blob: af7542cc9a85b14602447302db7c40c93fbda6fa [file] [log] [blame]
Lei Wenb834a392012-09-28 04:26:42 +00001/* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/*
7 * ALGORITHM
8 *
9 * The "deflation" process depends on being able to identify portions
10 * of the input text which are identical to earlier input (within a
11 * sliding window trailing behind the input currently being processed).
12 *
13 * The most straightforward technique turns out to be the fastest for
14 * most input files: try all possible matches and select the longest.
15 * The key feature of this algorithm is that insertions into the string
16 * dictionary are very simple and thus fast, and deletions are avoided
17 * completely. Insertions are performed at each input character, whereas
18 * string matches are performed only when the previous match ends. So it
19 * is preferable to spend more time in matches to allow very fast string
20 * insertions and avoid deletions. The matching algorithm for small
21 * strings is inspired from that of Rabin & Karp. A brute force approach
22 * is used to find longer strings when a small match has been found.
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 * (by Leonid Broukhis).
25 * A previous version of this file used a more sophisticated algorithm
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
27 * time, but has a larger average cost, uses more memory and is patented.
28 * However the F&G algorithm may be faster for some highly redundant
29 * files if the parameter max_chain_length (described below) is too large.
30 *
31 * ACKNOWLEDGEMENTS
32 *
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 * I found it in 'freeze' written by Leonid Broukhis.
35 * Thanks to many people for bug reports and testing.
36 *
37 * REFERENCES
38 *
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 * Available in http://www.ietf.org/rfc/rfc1951.txt
41 *
42 * A description of the Rabin and Karp algorithm is given in the book
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 * Fiala,E.R., and Greene,D.H.
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50/* @(#) $Id$ */
51
52#include "deflate.h"
Simon Glass48b6c6b2019-11-14 12:57:16 -070053#include <u-boot/crc.h>
Lei Wenb834a392012-09-28 04:26:42 +000054
55const char deflate_copyright[] =
56 " deflate 1.2.5 Copyright 1995-2010 Jean-loup Gailly and Mark Adler ";
57/*
58 If you use the zlib library in a product, an acknowledgment is welcome
59 in the documentation of your product. If for some reason you cannot
60 include such an acknowledgment, I would appreciate that you keep this
61 copyright string in the executable of your product.
62 */
63
64/* ===========================================================================
65 * Function prototypes.
66 */
67typedef enum {
68 need_more, /* block not completed, need more input or more output */
69 block_done, /* block flush performed */
70 finish_started, /* finish started, need only more output at next deflate */
71 finish_done /* finish done, accept no more input or output */
72} block_state;
73
74typedef block_state (*compress_func) OF((deflate_state *s, int flush));
75/* Compression function. Returns the block state after the call. */
76
77local void fill_window OF((deflate_state *s));
78local block_state deflate_stored OF((deflate_state *s, int flush));
79local block_state deflate_fast OF((deflate_state *s, int flush));
80#ifndef FASTEST
81local block_state deflate_slow OF((deflate_state *s, int flush));
82#endif
83local block_state deflate_rle OF((deflate_state *s, int flush));
84local block_state deflate_huff OF((deflate_state *s, int flush));
85local void lm_init OF((deflate_state *s));
86local void putShortMSB OF((deflate_state *s, uInt b));
87local void flush_pending OF((z_streamp strm));
88local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
89#ifdef ASMV
90 void match_init OF((void)); /* asm code initialization */
91 uInt longest_match OF((deflate_state *s, IPos cur_match));
92#else
93local uInt longest_match OF((deflate_state *s, IPos cur_match));
94#endif
95
96#ifdef DEBUG
97local void check_match OF((deflate_state *s, IPos start, IPos match,
98 int length));
99#endif
100
101/* ===========================================================================
102 * Local data
103 */
104
105#define NIL 0
106/* Tail of hash chains */
107
108#ifndef TOO_FAR
109# define TOO_FAR 4096
110#endif
111/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
112
113/* Values for max_lazy_match, good_match and max_chain_length, depending on
114 * the desired pack level (0..9). The values given below have been tuned to
115 * exclude worst case performance for pathological files. Better values may be
116 * found for specific files.
117 */
118typedef struct config_s {
119 ush good_length; /* reduce lazy search above this match length */
120 ush max_lazy; /* do not perform lazy search above this match length */
121 ush nice_length; /* quit search above this match length */
122 ush max_chain;
123 compress_func func;
124} config;
125
126#ifdef FASTEST
127local const config configuration_table[2] = {
128/* good lazy nice chain */
129/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
130/* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
131#else
132local const config configuration_table[10] = {
133/* good lazy nice chain */
134/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
135/* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
136/* 2 */ {4, 5, 16, 8, deflate_fast},
137/* 3 */ {4, 6, 32, 32, deflate_fast},
138
139/* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
140/* 5 */ {8, 16, 32, 32, deflate_slow},
141/* 6 */ {8, 16, 128, 128, deflate_slow},
142/* 7 */ {8, 32, 128, 256, deflate_slow},
143/* 8 */ {32, 128, 258, 1024, deflate_slow},
144/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
145#endif
146
147/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
148 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
149 * meaning.
150 */
151
152#define EQUAL 0
153/* result of memcmp for equal strings */
154
155#ifndef NO_DUMMY_DECL
156struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
157#endif
158
159/* ===========================================================================
160 * Update a hash value with the given input byte
161 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
162 * input characters, so that a running hash key can be computed from the
163 * previous key instead of complete recalculation each time.
164 */
165#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
166
Lei Wenb834a392012-09-28 04:26:42 +0000167/* ===========================================================================
168 * Insert string str in the dictionary and set match_head to the previous head
169 * of the hash chain (the most recent string with same hash key). Return
170 * the previous length of the hash chain.
171 * If this file is compiled with -DFASTEST, the compression level is forced
172 * to 1, and no hash chains are maintained.
173 * IN assertion: all calls to to INSERT_STRING are made with consecutive
174 * input characters and the first MIN_MATCH bytes of str are valid
175 * (except for the last MIN_MATCH-1 bytes of the input file).
176 */
177#ifdef FASTEST
178#define INSERT_STRING(s, str, match_head) \
179 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
180 match_head = s->head[s->ins_h], \
181 s->head[s->ins_h] = (Pos)(str))
182#else
183#define INSERT_STRING(s, str, match_head) \
184 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
185 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
186 s->head[s->ins_h] = (Pos)(str))
187#endif
188
189/* ===========================================================================
190 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
191 * prev[] will be initialized on the fly.
192 */
193#define CLEAR_HASH(s) \
194 s->head[s->hash_size-1] = NIL; \
195 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
196
197/* ========================================================================= */
Tom Rini9796bdd2024-07-05 09:44:54 -0600198int ZEXPORT deflateInit_(strm, level, stream_size)
Lei Wenb834a392012-09-28 04:26:42 +0000199 z_streamp strm;
200 int level;
Lei Wenb834a392012-09-28 04:26:42 +0000201 int stream_size;
202{
203 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
Tom Rini9796bdd2024-07-05 09:44:54 -0600204 Z_DEFAULT_STRATEGY, stream_size);
Lei Wenb834a392012-09-28 04:26:42 +0000205 /* To do: ignore strm->next_in if we use it as window */
206}
207
208/* ========================================================================= */
209int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
Tom Rini9796bdd2024-07-05 09:44:54 -0600210 stream_size)
Lei Wenb834a392012-09-28 04:26:42 +0000211 z_streamp strm;
212 int level;
213 int method;
214 int windowBits;
215 int memLevel;
216 int strategy;
Lei Wenb834a392012-09-28 04:26:42 +0000217 int stream_size;
218{
219 deflate_state *s;
220 int wrap = 1;
Lei Wenb834a392012-09-28 04:26:42 +0000221
Lei Wenb834a392012-09-28 04:26:42 +0000222 if (strm == Z_NULL) return Z_STREAM_ERROR;
223
224 strm->msg = Z_NULL;
225 if (strm->zalloc == (alloc_func)0) {
226 strm->zalloc = zcalloc;
227 strm->opaque = (voidpf)0;
228 }
229 if (strm->zfree == (free_func)0) strm->zfree = zcfree;
230
231#ifdef FASTEST
232 if (level != 0) level = 1;
233#else
234 if (level == Z_DEFAULT_COMPRESSION) level = 6;
235#endif
236
237 if (windowBits < 0) { /* suppress zlib wrapper */
238 wrap = 0;
239 windowBits = -windowBits;
240 }
241#ifdef GZIP
242 else if (windowBits > 15) {
243 wrap = 2; /* write gzip wrapper instead */
244 windowBits -= 16;
245 }
246#endif
247 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
248 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
249 strategy < 0 || strategy > Z_FIXED) {
250 return Z_STREAM_ERROR;
251 }
252 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
253 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
254 if (s == Z_NULL) return Z_MEM_ERROR;
255 strm->state = (struct internal_state FAR *)s;
256 s->strm = strm;
257
258 s->wrap = wrap;
259 s->gzhead = Z_NULL;
260 s->w_bits = windowBits;
261 s->w_size = 1 << s->w_bits;
262 s->w_mask = s->w_size - 1;
263
264 s->hash_bits = memLevel + 7;
265 s->hash_size = 1 << s->hash_bits;
266 s->hash_mask = s->hash_size - 1;
267 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
268
269 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
270 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
271 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
272
273 s->high_water = 0; /* nothing written to s->window yet */
274
275 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
276
Tom Rinic3411d42022-05-10 14:36:59 -0400277 /* We overlay pending_buf and sym_buf. This works since the average size
278 * for length/distance pairs over any compressed block is assured to be 31
279 * bits or less.
280 *
281 * Analysis: The longest fixed codes are a length code of 8 bits plus 5
282 * extra bits, for lengths 131 to 257. The longest fixed distance codes are
283 * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
284 * possible fixed-codes length/distance pair is then 31 bits total.
285 *
286 * sym_buf starts one-fourth of the way into pending_buf. So there are
287 * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
288 * in sym_buf is three bytes -- two for the distance and one for the
289 * literal/length. As each symbol is consumed, the pointer to the next
290 * sym_buf value to read moves forward three bytes. From that symbol, up to
291 * 31 bits are written to pending_buf. The closest the written pending_buf
292 * bits gets to the next sym_buf symbol to read is just before the last
293 * code is written. At that time, 31*(n-2) bits have been written, just
294 * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
295 * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
296 * symbols are written.) The closest the writing gets to what is unread is
297 * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
298 * can range from 128 to 32768.
299 *
300 * Therefore, at a minimum, there are 142 bits of space between what is
301 * written and what is read in the overlain buffers, so the symbols cannot
302 * be overwritten by the compressed data. That space is actually 139 bits,
303 * due to the three-bit fixed-code block header.
304 *
305 * That covers the case where either Z_FIXED is specified, forcing fixed
306 * codes, or when the use of fixed codes is chosen, because that choice
307 * results in a smaller compressed block than dynamic codes. That latter
308 * condition then assures that the above analysis also covers all dynamic
309 * blocks. A dynamic-code block will only be chosen to be emitted if it has
310 * fewer bits than a fixed-code block would for the same set of symbols.
311 * Therefore its average symbol length is assured to be less than 31. So
312 * the compressed data for a dynamic block also cannot overwrite the
313 * symbols from which it is being constructed.
314 */
315
316 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
317 s->pending_buf_size = (ulg)s->lit_bufsize * 4;
Lei Wenb834a392012-09-28 04:26:42 +0000318
319 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
320 s->pending_buf == Z_NULL) {
321 s->status = FINISH_STATE;
322 strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
323 deflateEnd (strm);
324 return Z_MEM_ERROR;
325 }
Tom Rinic3411d42022-05-10 14:36:59 -0400326 s->sym_buf = s->pending_buf + s->lit_bufsize;
327 s->sym_end = (s->lit_bufsize - 1) * 3;
328 /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
329 * on 16 bit machines and because stored blocks are restricted to
330 * 64K-1 bytes.
331 */
Lei Wenb834a392012-09-28 04:26:42 +0000332
333 s->level = level;
334 s->strategy = strategy;
335 s->method = (Byte)method;
336
337 return deflateReset(strm);
338}
339
340/* ========================================================================= */
341int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
342 z_streamp strm;
343 const Bytef *dictionary;
344 uInt dictLength;
345{
346 deflate_state *s;
347 uInt length = dictLength;
348 uInt n;
349 IPos hash_head = 0;
350
351 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL ||
352 strm->state->wrap == 2 ||
353 (strm->state->wrap == 1 && strm->state->status != INIT_STATE))
354 return Z_STREAM_ERROR;
355
356 s = strm->state;
357 if (s->wrap)
358 strm->adler = adler32(strm->adler, dictionary, dictLength);
359
360 if (length < MIN_MATCH) return Z_OK;
361 if (length > s->w_size) {
362 length = s->w_size;
363 dictionary += dictLength - length; /* use the tail of the dictionary */
364 }
365 zmemcpy(s->window, dictionary, length);
366 s->strstart = length;
367 s->block_start = (long)length;
368
369 /* Insert all strings in the hash table (except for the last two bytes).
370 * s->lookahead stays null, so s->ins_h will be recomputed at the next
371 * call of fill_window.
372 */
373 s->ins_h = s->window[0];
374 UPDATE_HASH(s, s->ins_h, s->window[1]);
375 for (n = 0; n <= length - MIN_MATCH; n++) {
376 INSERT_STRING(s, n, hash_head);
377 }
378 if (hash_head) hash_head = 0; /* to make compiler happy */
379 return Z_OK;
380}
381
382/* ========================================================================= */
383int ZEXPORT deflateReset (strm)
384 z_streamp strm;
385{
386 deflate_state *s;
387
388 if (strm == Z_NULL || strm->state == Z_NULL ||
389 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) {
390 return Z_STREAM_ERROR;
391 }
392
393 strm->total_in = strm->total_out = 0;
394 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
395 strm->data_type = Z_UNKNOWN;
396
397 s = (deflate_state *)strm->state;
398 s->pending = 0;
399 s->pending_out = s->pending_buf;
400
401 if (s->wrap < 0) {
402 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
403 }
404 s->status = s->wrap ? INIT_STATE : BUSY_STATE;
405 strm->adler =
406#ifdef GZIP
407 s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
408#endif
409 adler32(0L, Z_NULL, 0);
410 s->last_flush = Z_NO_FLUSH;
411
412 _tr_init(s);
413 lm_init(s);
414
415 return Z_OK;
416}
417
418/* ========================================================================= */
419int ZEXPORT deflateSetHeader (strm, head)
420 z_streamp strm;
421 gz_headerp head;
422{
423 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
424 if (strm->state->wrap != 2) return Z_STREAM_ERROR;
425 strm->state->gzhead = head;
426 return Z_OK;
427}
428
429/* ========================================================================= */
430int ZEXPORT deflatePrime (strm, bits, value)
431 z_streamp strm;
432 int bits;
433 int value;
434{
435 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
436 strm->state->bi_valid = bits;
437 strm->state->bi_buf = (ush)(value & ((1 << bits) - 1));
438 return Z_OK;
439}
440
441/* ========================================================================= */
442int ZEXPORT deflateParams(strm, level, strategy)
443 z_streamp strm;
444 int level;
445 int strategy;
446{
447 deflate_state *s;
448 compress_func func;
449 int err = Z_OK;
450
451 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
452 s = strm->state;
453
454#ifdef FASTEST
455 if (level != 0) level = 1;
456#else
457 if (level == Z_DEFAULT_COMPRESSION) level = 6;
458#endif
459 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
460 return Z_STREAM_ERROR;
461 }
462 func = configuration_table[s->level].func;
463
464 if ((strategy != s->strategy || func != configuration_table[level].func) &&
465 strm->total_in != 0) {
466 /* Flush the last buffer: */
467 err = deflate(strm, Z_BLOCK);
468 }
469 if (s->level != level) {
470 s->level = level;
471 s->max_lazy_match = configuration_table[level].max_lazy;
472 s->good_match = configuration_table[level].good_length;
473 s->nice_match = configuration_table[level].nice_length;
474 s->max_chain_length = configuration_table[level].max_chain;
475 }
476 s->strategy = strategy;
477 return err;
478}
479
480/* ========================================================================= */
481int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
482 z_streamp strm;
483 int good_length;
484 int max_lazy;
485 int nice_length;
486 int max_chain;
487{
488 deflate_state *s;
489
490 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
491 s = strm->state;
492 s->good_match = good_length;
493 s->max_lazy_match = max_lazy;
494 s->nice_match = nice_length;
495 s->max_chain_length = max_chain;
496 return Z_OK;
497}
498
499/* =========================================================================
500 * For the default windowBits of 15 and memLevel of 8, this function returns
501 * a close to exact, as well as small, upper bound on the compressed size.
502 * They are coded as constants here for a reason--if the #define's are
503 * changed, then this function needs to be changed as well. The return
504 * value for 15 and 8 only works for those exact settings.
505 *
506 * For any setting other than those defaults for windowBits and memLevel,
507 * the value returned is a conservative worst case for the maximum expansion
508 * resulting from using fixed blocks instead of stored blocks, which deflate
509 * can emit on compressed data for some combinations of the parameters.
510 *
511 * This function could be more sophisticated to provide closer upper bounds for
512 * every combination of windowBits and memLevel. But even the conservative
513 * upper bound of about 14% expansion does not seem onerous for output buffer
514 * allocation.
515 */
516uLong ZEXPORT deflateBound(strm, sourceLen)
517 z_streamp strm;
518 uLong sourceLen;
519{
520 deflate_state *s;
521 uLong complen, wraplen;
522 Bytef *str;
523
524 /* conservative upper bound for compressed data */
525 complen = sourceLen +
526 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
527
528 /* if can't get parameters, return conservative bound plus zlib wrapper */
529 if (strm == Z_NULL || strm->state == Z_NULL)
530 return complen + 6;
531
532 /* compute wrapper length */
533 s = strm->state;
534 switch (s->wrap) {
535 case 0: /* raw deflate */
536 wraplen = 0;
537 break;
538 case 1: /* zlib wrapper */
539 wraplen = 6 + (s->strstart ? 4 : 0);
540 break;
541 case 2: /* gzip wrapper */
542 wraplen = 18;
543 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
544 if (s->gzhead->extra != Z_NULL)
545 wraplen += 2 + s->gzhead->extra_len;
546 str = s->gzhead->name;
547 if (str != Z_NULL)
548 do {
549 wraplen++;
550 } while (*str++);
551 str = s->gzhead->comment;
552 if (str != Z_NULL)
553 do {
554 wraplen++;
555 } while (*str++);
556 if (s->gzhead->hcrc)
557 wraplen += 2;
558 }
559 break;
560 default: /* for compiler happiness */
561 wraplen = 6;
562 }
563
564 /* if not default parameters, return conservative bound */
565 if (s->w_bits != 15 || s->hash_bits != 8 + 7)
566 return complen + wraplen;
567
568 /* default settings: return tight bound for that case */
569 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
570 (sourceLen >> 25) + 13 - 6 + wraplen;
571}
572
573/* =========================================================================
574 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
575 * IN assertion: the stream state is correct and there is enough room in
576 * pending_buf.
577 */
578local void putShortMSB (s, b)
579 deflate_state *s;
580 uInt b;
581{
582 put_byte(s, (Byte)(b >> 8));
583 put_byte(s, (Byte)(b & 0xff));
584}
585
586/* =========================================================================
587 * Flush as much pending output as possible. All deflate() output goes
588 * through this function so some applications may wish to modify it
589 * to avoid allocating a large strm->next_out buffer and copying into it.
590 * (See also read_buf()).
591 */
592local void flush_pending(strm)
593 z_streamp strm;
594{
595 unsigned len = strm->state->pending;
596
597 if (len > strm->avail_out) len = strm->avail_out;
598 if (len == 0) return;
599
600 zmemcpy(strm->next_out, strm->state->pending_out, len);
601 strm->next_out += len;
602 strm->state->pending_out += len;
603 strm->total_out += len;
604 strm->avail_out -= len;
605 strm->state->pending -= len;
606 if (strm->state->pending == 0) {
607 strm->state->pending_out = strm->state->pending_buf;
608 }
609}
610
611/* ========================================================================= */
612int ZEXPORT deflate (strm, flush)
613 z_streamp strm;
614 int flush;
615{
616 int old_flush; /* value of flush param for previous deflate call */
617 deflate_state *s;
618
619 if (strm == Z_NULL || strm->state == Z_NULL ||
620 flush > Z_BLOCK || flush < 0) {
621 return Z_STREAM_ERROR;
622 }
623 s = strm->state;
624
Lei Wen86a36282012-09-28 04:26:45 +0000625 if (s->status == FINISH_STATE && flush != Z_FINISH) {
Lei Wenb834a392012-09-28 04:26:42 +0000626 ERR_RETURN(strm, Z_STREAM_ERROR);
627 }
628 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
629
630 s->strm = strm; /* just in case */
631 old_flush = s->last_flush;
632 s->last_flush = flush;
633
634 /* Write the header */
635 if (s->status == INIT_STATE) {
636#ifdef GZIP
637 if (s->wrap == 2) {
638 strm->adler = crc32(0L, Z_NULL, 0);
639 put_byte(s, 31);
640 put_byte(s, 139);
641 put_byte(s, 8);
642 if (s->gzhead == Z_NULL) {
643 put_byte(s, 0);
644 put_byte(s, 0);
645 put_byte(s, 0);
646 put_byte(s, 0);
647 put_byte(s, 0);
648 put_byte(s, s->level == 9 ? 2 :
649 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
650 4 : 0));
651 put_byte(s, OS_CODE);
652 s->status = BUSY_STATE;
653 }
654 else {
655 put_byte(s, (s->gzhead->text ? 1 : 0) +
656 (s->gzhead->hcrc ? 2 : 0) +
657 (s->gzhead->extra == Z_NULL ? 0 : 4) +
658 (s->gzhead->name == Z_NULL ? 0 : 8) +
659 (s->gzhead->comment == Z_NULL ? 0 : 16)
660 );
661 put_byte(s, (Byte)(s->gzhead->time & 0xff));
662 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
663 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
664 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
665 put_byte(s, s->level == 9 ? 2 :
666 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
667 4 : 0));
668 put_byte(s, s->gzhead->os & 0xff);
669 if (s->gzhead->extra != Z_NULL) {
670 put_byte(s, s->gzhead->extra_len & 0xff);
671 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
672 }
673 if (s->gzhead->hcrc)
674 strm->adler = crc32(strm->adler, s->pending_buf,
675 s->pending);
676 s->gzindex = 0;
677 s->status = EXTRA_STATE;
678 }
679 }
680 else
681#endif
682 {
683 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
684 uInt level_flags;
685
686 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
687 level_flags = 0;
688 else if (s->level < 6)
689 level_flags = 1;
690 else if (s->level == 6)
691 level_flags = 2;
692 else
693 level_flags = 3;
694 header |= (level_flags << 6);
695 if (s->strstart != 0) header |= PRESET_DICT;
696 header += 31 - (header % 31);
697
698 s->status = BUSY_STATE;
699 putShortMSB(s, header);
700
701 /* Save the adler32 of the preset dictionary: */
702 if (s->strstart != 0) {
703 putShortMSB(s, (uInt)(strm->adler >> 16));
704 putShortMSB(s, (uInt)(strm->adler & 0xffff));
705 }
706 strm->adler = adler32(0L, Z_NULL, 0);
707 }
708 }
709#ifdef GZIP
710 if (s->status == EXTRA_STATE) {
711 if (s->gzhead->extra != Z_NULL) {
712 uInt beg = s->pending; /* start of bytes to update crc */
713
714 while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
715 if (s->pending == s->pending_buf_size) {
716 if (s->gzhead->hcrc && s->pending > beg)
717 strm->adler = crc32(strm->adler, s->pending_buf + beg,
718 s->pending - beg);
719 flush_pending(strm);
720 beg = s->pending;
721 if (s->pending == s->pending_buf_size)
722 break;
723 }
724 put_byte(s, s->gzhead->extra[s->gzindex]);
725 s->gzindex++;
726 }
727 if (s->gzhead->hcrc && s->pending > beg)
728 strm->adler = crc32(strm->adler, s->pending_buf + beg,
729 s->pending - beg);
730 if (s->gzindex == s->gzhead->extra_len) {
731 s->gzindex = 0;
732 s->status = NAME_STATE;
733 }
734 }
735 else
736 s->status = NAME_STATE;
737 }
738 if (s->status == NAME_STATE) {
739 if (s->gzhead->name != Z_NULL) {
740 uInt beg = s->pending; /* start of bytes to update crc */
741 int val;
742
743 do {
744 if (s->pending == s->pending_buf_size) {
745 if (s->gzhead->hcrc && s->pending > beg)
746 strm->adler = crc32(strm->adler, s->pending_buf + beg,
747 s->pending - beg);
748 flush_pending(strm);
749 beg = s->pending;
750 if (s->pending == s->pending_buf_size) {
751 val = 1;
752 break;
753 }
754 }
755 val = s->gzhead->name[s->gzindex++];
756 put_byte(s, val);
757 } while (val != 0);
758 if (s->gzhead->hcrc && s->pending > beg)
759 strm->adler = crc32(strm->adler, s->pending_buf + beg,
760 s->pending - beg);
761 if (val == 0) {
762 s->gzindex = 0;
763 s->status = COMMENT_STATE;
764 }
765 }
766 else
767 s->status = COMMENT_STATE;
768 }
769 if (s->status == COMMENT_STATE) {
770 if (s->gzhead->comment != Z_NULL) {
771 uInt beg = s->pending; /* start of bytes to update crc */
772 int val;
773
774 do {
775 if (s->pending == s->pending_buf_size) {
776 if (s->gzhead->hcrc && s->pending > beg)
777 strm->adler = crc32(strm->adler, s->pending_buf + beg,
778 s->pending - beg);
779 flush_pending(strm);
780 beg = s->pending;
781 if (s->pending == s->pending_buf_size) {
782 val = 1;
783 break;
784 }
785 }
786 val = s->gzhead->comment[s->gzindex++];
787 put_byte(s, val);
788 } while (val != 0);
789 if (s->gzhead->hcrc && s->pending > beg)
790 strm->adler = crc32(strm->adler, s->pending_buf + beg,
791 s->pending - beg);
792 if (val == 0)
793 s->status = HCRC_STATE;
794 }
795 else
796 s->status = HCRC_STATE;
797 }
798 if (s->status == HCRC_STATE) {
799 if (s->gzhead->hcrc) {
800 if (s->pending + 2 > s->pending_buf_size)
801 flush_pending(strm);
802 if (s->pending + 2 <= s->pending_buf_size) {
803 put_byte(s, (Byte)(strm->adler & 0xff));
804 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
805 strm->adler = crc32(0L, Z_NULL, 0);
806 s->status = BUSY_STATE;
807 }
808 }
809 else
810 s->status = BUSY_STATE;
811 }
812#endif
813
814 /* Flush as much pending output as possible */
815 if (s->pending != 0) {
816 flush_pending(strm);
817 if (strm->avail_out == 0) {
818 /* Since avail_out is 0, deflate will be called again with
819 * more output space, but possibly with both pending and
820 * avail_in equal to zero. There won't be anything to do,
821 * but this is not an error situation so make sure we
822 * return OK instead of BUF_ERROR at next call of deflate:
823 */
824 s->last_flush = -1;
825 return Z_OK;
826 }
827
828 /* Make sure there is something to do and avoid duplicate consecutive
829 * flushes. For repeated and useless calls with Z_FINISH, we keep
830 * returning Z_STREAM_END instead of Z_BUF_ERROR.
831 */
832 } else if (strm->avail_in == 0 && flush <= old_flush &&
833 flush != Z_FINISH) {
834 ERR_RETURN(strm, Z_BUF_ERROR);
835 }
836
837 /* User must not provide more input after the first FINISH: */
838 if (s->status == FINISH_STATE && strm->avail_in != 0) {
839 ERR_RETURN(strm, Z_BUF_ERROR);
840 }
841
842 /* Start a new block or continue the current one.
843 */
844 if (strm->avail_in != 0 || s->lookahead != 0 ||
845 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
846 block_state bstate;
847
848 bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
849 (s->strategy == Z_RLE ? deflate_rle(s, flush) :
850 (*(configuration_table[s->level].func))(s, flush));
851
852 if (bstate == finish_started || bstate == finish_done) {
853 s->status = FINISH_STATE;
854 }
855 if (bstate == need_more || bstate == finish_started) {
856 if (strm->avail_out == 0) {
857 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
858 }
859 return Z_OK;
860 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
861 * of deflate should use the same flush parameter to make sure
862 * that the flush is complete. So we don't have to output an
863 * empty block here, this will be done at next call. This also
864 * ensures that for a very small output buffer, we emit at most
865 * one empty block.
866 */
867 }
868 if (bstate == block_done) {
869 if (flush == Z_PARTIAL_FLUSH) {
870 _tr_align(s);
871 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
872 _tr_stored_block(s, (char*)0, 0L, 0);
873 /* For a full flush, this empty block will be recognized
874 * as a special marker by inflate_sync().
875 */
876 if (flush == Z_FULL_FLUSH) {
877 CLEAR_HASH(s); /* forget history */
878 if (s->lookahead == 0) {
879 s->strstart = 0;
880 s->block_start = 0L;
881 }
882 }
883 }
884 flush_pending(strm);
885 if (strm->avail_out == 0) {
886 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
887 return Z_OK;
888 }
889 }
890 }
891 Assert(strm->avail_out > 0, "bug2");
892
893 if (flush != Z_FINISH) return Z_OK;
894 if (s->wrap <= 0) return Z_STREAM_END;
895
896 /* Write the trailer */
897#ifdef GZIP
898 if (s->wrap == 2) {
899 put_byte(s, (Byte)(strm->adler & 0xff));
900 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
901 put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
902 put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
903 put_byte(s, (Byte)(strm->total_in & 0xff));
904 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
905 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
906 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
907 }
908 else
909#endif
910 {
911 putShortMSB(s, (uInt)(strm->adler >> 16));
912 putShortMSB(s, (uInt)(strm->adler & 0xffff));
913 }
914 flush_pending(strm);
915 /* If avail_out is zero, the application will call deflate again
916 * to flush the rest.
917 */
918 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
919 return s->pending != 0 ? Z_OK : Z_STREAM_END;
920}
921
922/* ========================================================================= */
923int ZEXPORT deflateEnd (strm)
924 z_streamp strm;
925{
926 int status;
927
928 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
929
930 status = strm->state->status;
931 if (status != INIT_STATE &&
932 status != EXTRA_STATE &&
933 status != NAME_STATE &&
934 status != COMMENT_STATE &&
935 status != HCRC_STATE &&
936 status != BUSY_STATE &&
937 status != FINISH_STATE) {
938 return Z_STREAM_ERROR;
939 }
940
941 /* Deallocate in reverse order of allocations: */
942 TRY_FREE(strm, strm->state->pending_buf);
943 TRY_FREE(strm, strm->state->head);
944 TRY_FREE(strm, strm->state->prev);
945 TRY_FREE(strm, strm->state->window);
946
947 ZFREE(strm, strm->state);
948 strm->state = Z_NULL;
949
950 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
951}
952
953/* =========================================================================
954 * Copy the source state to the destination state.
955 * To simplify the source, this is not supported for 16-bit MSDOS (which
956 * doesn't have enough memory anyway to duplicate compression states).
957 */
958int ZEXPORT deflateCopy (dest, source)
959 z_streamp dest;
960 z_streamp source;
961{
962#ifdef MAXSEG_64K
963 return Z_STREAM_ERROR;
964#else
965 deflate_state *ds;
966 deflate_state *ss;
Lei Wenb834a392012-09-28 04:26:42 +0000967
Lei Wenb834a392012-09-28 04:26:42 +0000968 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
969 return Z_STREAM_ERROR;
970 }
971
972 ss = source->state;
973
974 zmemcpy(dest, source, sizeof(z_stream));
975
976 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
977 if (ds == Z_NULL) return Z_MEM_ERROR;
978 dest->state = (struct internal_state FAR *) ds;
979 zmemcpy(ds, ss, sizeof(deflate_state));
980 ds->strm = dest;
981
982 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
983 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
984 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
Tom Rinic3411d42022-05-10 14:36:59 -0400985 ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
Lei Wenb834a392012-09-28 04:26:42 +0000986
987 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
988 ds->pending_buf == Z_NULL) {
989 deflateEnd (dest);
990 return Z_MEM_ERROR;
991 }
992 /* following zmemcpy do not work for 16-bit MSDOS */
993 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
994 zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
995 zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
996 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
997
998 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
Tom Rinic3411d42022-05-10 14:36:59 -0400999 ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
Lei Wenb834a392012-09-28 04:26:42 +00001000
1001 ds->l_desc.dyn_tree = ds->dyn_ltree;
1002 ds->d_desc.dyn_tree = ds->dyn_dtree;
1003 ds->bl_desc.dyn_tree = ds->bl_tree;
1004
1005 return Z_OK;
1006#endif /* MAXSEG_64K */
1007}
1008
1009/* ===========================================================================
1010 * Read a new buffer from the current input stream, update the adler32
1011 * and total number of bytes read. All deflate() input goes through
1012 * this function so some applications may wish to modify it to avoid
1013 * allocating a large strm->next_in buffer and copying from it.
1014 * (See also flush_pending()).
1015 */
1016local int read_buf(strm, buf, size)
1017 z_streamp strm;
1018 Bytef *buf;
1019 unsigned size;
1020{
1021 unsigned len = strm->avail_in;
1022
1023 if (len > size) len = size;
1024 if (len == 0) return 0;
1025
1026 strm->avail_in -= len;
1027
1028 if (strm->state->wrap == 1) {
1029 strm->adler = adler32(strm->adler, strm->next_in, len);
1030 }
1031#ifdef GZIP
1032 else if (strm->state->wrap == 2) {
1033 strm->adler = crc32(strm->adler, strm->next_in, len);
1034 }
1035#endif
1036 zmemcpy(buf, strm->next_in, len);
1037 strm->next_in += len;
1038 strm->total_in += len;
1039
1040 return (int)len;
1041}
1042
1043/* ===========================================================================
1044 * Initialize the "longest match" routines for a new zlib stream
1045 */
1046local void lm_init (s)
1047 deflate_state *s;
1048{
1049 s->window_size = (ulg)2L*s->w_size;
1050
1051 CLEAR_HASH(s);
1052
1053 /* Set the default configuration parameters:
1054 */
1055 s->max_lazy_match = configuration_table[s->level].max_lazy;
1056 s->good_match = configuration_table[s->level].good_length;
1057 s->nice_match = configuration_table[s->level].nice_length;
1058 s->max_chain_length = configuration_table[s->level].max_chain;
1059
1060 s->strstart = 0;
1061 s->block_start = 0L;
1062 s->lookahead = 0;
1063 s->match_length = s->prev_length = MIN_MATCH-1;
1064 s->match_available = 0;
1065 s->ins_h = 0;
1066#ifndef FASTEST
1067#ifdef ASMV
1068 match_init(); /* initialize the asm code */
1069#endif
1070#endif
1071}
1072
1073#ifndef FASTEST
1074/* ===========================================================================
1075 * Set match_start to the longest match starting at the given string and
1076 * return its length. Matches shorter or equal to prev_length are discarded,
1077 * in which case the result is equal to prev_length and match_start is
1078 * garbage.
1079 * IN assertions: cur_match is the head of the hash chain for the current
1080 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1081 * OUT assertion: the match length is not greater than s->lookahead.
1082 */
1083#ifndef ASMV
1084/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1085 * match.S. The code will be functionally equivalent.
1086 */
1087local uInt longest_match(s, cur_match)
1088 deflate_state *s;
1089 IPos cur_match; /* current match */
1090{
1091 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1092 register Bytef *scan = s->window + s->strstart; /* current string */
1093 register Bytef *match; /* matched string */
1094 register int len; /* length of current match */
1095 int best_len = s->prev_length; /* best match length so far */
1096 int nice_match = s->nice_match; /* stop if match long enough */
1097 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1098 s->strstart - (IPos)MAX_DIST(s) : NIL;
1099 /* Stop when cur_match becomes <= limit. To simplify the code,
1100 * we prevent matches with the string of window index 0.
1101 */
1102 Posf *prev = s->prev;
1103 uInt wmask = s->w_mask;
1104
1105#ifdef UNALIGNED_OK
1106 /* Compare two bytes at a time. Note: this is not always beneficial.
1107 * Try with and without -DUNALIGNED_OK to check.
1108 */
1109 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1110 register ush scan_start = *(ushf*)scan;
1111 register ush scan_end = *(ushf*)(scan+best_len-1);
1112#else
1113 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1114 register Byte scan_end1 = scan[best_len-1];
1115 register Byte scan_end = scan[best_len];
1116#endif
1117
1118 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1119 * It is easy to get rid of this optimization if necessary.
1120 */
1121 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1122
1123 /* Do not waste too much time if we already have a good match: */
1124 if (s->prev_length >= s->good_match) {
1125 chain_length >>= 2;
1126 }
1127 /* Do not look for matches beyond the end of the input. This is necessary
1128 * to make deflate deterministic.
1129 */
1130 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1131
1132 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1133
1134 do {
1135 Assert(cur_match < s->strstart, "no future");
1136 match = s->window + cur_match;
1137
1138 /* Skip to next match if the match length cannot increase
1139 * or if the match length is less than 2. Note that the checks below
1140 * for insufficient lookahead only occur occasionally for performance
1141 * reasons. Therefore uninitialized memory will be accessed, and
1142 * conditional jumps will be made that depend on those values.
1143 * However the length of the match is limited to the lookahead, so
1144 * the output of deflate is not affected by the uninitialized values.
1145 */
1146#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1147 /* This code assumes sizeof(unsigned short) == 2. Do not use
1148 * UNALIGNED_OK if your compiler uses a different size.
1149 */
1150 if (*(ushf*)(match+best_len-1) != scan_end ||
1151 *(ushf*)match != scan_start) continue;
1152
1153 /* It is not necessary to compare scan[2] and match[2] since they are
1154 * always equal when the other bytes match, given that the hash keys
1155 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1156 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1157 * lookahead only every 4th comparison; the 128th check will be made
1158 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1159 * necessary to put more guard bytes at the end of the window, or
1160 * to check more often for insufficient lookahead.
1161 */
1162 Assert(scan[2] == match[2], "scan[2]?");
1163 scan++, match++;
1164 do {
1165 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1166 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1167 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1168 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1169 scan < strend);
1170 /* The funny "do {}" generates better code on most compilers */
1171
1172 /* Here, scan <= window+strstart+257 */
1173 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1174 if (*scan == *match) scan++;
1175
1176 len = (MAX_MATCH - 1) - (int)(strend-scan);
1177 scan = strend - (MAX_MATCH-1);
1178
1179#else /* UNALIGNED_OK */
1180
1181 if (match[best_len] != scan_end ||
1182 match[best_len-1] != scan_end1 ||
1183 *match != *scan ||
1184 *++match != scan[1]) continue;
1185
1186 /* The check at best_len-1 can be removed because it will be made
1187 * again later. (This heuristic is not always a win.)
1188 * It is not necessary to compare scan[2] and match[2] since they
1189 * are always equal when the other bytes match, given that
1190 * the hash keys are equal and that HASH_BITS >= 8.
1191 */
1192 scan += 2, match++;
1193 Assert(*scan == *match, "match[2]?");
1194
1195 /* We check for insufficient lookahead only every 8th comparison;
1196 * the 256th check will be made at strstart+258.
1197 */
1198 do {
1199 } while (*++scan == *++match && *++scan == *++match &&
1200 *++scan == *++match && *++scan == *++match &&
1201 *++scan == *++match && *++scan == *++match &&
1202 *++scan == *++match && *++scan == *++match &&
1203 scan < strend);
1204
1205 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1206
1207 len = MAX_MATCH - (int)(strend - scan);
1208 scan = strend - MAX_MATCH;
1209
1210#endif /* UNALIGNED_OK */
1211
1212 if (len > best_len) {
1213 s->match_start = cur_match;
1214 best_len = len;
1215 if (len >= nice_match) break;
1216#ifdef UNALIGNED_OK
1217 scan_end = *(ushf*)(scan+best_len-1);
1218#else
1219 scan_end1 = scan[best_len-1];
1220 scan_end = scan[best_len];
1221#endif
1222 }
1223 } while ((cur_match = prev[cur_match & wmask]) > limit
1224 && --chain_length != 0);
1225
1226 if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1227 return s->lookahead;
1228}
1229#endif /* ASMV */
1230
1231#else /* FASTEST */
1232
1233/* ---------------------------------------------------------------------------
1234 * Optimized version for FASTEST only
1235 */
1236local uInt longest_match(s, cur_match)
1237 deflate_state *s;
1238 IPos cur_match; /* current match */
1239{
1240 register Bytef *scan = s->window + s->strstart; /* current string */
1241 register Bytef *match; /* matched string */
1242 register int len; /* length of current match */
1243 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1244
1245 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1246 * It is easy to get rid of this optimization if necessary.
1247 */
1248 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1249
1250 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1251
1252 Assert(cur_match < s->strstart, "no future");
1253
1254 match = s->window + cur_match;
1255
1256 /* Return failure if the match length is less than 2:
1257 */
1258 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1259
1260 /* The check at best_len-1 can be removed because it will be made
1261 * again later. (This heuristic is not always a win.)
1262 * It is not necessary to compare scan[2] and match[2] since they
1263 * are always equal when the other bytes match, given that
1264 * the hash keys are equal and that HASH_BITS >= 8.
1265 */
1266 scan += 2, match += 2;
1267 Assert(*scan == *match, "match[2]?");
1268
1269 /* We check for insufficient lookahead only every 8th comparison;
1270 * the 256th check will be made at strstart+258.
1271 */
1272 do {
1273 } while (*++scan == *++match && *++scan == *++match &&
1274 *++scan == *++match && *++scan == *++match &&
1275 *++scan == *++match && *++scan == *++match &&
1276 *++scan == *++match && *++scan == *++match &&
1277 scan < strend);
1278
1279 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1280
1281 len = MAX_MATCH - (int)(strend - scan);
1282
1283 if (len < MIN_MATCH) return MIN_MATCH - 1;
1284
1285 s->match_start = cur_match;
1286 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1287}
1288
1289#endif /* FASTEST */
1290
1291#ifdef DEBUG
1292/* ===========================================================================
1293 * Check that the match at match_start is indeed a match.
1294 */
1295local void check_match(s, start, match, length)
1296 deflate_state *s;
1297 IPos start, match;
1298 int length;
1299{
1300 /* check that the match is indeed a match */
1301 if (zmemcmp(s->window + match,
1302 s->window + start, length) != EQUAL) {
1303 fprintf(stderr, " start %u, match %u, length %d\n",
1304 start, match, length);
1305 do {
1306 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1307 } while (--length != 0);
1308 z_error("invalid match");
1309 }
1310 if (z_verbose > 1) {
1311 fprintf(stderr,"\\[%d,%d]", start-match, length);
Heinrich Schuchardt8239a7f2020-12-28 21:41:40 +01001312 do { putc(s->window[start++]); } while (--length != 0);
Lei Wenb834a392012-09-28 04:26:42 +00001313 }
1314}
1315#else
1316# define check_match(s, start, match, length)
1317#endif /* DEBUG */
1318
1319/* ===========================================================================
1320 * Fill the window when the lookahead becomes insufficient.
1321 * Updates strstart and lookahead.
1322 *
1323 * IN assertion: lookahead < MIN_LOOKAHEAD
1324 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1325 * At least one byte has been read, or avail_in == 0; reads are
1326 * performed for at least two bytes (required for the zip translate_eol
1327 * option -- not supported here).
1328 */
1329local void fill_window(s)
1330 deflate_state *s;
1331{
1332 register unsigned n, m;
1333 register Posf *p;
1334 unsigned more; /* Amount of free space at the end of the window. */
1335 uInt wsize = s->w_size;
1336
1337 do {
1338 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1339
1340 /* Deal with !@#$% 64K limit: */
1341 if (sizeof(int) <= 2) {
1342 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1343 more = wsize;
1344
1345 } else if (more == (unsigned)(-1)) {
1346 /* Very unlikely, but possible on 16 bit machine if
1347 * strstart == 0 && lookahead == 1 (input done a byte at time)
1348 */
1349 more--;
1350 }
1351 }
1352
1353 /* If the window is almost full and there is insufficient lookahead,
1354 * move the upper half to the lower one to make room in the upper half.
1355 */
1356 if (s->strstart >= wsize+MAX_DIST(s)) {
1357
1358 zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1359 s->match_start -= wsize;
1360 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1361 s->block_start -= (long) wsize;
1362
1363 /* Slide the hash table (could be avoided with 32 bit values
1364 at the expense of memory usage). We slide even when level == 0
1365 to keep the hash table consistent if we switch back to level > 0
1366 later. (Using level 0 permanently is not an optimal usage of
1367 zlib, so we don't care about this pathological case.)
1368 */
1369 n = s->hash_size;
1370 p = &s->head[n];
1371 do {
1372 m = *--p;
1373 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1374 } while (--n);
1375
1376 n = wsize;
1377#ifndef FASTEST
1378 p = &s->prev[n];
1379 do {
1380 m = *--p;
1381 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1382 /* If n is not on any hash chain, prev[n] is garbage but
1383 * its value will never be used.
1384 */
1385 } while (--n);
1386#endif
1387 more += wsize;
1388 }
1389 if (s->strm->avail_in == 0) return;
1390
1391 /* If there was no sliding:
1392 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1393 * more == window_size - lookahead - strstart
1394 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1395 * => more >= window_size - 2*WSIZE + 2
1396 * In the BIG_MEM or MMAP case (not yet supported),
1397 * window_size == input_size + MIN_LOOKAHEAD &&
1398 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1399 * Otherwise, window_size == 2*WSIZE so more >= 2.
1400 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1401 */
1402 Assert(more >= 2, "more < 2");
1403
1404 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1405 s->lookahead += n;
1406
1407 /* Initialize the hash value now that we have some input: */
1408 if (s->lookahead >= MIN_MATCH) {
1409 s->ins_h = s->window[s->strstart];
1410 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1411#if MIN_MATCH != 3
1412 Call UPDATE_HASH() MIN_MATCH-3 more times
1413#endif
1414 }
1415 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1416 * but this is not important since only literal bytes will be emitted.
1417 */
1418
1419 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1420
1421 /* If the WIN_INIT bytes after the end of the current data have never been
1422 * written, then zero those bytes in order to avoid memory check reports of
1423 * the use of uninitialized (or uninitialised as Julian writes) bytes by
1424 * the longest match routines. Update the high water mark for the next
1425 * time through here. WIN_INIT is set to MAX_MATCH since the longest match
1426 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1427 */
1428 if (s->high_water < s->window_size) {
1429 ulg curr = s->strstart + (ulg)(s->lookahead);
1430 ulg init;
1431
1432 if (s->high_water < curr) {
1433 /* Previous high water mark below current data -- zero WIN_INIT
1434 * bytes or up to end of window, whichever is less.
1435 */
1436 init = s->window_size - curr;
1437 if (init > WIN_INIT)
1438 init = WIN_INIT;
1439 zmemzero(s->window + curr, (unsigned)init);
1440 s->high_water = curr + init;
1441 }
1442 else if (s->high_water < (ulg)curr + WIN_INIT) {
1443 /* High water mark at or above current data, but below current data
1444 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1445 * to end of window, whichever is less.
1446 */
1447 init = (ulg)curr + WIN_INIT - s->high_water;
1448 if (init > s->window_size - s->high_water)
1449 init = s->window_size - s->high_water;
1450 zmemzero(s->window + s->high_water, (unsigned)init);
1451 s->high_water += init;
1452 }
1453 }
1454}
1455
1456/* ===========================================================================
1457 * Flush the current block, with given end-of-file flag.
1458 * IN assertion: strstart is set to the end of the current match.
1459 */
1460#define FLUSH_BLOCK_ONLY(s, last) { \
1461 _tr_flush_block(s, (s->block_start >= 0L ? \
1462 (charf *)&s->window[(unsigned)s->block_start] : \
1463 (charf *)Z_NULL), \
1464 (ulg)((long)s->strstart - s->block_start), \
1465 (last)); \
1466 s->block_start = s->strstart; \
1467 flush_pending(s->strm); \
1468 Tracev((stderr,"[FLUSH]")); \
1469}
1470
1471/* Same but force premature exit if necessary. */
1472#define FLUSH_BLOCK(s, last) { \
1473 FLUSH_BLOCK_ONLY(s, last); \
1474 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1475}
1476
1477/* ===========================================================================
1478 * Copy without compression as much as possible from the input stream, return
1479 * the current block state.
1480 * This function does not insert new strings in the dictionary since
1481 * uncompressible data is probably not useful. This function is used
1482 * only for the level=0 compression option.
1483 * NOTE: this function should be optimized to avoid extra copying from
1484 * window to pending_buf.
1485 */
1486local block_state deflate_stored(s, flush)
1487 deflate_state *s;
1488 int flush;
1489{
1490 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1491 * to pending_buf_size, and each stored block has a 5 byte header:
1492 */
1493 ulg max_block_size = 0xffff;
1494 ulg max_start;
1495
1496 if (max_block_size > s->pending_buf_size - 5) {
1497 max_block_size = s->pending_buf_size - 5;
1498 }
1499
1500 /* Copy as much as possible from input to output: */
1501 for (;;) {
1502 /* Fill the window as much as possible: */
1503 if (s->lookahead <= 1) {
1504
1505 Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1506 s->block_start >= (long)s->w_size, "slide too late");
1507
1508 fill_window(s);
1509 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1510
1511 if (s->lookahead == 0) break; /* flush the current block */
1512 }
1513 Assert(s->block_start >= 0L, "block gone");
1514
1515 s->strstart += s->lookahead;
1516 s->lookahead = 0;
1517
1518 /* Emit a stored block if pending_buf will be full: */
1519 max_start = s->block_start + max_block_size;
1520 if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1521 /* strstart == 0 is possible when wraparound on 16-bit machine */
1522 s->lookahead = (uInt)(s->strstart - max_start);
1523 s->strstart = (uInt)max_start;
1524 FLUSH_BLOCK(s, 0);
1525 }
1526 /* Flush if we may have to slide, otherwise block_start may become
1527 * negative and the data will be gone:
1528 */
1529 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1530 FLUSH_BLOCK(s, 0);
1531 }
1532 }
1533 FLUSH_BLOCK(s, flush == Z_FINISH);
1534 return flush == Z_FINISH ? finish_done : block_done;
1535}
1536
1537/* ===========================================================================
1538 * Compress as much as possible from the input stream, return the current
1539 * block state.
1540 * This function does not perform lazy evaluation of matches and inserts
1541 * new strings in the dictionary only for unmatched strings or for short
1542 * matches. It is used only for the fast compression options.
1543 */
1544local block_state deflate_fast(s, flush)
1545 deflate_state *s;
1546 int flush;
1547{
1548 IPos hash_head; /* head of the hash chain */
1549 int bflush; /* set if current block must be flushed */
1550
1551 for (;;) {
1552 /* Make sure that we always have enough lookahead, except
1553 * at the end of the input file. We need MAX_MATCH bytes
1554 * for the next match, plus MIN_MATCH bytes to insert the
1555 * string following the next match.
1556 */
1557 if (s->lookahead < MIN_LOOKAHEAD) {
1558 fill_window(s);
1559 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1560 return need_more;
1561 }
1562 if (s->lookahead == 0) break; /* flush the current block */
1563 }
1564
1565 /* Insert the string window[strstart .. strstart+2] in the
1566 * dictionary, and set hash_head to the head of the hash chain:
1567 */
1568 hash_head = NIL;
1569 if (s->lookahead >= MIN_MATCH) {
1570 INSERT_STRING(s, s->strstart, hash_head);
1571 }
1572
1573 /* Find the longest match, discarding those <= prev_length.
1574 * At this point we have always match_length < MIN_MATCH
1575 */
1576 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1577 /* To simplify the code, we prevent matches with the string
1578 * of window index 0 (in particular we have to avoid a match
1579 * of the string with itself at the start of the input file).
1580 */
1581 s->match_length = longest_match (s, hash_head);
1582 /* longest_match() sets match_start */
1583 }
1584 if (s->match_length >= MIN_MATCH) {
1585 check_match(s, s->strstart, s->match_start, s->match_length);
1586
1587 _tr_tally_dist(s, s->strstart - s->match_start,
1588 s->match_length - MIN_MATCH, bflush);
1589
1590 s->lookahead -= s->match_length;
1591
1592 /* Insert new strings in the hash table only if the match length
1593 * is not too large. This saves time but degrades compression.
1594 */
1595#ifndef FASTEST
1596 if (s->match_length <= s->max_insert_length &&
1597 s->lookahead >= MIN_MATCH) {
1598 s->match_length--; /* string at strstart already in table */
1599 do {
1600 s->strstart++;
1601 INSERT_STRING(s, s->strstart, hash_head);
1602 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1603 * always MIN_MATCH bytes ahead.
1604 */
1605 } while (--s->match_length != 0);
1606 s->strstart++;
1607 } else
1608#endif
1609 {
1610 s->strstart += s->match_length;
1611 s->match_length = 0;
1612 s->ins_h = s->window[s->strstart];
1613 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1614#if MIN_MATCH != 3
1615 Call UPDATE_HASH() MIN_MATCH-3 more times
1616#endif
1617 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1618 * matter since it will be recomputed at next deflate call.
1619 */
1620 }
1621 } else {
1622 /* No match, output a literal byte */
1623 Tracevv((stderr,"%c", s->window[s->strstart]));
1624 _tr_tally_lit (s, s->window[s->strstart], bflush);
1625 s->lookahead--;
1626 s->strstart++;
1627 }
1628 if (bflush) FLUSH_BLOCK(s, 0);
1629 }
1630 FLUSH_BLOCK(s, flush == Z_FINISH);
1631 return flush == Z_FINISH ? finish_done : block_done;
1632}
1633
1634#ifndef FASTEST
1635/* ===========================================================================
1636 * Same as above, but achieves better compression. We use a lazy
1637 * evaluation for matches: a match is finally adopted only if there is
1638 * no better match at the next window position.
1639 */
1640local block_state deflate_slow(s, flush)
1641 deflate_state *s;
1642 int flush;
1643{
1644 IPos hash_head; /* head of hash chain */
1645 int bflush; /* set if current block must be flushed */
1646
1647 /* Process the input block. */
1648 for (;;) {
1649 /* Make sure that we always have enough lookahead, except
1650 * at the end of the input file. We need MAX_MATCH bytes
1651 * for the next match, plus MIN_MATCH bytes to insert the
1652 * string following the next match.
1653 */
1654 if (s->lookahead < MIN_LOOKAHEAD) {
1655 fill_window(s);
1656 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1657 return need_more;
1658 }
1659 if (s->lookahead == 0) break; /* flush the current block */
1660 }
1661
1662 /* Insert the string window[strstart .. strstart+2] in the
1663 * dictionary, and set hash_head to the head of the hash chain:
1664 */
1665 hash_head = NIL;
1666 if (s->lookahead >= MIN_MATCH) {
1667 INSERT_STRING(s, s->strstart, hash_head);
1668 }
1669
1670 /* Find the longest match, discarding those <= prev_length.
1671 */
1672 s->prev_length = s->match_length, s->prev_match = s->match_start;
1673 s->match_length = MIN_MATCH-1;
1674
1675 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1676 s->strstart - hash_head <= MAX_DIST(s)) {
1677 /* To simplify the code, we prevent matches with the string
1678 * of window index 0 (in particular we have to avoid a match
1679 * of the string with itself at the start of the input file).
1680 */
1681 s->match_length = longest_match (s, hash_head);
1682 /* longest_match() sets match_start */
1683
1684 if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1685#if TOO_FAR <= 32767
1686 || (s->match_length == MIN_MATCH &&
1687 s->strstart - s->match_start > TOO_FAR)
1688#endif
1689 )) {
1690
1691 /* If prev_match is also MIN_MATCH, match_start is garbage
1692 * but we will ignore the current match anyway.
1693 */
1694 s->match_length = MIN_MATCH-1;
1695 }
1696 }
1697 /* If there was a match at the previous step and the current
1698 * match is not better, output the previous match:
1699 */
1700 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1701 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1702 /* Do not insert strings in hash table beyond this. */
1703
1704 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1705
1706 _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1707 s->prev_length - MIN_MATCH, bflush);
1708
1709 /* Insert in hash table all strings up to the end of the match.
1710 * strstart-1 and strstart are already inserted. If there is not
1711 * enough lookahead, the last two strings are not inserted in
1712 * the hash table.
1713 */
1714 s->lookahead -= s->prev_length-1;
1715 s->prev_length -= 2;
1716 do {
1717 if (++s->strstart <= max_insert) {
1718 INSERT_STRING(s, s->strstart, hash_head);
1719 }
1720 } while (--s->prev_length != 0);
1721 s->match_available = 0;
1722 s->match_length = MIN_MATCH-1;
1723 s->strstart++;
1724
1725 if (bflush) FLUSH_BLOCK(s, 0);
1726
1727 } else if (s->match_available) {
1728 /* If there was no match at the previous position, output a
1729 * single literal. If there was a match but the current match
1730 * is longer, truncate the previous match to a single literal.
1731 */
1732 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1733 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1734 if (bflush) {
1735 FLUSH_BLOCK_ONLY(s, 0);
1736 }
1737 s->strstart++;
1738 s->lookahead--;
1739 if (s->strm->avail_out == 0) return need_more;
1740 } else {
1741 /* There is no previous match to compare with, wait for
1742 * the next step to decide.
1743 */
1744 s->match_available = 1;
1745 s->strstart++;
1746 s->lookahead--;
1747 }
1748 }
1749 Assert (flush != Z_NO_FLUSH, "no flush?");
1750 if (s->match_available) {
1751 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1752 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1753 s->match_available = 0;
1754 }
1755 FLUSH_BLOCK(s, flush == Z_FINISH);
1756 return flush == Z_FINISH ? finish_done : block_done;
1757}
1758#endif /* FASTEST */
1759
1760/* ===========================================================================
1761 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
1762 * one. Do not maintain a hash table. (It will be regenerated if this run of
1763 * deflate switches away from Z_RLE.)
1764 */
1765local block_state deflate_rle(s, flush)
1766 deflate_state *s;
1767 int flush;
1768{
1769 int bflush; /* set if current block must be flushed */
1770 uInt prev; /* byte at distance one to match */
1771 Bytef *scan, *strend; /* scan goes up to strend for length of run */
1772
1773 for (;;) {
1774 /* Make sure that we always have enough lookahead, except
1775 * at the end of the input file. We need MAX_MATCH bytes
1776 * for the longest encodable run.
1777 */
1778 if (s->lookahead < MAX_MATCH) {
1779 fill_window(s);
1780 if (s->lookahead < MAX_MATCH && flush == Z_NO_FLUSH) {
1781 return need_more;
1782 }
1783 if (s->lookahead == 0) break; /* flush the current block */
1784 }
1785
1786 /* See how many times the previous byte repeats */
1787 s->match_length = 0;
1788 if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
1789 scan = s->window + s->strstart - 1;
1790 prev = *scan;
1791 if (prev == *++scan && prev == *++scan && prev == *++scan) {
1792 strend = s->window + s->strstart + MAX_MATCH;
1793 do {
1794 } while (prev == *++scan && prev == *++scan &&
1795 prev == *++scan && prev == *++scan &&
1796 prev == *++scan && prev == *++scan &&
1797 prev == *++scan && prev == *++scan &&
1798 scan < strend);
1799 s->match_length = MAX_MATCH - (int)(strend - scan);
1800 if (s->match_length > s->lookahead)
1801 s->match_length = s->lookahead;
1802 }
1803 }
1804
1805 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
1806 if (s->match_length >= MIN_MATCH) {
1807 check_match(s, s->strstart, s->strstart - 1, s->match_length);
1808
1809 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
1810
1811 s->lookahead -= s->match_length;
1812 s->strstart += s->match_length;
1813 s->match_length = 0;
1814 } else {
1815 /* No match, output a literal byte */
1816 Tracevv((stderr,"%c", s->window[s->strstart]));
1817 _tr_tally_lit (s, s->window[s->strstart], bflush);
1818 s->lookahead--;
1819 s->strstart++;
1820 }
1821 if (bflush) FLUSH_BLOCK(s, 0);
1822 }
1823 FLUSH_BLOCK(s, flush == Z_FINISH);
1824 return flush == Z_FINISH ? finish_done : block_done;
1825}
1826
1827/* ===========================================================================
1828 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
1829 * (It will be regenerated if this run of deflate switches away from Huffman.)
1830 */
1831local block_state deflate_huff(s, flush)
1832 deflate_state *s;
1833 int flush;
1834{
1835 int bflush; /* set if current block must be flushed */
1836
1837 for (;;) {
1838 /* Make sure that we have a literal to write. */
1839 if (s->lookahead == 0) {
1840 fill_window(s);
1841 if (s->lookahead == 0) {
1842 if (flush == Z_NO_FLUSH)
1843 return need_more;
1844 break; /* flush the current block */
1845 }
1846 }
1847
1848 /* Output a literal byte */
1849 s->match_length = 0;
1850 Tracevv((stderr,"%c", s->window[s->strstart]));
1851 _tr_tally_lit (s, s->window[s->strstart], bflush);
1852 s->lookahead--;
1853 s->strstart++;
1854 if (bflush) FLUSH_BLOCK(s, 0);
1855 }
1856 FLUSH_BLOCK(s, flush == Z_FINISH);
1857 return flush == Z_FINISH ? finish_done : block_done;
1858}