 << 15)
164#define UNPACK_EN_MSK (0x1 << 14)
165#define OUTPUT_SERVICE_MSK (0x1 << 8)
166#define INPUT_SERVICE_MSK (0x1 << 9)
167#define OUTPUT_SERVICE_DIS (0x1 << 8)
168#define INPUT_SERVICE_DIS (0x1 << 9)
169#define BLSP0_SPI_DEASSERT_WAIT_REG 0x0310
170#define QUP_DATA_AVAILABLE_FOR_READ BIT(5)
171#define SPI_INPUT_BLOCK_SIZE 4
172#define SPI_OUTPUT_BLOCK_SIZE 4
173#define SPI_BITLEN_MSK 0x07
174#define MAX_COUNT_SIZE 0xffff
175
176struct qup_spi_priv {
177 phys_addr_t base;
178 struct clk clk;
179 u32 num_cs;
180 struct gpio_desc cs_gpios[SPI_NUM_CHIPSELECTS];
181 bool cs_high;
182 u32 core_state;
183};
184
185static int qup_spi_set_cs(struct udevice *dev, unsigned int cs, bool enable)
186{
187 struct qup_spi_priv *priv = dev_get_priv(dev);
188
189 debug("%s: cs=%d enable=%d\n", __func__, cs, enable);
190
191 if (cs >= SPI_NUM_CHIPSELECTS)
192 return -ENODEV;
193
194 if (!dm_gpio_is_valid(&priv->cs_gpios[cs]))
195 return -EINVAL;
196
197 if (priv->cs_high)
198 enable = !enable;
199
200 return dm_gpio_set_value(&priv->cs_gpios[cs], enable ? 1 : 0);
201}
202
203/*
204 * Function to write data to OUTPUT FIFO
205 */
206static void qup_spi_write_byte(struct udevice *dev, unsigned char data)
207{
208 struct udevice *bus = dev_get_parent(dev);
209 struct qup_spi_priv *priv = dev_get_priv(bus);
210 /* Wait for space in the FIFO */
211 while ((readl(priv->base + QUP_OPERATIONAL) & QUP_OP_OUT_FIFO_FULL))
212 udelay(1);
213
214 /* Write the byte of data */
215 writel(data, priv->base + QUP_OUTPUT_FIFO);
216}
217
218/*
219 * Function to read data from Input FIFO
220 */
221static unsigned char qup_spi_read_byte(struct udevice *dev)
222{
223 struct udevice *bus = dev_get_parent(dev);
224 struct qup_spi_priv *priv = dev_get_priv(bus);
225 /* Wait for Data in FIFO */
226 while (!(readl(priv->base + QUP_OPERATIONAL) & QUP_DATA_AVAILABLE_FOR_READ)) {
227 printf("Stuck at FIFO data wait\n");
228 udelay(1);
229 }
230
231 /* Read a byte of data */
232 return readl(priv->base + QUP_INPUT_FIFO) & 0xff;
233}
234
235/*
236 * Function to check wheather Input or Output FIFO
237 * has data to be serviced
238 */
239static int qup_spi_check_fifo_status(struct udevice *dev, u32 reg_addr)
240{
241 struct udevice *bus = dev_get_parent(dev);
242 struct qup_spi_priv *priv = dev_get_priv(bus);
243 unsigned int count = TIMEOUT_CNT;
244 unsigned int status_flag;
245 unsigned int val;
246
247 do {
248 val = readl(priv->base + reg_addr);
249 count--;
250 if (count == 0)
251 return -ETIMEDOUT;
252
253 status_flag = ((val & QUP_OP_OUT_SERVICE_FLAG) | (val & QUP_OP_IN_SERVICE_FLAG));
254 } while (!status_flag);
255
256 return 0;
257}
258
259/*
260 * Function to configure Input and Output enable/disable
261 */
262static void qup_spi_enable_io_config(struct udevice *dev, u32 write_cnt, u32 read_cnt)
263{
264 struct udevice *bus = dev_get_parent(dev);
265 struct qup_spi_priv *priv = dev_get_priv(bus);
266
267 if (write_cnt) {
268 clrsetbits_le32(priv->base + QUP_CONFIG,
269 QUP_CONF_OUTPUT_MSK, QUP_CONF_OUTPUT_ENA);
270 } else {
271 clrsetbits_le32(priv->base + QUP_CONFIG,
272 QUP_CONF_OUTPUT_MSK, QUP_CONF_NO_OUTPUT);
273 }
274
275 if (read_cnt) {
276 clrsetbits_le32(priv->base + QUP_CONFIG,
277 QUP_CONF_INPUT_MSK, QUP_CONF_INPUT_ENA);
278 } else {
279 clrsetbits_le32(priv->base + QUP_CONFIG,
280 QUP_CONF_INPUT_MSK, QUP_CONF_NO_INPUT);
281 }
282}
283
284static int check_bit_state(struct udevice *dev, u32 reg_addr, int bit_num, int val,
285 int us_delay)
286{
287 struct udevice *bus = dev_get_parent(dev);
288 struct qup_spi_priv *priv = dev_get_priv(bus);
289 unsigned int count = TIMEOUT_CNT;
290 unsigned int bit_val = ((readl(priv->base + reg_addr) >> bit_num) & 0x01);
291
292 while (bit_val != val) {
293 count--;
294 if (count == 0)
295 return -ETIMEDOUT;
296 udelay(us_delay);
297 bit_val = ((readl(priv->base + reg_addr) >> bit_num) & 0x01);
298 }
299
300 return 0;
301}
302
303/*
304 * Check whether QUPn State is valid
305 */
306static int check_qup_state_valid(struct udevice *dev)
307{
308 return check_bit_state(dev, QUP_STATE, QUP_STATE_VALID, 1, 1);
309}
310
311/*
312 * Configure QUPn Core state
313 */
314static int qup_spi_config_spi_state(struct udevice *dev, unsigned int state)
315{
316 struct udevice *bus = dev_get_parent(dev);
317 struct qup_spi_priv *priv = dev_get_priv(bus);
318 u32 val;
319 int ret;
320
321 ret = check_qup_state_valid(dev);
322 if (ret != 0)
323 return ret;
324
325 switch (state) {
326 case SPI_RUN_STATE:
327 /* Set the state to RUN */
328 val = ((readl(priv->base + QUP_STATE) & ~QUP_STATE_MASK)
329 | QUP_STATE_RUN);
330 writel(val, priv->base + QUP_STATE);
331 ret = check_qup_state_valid(dev);
332 if (ret != 0)
333 return ret;
334 priv->core_state = SPI_CORE_RUNNING;
335 break;
336 case SPI_RESET_STATE:
337 /* Set the state to RESET */
338 val = ((readl(priv->base + QUP_STATE) & ~QUP_STATE_MASK)
339 | QUP_STATE_RESET);
340 writel(val, priv->base + QUP_STATE);
341 ret = check_qup_state_valid(dev);
342 if (ret != 0)
343 return ret;
344 priv->core_state = SPI_CORE_RESET;
345 break;
346 default:
347 printf("Unsupported QUP SPI state: %d\n", state);
348 ret = -EINVAL;
349 break;
350 }
351 return ret;
352}
353
354/*
355 * Function to read bytes number of data from the Input FIFO
356 */
357static int __qup_spi_blsp_spi_read(struct udevice *dev, u8 *data_buffer, unsigned int bytes)
358{
359 struct udevice *bus = dev_get_parent(dev);
360 struct qup_spi_priv *priv = dev_get_priv(bus);
361 u32 val;
362 unsigned int i;
363 unsigned int read_bytes = bytes;
364 unsigned int fifo_count;
365 int ret = 0;
366 int state_config;
367
368 /* Configure no of bytes to read */
369 state_config = qup_spi_config_spi_state(dev, SPI_RESET_STATE);
370 if (state_config)
371 return state_config;
372
373 /* Configure input and output enable */
374 qup_spi_enable_io_config(dev, 0, read_bytes);
375
376 writel(bytes, priv->base + QUP_MX_INPUT_CNT);
377
378 state_config = qup_spi_config_spi_state(dev, SPI_RUN_STATE);
379 if (state_config)
380 return state_config;
381
382 while (read_bytes) {
383 ret = qup_spi_check_fifo_status(dev, QUP_OPERATIONAL);
384 if (ret != 0)
385 goto out;
386
387 val = readl(priv->base + QUP_OPERATIONAL);
388 if (val & QUP_OP_IN_SERVICE_FLAG) {
389 /*
390 * acknowledge to hw that software will
391 * read input data
392 */
393 val &= QUP_OP_IN_SERVICE_FLAG;
394 writel(val, priv->base + QUP_OPERATIONAL);
395
396 fifo_count = ((read_bytes > SPI_INPUT_BLOCK_SIZE) ?
397 SPI_INPUT_BLOCK_SIZE : read_bytes);
398
399 for (i = 0; i < fifo_count; i++) {
400 *data_buffer = qup_spi_read_byte(dev);
401 data_buffer++;
402 read_bytes--;
403 }
404 }
405 }
406
407out:
408 /*
409 * Put the SPI Core back in the Reset State
410 * to end the transfer
411 */
412 (void)qup_spi_config_spi_state(dev, SPI_RESET_STATE);
413
414 return ret;
415}
416
417static int qup_spi_blsp_spi_read(struct udevice *dev, u8 *data_buffer, unsigned int bytes)
418{
419 int length, ret;
420
421 while (bytes) {
422 length = (bytes < MAX_COUNT_SIZE) ? bytes : MAX_COUNT_SIZE;
423
424 ret = __qup_spi_blsp_spi_read(dev, data_buffer, length);
425 if (ret != 0)
426 return ret;
427
428 data_buffer += length;
429 bytes -= length;
430 }
431
432 return 0;
433}
434
435/*
436 * Function to write data to the Output FIFO
437 */
438static int __qup_blsp_spi_write(struct udevice *dev, const u8 *cmd_buffer, unsigned int bytes)
439{
440 struct udevice *bus = dev_get_parent(dev);
441 struct qup_spi_priv *priv = dev_get_priv(bus);
442 u32 val;
443 unsigned int i;
444 unsigned int write_len = bytes;
445 unsigned int read_len = bytes;
446 unsigned int fifo_count;
447 int ret = 0;
448 int state_config;
449
450 state_config = qup_spi_config_spi_state(dev, SPI_RESET_STATE);
451 if (state_config)
452 return state_config;
453
454 writel(bytes, priv->base + QUP_MX_OUTPUT_CNT);
455 writel(bytes, priv->base + QUP_MX_INPUT_CNT);
456 state_config = qup_spi_config_spi_state(dev, SPI_RUN_STATE);
457 if (state_config)
458 return state_config;
459
460 /* Configure input and output enable */
461 qup_spi_enable_io_config(dev, write_len, read_len);
462
463 /*
464 * read_len considered to ensure that we read the dummy data for the
465 * write we performed. This is needed to ensure with WR-RD transaction
466 * to get the actual data on the subsequent read cycle that happens
467 */
468 while (write_len || read_len) {
469 ret = qup_spi_check_fifo_status(dev, QUP_OPERATIONAL);
470 if (ret != 0)
471 goto out;
472
473 val = readl(priv->base + QUP_OPERATIONAL);
474 if (val & QUP_OP_OUT_SERVICE_FLAG) {
475 /*
476 * acknowledge to hw that software will write
477 * expected output data
478 */
479 val &= QUP_OP_OUT_SERVICE_FLAG;
480 writel(val, priv->base + QUP_OPERATIONAL);
481
482 if (write_len > SPI_OUTPUT_BLOCK_SIZE)
483 fifo_count = SPI_OUTPUT_BLOCK_SIZE;
484 else
485 fifo_count = write_len;
486
487 for (i = 0; i < fifo_count; i++) {
488 /* Write actual data to output FIFO */
489 qup_spi_write_byte(dev, *cmd_buffer);
490 cmd_buffer++;
491 write_len--;
492 }
493 }
494 if (val & QUP_OP_IN_SERVICE_FLAG) {
495 /*
496 * acknowledge to hw that software
497 * will read input data
498 */
499 val &= QUP_OP_IN_SERVICE_FLAG;
500 writel(val, priv->base + QUP_OPERATIONAL);
501
502 if (read_len > SPI_INPUT_BLOCK_SIZE)
503 fifo_count = SPI_INPUT_BLOCK_SIZE;
504 else
505 fifo_count = read_len;
506
507 for (i = 0; i < fifo_count; i++) {
508 /* Read dummy data for the data written */
509 (void)qup_spi_read_byte(dev);
510
511 /* Decrement the write count after reading the
512 * dummy data from the device. This is to make
513 * sure we read dummy data before we write the
514 * data to fifo
515 */
516 read_len--;
517 }
518 }
519 }
520out:
521 /*
522 * Put the SPI Core back in the Reset State
523 * to end the transfer
524 */
525 (void)qup_spi_config_spi_state(dev, SPI_RESET_STATE);
526
527 return ret;
528}
529
530static int qup_spi_blsp_spi_write(struct udevice *dev, const u8 *cmd_buffer, unsigned int bytes)
531{
532 int length, ret;
533
534 while (bytes) {
535 length = (bytes < MAX_COUNT_SIZE) ? bytes : MAX_COUNT_SIZE;
536
537 ret = __qup_blsp_spi_write(dev, cmd_buffer, length);
538 if (ret != 0)
539 return ret;
540
541 cmd_buffer += length;
542 bytes -= length;
543 }
544
545 return 0;
546}
547
548static int qup_spi_set_speed(struct udevice *dev, uint speed)
549{
550 return 0;
551}
552
553static int qup_spi_set_mode(struct udevice *dev, uint mode)
554{
555 struct qup_spi_priv *priv = dev_get_priv(dev);
556 unsigned int clk_idle_state;
557 unsigned int input_first_mode;
558 u32 val;
559
560 switch (mode) {
561 case SPI_MODE_0:
562 clk_idle_state = 0;
563 input_first_mode = SPI_CONFIG_INPUT_FIRST;
564 break;
565 case SPI_MODE_1:
566 clk_idle_state = 0;
567 input_first_mode = 0;
568 break;
569 case SPI_MODE_2:
570 clk_idle_state = 1;
571 input_first_mode = SPI_CONFIG_INPUT_FIRST;
572 break;
573 case SPI_MODE_3:
574 clk_idle_state = 1;
575 input_first_mode = 0;
576 break;
577 default:
578 printf("Unsupported spi mode: %d\n", mode);
579 return -EINVAL;
580 }
581
582 if (mode & SPI_CS_HIGH)
583 priv->cs_high = true;
584 else
585 priv->cs_high = false;
586
587 val = readl(priv->base + SPI_CONFIG);
588 val |= input_first_mode;
589 writel(val, priv->base + SPI_CONFIG);
590
591 val = readl(priv->base + SPI_IO_CONTROL);
592 if (clk_idle_state)
593 val |= SPI_IO_C_CLK_IDLE_HIGH;
594 else
595 val &= ~SPI_IO_C_CLK_IDLE_HIGH;
596
597 writel(val, priv->base + SPI_IO_CONTROL);
598
599 return 0;
600}
601
602static void qup_spi_reset(struct udevice *dev)
603{
604 struct udevice *bus = dev_get_parent(dev);
605 struct qup_spi_priv *priv = dev_get_priv(bus);
606
607 /* Driver may not be probed yet */
608 if (!priv)
609 return;
610
611 writel(0x1, priv->base + QUP_SW_RESET);
612 udelay(5);
613}
614
615static int qup_spi_hw_init(struct udevice *dev)
616{
617 struct udevice *bus = dev_get_parent(dev);
618 struct qup_spi_priv *priv = dev_get_priv(bus);
619 int ret;
620
621 /* QUPn module configuration */
622 qup_spi_reset(dev);
623
624 /* Set the QUPn state */
625 ret = qup_spi_config_spi_state(dev, SPI_RESET_STATE);
626 if (ret)
627 return ret;
628
629 /*
630 * Configure Mini core to SPI core with Input Output enabled,
631 * SPI master, N = 8 bits
632 */
633 clrsetbits_le32(priv->base + QUP_CONFIG, (QUP_CONFIG_MINI_CORE_MSK |
634 QUP_CONF_INPUT_MSK |
635 QUP_CONF_OUTPUT_MSK |
636 SPI_BIT_WORD_MSK),
637 (QUP_CONFIG_MINI_CORE_SPI |
638 QUP_CONF_INPUT_ENA |
639 QUP_CONF_OUTPUT_ENA |
640 SPI_8_BIT_WORD));
641
642 /*
643 * Configure Input first SPI protocol,
644 * SPI master mode and no loopback
645 */
646 clrsetbits_le32(priv->base + SPI_CONFIG, (LOOP_BACK_MSK |
647 SLAVE_OPERATION_MSK),
648 (NO_LOOP_BACK |
649 SLAVE_OPERATION));
650
651 /*
652 * Configure SPI IO Control Register
653 * CLK_ALWAYS_ON = 0
654 * MX_CS_MODE = 0
655 * NO_TRI_STATE = 1
656 */
657 writel((CLK_ALWAYS_ON | NO_TRI_STATE), priv->base + SPI_IO_CONTROL);
658
659 /*
660 * Configure SPI IO Modes.
661 * OUTPUT_BIT_SHIFT_EN = 1
662 * INPUT_MODE = Block Mode
663 * OUTPUT MODE = Block Mode
664 */
665
666 clrsetbits_le32(priv->base + QUP_IO_M_MODES, (OUTPUT_BIT_SHIFT_MSK |
667 INPUT_BLOCK_MODE_MSK |
668 OUTPUT_BLOCK_MODE_MSK),
669 (OUTPUT_BIT_SHIFT_EN |
670 INPUT_BLOCK_MODE |
671 OUTPUT_BLOCK_MODE));
672
673 /* Disable Error mask */
674 writel(0, priv->base + SPI_ERROR_FLAGS_EN);
675 writel(0, priv->base + QUP_ERROR_FLAGS_EN);
676 writel(0, priv->base + BLSP0_SPI_DEASSERT_WAIT_REG);
677
678 return ret;
679}
680
681static int qup_spi_claim_bus(struct udevice *dev)
682{
683 int ret;
684
685 ret = qup_spi_hw_init(dev);
686 if (ret)
687 return -EIO;
688
689 return 0;
690}
691
692static int qup_spi_release_bus(struct udevice *dev)
693{
694 /* Reset the SPI hardware */
695 qup_spi_reset(dev);
696
697 return 0;
698}
699
700static int qup_spi_xfer(struct udevice *dev, unsigned int bitlen,
701 const void *dout, void *din, unsigned long flags)
702{
703 struct udevice *bus = dev_get_parent(dev);
704 struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
705 unsigned int len;
706 const u8 *txp = dout;
707 u8 *rxp = din;
708 int ret = 0;
709
710 if (bitlen & SPI_BITLEN_MSK) {
711 printf("Invalid bit length\n");
712 return -EINVAL;
713 }
714
715 len = bitlen >> 3;
716
717 if (flags & SPI_XFER_BEGIN) {
718 ret = qup_spi_hw_init(dev);
719 if (ret != 0)
720 return ret;
721
722 ret = qup_spi_set_cs(bus, slave_plat->cs, false);
723 if (ret != 0)
724 return ret;
725 }
726
727 if (dout != NULL) {
728 ret = qup_spi_blsp_spi_write(dev, txp, len);
729 if (ret != 0)
730 return ret;
731 }
732
733 if (din != NULL) {
734 ret = qup_spi_blsp_spi_read(dev, rxp, len);
735 if (ret != 0)
736 return ret;
737 }
738
739 if (flags & SPI_XFER_END) {
740 ret = qup_spi_set_cs(bus, slave_plat->cs, true);
741 if (ret != 0)
742 return ret;
743 }
744
745 return ret;
746}
747
748static int qup_spi_probe(struct udevice *dev)
749{
750 struct qup_spi_priv *priv = dev_get_priv(dev);
751 int ret;
752
753 priv->base = dev_read_addr(dev);
754 if (priv->base == FDT_ADDR_T_NONE)
755 return -EINVAL;
756
757 ret = clk_get_by_index(dev, 0, &priv->clk);
758 if (ret)
759 return ret;
760
761 ret = clk_enable(&priv->clk);
762 if (ret < 0)
763 return ret;
764
765 priv->num_cs = dev_read_u32_default(dev, "num-cs", 1);
766
767 ret = gpio_request_list_by_name(dev, "cs-gpios", priv->cs_gpios,
768 priv->num_cs, GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
769 if (ret < 0) {
770 printf("Can't get %s cs gpios: %d\n", dev->name, ret);
771 return -EINVAL;
772 }
773
774 return 0;
775}
776
777static const struct dm_spi_ops qup_spi_ops = {
778 .claim_bus = qup_spi_claim_bus,
779 .release_bus = qup_spi_release_bus,
780 .xfer = qup_spi_xfer,
781 .set_speed = qup_spi_set_speed,
782 .set_mode = qup_spi_set_mode,
783 /*
784 * cs_info is not needed, since we require all chip selects to be
785 * in the device tree explicitly
786 */
787};
788
789static const struct udevice_id qup_spi_ids[] = {
790 { .compatible = "qcom,spi-qup-v1.1.1", },
791 { .compatible = "qcom,spi-qup-v2.1.1", },
792 { .compatible = "qcom,spi-qup-v2.2.1", },
793 { }
794};
795
796U_BOOT_DRIVER(spi_qup) = {
797 .name = "spi_qup",
798 .id = UCLASS_SPI,
799 .of_match = qup_spi_ids,
800 .ops = &qup_spi_ops,
801 .priv_auto_alloc_size = sizeof(struct qup_spi_priv),
802 .probe = qup_spi_probe,
803};