Bin Meng | e159cdf | 2015-02-05 23:42:23 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2013, Intel Corporation |
| 3 | * Copyright (C) 2015, Bin Meng <bmeng.cn@gmail.com> |
| 4 | * |
| 5 | * Ported from Intel released Quark UEFI BIOS |
| 6 | * QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei |
| 7 | * |
| 8 | * SPDX-License-Identifier: Intel |
| 9 | */ |
| 10 | |
| 11 | #include <common.h> |
| 12 | #include <asm/arch/mrc.h> |
| 13 | #include <asm/arch/msg_port.h> |
| 14 | #include "mrc_util.h" |
| 15 | #include "hte.h" |
| 16 | |
| 17 | /** |
| 18 | * Enable HTE to detect all possible errors for the given training parameters |
| 19 | * (per-bit or full byte lane). |
| 20 | */ |
| 21 | static void hte_enable_all_errors(void) |
| 22 | { |
| 23 | msg_port_write(HTE, 0x000200A2, 0xFFFFFFFF); |
| 24 | msg_port_write(HTE, 0x000200A3, 0x000000FF); |
| 25 | msg_port_write(HTE, 0x000200A4, 0x00000000); |
| 26 | } |
| 27 | |
| 28 | /** |
| 29 | * Go and read the HTE register in order to find any error |
| 30 | * |
| 31 | * @return: The errors detected in the HTE status register |
| 32 | */ |
| 33 | static u32 hte_check_errors(void) |
| 34 | { |
| 35 | return msg_port_read(HTE, 0x000200A7); |
| 36 | } |
| 37 | |
| 38 | /** |
| 39 | * Wait until HTE finishes |
| 40 | */ |
| 41 | static void hte_wait_for_complete(void) |
| 42 | { |
| 43 | u32 tmp; |
| 44 | |
| 45 | ENTERFN(); |
| 46 | |
| 47 | do {} while ((msg_port_read(HTE, 0x00020012) & BIT30) != 0); |
| 48 | |
| 49 | tmp = msg_port_read(HTE, 0x00020011); |
| 50 | tmp |= BIT9; |
| 51 | tmp &= ~(BIT12 | BIT13); |
| 52 | msg_port_write(HTE, 0x00020011, tmp); |
| 53 | |
| 54 | LEAVEFN(); |
| 55 | } |
| 56 | |
| 57 | /** |
| 58 | * Clear registers related with errors in the HTE |
| 59 | */ |
| 60 | static void hte_clear_error_regs(void) |
| 61 | { |
| 62 | u32 tmp; |
| 63 | |
| 64 | /* |
| 65 | * Clear all HTE errors and enable error checking |
| 66 | * for burst and chunk. |
| 67 | */ |
| 68 | tmp = msg_port_read(HTE, 0x000200A1); |
| 69 | tmp |= BIT8; |
| 70 | msg_port_write(HTE, 0x000200A1, tmp); |
| 71 | } |
| 72 | |
| 73 | /** |
| 74 | * Execute a basic single-cache-line memory write/read/verify test using simple |
| 75 | * constant pattern, different for READ_TRAIN and WRITE_TRAIN modes. |
| 76 | * |
| 77 | * See hte_basic_write_read() which is the external visible wrapper. |
| 78 | * |
| 79 | * @mrc_params: host structure for all MRC global data |
| 80 | * @addr: memory adress being tested (must hit specific channel/rank) |
| 81 | * @first_run: if set then the HTE registers are configured, otherwise it is |
| 82 | * assumed configuration is done and we just re-run the test |
| 83 | * @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern) |
| 84 | * |
| 85 | * @return: byte lane failure on each bit (for Quark only bit0 and bit1) |
| 86 | */ |
| 87 | static u16 hte_basic_data_cmp(struct mrc_params *mrc_params, u32 addr, |
| 88 | u8 first_run, u8 mode) |
| 89 | { |
| 90 | u32 pattern; |
| 91 | u32 offset; |
| 92 | |
| 93 | if (first_run) { |
| 94 | msg_port_write(HTE, 0x00020020, 0x01B10021); |
| 95 | msg_port_write(HTE, 0x00020021, 0x06000000); |
| 96 | msg_port_write(HTE, 0x00020022, addr >> 6); |
| 97 | msg_port_write(HTE, 0x00020062, 0x00800015); |
| 98 | msg_port_write(HTE, 0x00020063, 0xAAAAAAAA); |
| 99 | msg_port_write(HTE, 0x00020064, 0xCCCCCCCC); |
| 100 | msg_port_write(HTE, 0x00020065, 0xF0F0F0F0); |
| 101 | msg_port_write(HTE, 0x00020061, 0x00030008); |
| 102 | |
| 103 | if (mode == WRITE_TRAIN) |
| 104 | pattern = 0xC33C0000; |
| 105 | else /* READ_TRAIN */ |
| 106 | pattern = 0xAA5555AA; |
| 107 | |
| 108 | for (offset = 0x80; offset <= 0x8F; offset++) |
| 109 | msg_port_write(HTE, offset, pattern); |
| 110 | } |
| 111 | |
| 112 | msg_port_write(HTE, 0x000200A1, 0xFFFF1000); |
| 113 | msg_port_write(HTE, 0x00020011, 0x00011000); |
| 114 | msg_port_write(HTE, 0x00020011, 0x00011100); |
| 115 | |
| 116 | hte_wait_for_complete(); |
| 117 | |
| 118 | /* |
| 119 | * Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for |
| 120 | * any bytelane errors. |
| 121 | */ |
| 122 | return (hte_check_errors() >> 8) & 0xFF; |
| 123 | } |
| 124 | |
| 125 | /** |
| 126 | * Examine a single-cache-line memory with write/read/verify test using multiple |
| 127 | * data patterns (victim-aggressor algorithm). |
| 128 | * |
| 129 | * See hte_write_stress_bit_lanes() which is the external visible wrapper. |
| 130 | * |
| 131 | * @mrc_params: host structure for all MRC global data |
| 132 | * @addr: memory adress being tested (must hit specific channel/rank) |
| 133 | * @loop_cnt: number of test iterations |
| 134 | * @seed_victim: victim data pattern seed |
| 135 | * @seed_aggressor: aggressor data pattern seed |
| 136 | * @victim_bit: should be 0 as auto-rotate feature is in use |
| 137 | * @first_run: if set then the HTE registers are configured, otherwise it is |
| 138 | * assumed configuration is done and we just re-run the test |
| 139 | * |
| 140 | * @return: byte lane failure on each bit (for Quark only bit0 and bit1) |
| 141 | */ |
| 142 | static u16 hte_rw_data_cmp(struct mrc_params *mrc_params, u32 addr, |
| 143 | u8 loop_cnt, u32 seed_victim, u32 seed_aggressor, |
| 144 | u8 victim_bit, u8 first_run) |
| 145 | { |
| 146 | u32 offset; |
| 147 | u32 tmp; |
| 148 | |
| 149 | if (first_run) { |
| 150 | msg_port_write(HTE, 0x00020020, 0x00910024); |
| 151 | msg_port_write(HTE, 0x00020023, 0x00810024); |
| 152 | msg_port_write(HTE, 0x00020021, 0x06070000); |
| 153 | msg_port_write(HTE, 0x00020024, 0x06070000); |
| 154 | msg_port_write(HTE, 0x00020022, addr >> 6); |
| 155 | msg_port_write(HTE, 0x00020025, addr >> 6); |
| 156 | msg_port_write(HTE, 0x00020062, 0x0000002A); |
| 157 | msg_port_write(HTE, 0x00020063, seed_victim); |
| 158 | msg_port_write(HTE, 0x00020064, seed_aggressor); |
| 159 | msg_port_write(HTE, 0x00020065, seed_victim); |
| 160 | |
| 161 | /* |
| 162 | * Write the pattern buffers to select the victim bit |
| 163 | * |
| 164 | * Start with bit0 |
| 165 | */ |
| 166 | for (offset = 0x80; offset <= 0x8F; offset++) { |
| 167 | if ((offset % 8) == victim_bit) |
| 168 | msg_port_write(HTE, offset, 0x55555555); |
| 169 | else |
| 170 | msg_port_write(HTE, offset, 0xCCCCCCCC); |
| 171 | } |
| 172 | |
| 173 | msg_port_write(HTE, 0x00020061, 0x00000000); |
| 174 | msg_port_write(HTE, 0x00020066, 0x03440000); |
| 175 | msg_port_write(HTE, 0x000200A1, 0xFFFF1000); |
| 176 | } |
| 177 | |
| 178 | tmp = 0x10001000 | (loop_cnt << 16); |
| 179 | msg_port_write(HTE, 0x00020011, tmp); |
| 180 | msg_port_write(HTE, 0x00020011, tmp | BIT8); |
| 181 | |
| 182 | hte_wait_for_complete(); |
| 183 | |
| 184 | /* |
| 185 | * Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for |
| 186 | * any bytelane errors. |
| 187 | */ |
| 188 | return (hte_check_errors() >> 8) & 0xFF; |
| 189 | } |
| 190 | |
| 191 | /** |
| 192 | * Use HW HTE engine to initialize or test all memory attached to a given DUNIT. |
| 193 | * If flag is MRC_MEM_INIT, this routine writes 0s to all memory locations to |
| 194 | * initialize ECC. If flag is MRC_MEM_TEST, this routine will send an 5AA55AA5 |
| 195 | * pattern to all memory locations on the RankMask and then read it back. |
| 196 | * Then it sends an A55AA55A pattern to all memory locations on the RankMask |
| 197 | * and reads it back. |
| 198 | * |
| 199 | * @mrc_params: host structure for all MRC global data |
| 200 | * @flag: MRC_MEM_INIT or MRC_MEM_TEST |
| 201 | * |
| 202 | * @return: errors register showing HTE failures. Also prints out which rank |
| 203 | * failed the HTE test if failure occurs. For rank detection to work, |
| 204 | * the address map must be left in its default state. If MRC changes |
| 205 | * the address map, this function must be modified to change it back |
| 206 | * to default at the beginning, then restore it at the end. |
| 207 | */ |
| 208 | u32 hte_mem_init(struct mrc_params *mrc_params, u8 flag) |
| 209 | { |
| 210 | u32 offset; |
| 211 | int test_num; |
| 212 | int i; |
| 213 | |
| 214 | /* |
| 215 | * Clear out the error registers at the start of each memory |
| 216 | * init or memory test run. |
| 217 | */ |
| 218 | hte_clear_error_regs(); |
| 219 | |
| 220 | msg_port_write(HTE, 0x00020062, 0x00000015); |
| 221 | |
| 222 | for (offset = 0x80; offset <= 0x8F; offset++) |
| 223 | msg_port_write(HTE, offset, ((offset & 1) ? 0xA55A : 0x5AA5)); |
| 224 | |
| 225 | msg_port_write(HTE, 0x00020021, 0x00000000); |
| 226 | msg_port_write(HTE, 0x00020022, (mrc_params->mem_size >> 6) - 1); |
| 227 | msg_port_write(HTE, 0x00020063, 0xAAAAAAAA); |
| 228 | msg_port_write(HTE, 0x00020064, 0xCCCCCCCC); |
| 229 | msg_port_write(HTE, 0x00020065, 0xF0F0F0F0); |
| 230 | msg_port_write(HTE, 0x00020066, 0x03000000); |
| 231 | |
| 232 | switch (flag) { |
| 233 | case MRC_MEM_INIT: |
| 234 | /* |
| 235 | * Only 1 write pass through memory is needed |
| 236 | * to initialize ECC |
| 237 | */ |
| 238 | test_num = 1; |
| 239 | break; |
| 240 | case MRC_MEM_TEST: |
| 241 | /* Write/read then write/read with inverted pattern */ |
| 242 | test_num = 4; |
| 243 | break; |
| 244 | default: |
| 245 | DPF(D_INFO, "Unknown parameter for flag: %d\n", flag); |
| 246 | return 0xFFFFFFFF; |
| 247 | } |
| 248 | |
| 249 | DPF(D_INFO, "hte_mem_init"); |
| 250 | |
| 251 | for (i = 0; i < test_num; i++) { |
| 252 | DPF(D_INFO, "."); |
| 253 | |
| 254 | if (i == 0) { |
| 255 | msg_port_write(HTE, 0x00020061, 0x00000000); |
| 256 | msg_port_write(HTE, 0x00020020, 0x00110010); |
| 257 | } else if (i == 1) { |
| 258 | msg_port_write(HTE, 0x00020061, 0x00000000); |
| 259 | msg_port_write(HTE, 0x00020020, 0x00010010); |
| 260 | } else if (i == 2) { |
| 261 | msg_port_write(HTE, 0x00020061, 0x00010100); |
| 262 | msg_port_write(HTE, 0x00020020, 0x00110010); |
| 263 | } else { |
| 264 | msg_port_write(HTE, 0x00020061, 0x00010100); |
| 265 | msg_port_write(HTE, 0x00020020, 0x00010010); |
| 266 | } |
| 267 | |
| 268 | msg_port_write(HTE, 0x00020011, 0x00111000); |
| 269 | msg_port_write(HTE, 0x00020011, 0x00111100); |
| 270 | |
| 271 | hte_wait_for_complete(); |
| 272 | |
| 273 | /* If this is a READ pass, check for errors at the end */ |
| 274 | if ((i % 2) == 1) { |
| 275 | /* Return immediately if error */ |
| 276 | if (hte_check_errors()) |
| 277 | break; |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | DPF(D_INFO, "done\n"); |
| 282 | |
| 283 | return hte_check_errors(); |
| 284 | } |
| 285 | |
| 286 | /** |
| 287 | * Execute a basic single-cache-line memory write/read/verify test using simple |
| 288 | * constant pattern, different for READ_TRAIN and WRITE_TRAIN modes. |
| 289 | * |
| 290 | * @mrc_params: host structure for all MRC global data |
| 291 | * @addr: memory adress being tested (must hit specific channel/rank) |
| 292 | * @first_run: if set then the HTE registers are configured, otherwise it is |
| 293 | * assumed configuration is done and we just re-run the test |
| 294 | * @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern) |
| 295 | * |
| 296 | * @return: byte lane failure on each bit (for Quark only bit0 and bit1) |
| 297 | */ |
| 298 | u16 hte_basic_write_read(struct mrc_params *mrc_params, u32 addr, |
| 299 | u8 first_run, u8 mode) |
| 300 | { |
| 301 | u16 errors; |
| 302 | |
| 303 | ENTERFN(); |
| 304 | |
| 305 | /* Enable all error reporting in preparation for HTE test */ |
| 306 | hte_enable_all_errors(); |
| 307 | hte_clear_error_regs(); |
| 308 | |
| 309 | errors = hte_basic_data_cmp(mrc_params, addr, first_run, mode); |
| 310 | |
| 311 | LEAVEFN(); |
| 312 | |
| 313 | return errors; |
| 314 | } |
| 315 | |
| 316 | /** |
| 317 | * Examine a single-cache-line memory with write/read/verify test using multiple |
| 318 | * data patterns (victim-aggressor algorithm). |
| 319 | * |
| 320 | * @mrc_params: host structure for all MRC global data |
| 321 | * @addr: memory adress being tested (must hit specific channel/rank) |
| 322 | * @first_run: if set then the HTE registers are configured, otherwise it is |
| 323 | * assumed configuration is done and we just re-run the test |
| 324 | * |
| 325 | * @return: byte lane failure on each bit (for Quark only bit0 and bit1) |
| 326 | */ |
| 327 | u16 hte_write_stress_bit_lanes(struct mrc_params *mrc_params, |
| 328 | u32 addr, u8 first_run) |
| 329 | { |
| 330 | u16 errors; |
| 331 | u8 victim_bit = 0; |
| 332 | |
| 333 | ENTERFN(); |
| 334 | |
| 335 | /* Enable all error reporting in preparation for HTE test */ |
| 336 | hte_enable_all_errors(); |
| 337 | hte_clear_error_regs(); |
| 338 | |
| 339 | /* |
| 340 | * Loop through each bit in the bytelane. |
| 341 | * |
| 342 | * Each pass creates a victim bit while keeping all other bits the same |
| 343 | * as aggressors. AVN HTE adds an auto-rotate feature which allows us |
| 344 | * to program the entire victim/aggressor sequence in 1 step. |
| 345 | * |
| 346 | * The victim bit rotates on each pass so no need to have software |
| 347 | * implement a victim bit loop like on VLV. |
| 348 | */ |
| 349 | errors = hte_rw_data_cmp(mrc_params, addr, HTE_LOOP_CNT, |
| 350 | HTE_LFSR_VICTIM_SEED, HTE_LFSR_AGRESSOR_SEED, |
| 351 | victim_bit, first_run); |
| 352 | |
| 353 | LEAVEFN(); |
| 354 | |
| 355 | return errors; |
| 356 | } |
| 357 | |
| 358 | /** |
| 359 | * Execute a basic single-cache-line memory write or read. |
| 360 | * This is just for receive enable / fine write-levelling purpose. |
| 361 | * |
| 362 | * @addr: memory adress being tested (must hit specific channel/rank) |
| 363 | * @first_run: if set then the HTE registers are configured, otherwise it is |
| 364 | * assumed configuration is done and we just re-run the test |
| 365 | * @is_write: when non-zero memory write operation executed, otherwise read |
| 366 | */ |
| 367 | void hte_mem_op(u32 addr, u8 first_run, u8 is_write) |
| 368 | { |
| 369 | u32 offset; |
| 370 | u32 tmp; |
| 371 | |
| 372 | hte_enable_all_errors(); |
| 373 | hte_clear_error_regs(); |
| 374 | |
| 375 | if (first_run) { |
| 376 | tmp = is_write ? 0x01110021 : 0x01010021; |
| 377 | msg_port_write(HTE, 0x00020020, tmp); |
| 378 | |
| 379 | msg_port_write(HTE, 0x00020021, 0x06000000); |
| 380 | msg_port_write(HTE, 0x00020022, addr >> 6); |
| 381 | msg_port_write(HTE, 0x00020062, 0x00800015); |
| 382 | msg_port_write(HTE, 0x00020063, 0xAAAAAAAA); |
| 383 | msg_port_write(HTE, 0x00020064, 0xCCCCCCCC); |
| 384 | msg_port_write(HTE, 0x00020065, 0xF0F0F0F0); |
| 385 | msg_port_write(HTE, 0x00020061, 0x00030008); |
| 386 | |
| 387 | for (offset = 0x80; offset <= 0x8F; offset++) |
| 388 | msg_port_write(HTE, offset, 0xC33C0000); |
| 389 | } |
| 390 | |
| 391 | msg_port_write(HTE, 0x000200A1, 0xFFFF1000); |
| 392 | msg_port_write(HTE, 0x00020011, 0x00011000); |
| 393 | msg_port_write(HTE, 0x00020011, 0x00011100); |
| 394 | |
| 395 | hte_wait_for_complete(); |
| 396 | } |