blob: d3e39661e1a92bfb35d4b10c72f7e3366d44cb3f [file] [log] [blame]
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright © 2010-2015 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15#include <common.h>
16#include <asm/io.h>
17#include <memalign.h>
18#include <nand.h>
19#include <clk.h>
Simon Glassd66c5f72020-02-03 07:36:15 -070020#include <dm/devres.h>
21#include <linux/err.h>
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +010022#include <linux/ioport.h>
23#include <linux/completion.h>
24#include <linux/errno.h>
25#include <linux/log2.h>
26#include <asm/processor.h>
27#include <dm.h>
28
29#include "brcmnand.h"
30#include "brcmnand_compat.h"
31
32/*
33 * This flag controls if WP stays on between erase/write commands to mitigate
34 * flash corruption due to power glitches. Values:
35 * 0: NAND_WP is not used or not available
36 * 1: NAND_WP is set by default, cleared for erase/write operations
37 * 2: NAND_WP is always cleared
38 */
39static int wp_on = 1;
40module_param(wp_on, int, 0444);
41
42/***********************************************************************
43 * Definitions
44 ***********************************************************************/
45
46#define DRV_NAME "brcmnand"
47
48#define CMD_NULL 0x00
49#define CMD_PAGE_READ 0x01
50#define CMD_SPARE_AREA_READ 0x02
51#define CMD_STATUS_READ 0x03
52#define CMD_PROGRAM_PAGE 0x04
53#define CMD_PROGRAM_SPARE_AREA 0x05
54#define CMD_COPY_BACK 0x06
55#define CMD_DEVICE_ID_READ 0x07
56#define CMD_BLOCK_ERASE 0x08
57#define CMD_FLASH_RESET 0x09
58#define CMD_BLOCKS_LOCK 0x0a
59#define CMD_BLOCKS_LOCK_DOWN 0x0b
60#define CMD_BLOCKS_UNLOCK 0x0c
61#define CMD_READ_BLOCKS_LOCK_STATUS 0x0d
62#define CMD_PARAMETER_READ 0x0e
63#define CMD_PARAMETER_CHANGE_COL 0x0f
64#define CMD_LOW_LEVEL_OP 0x10
65
66struct brcm_nand_dma_desc {
67 u32 next_desc;
68 u32 next_desc_ext;
69 u32 cmd_irq;
70 u32 dram_addr;
71 u32 dram_addr_ext;
72 u32 tfr_len;
73 u32 total_len;
74 u32 flash_addr;
75 u32 flash_addr_ext;
76 u32 cs;
77 u32 pad2[5];
78 u32 status_valid;
79} __packed;
80
81/* Bitfields for brcm_nand_dma_desc::status_valid */
82#define FLASH_DMA_ECC_ERROR (1 << 8)
83#define FLASH_DMA_CORR_ERROR (1 << 9)
84
85/* 512B flash cache in the NAND controller HW */
86#define FC_SHIFT 9U
87#define FC_BYTES 512U
88#define FC_WORDS (FC_BYTES >> 2)
89
90#define BRCMNAND_MIN_PAGESIZE 512
91#define BRCMNAND_MIN_BLOCKSIZE (8 * 1024)
92#define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024)
93
94#define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY)
95#define NAND_POLL_STATUS_TIMEOUT_MS 100
96
97/* Controller feature flags */
98enum {
99 BRCMNAND_HAS_1K_SECTORS = BIT(0),
100 BRCMNAND_HAS_PREFETCH = BIT(1),
101 BRCMNAND_HAS_CACHE_MODE = BIT(2),
102 BRCMNAND_HAS_WP = BIT(3),
103};
104
105struct brcmnand_controller {
106#ifndef __UBOOT__
107 struct device *dev;
108#else
109 struct udevice *dev;
110#endif /* __UBOOT__ */
111 struct nand_hw_control controller;
112 void __iomem *nand_base;
113 void __iomem *nand_fc; /* flash cache */
114 void __iomem *flash_dma_base;
115 unsigned int irq;
116 unsigned int dma_irq;
117 int nand_version;
Philippe Reynes7f28cf62019-03-15 15:14:37 +0100118 int parameter_page_big_endian;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100119
120 /* Some SoCs provide custom interrupt status register(s) */
121 struct brcmnand_soc *soc;
122
123 /* Some SoCs have a gateable clock for the controller */
124 struct clk *clk;
125
126 int cmd_pending;
127 bool dma_pending;
128 struct completion done;
129 struct completion dma_done;
130
131 /* List of NAND hosts (one for each chip-select) */
132 struct list_head host_list;
133
134 struct brcm_nand_dma_desc *dma_desc;
135 dma_addr_t dma_pa;
136
137 /* in-memory cache of the FLASH_CACHE, used only for some commands */
138 u8 flash_cache[FC_BYTES];
139
140 /* Controller revision details */
141 const u16 *reg_offsets;
142 unsigned int reg_spacing; /* between CS1, CS2, ... regs */
143 const u8 *cs_offsets; /* within each chip-select */
144 const u8 *cs0_offsets; /* within CS0, if different */
145 unsigned int max_block_size;
146 const unsigned int *block_sizes;
147 unsigned int max_page_size;
148 const unsigned int *page_sizes;
149 unsigned int max_oob;
150 u32 features;
151
152 /* for low-power standby/resume only */
153 u32 nand_cs_nand_select;
154 u32 nand_cs_nand_xor;
155 u32 corr_stat_threshold;
156 u32 flash_dma_mode;
157};
158
159struct brcmnand_cfg {
160 u64 device_size;
161 unsigned int block_size;
162 unsigned int page_size;
163 unsigned int spare_area_size;
164 unsigned int device_width;
165 unsigned int col_adr_bytes;
166 unsigned int blk_adr_bytes;
167 unsigned int ful_adr_bytes;
168 unsigned int sector_size_1k;
169 unsigned int ecc_level;
170 /* use for low-power standby/resume only */
171 u32 acc_control;
172 u32 config;
173 u32 config_ext;
174 u32 timing_1;
175 u32 timing_2;
176};
177
178struct brcmnand_host {
179 struct list_head node;
180
181 struct nand_chip chip;
182#ifndef __UBOOT__
183 struct platform_device *pdev;
184#else
185 struct udevice *pdev;
186#endif /* __UBOOT__ */
187 int cs;
188
189 unsigned int last_cmd;
190 unsigned int last_byte;
191 u64 last_addr;
192 struct brcmnand_cfg hwcfg;
193 struct brcmnand_controller *ctrl;
194};
195
196enum brcmnand_reg {
197 BRCMNAND_CMD_START = 0,
198 BRCMNAND_CMD_EXT_ADDRESS,
199 BRCMNAND_CMD_ADDRESS,
200 BRCMNAND_INTFC_STATUS,
201 BRCMNAND_CS_SELECT,
202 BRCMNAND_CS_XOR,
203 BRCMNAND_LL_OP,
204 BRCMNAND_CS0_BASE,
205 BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */
206 BRCMNAND_CORR_THRESHOLD,
207 BRCMNAND_CORR_THRESHOLD_EXT,
208 BRCMNAND_UNCORR_COUNT,
209 BRCMNAND_CORR_COUNT,
210 BRCMNAND_CORR_EXT_ADDR,
211 BRCMNAND_CORR_ADDR,
212 BRCMNAND_UNCORR_EXT_ADDR,
213 BRCMNAND_UNCORR_ADDR,
214 BRCMNAND_SEMAPHORE,
215 BRCMNAND_ID,
216 BRCMNAND_ID_EXT,
217 BRCMNAND_LL_RDATA,
218 BRCMNAND_OOB_READ_BASE,
219 BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */
220 BRCMNAND_OOB_WRITE_BASE,
221 BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */
222 BRCMNAND_FC_BASE,
223};
224
225/* BRCMNAND v4.0 */
226static const u16 brcmnand_regs_v40[] = {
227 [BRCMNAND_CMD_START] = 0x04,
228 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
229 [BRCMNAND_CMD_ADDRESS] = 0x0c,
230 [BRCMNAND_INTFC_STATUS] = 0x6c,
231 [BRCMNAND_CS_SELECT] = 0x14,
232 [BRCMNAND_CS_XOR] = 0x18,
233 [BRCMNAND_LL_OP] = 0x178,
234 [BRCMNAND_CS0_BASE] = 0x40,
235 [BRCMNAND_CS1_BASE] = 0xd0,
236 [BRCMNAND_CORR_THRESHOLD] = 0x84,
237 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
238 [BRCMNAND_UNCORR_COUNT] = 0,
239 [BRCMNAND_CORR_COUNT] = 0,
240 [BRCMNAND_CORR_EXT_ADDR] = 0x70,
241 [BRCMNAND_CORR_ADDR] = 0x74,
242 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
243 [BRCMNAND_UNCORR_ADDR] = 0x7c,
244 [BRCMNAND_SEMAPHORE] = 0x58,
245 [BRCMNAND_ID] = 0x60,
246 [BRCMNAND_ID_EXT] = 0x64,
247 [BRCMNAND_LL_RDATA] = 0x17c,
248 [BRCMNAND_OOB_READ_BASE] = 0x20,
249 [BRCMNAND_OOB_READ_10_BASE] = 0x130,
250 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
251 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
252 [BRCMNAND_FC_BASE] = 0x200,
253};
254
255/* BRCMNAND v5.0 */
256static const u16 brcmnand_regs_v50[] = {
257 [BRCMNAND_CMD_START] = 0x04,
258 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
259 [BRCMNAND_CMD_ADDRESS] = 0x0c,
260 [BRCMNAND_INTFC_STATUS] = 0x6c,
261 [BRCMNAND_CS_SELECT] = 0x14,
262 [BRCMNAND_CS_XOR] = 0x18,
263 [BRCMNAND_LL_OP] = 0x178,
264 [BRCMNAND_CS0_BASE] = 0x40,
265 [BRCMNAND_CS1_BASE] = 0xd0,
266 [BRCMNAND_CORR_THRESHOLD] = 0x84,
267 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
268 [BRCMNAND_UNCORR_COUNT] = 0,
269 [BRCMNAND_CORR_COUNT] = 0,
270 [BRCMNAND_CORR_EXT_ADDR] = 0x70,
271 [BRCMNAND_CORR_ADDR] = 0x74,
272 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
273 [BRCMNAND_UNCORR_ADDR] = 0x7c,
274 [BRCMNAND_SEMAPHORE] = 0x58,
275 [BRCMNAND_ID] = 0x60,
276 [BRCMNAND_ID_EXT] = 0x64,
277 [BRCMNAND_LL_RDATA] = 0x17c,
278 [BRCMNAND_OOB_READ_BASE] = 0x20,
279 [BRCMNAND_OOB_READ_10_BASE] = 0x130,
280 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
281 [BRCMNAND_OOB_WRITE_10_BASE] = 0x140,
282 [BRCMNAND_FC_BASE] = 0x200,
283};
284
285/* BRCMNAND v6.0 - v7.1 */
286static const u16 brcmnand_regs_v60[] = {
287 [BRCMNAND_CMD_START] = 0x04,
288 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
289 [BRCMNAND_CMD_ADDRESS] = 0x0c,
290 [BRCMNAND_INTFC_STATUS] = 0x14,
291 [BRCMNAND_CS_SELECT] = 0x18,
292 [BRCMNAND_CS_XOR] = 0x1c,
293 [BRCMNAND_LL_OP] = 0x20,
294 [BRCMNAND_CS0_BASE] = 0x50,
295 [BRCMNAND_CS1_BASE] = 0,
296 [BRCMNAND_CORR_THRESHOLD] = 0xc0,
297 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4,
298 [BRCMNAND_UNCORR_COUNT] = 0xfc,
299 [BRCMNAND_CORR_COUNT] = 0x100,
300 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
301 [BRCMNAND_CORR_ADDR] = 0x110,
302 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
303 [BRCMNAND_UNCORR_ADDR] = 0x118,
304 [BRCMNAND_SEMAPHORE] = 0x150,
305 [BRCMNAND_ID] = 0x194,
306 [BRCMNAND_ID_EXT] = 0x198,
307 [BRCMNAND_LL_RDATA] = 0x19c,
308 [BRCMNAND_OOB_READ_BASE] = 0x200,
309 [BRCMNAND_OOB_READ_10_BASE] = 0,
310 [BRCMNAND_OOB_WRITE_BASE] = 0x280,
311 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
312 [BRCMNAND_FC_BASE] = 0x400,
313};
314
315/* BRCMNAND v7.1 */
316static const u16 brcmnand_regs_v71[] = {
317 [BRCMNAND_CMD_START] = 0x04,
318 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
319 [BRCMNAND_CMD_ADDRESS] = 0x0c,
320 [BRCMNAND_INTFC_STATUS] = 0x14,
321 [BRCMNAND_CS_SELECT] = 0x18,
322 [BRCMNAND_CS_XOR] = 0x1c,
323 [BRCMNAND_LL_OP] = 0x20,
324 [BRCMNAND_CS0_BASE] = 0x50,
325 [BRCMNAND_CS1_BASE] = 0,
326 [BRCMNAND_CORR_THRESHOLD] = 0xdc,
327 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
328 [BRCMNAND_UNCORR_COUNT] = 0xfc,
329 [BRCMNAND_CORR_COUNT] = 0x100,
330 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
331 [BRCMNAND_CORR_ADDR] = 0x110,
332 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
333 [BRCMNAND_UNCORR_ADDR] = 0x118,
334 [BRCMNAND_SEMAPHORE] = 0x150,
335 [BRCMNAND_ID] = 0x194,
336 [BRCMNAND_ID_EXT] = 0x198,
337 [BRCMNAND_LL_RDATA] = 0x19c,
338 [BRCMNAND_OOB_READ_BASE] = 0x200,
339 [BRCMNAND_OOB_READ_10_BASE] = 0,
340 [BRCMNAND_OOB_WRITE_BASE] = 0x280,
341 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
342 [BRCMNAND_FC_BASE] = 0x400,
343};
344
345/* BRCMNAND v7.2 */
346static const u16 brcmnand_regs_v72[] = {
347 [BRCMNAND_CMD_START] = 0x04,
348 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
349 [BRCMNAND_CMD_ADDRESS] = 0x0c,
350 [BRCMNAND_INTFC_STATUS] = 0x14,
351 [BRCMNAND_CS_SELECT] = 0x18,
352 [BRCMNAND_CS_XOR] = 0x1c,
353 [BRCMNAND_LL_OP] = 0x20,
354 [BRCMNAND_CS0_BASE] = 0x50,
355 [BRCMNAND_CS1_BASE] = 0,
356 [BRCMNAND_CORR_THRESHOLD] = 0xdc,
357 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
358 [BRCMNAND_UNCORR_COUNT] = 0xfc,
359 [BRCMNAND_CORR_COUNT] = 0x100,
360 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
361 [BRCMNAND_CORR_ADDR] = 0x110,
362 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
363 [BRCMNAND_UNCORR_ADDR] = 0x118,
364 [BRCMNAND_SEMAPHORE] = 0x150,
365 [BRCMNAND_ID] = 0x194,
366 [BRCMNAND_ID_EXT] = 0x198,
367 [BRCMNAND_LL_RDATA] = 0x19c,
368 [BRCMNAND_OOB_READ_BASE] = 0x200,
369 [BRCMNAND_OOB_READ_10_BASE] = 0,
370 [BRCMNAND_OOB_WRITE_BASE] = 0x400,
371 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
372 [BRCMNAND_FC_BASE] = 0x600,
373};
374
375enum brcmnand_cs_reg {
376 BRCMNAND_CS_CFG_EXT = 0,
377 BRCMNAND_CS_CFG,
378 BRCMNAND_CS_ACC_CONTROL,
379 BRCMNAND_CS_TIMING1,
380 BRCMNAND_CS_TIMING2,
381};
382
383/* Per chip-select offsets for v7.1 */
384static const u8 brcmnand_cs_offsets_v71[] = {
385 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
386 [BRCMNAND_CS_CFG_EXT] = 0x04,
387 [BRCMNAND_CS_CFG] = 0x08,
388 [BRCMNAND_CS_TIMING1] = 0x0c,
389 [BRCMNAND_CS_TIMING2] = 0x10,
390};
391
392/* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
393static const u8 brcmnand_cs_offsets[] = {
394 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
395 [BRCMNAND_CS_CFG_EXT] = 0x04,
396 [BRCMNAND_CS_CFG] = 0x04,
397 [BRCMNAND_CS_TIMING1] = 0x08,
398 [BRCMNAND_CS_TIMING2] = 0x0c,
399};
400
401/* Per chip-select offset for <= v5.0 on CS0 only */
402static const u8 brcmnand_cs_offsets_cs0[] = {
403 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
404 [BRCMNAND_CS_CFG_EXT] = 0x08,
405 [BRCMNAND_CS_CFG] = 0x08,
406 [BRCMNAND_CS_TIMING1] = 0x10,
407 [BRCMNAND_CS_TIMING2] = 0x14,
408};
409
410/*
411 * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
412 * one config register, but once the bitfields overflowed, newer controllers
413 * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
414 */
415enum {
416 CFG_BLK_ADR_BYTES_SHIFT = 8,
417 CFG_COL_ADR_BYTES_SHIFT = 12,
418 CFG_FUL_ADR_BYTES_SHIFT = 16,
419 CFG_BUS_WIDTH_SHIFT = 23,
420 CFG_BUS_WIDTH = BIT(CFG_BUS_WIDTH_SHIFT),
421 CFG_DEVICE_SIZE_SHIFT = 24,
422
423 /* Only for pre-v7.1 (with no CFG_EXT register) */
424 CFG_PAGE_SIZE_SHIFT = 20,
425 CFG_BLK_SIZE_SHIFT = 28,
426
427 /* Only for v7.1+ (with CFG_EXT register) */
428 CFG_EXT_PAGE_SIZE_SHIFT = 0,
429 CFG_EXT_BLK_SIZE_SHIFT = 4,
430};
431
432/* BRCMNAND_INTFC_STATUS */
433enum {
434 INTFC_FLASH_STATUS = GENMASK(7, 0),
435
436 INTFC_ERASED = BIT(27),
437 INTFC_OOB_VALID = BIT(28),
438 INTFC_CACHE_VALID = BIT(29),
439 INTFC_FLASH_READY = BIT(30),
440 INTFC_CTLR_READY = BIT(31),
441};
442
443static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
444{
445 return brcmnand_readl(ctrl->nand_base + offs);
446}
447
448static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
449 u32 val)
450{
451 brcmnand_writel(val, ctrl->nand_base + offs);
452}
453
454static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
455{
456 static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
457 static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
458 static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 };
459
460 ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
461
462 /* Only support v4.0+? */
463 if (ctrl->nand_version < 0x0400) {
464 dev_err(ctrl->dev, "version %#x not supported\n",
465 ctrl->nand_version);
466 return -ENODEV;
467 }
468
469 /* Register offsets */
470 if (ctrl->nand_version >= 0x0702)
471 ctrl->reg_offsets = brcmnand_regs_v72;
472 else if (ctrl->nand_version >= 0x0701)
473 ctrl->reg_offsets = brcmnand_regs_v71;
474 else if (ctrl->nand_version >= 0x0600)
475 ctrl->reg_offsets = brcmnand_regs_v60;
476 else if (ctrl->nand_version >= 0x0500)
477 ctrl->reg_offsets = brcmnand_regs_v50;
478 else if (ctrl->nand_version >= 0x0400)
479 ctrl->reg_offsets = brcmnand_regs_v40;
480
481 /* Chip-select stride */
482 if (ctrl->nand_version >= 0x0701)
483 ctrl->reg_spacing = 0x14;
484 else
485 ctrl->reg_spacing = 0x10;
486
487 /* Per chip-select registers */
488 if (ctrl->nand_version >= 0x0701) {
489 ctrl->cs_offsets = brcmnand_cs_offsets_v71;
490 } else {
491 ctrl->cs_offsets = brcmnand_cs_offsets;
492
493 /* v5.0 and earlier has a different CS0 offset layout */
494 if (ctrl->nand_version <= 0x0500)
495 ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
496 }
497
498 /* Page / block sizes */
499 if (ctrl->nand_version >= 0x0701) {
500 /* >= v7.1 use nice power-of-2 values! */
501 ctrl->max_page_size = 16 * 1024;
502 ctrl->max_block_size = 2 * 1024 * 1024;
503 } else {
504 ctrl->page_sizes = page_sizes;
505 if (ctrl->nand_version >= 0x0600)
506 ctrl->block_sizes = block_sizes_v6;
507 else
508 ctrl->block_sizes = block_sizes_v4;
509
510 if (ctrl->nand_version < 0x0400) {
511 ctrl->max_page_size = 4096;
512 ctrl->max_block_size = 512 * 1024;
513 }
514 }
515
516 /* Maximum spare area sector size (per 512B) */
517 if (ctrl->nand_version >= 0x0702)
518 ctrl->max_oob = 128;
519 else if (ctrl->nand_version >= 0x0600)
520 ctrl->max_oob = 64;
521 else if (ctrl->nand_version >= 0x0500)
522 ctrl->max_oob = 32;
523 else
524 ctrl->max_oob = 16;
525
526 /* v6.0 and newer (except v6.1) have prefetch support */
527 if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
528 ctrl->features |= BRCMNAND_HAS_PREFETCH;
529
530 /*
531 * v6.x has cache mode, but it's implemented differently. Ignore it for
532 * now.
533 */
534 if (ctrl->nand_version >= 0x0700)
535 ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
536
537 if (ctrl->nand_version >= 0x0500)
538 ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
539
540 if (ctrl->nand_version >= 0x0700)
541 ctrl->features |= BRCMNAND_HAS_WP;
542#ifndef __UBOOT__
543 else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
544#else
545 else if (dev_read_bool(ctrl->dev, "brcm,nand-has-wp"))
546#endif /* __UBOOT__ */
547 ctrl->features |= BRCMNAND_HAS_WP;
548
549 return 0;
550}
551
552static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
553 enum brcmnand_reg reg)
554{
555 u16 offs = ctrl->reg_offsets[reg];
556
557 if (offs)
558 return nand_readreg(ctrl, offs);
559 else
560 return 0;
561}
562
563static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
564 enum brcmnand_reg reg, u32 val)
565{
566 u16 offs = ctrl->reg_offsets[reg];
567
568 if (offs)
569 nand_writereg(ctrl, offs, val);
570}
571
572static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
573 enum brcmnand_reg reg, u32 mask, unsigned
574 int shift, u32 val)
575{
576 u32 tmp = brcmnand_read_reg(ctrl, reg);
577
578 tmp &= ~mask;
579 tmp |= val << shift;
580 brcmnand_write_reg(ctrl, reg, tmp);
581}
582
583static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
584{
585 return __raw_readl(ctrl->nand_fc + word * 4);
586}
587
588static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
589 int word, u32 val)
590{
591 __raw_writel(val, ctrl->nand_fc + word * 4);
592}
593
594static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
595 enum brcmnand_cs_reg reg)
596{
597 u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
598 u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
599 u8 cs_offs;
600
601 if (cs == 0 && ctrl->cs0_offsets)
602 cs_offs = ctrl->cs0_offsets[reg];
603 else
604 cs_offs = ctrl->cs_offsets[reg];
605
606 if (cs && offs_cs1)
607 return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
608
609 return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
610}
611
612static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
613{
614 if (ctrl->nand_version < 0x0600)
615 return 1;
616 return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
617}
618
619static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
620{
621 struct brcmnand_controller *ctrl = host->ctrl;
622 unsigned int shift = 0, bits;
623 enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
624 int cs = host->cs;
625
626 if (ctrl->nand_version >= 0x0702)
627 bits = 7;
628 else if (ctrl->nand_version >= 0x0600)
629 bits = 6;
630 else if (ctrl->nand_version >= 0x0500)
631 bits = 5;
632 else
633 bits = 4;
634
635 if (ctrl->nand_version >= 0x0702) {
636 if (cs >= 4)
637 reg = BRCMNAND_CORR_THRESHOLD_EXT;
638 shift = (cs % 4) * bits;
639 } else if (ctrl->nand_version >= 0x0600) {
640 if (cs >= 5)
641 reg = BRCMNAND_CORR_THRESHOLD_EXT;
642 shift = (cs % 5) * bits;
643 }
644 brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
645}
646
647static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
648{
649 if (ctrl->nand_version < 0x0602)
650 return 24;
651 return 0;
652}
653
654/***********************************************************************
655 * NAND ACC CONTROL bitfield
656 *
657 * Some bits have remained constant throughout hardware revision, while
658 * others have shifted around.
659 ***********************************************************************/
660
661/* Constant for all versions (where supported) */
662enum {
663 /* See BRCMNAND_HAS_CACHE_MODE */
664 ACC_CONTROL_CACHE_MODE = BIT(22),
665
666 /* See BRCMNAND_HAS_PREFETCH */
667 ACC_CONTROL_PREFETCH = BIT(23),
668
669 ACC_CONTROL_PAGE_HIT = BIT(24),
670 ACC_CONTROL_WR_PREEMPT = BIT(25),
671 ACC_CONTROL_PARTIAL_PAGE = BIT(26),
672 ACC_CONTROL_RD_ERASED = BIT(27),
673 ACC_CONTROL_FAST_PGM_RDIN = BIT(28),
674 ACC_CONTROL_WR_ECC = BIT(30),
675 ACC_CONTROL_RD_ECC = BIT(31),
676};
677
678static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
679{
680 if (ctrl->nand_version >= 0x0702)
681 return GENMASK(7, 0);
682 else if (ctrl->nand_version >= 0x0600)
683 return GENMASK(6, 0);
684 else
685 return GENMASK(5, 0);
686}
687
688#define NAND_ACC_CONTROL_ECC_SHIFT 16
689#define NAND_ACC_CONTROL_ECC_EXT_SHIFT 13
690
691static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
692{
693 u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
694
695 mask <<= NAND_ACC_CONTROL_ECC_SHIFT;
696
697 /* v7.2 includes additional ECC levels */
698 if (ctrl->nand_version >= 0x0702)
699 mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT;
700
701 return mask;
702}
703
704static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
705{
706 struct brcmnand_controller *ctrl = host->ctrl;
707 u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
708 u32 acc_control = nand_readreg(ctrl, offs);
709 u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
710
711 if (en) {
712 acc_control |= ecc_flags; /* enable RD/WR ECC */
713 acc_control |= host->hwcfg.ecc_level
714 << NAND_ACC_CONTROL_ECC_SHIFT;
715 } else {
716 acc_control &= ~ecc_flags; /* disable RD/WR ECC */
717 acc_control &= ~brcmnand_ecc_level_mask(ctrl);
718 }
719
720 nand_writereg(ctrl, offs, acc_control);
721}
722
723static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
724{
725 if (ctrl->nand_version >= 0x0702)
726 return 9;
727 else if (ctrl->nand_version >= 0x0600)
728 return 7;
729 else if (ctrl->nand_version >= 0x0500)
730 return 6;
731 else
732 return -1;
733}
734
735static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
736{
737 struct brcmnand_controller *ctrl = host->ctrl;
738 int shift = brcmnand_sector_1k_shift(ctrl);
739 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
740 BRCMNAND_CS_ACC_CONTROL);
741
742 if (shift < 0)
743 return 0;
744
745 return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
746}
747
748static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
749{
750 struct brcmnand_controller *ctrl = host->ctrl;
751 int shift = brcmnand_sector_1k_shift(ctrl);
752 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
753 BRCMNAND_CS_ACC_CONTROL);
754 u32 tmp;
755
756 if (shift < 0)
757 return;
758
759 tmp = nand_readreg(ctrl, acc_control_offs);
760 tmp &= ~(1 << shift);
761 tmp |= (!!val) << shift;
762 nand_writereg(ctrl, acc_control_offs, tmp);
763}
764
765/***********************************************************************
766 * CS_NAND_SELECT
767 ***********************************************************************/
768
769enum {
770 CS_SELECT_NAND_WP = BIT(29),
771 CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30),
772};
773
774static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
775 u32 mask, u32 expected_val,
776 unsigned long timeout_ms)
777{
778#ifndef __UBOOT__
779 unsigned long limit;
780 u32 val;
781
782 if (!timeout_ms)
783 timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
784
785 limit = jiffies + msecs_to_jiffies(timeout_ms);
786 do {
787 val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
788 if ((val & mask) == expected_val)
789 return 0;
790
791 cpu_relax();
792 } while (time_after(limit, jiffies));
793#else
794 unsigned long base, limit;
795 u32 val;
796
797 if (!timeout_ms)
798 timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
799
800 base = get_timer(0);
801 limit = CONFIG_SYS_HZ * timeout_ms / 1000;
802 do {
803 val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
804 if ((val & mask) == expected_val)
805 return 0;
806
807 cpu_relax();
808 } while (get_timer(base) < limit);
809#endif /* __UBOOT__ */
810
811 dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
812 expected_val, val & mask);
813
814 return -ETIMEDOUT;
815}
816
817static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
818{
819 u32 val = en ? CS_SELECT_NAND_WP : 0;
820
821 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
822}
823
824/***********************************************************************
825 * Flash DMA
826 ***********************************************************************/
827
828enum flash_dma_reg {
829 FLASH_DMA_REVISION = 0x00,
830 FLASH_DMA_FIRST_DESC = 0x04,
831 FLASH_DMA_FIRST_DESC_EXT = 0x08,
832 FLASH_DMA_CTRL = 0x0c,
833 FLASH_DMA_MODE = 0x10,
834 FLASH_DMA_STATUS = 0x14,
835 FLASH_DMA_INTERRUPT_DESC = 0x18,
836 FLASH_DMA_INTERRUPT_DESC_EXT = 0x1c,
837 FLASH_DMA_ERROR_STATUS = 0x20,
838 FLASH_DMA_CURRENT_DESC = 0x24,
839 FLASH_DMA_CURRENT_DESC_EXT = 0x28,
840};
841
842static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
843{
844 return ctrl->flash_dma_base;
845}
846
847static inline bool flash_dma_buf_ok(const void *buf)
848{
849#ifndef __UBOOT__
850 return buf && !is_vmalloc_addr(buf) &&
851 likely(IS_ALIGNED((uintptr_t)buf, 4));
852#else
853 return buf && likely(IS_ALIGNED((uintptr_t)buf, 4));
854#endif /* __UBOOT__ */
855}
856
857static inline void flash_dma_writel(struct brcmnand_controller *ctrl, u8 offs,
858 u32 val)
859{
860 brcmnand_writel(val, ctrl->flash_dma_base + offs);
861}
862
863static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, u8 offs)
864{
865 return brcmnand_readl(ctrl->flash_dma_base + offs);
866}
867
868/* Low-level operation types: command, address, write, or read */
869enum brcmnand_llop_type {
870 LL_OP_CMD,
871 LL_OP_ADDR,
872 LL_OP_WR,
873 LL_OP_RD,
874};
875
876/***********************************************************************
877 * Internal support functions
878 ***********************************************************************/
879
880static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
881 struct brcmnand_cfg *cfg)
882{
883 if (ctrl->nand_version <= 0x0701)
884 return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
885 cfg->ecc_level == 15;
886 else
887 return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
888 cfg->ecc_level == 15) ||
889 (cfg->spare_area_size == 28 && cfg->ecc_level == 16));
890}
891
892/*
William Zhang1100e492019-09-04 10:51:13 -0700893 * Returns a nand_ecclayout strucutre for the given layout/configuration.
894 * Returns NULL on failure.
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100895 */
William Zhang1100e492019-09-04 10:51:13 -0700896static struct nand_ecclayout *brcmnand_create_layout(int ecc_level,
897 struct brcmnand_host *host)
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100898{
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100899 struct brcmnand_cfg *cfg = &host->hwcfg;
William Zhang1100e492019-09-04 10:51:13 -0700900 int i, j;
901 struct nand_ecclayout *layout;
902 int req;
903 int sectors;
904 int sas;
905 int idx1, idx2;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100906
William Zhang1100e492019-09-04 10:51:13 -0700907#ifndef __UBOOT__
908 layout = devm_kzalloc(&host->pdev->dev, sizeof(*layout), GFP_KERNEL);
909#else
910 layout = devm_kzalloc(host->pdev, sizeof(*layout), GFP_KERNEL);
911#endif
912 if (!layout)
913 return NULL;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100914
William Zhang1100e492019-09-04 10:51:13 -0700915 sectors = cfg->page_size / (512 << cfg->sector_size_1k);
916 sas = cfg->spare_area_size << cfg->sector_size_1k;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100917
William Zhang1100e492019-09-04 10:51:13 -0700918 /* Hamming */
919 if (is_hamming_ecc(host->ctrl, cfg)) {
920 for (i = 0, idx1 = 0, idx2 = 0; i < sectors; i++) {
921 /* First sector of each page may have BBI */
922 if (i == 0) {
923 layout->oobfree[idx2].offset = i * sas + 1;
924 /* Small-page NAND use byte 6 for BBI */
925 if (cfg->page_size == 512)
926 layout->oobfree[idx2].offset--;
927 layout->oobfree[idx2].length = 5;
928 } else {
929 layout->oobfree[idx2].offset = i * sas;
930 layout->oobfree[idx2].length = 6;
931 }
932 idx2++;
933 layout->eccpos[idx1++] = i * sas + 6;
934 layout->eccpos[idx1++] = i * sas + 7;
935 layout->eccpos[idx1++] = i * sas + 8;
936 layout->oobfree[idx2].offset = i * sas + 9;
937 layout->oobfree[idx2].length = 7;
938 idx2++;
939 /* Leave zero-terminated entry for OOBFREE */
940 if (idx1 >= MTD_MAX_ECCPOS_ENTRIES_LARGE ||
941 idx2 >= MTD_MAX_OOBFREE_ENTRIES_LARGE - 1)
942 break;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100943 }
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100944
William Zhang1100e492019-09-04 10:51:13 -0700945 return layout;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100946 }
947
William Zhang1100e492019-09-04 10:51:13 -0700948 /*
949 * CONTROLLER_VERSION:
950 * < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
951 * >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
952 * But we will just be conservative.
953 */
954 req = DIV_ROUND_UP(ecc_level * 14, 8);
955 if (req >= sas) {
956 dev_err(&host->pdev->dev,
957 "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
958 req, sas);
959 return NULL;
960 }
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100961
William Zhang1100e492019-09-04 10:51:13 -0700962 layout->eccbytes = req * sectors;
963 for (i = 0, idx1 = 0, idx2 = 0; i < sectors; i++) {
964 for (j = sas - req; j < sas && idx1 <
965 MTD_MAX_ECCPOS_ENTRIES_LARGE; j++, idx1++)
966 layout->eccpos[idx1] = i * sas + j;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100967
William Zhang1100e492019-09-04 10:51:13 -0700968 /* First sector of each page may have BBI */
969 if (i == 0) {
970 if (cfg->page_size == 512 && (sas - req >= 6)) {
971 /* Small-page NAND use byte 6 for BBI */
972 layout->oobfree[idx2].offset = 0;
973 layout->oobfree[idx2].length = 5;
974 idx2++;
975 if (sas - req > 6) {
976 layout->oobfree[idx2].offset = 6;
977 layout->oobfree[idx2].length =
978 sas - req - 6;
979 idx2++;
980 }
981 } else if (sas > req + 1) {
982 layout->oobfree[idx2].offset = i * sas + 1;
983 layout->oobfree[idx2].length = sas - req - 1;
984 idx2++;
985 }
986 } else if (sas > req) {
987 layout->oobfree[idx2].offset = i * sas;
988 layout->oobfree[idx2].length = sas - req;
989 idx2++;
990 }
991 /* Leave zero-terminated entry for OOBFREE */
992 if (idx1 >= MTD_MAX_ECCPOS_ENTRIES_LARGE ||
993 idx2 >= MTD_MAX_OOBFREE_ENTRIES_LARGE - 1)
994 break;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100995 }
996
William Zhang1100e492019-09-04 10:51:13 -0700997 return layout;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +0100998}
999
William Zhang1100e492019-09-04 10:51:13 -07001000static struct nand_ecclayout *brcmstb_choose_ecc_layout(
1001 struct brcmnand_host *host)
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001002{
William Zhang1100e492019-09-04 10:51:13 -07001003 struct nand_ecclayout *layout;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001004 struct brcmnand_cfg *p = &host->hwcfg;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001005 unsigned int ecc_level = p->ecc_level;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001006
1007 if (p->sector_size_1k)
1008 ecc_level <<= 1;
1009
William Zhang1100e492019-09-04 10:51:13 -07001010 layout = brcmnand_create_layout(ecc_level, host);
1011 if (!layout) {
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001012 dev_err(&host->pdev->dev,
William Zhang1100e492019-09-04 10:51:13 -07001013 "no proper ecc_layout for this NAND cfg\n");
1014 return NULL;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001015 }
1016
William Zhang1100e492019-09-04 10:51:13 -07001017 return layout;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001018}
1019
1020static void brcmnand_wp(struct mtd_info *mtd, int wp)
1021{
1022 struct nand_chip *chip = mtd_to_nand(mtd);
1023 struct brcmnand_host *host = nand_get_controller_data(chip);
1024 struct brcmnand_controller *ctrl = host->ctrl;
1025
1026 if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1027 static int old_wp = -1;
1028 int ret;
1029
1030 if (old_wp != wp) {
1031 dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1032 old_wp = wp;
1033 }
1034
1035 /*
1036 * make sure ctrl/flash ready before and after
1037 * changing state of #WP pin
1038 */
1039 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
1040 NAND_STATUS_READY,
1041 NAND_CTRL_RDY |
1042 NAND_STATUS_READY, 0);
1043 if (ret)
1044 return;
1045
1046 brcmnand_set_wp(ctrl, wp);
1047 nand_status_op(chip, NULL);
1048 /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1049 ret = bcmnand_ctrl_poll_status(ctrl,
1050 NAND_CTRL_RDY |
1051 NAND_STATUS_READY |
1052 NAND_STATUS_WP,
1053 NAND_CTRL_RDY |
1054 NAND_STATUS_READY |
1055 (wp ? 0 : NAND_STATUS_WP), 0);
1056#ifndef __UBOOT__
1057 if (ret)
1058 dev_err_ratelimited(&host->pdev->dev,
1059 "nand #WP expected %s\n",
1060 wp ? "on" : "off");
1061#else
1062 if (ret)
1063 dev_err(&host->pdev->dev,
1064 "nand #WP expected %s\n",
1065 wp ? "on" : "off");
1066#endif /* __UBOOT__ */
1067 }
1068}
1069
1070/* Helper functions for reading and writing OOB registers */
1071static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1072{
1073 u16 offset0, offset10, reg_offs;
1074
1075 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1076 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1077
1078 if (offs >= ctrl->max_oob)
1079 return 0x77;
1080
1081 if (offs >= 16 && offset10)
1082 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1083 else
1084 reg_offs = offset0 + (offs & ~0x03);
1085
1086 return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1087}
1088
1089static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1090 u32 data)
1091{
1092 u16 offset0, offset10, reg_offs;
1093
1094 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1095 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1096
1097 if (offs >= ctrl->max_oob)
1098 return;
1099
1100 if (offs >= 16 && offset10)
1101 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1102 else
1103 reg_offs = offset0 + (offs & ~0x03);
1104
1105 nand_writereg(ctrl, reg_offs, data);
1106}
1107
1108/*
1109 * read_oob_from_regs - read data from OOB registers
1110 * @ctrl: NAND controller
1111 * @i: sub-page sector index
1112 * @oob: buffer to read to
1113 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1114 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1115 */
1116static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1117 int sas, int sector_1k)
1118{
1119 int tbytes = sas << sector_1k;
1120 int j;
1121
1122 /* Adjust OOB values for 1K sector size */
1123 if (sector_1k && (i & 0x01))
1124 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1125 tbytes = min_t(int, tbytes, ctrl->max_oob);
1126
1127 for (j = 0; j < tbytes; j++)
1128 oob[j] = oob_reg_read(ctrl, j);
1129 return tbytes;
1130}
1131
1132/*
1133 * write_oob_to_regs - write data to OOB registers
1134 * @i: sub-page sector index
1135 * @oob: buffer to write from
1136 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1137 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1138 */
1139static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1140 const u8 *oob, int sas, int sector_1k)
1141{
1142 int tbytes = sas << sector_1k;
1143 int j;
1144
1145 /* Adjust OOB values for 1K sector size */
1146 if (sector_1k && (i & 0x01))
1147 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1148 tbytes = min_t(int, tbytes, ctrl->max_oob);
1149
1150 for (j = 0; j < tbytes; j += 4)
1151 oob_reg_write(ctrl, j,
1152 (oob[j + 0] << 24) |
1153 (oob[j + 1] << 16) |
1154 (oob[j + 2] << 8) |
1155 (oob[j + 3] << 0));
1156 return tbytes;
1157}
1158
1159#ifndef __UBOOT__
1160static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1161{
1162 struct brcmnand_controller *ctrl = data;
1163
1164 /* Discard all NAND_CTLRDY interrupts during DMA */
1165 if (ctrl->dma_pending)
1166 return IRQ_HANDLED;
1167
1168 complete(&ctrl->done);
1169 return IRQ_HANDLED;
1170}
1171
1172/* Handle SoC-specific interrupt hardware */
1173static irqreturn_t brcmnand_irq(int irq, void *data)
1174{
1175 struct brcmnand_controller *ctrl = data;
1176
1177 if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1178 return brcmnand_ctlrdy_irq(irq, data);
1179
1180 return IRQ_NONE;
1181}
1182
1183static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1184{
1185 struct brcmnand_controller *ctrl = data;
1186
1187 complete(&ctrl->dma_done);
1188
1189 return IRQ_HANDLED;
1190}
1191#endif /* __UBOOT__ */
1192
1193static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1194{
1195 struct brcmnand_controller *ctrl = host->ctrl;
1196 int ret;
1197
1198 dev_dbg(ctrl->dev, "send native cmd %d addr_lo 0x%x\n", cmd,
1199 brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS));
1200 BUG_ON(ctrl->cmd_pending != 0);
1201 ctrl->cmd_pending = cmd;
1202
1203 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1204 WARN_ON(ret);
1205
1206 mb(); /* flush previous writes */
1207 brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1208 cmd << brcmnand_cmd_shift(ctrl));
1209}
1210
1211/***********************************************************************
1212 * NAND MTD API: read/program/erase
1213 ***********************************************************************/
1214
1215static void brcmnand_cmd_ctrl(struct mtd_info *mtd, int dat,
1216 unsigned int ctrl)
1217{
1218 /* intentionally left blank */
1219}
1220
1221static int brcmnand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
1222{
1223 struct nand_chip *chip = mtd_to_nand(mtd);
1224 struct brcmnand_host *host = nand_get_controller_data(chip);
1225 struct brcmnand_controller *ctrl = host->ctrl;
1226
1227#ifndef __UBOOT__
1228 unsigned long timeo = msecs_to_jiffies(100);
1229
1230 dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1231 if (ctrl->cmd_pending &&
1232 wait_for_completion_timeout(&ctrl->done, timeo) <= 0) {
1233 u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1234 >> brcmnand_cmd_shift(ctrl);
1235
1236 dev_err_ratelimited(ctrl->dev,
1237 "timeout waiting for command %#02x\n", cmd);
1238 dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1239 brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1240 }
1241#else
1242 unsigned long timeo = 100; /* 100 msec */
1243 int ret;
1244
1245 dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1246
1247 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, timeo);
1248 WARN_ON(ret);
1249#endif /* __UBOOT__ */
1250
1251 ctrl->cmd_pending = 0;
1252 return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1253 INTFC_FLASH_STATUS;
1254}
1255
1256enum {
1257 LLOP_RE = BIT(16),
1258 LLOP_WE = BIT(17),
1259 LLOP_ALE = BIT(18),
1260 LLOP_CLE = BIT(19),
1261 LLOP_RETURN_IDLE = BIT(31),
1262
1263 LLOP_DATA_MASK = GENMASK(15, 0),
1264};
1265
1266static int brcmnand_low_level_op(struct brcmnand_host *host,
1267 enum brcmnand_llop_type type, u32 data,
1268 bool last_op)
1269{
1270 struct mtd_info *mtd = nand_to_mtd(&host->chip);
1271 struct nand_chip *chip = &host->chip;
1272 struct brcmnand_controller *ctrl = host->ctrl;
1273 u32 tmp;
1274
1275 tmp = data & LLOP_DATA_MASK;
1276 switch (type) {
1277 case LL_OP_CMD:
1278 tmp |= LLOP_WE | LLOP_CLE;
1279 break;
1280 case LL_OP_ADDR:
1281 /* WE | ALE */
1282 tmp |= LLOP_WE | LLOP_ALE;
1283 break;
1284 case LL_OP_WR:
1285 /* WE */
1286 tmp |= LLOP_WE;
1287 break;
1288 case LL_OP_RD:
1289 /* RE */
1290 tmp |= LLOP_RE;
1291 break;
1292 }
1293 if (last_op)
1294 /* RETURN_IDLE */
1295 tmp |= LLOP_RETURN_IDLE;
1296
1297 dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1298
1299 brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1300 (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1301
1302 brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1303 return brcmnand_waitfunc(mtd, chip);
1304}
1305
1306static void brcmnand_cmdfunc(struct mtd_info *mtd, unsigned command,
1307 int column, int page_addr)
1308{
1309 struct nand_chip *chip = mtd_to_nand(mtd);
1310 struct brcmnand_host *host = nand_get_controller_data(chip);
1311 struct brcmnand_controller *ctrl = host->ctrl;
1312 u64 addr = (u64)page_addr << chip->page_shift;
1313 int native_cmd = 0;
1314
1315 if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1316 command == NAND_CMD_RNDOUT)
1317 addr = (u64)column;
1318 /* Avoid propagating a negative, don't-care address */
1319 else if (page_addr < 0)
1320 addr = 0;
1321
1322 dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1323 (unsigned long long)addr);
1324
1325 host->last_cmd = command;
1326 host->last_byte = 0;
1327 host->last_addr = addr;
1328
1329 switch (command) {
1330 case NAND_CMD_RESET:
1331 native_cmd = CMD_FLASH_RESET;
1332 break;
1333 case NAND_CMD_STATUS:
1334 native_cmd = CMD_STATUS_READ;
1335 break;
1336 case NAND_CMD_READID:
1337 native_cmd = CMD_DEVICE_ID_READ;
1338 break;
1339 case NAND_CMD_READOOB:
1340 native_cmd = CMD_SPARE_AREA_READ;
1341 break;
1342 case NAND_CMD_ERASE1:
1343 native_cmd = CMD_BLOCK_ERASE;
1344 brcmnand_wp(mtd, 0);
1345 break;
1346 case NAND_CMD_PARAM:
1347 native_cmd = CMD_PARAMETER_READ;
1348 break;
1349 case NAND_CMD_SET_FEATURES:
1350 case NAND_CMD_GET_FEATURES:
1351 brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1352 brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1353 break;
1354 case NAND_CMD_RNDOUT:
1355 native_cmd = CMD_PARAMETER_CHANGE_COL;
1356 addr &= ~((u64)(FC_BYTES - 1));
1357 /*
1358 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1359 * NB: hwcfg.sector_size_1k may not be initialized yet
1360 */
1361 if (brcmnand_get_sector_size_1k(host)) {
1362 host->hwcfg.sector_size_1k =
1363 brcmnand_get_sector_size_1k(host);
1364 brcmnand_set_sector_size_1k(host, 0);
1365 }
1366 break;
1367 }
1368
1369 if (!native_cmd)
1370 return;
1371
1372 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1373 (host->cs << 16) | ((addr >> 32) & 0xffff));
1374 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1375 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, lower_32_bits(addr));
1376 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1377
1378 brcmnand_send_cmd(host, native_cmd);
1379 brcmnand_waitfunc(mtd, chip);
1380
1381 if (native_cmd == CMD_PARAMETER_READ ||
1382 native_cmd == CMD_PARAMETER_CHANGE_COL) {
1383 /* Copy flash cache word-wise */
1384 u32 *flash_cache = (u32 *)ctrl->flash_cache;
1385 int i;
1386
1387 brcmnand_soc_data_bus_prepare(ctrl->soc, true);
1388
1389 /*
1390 * Must cache the FLASH_CACHE now, since changes in
1391 * SECTOR_SIZE_1K may invalidate it
1392 */
Philippe Reynes7f28cf62019-03-15 15:14:37 +01001393 for (i = 0; i < FC_WORDS; i++) {
1394 u32 fc;
1395
1396 fc = brcmnand_read_fc(ctrl, i);
1397
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001398 /*
1399 * Flash cache is big endian for parameter pages, at
1400 * least on STB SoCs
1401 */
Philippe Reynes7f28cf62019-03-15 15:14:37 +01001402 if (ctrl->parameter_page_big_endian)
1403 flash_cache[i] = be32_to_cpu(fc);
1404 else
1405 flash_cache[i] = le32_to_cpu(fc);
1406 }
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01001407
1408 brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
1409
1410 /* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1411 if (host->hwcfg.sector_size_1k)
1412 brcmnand_set_sector_size_1k(host,
1413 host->hwcfg.sector_size_1k);
1414 }
1415
1416 /* Re-enable protection is necessary only after erase */
1417 if (command == NAND_CMD_ERASE1)
1418 brcmnand_wp(mtd, 1);
1419}
1420
1421static uint8_t brcmnand_read_byte(struct mtd_info *mtd)
1422{
1423 struct nand_chip *chip = mtd_to_nand(mtd);
1424 struct brcmnand_host *host = nand_get_controller_data(chip);
1425 struct brcmnand_controller *ctrl = host->ctrl;
1426 uint8_t ret = 0;
1427 int addr, offs;
1428
1429 switch (host->last_cmd) {
1430 case NAND_CMD_READID:
1431 if (host->last_byte < 4)
1432 ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1433 (24 - (host->last_byte << 3));
1434 else if (host->last_byte < 8)
1435 ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1436 (56 - (host->last_byte << 3));
1437 break;
1438
1439 case NAND_CMD_READOOB:
1440 ret = oob_reg_read(ctrl, host->last_byte);
1441 break;
1442
1443 case NAND_CMD_STATUS:
1444 ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1445 INTFC_FLASH_STATUS;
1446 if (wp_on) /* hide WP status */
1447 ret |= NAND_STATUS_WP;
1448 break;
1449
1450 case NAND_CMD_PARAM:
1451 case NAND_CMD_RNDOUT:
1452 addr = host->last_addr + host->last_byte;
1453 offs = addr & (FC_BYTES - 1);
1454
1455 /* At FC_BYTES boundary, switch to next column */
1456 if (host->last_byte > 0 && offs == 0)
1457 nand_change_read_column_op(chip, addr, NULL, 0, false);
1458
1459 ret = ctrl->flash_cache[offs];
1460 break;
1461 case NAND_CMD_GET_FEATURES:
1462 if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1463 ret = 0;
1464 } else {
1465 bool last = host->last_byte ==
1466 ONFI_SUBFEATURE_PARAM_LEN - 1;
1467 brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1468 ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1469 }
1470 }
1471
1472 dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1473 host->last_byte++;
1474
1475 return ret;
1476}
1477
1478static void brcmnand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1479{
1480 int i;
1481
1482 for (i = 0; i < len; i++, buf++)
1483 *buf = brcmnand_read_byte(mtd);
1484}
1485
1486static void brcmnand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
1487 int len)
1488{
1489 int i;
1490 struct nand_chip *chip = mtd_to_nand(mtd);
1491 struct brcmnand_host *host = nand_get_controller_data(chip);
1492
1493 switch (host->last_cmd) {
1494 case NAND_CMD_SET_FEATURES:
1495 for (i = 0; i < len; i++)
1496 brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1497 (i + 1) == len);
1498 break;
1499 default:
1500 BUG();
1501 break;
1502 }
1503}
1504
1505/**
1506 * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1507 * following ahead of time:
1508 * - Is this descriptor the beginning or end of a linked list?
1509 * - What is the (DMA) address of the next descriptor in the linked list?
1510 */
1511#ifndef __UBOOT__
1512static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1513 struct brcm_nand_dma_desc *desc, u64 addr,
1514 dma_addr_t buf, u32 len, u8 dma_cmd,
1515 bool begin, bool end,
1516 dma_addr_t next_desc)
1517{
1518 memset(desc, 0, sizeof(*desc));
1519 /* Descriptors are written in native byte order (wordwise) */
1520 desc->next_desc = lower_32_bits(next_desc);
1521 desc->next_desc_ext = upper_32_bits(next_desc);
1522 desc->cmd_irq = (dma_cmd << 24) |
1523 (end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1524 (!!begin) | ((!!end) << 1); /* head, tail */
1525#ifdef CONFIG_CPU_BIG_ENDIAN
1526 desc->cmd_irq |= 0x01 << 12;
1527#endif
1528 desc->dram_addr = lower_32_bits(buf);
1529 desc->dram_addr_ext = upper_32_bits(buf);
1530 desc->tfr_len = len;
1531 desc->total_len = len;
1532 desc->flash_addr = lower_32_bits(addr);
1533 desc->flash_addr_ext = upper_32_bits(addr);
1534 desc->cs = host->cs;
1535 desc->status_valid = 0x01;
1536 return 0;
1537}
1538
1539/**
1540 * Kick the FLASH_DMA engine, with a given DMA descriptor
1541 */
1542static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
1543{
1544 struct brcmnand_controller *ctrl = host->ctrl;
1545 unsigned long timeo = msecs_to_jiffies(100);
1546
1547 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
1548 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
1549 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, upper_32_bits(desc));
1550 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
1551
1552 /* Start FLASH_DMA engine */
1553 ctrl->dma_pending = true;
1554 mb(); /* flush previous writes */
1555 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
1556
1557 if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
1558 dev_err(ctrl->dev,
1559 "timeout waiting for DMA; status %#x, error status %#x\n",
1560 flash_dma_readl(ctrl, FLASH_DMA_STATUS),
1561 flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
1562 }
1563 ctrl->dma_pending = false;
1564 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
1565}
1566
1567static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1568 u32 len, u8 dma_cmd)
1569{
1570 struct brcmnand_controller *ctrl = host->ctrl;
1571 dma_addr_t buf_pa;
1572 int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1573
1574 buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
1575 if (dma_mapping_error(ctrl->dev, buf_pa)) {
1576 dev_err(ctrl->dev, "unable to map buffer for DMA\n");
1577 return -ENOMEM;
1578 }
1579
1580 brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
1581 dma_cmd, true, true, 0);
1582
1583 brcmnand_dma_run(host, ctrl->dma_pa);
1584
1585 dma_unmap_single(ctrl->dev, buf_pa, len, dir);
1586
1587 if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
1588 return -EBADMSG;
1589 else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
1590 return -EUCLEAN;
1591
1592 return 0;
1593}
1594#endif /* __UBOOT__ */
1595
1596/*
1597 * Assumes proper CS is already set
1598 */
1599static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
1600 u64 addr, unsigned int trans, u32 *buf,
1601 u8 *oob, u64 *err_addr)
1602{
1603 struct brcmnand_host *host = nand_get_controller_data(chip);
1604 struct brcmnand_controller *ctrl = host->ctrl;
1605 int i, j, ret = 0;
1606
1607 /* Clear error addresses */
1608 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
1609 brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
1610 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
1611 brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
1612
1613 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1614 (host->cs << 16) | ((addr >> 32) & 0xffff));
1615 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1616
1617 for (i = 0; i < trans; i++, addr += FC_BYTES) {
1618 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1619 lower_32_bits(addr));
1620 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1621 /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
1622 brcmnand_send_cmd(host, CMD_PAGE_READ);
1623 brcmnand_waitfunc(mtd, chip);
1624
1625 if (likely(buf)) {
1626 brcmnand_soc_data_bus_prepare(ctrl->soc, false);
1627
1628 for (j = 0; j < FC_WORDS; j++, buf++)
1629 *buf = brcmnand_read_fc(ctrl, j);
1630
1631 brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
1632 }
1633
1634 if (oob)
1635 oob += read_oob_from_regs(ctrl, i, oob,
1636 mtd->oobsize / trans,
1637 host->hwcfg.sector_size_1k);
1638
1639 if (!ret) {
1640 *err_addr = brcmnand_read_reg(ctrl,
1641 BRCMNAND_UNCORR_ADDR) |
1642 ((u64)(brcmnand_read_reg(ctrl,
1643 BRCMNAND_UNCORR_EXT_ADDR)
1644 & 0xffff) << 32);
1645 if (*err_addr)
1646 ret = -EBADMSG;
1647 }
1648
1649 if (!ret) {
1650 *err_addr = brcmnand_read_reg(ctrl,
1651 BRCMNAND_CORR_ADDR) |
1652 ((u64)(brcmnand_read_reg(ctrl,
1653 BRCMNAND_CORR_EXT_ADDR)
1654 & 0xffff) << 32);
1655 if (*err_addr)
1656 ret = -EUCLEAN;
1657 }
1658 }
1659
1660 return ret;
1661}
1662
1663/*
1664 * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
1665 * error
1666 *
1667 * Because the HW ECC signals an ECC error if an erase paged has even a single
1668 * bitflip, we must check each ECC error to see if it is actually an erased
1669 * page with bitflips, not a truly corrupted page.
1670 *
1671 * On a real error, return a negative error code (-EBADMSG for ECC error), and
1672 * buf will contain raw data.
1673 * Otherwise, buf gets filled with 0xffs and return the maximum number of
1674 * bitflips-per-ECC-sector to the caller.
1675 *
1676 */
1677static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
1678 struct nand_chip *chip, void *buf, u64 addr)
1679{
1680 int i, sas;
1681 void *oob = chip->oob_poi;
1682 int bitflips = 0;
1683 int page = addr >> chip->page_shift;
1684 int ret;
1685
1686 if (!buf) {
1687#ifndef __UBOOT__
1688 buf = chip->data_buf;
1689#else
1690 buf = chip->buffers->databuf;
1691#endif
1692 /* Invalidate page cache */
1693 chip->pagebuf = -1;
1694 }
1695
1696 sas = mtd->oobsize / chip->ecc.steps;
1697
1698 /* read without ecc for verification */
1699 ret = chip->ecc.read_page_raw(mtd, chip, buf, true, page);
1700 if (ret)
1701 return ret;
1702
1703 for (i = 0; i < chip->ecc.steps; i++, oob += sas) {
1704 ret = nand_check_erased_ecc_chunk(buf, chip->ecc.size,
1705 oob, sas, NULL, 0,
1706 chip->ecc.strength);
1707 if (ret < 0)
1708 return ret;
1709
1710 bitflips = max(bitflips, ret);
1711 }
1712
1713 return bitflips;
1714}
1715
1716static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
1717 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
1718{
1719 struct brcmnand_host *host = nand_get_controller_data(chip);
1720 struct brcmnand_controller *ctrl = host->ctrl;
1721 u64 err_addr = 0;
1722 int err;
1723 bool retry = true;
1724
1725 dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
1726
1727try_dmaread:
1728 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_COUNT, 0);
1729
1730#ifndef __UBOOT__
1731 if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1732 err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES,
1733 CMD_PAGE_READ);
1734 if (err) {
1735 if (mtd_is_bitflip_or_eccerr(err))
1736 err_addr = addr;
1737 else
1738 return -EIO;
1739 }
1740 } else {
1741 if (oob)
1742 memset(oob, 0x99, mtd->oobsize);
1743
1744 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
1745 oob, &err_addr);
1746 }
1747#else
1748 if (oob)
1749 memset(oob, 0x99, mtd->oobsize);
1750
1751 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
1752 oob, &err_addr);
1753#endif /* __UBOOT__ */
1754
1755 if (mtd_is_eccerr(err)) {
1756 /*
1757 * On controller version and 7.0, 7.1 , DMA read after a
1758 * prior PIO read that reported uncorrectable error,
1759 * the DMA engine captures this error following DMA read
1760 * cleared only on subsequent DMA read, so just retry once
1761 * to clear a possible false error reported for current DMA
1762 * read
1763 */
1764 if ((ctrl->nand_version == 0x0700) ||
1765 (ctrl->nand_version == 0x0701)) {
1766 if (retry) {
1767 retry = false;
1768 goto try_dmaread;
1769 }
1770 }
1771
1772 /*
1773 * Controller version 7.2 has hw encoder to detect erased page
1774 * bitflips, apply sw verification for older controllers only
1775 */
1776 if (ctrl->nand_version < 0x0702) {
1777 err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
1778 addr);
1779 /* erased page bitflips corrected */
1780 if (err >= 0)
1781 return err;
1782 }
1783
1784 dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
1785 (unsigned long long)err_addr);
1786 mtd->ecc_stats.failed++;
1787 /* NAND layer expects zero on ECC errors */
1788 return 0;
1789 }
1790
1791 if (mtd_is_bitflip(err)) {
1792 unsigned int corrected = brcmnand_count_corrected(ctrl);
1793
1794 dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
1795 (unsigned long long)err_addr);
1796 mtd->ecc_stats.corrected += corrected;
1797 /* Always exceed the software-imposed threshold */
1798 return max(mtd->bitflip_threshold, corrected);
1799 }
1800
1801 return 0;
1802}
1803
1804static int brcmnand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1805 uint8_t *buf, int oob_required, int page)
1806{
1807 struct brcmnand_host *host = nand_get_controller_data(chip);
1808 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1809
1810 nand_read_page_op(chip, page, 0, NULL, 0);
1811
1812 return brcmnand_read(mtd, chip, host->last_addr,
1813 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1814}
1815
1816static int brcmnand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1817 uint8_t *buf, int oob_required, int page)
1818{
1819 struct brcmnand_host *host = nand_get_controller_data(chip);
1820 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
1821 int ret;
1822
1823 nand_read_page_op(chip, page, 0, NULL, 0);
1824
1825 brcmnand_set_ecc_enabled(host, 0);
1826 ret = brcmnand_read(mtd, chip, host->last_addr,
1827 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
1828 brcmnand_set_ecc_enabled(host, 1);
1829 return ret;
1830}
1831
1832static int brcmnand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1833 int page)
1834{
1835 return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1836 mtd->writesize >> FC_SHIFT,
1837 NULL, (u8 *)chip->oob_poi);
1838}
1839
1840static int brcmnand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1841 int page)
1842{
1843 struct brcmnand_host *host = nand_get_controller_data(chip);
1844
1845 brcmnand_set_ecc_enabled(host, 0);
1846 brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
1847 mtd->writesize >> FC_SHIFT,
1848 NULL, (u8 *)chip->oob_poi);
1849 brcmnand_set_ecc_enabled(host, 1);
1850 return 0;
1851}
1852
1853static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
1854 u64 addr, const u32 *buf, u8 *oob)
1855{
1856 struct brcmnand_host *host = nand_get_controller_data(chip);
1857 struct brcmnand_controller *ctrl = host->ctrl;
1858 unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
1859 int status, ret = 0;
1860
1861 dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
1862
1863 if (unlikely((unsigned long)buf & 0x03)) {
1864 dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
1865 buf = (u32 *)((unsigned long)buf & ~0x03);
1866 }
1867
1868 brcmnand_wp(mtd, 0);
1869
1870 for (i = 0; i < ctrl->max_oob; i += 4)
1871 oob_reg_write(ctrl, i, 0xffffffff);
1872
1873#ifndef __UBOOT__
1874 if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
1875 if (brcmnand_dma_trans(host, addr, (u32 *)buf,
1876 mtd->writesize, CMD_PROGRAM_PAGE))
1877 ret = -EIO;
1878 goto out;
1879 }
1880#endif /* __UBOOT__ */
1881
1882 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
1883 (host->cs << 16) | ((addr >> 32) & 0xffff));
1884 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
1885
1886 for (i = 0; i < trans; i++, addr += FC_BYTES) {
1887 /* full address MUST be set before populating FC */
1888 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1889 lower_32_bits(addr));
1890 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1891
1892 if (buf) {
1893 brcmnand_soc_data_bus_prepare(ctrl->soc, false);
1894
1895 for (j = 0; j < FC_WORDS; j++, buf++)
1896 brcmnand_write_fc(ctrl, j, *buf);
1897
1898 brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
1899 } else if (oob) {
1900 for (j = 0; j < FC_WORDS; j++)
1901 brcmnand_write_fc(ctrl, j, 0xffffffff);
1902 }
1903
1904 if (oob) {
1905 oob += write_oob_to_regs(ctrl, i, oob,
1906 mtd->oobsize / trans,
1907 host->hwcfg.sector_size_1k);
1908 }
1909
1910 /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
1911 brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
1912 status = brcmnand_waitfunc(mtd, chip);
1913
1914 if (status & NAND_STATUS_FAIL) {
1915 dev_info(ctrl->dev, "program failed at %llx\n",
1916 (unsigned long long)addr);
1917 ret = -EIO;
1918 goto out;
1919 }
1920 }
1921out:
1922 brcmnand_wp(mtd, 1);
1923 return ret;
1924}
1925
1926static int brcmnand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1927 const uint8_t *buf, int oob_required, int page)
1928{
1929 struct brcmnand_host *host = nand_get_controller_data(chip);
1930 void *oob = oob_required ? chip->oob_poi : NULL;
1931
1932 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1933 brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
1934
1935 return nand_prog_page_end_op(chip);
1936}
1937
1938static int brcmnand_write_page_raw(struct mtd_info *mtd,
1939 struct nand_chip *chip, const uint8_t *buf,
1940 int oob_required, int page)
1941{
1942 struct brcmnand_host *host = nand_get_controller_data(chip);
1943 void *oob = oob_required ? chip->oob_poi : NULL;
1944
1945 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1946 brcmnand_set_ecc_enabled(host, 0);
1947 brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
1948 brcmnand_set_ecc_enabled(host, 1);
1949
1950 return nand_prog_page_end_op(chip);
1951}
1952
1953static int brcmnand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1954 int page)
1955{
1956 return brcmnand_write(mtd, chip, (u64)page << chip->page_shift,
1957 NULL, chip->oob_poi);
1958}
1959
1960static int brcmnand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1961 int page)
1962{
1963 struct brcmnand_host *host = nand_get_controller_data(chip);
1964 int ret;
1965
1966 brcmnand_set_ecc_enabled(host, 0);
1967 ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
1968 (u8 *)chip->oob_poi);
1969 brcmnand_set_ecc_enabled(host, 1);
1970
1971 return ret;
1972}
1973
1974/***********************************************************************
1975 * Per-CS setup (1 NAND device)
1976 ***********************************************************************/
1977
1978static int brcmnand_set_cfg(struct brcmnand_host *host,
1979 struct brcmnand_cfg *cfg)
1980{
1981 struct brcmnand_controller *ctrl = host->ctrl;
1982 struct nand_chip *chip = &host->chip;
1983 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
1984 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
1985 BRCMNAND_CS_CFG_EXT);
1986 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1987 BRCMNAND_CS_ACC_CONTROL);
1988 u8 block_size = 0, page_size = 0, device_size = 0;
1989 u32 tmp;
1990
1991 if (ctrl->block_sizes) {
1992 int i, found;
1993
1994 for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
1995 if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
1996 block_size = i;
1997 found = 1;
1998 }
1999 if (!found) {
2000 dev_warn(ctrl->dev, "invalid block size %u\n",
2001 cfg->block_size);
2002 return -EINVAL;
2003 }
2004 } else {
2005 block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2006 }
2007
2008 if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2009 cfg->block_size > ctrl->max_block_size)) {
2010 dev_warn(ctrl->dev, "invalid block size %u\n",
2011 cfg->block_size);
2012 block_size = 0;
2013 }
2014
2015 if (ctrl->page_sizes) {
2016 int i, found;
2017
2018 for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2019 if (ctrl->page_sizes[i] == cfg->page_size) {
2020 page_size = i;
2021 found = 1;
2022 }
2023 if (!found) {
2024 dev_warn(ctrl->dev, "invalid page size %u\n",
2025 cfg->page_size);
2026 return -EINVAL;
2027 }
2028 } else {
2029 page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2030 }
2031
2032 if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2033 cfg->page_size > ctrl->max_page_size)) {
2034 dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2035 return -EINVAL;
2036 }
2037
2038 if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2039 dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2040 (unsigned long long)cfg->device_size);
2041 return -EINVAL;
2042 }
2043 device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2044
2045 tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2046 (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2047 (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2048 (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2049 (device_size << CFG_DEVICE_SIZE_SHIFT);
2050 if (cfg_offs == cfg_ext_offs) {
2051 tmp |= (page_size << CFG_PAGE_SIZE_SHIFT) |
2052 (block_size << CFG_BLK_SIZE_SHIFT);
2053 nand_writereg(ctrl, cfg_offs, tmp);
2054 } else {
2055 nand_writereg(ctrl, cfg_offs, tmp);
2056 tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2057 (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2058 nand_writereg(ctrl, cfg_ext_offs, tmp);
2059 }
2060
2061 tmp = nand_readreg(ctrl, acc_control_offs);
2062 tmp &= ~brcmnand_ecc_level_mask(ctrl);
2063 tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
2064 tmp &= ~brcmnand_spare_area_mask(ctrl);
2065 tmp |= cfg->spare_area_size;
2066 nand_writereg(ctrl, acc_control_offs, tmp);
2067
2068 brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2069
2070 /* threshold = ceil(BCH-level * 0.75) */
2071 brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2072
2073 return 0;
2074}
2075
2076static void brcmnand_print_cfg(struct brcmnand_host *host,
2077 char *buf, struct brcmnand_cfg *cfg)
2078{
2079 buf += sprintf(buf,
2080 "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2081 (unsigned long long)cfg->device_size >> 20,
2082 cfg->block_size >> 10,
2083 cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2084 cfg->page_size >= 1024 ? "KiB" : "B",
2085 cfg->spare_area_size, cfg->device_width);
2086
2087 /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2088 if (is_hamming_ecc(host->ctrl, cfg))
2089 sprintf(buf, ", Hamming ECC");
2090 else if (cfg->sector_size_1k)
2091 sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2092 else
2093 sprintf(buf, ", BCH-%u", cfg->ecc_level);
2094}
2095
2096/*
2097 * Minimum number of bytes to address a page. Calculated as:
2098 * roundup(log2(size / page-size) / 8)
2099 *
2100 * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2101 * OK because many other things will break if 'size' is irregular...
2102 */
2103static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2104{
2105 return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2106}
2107
2108static int brcmnand_setup_dev(struct brcmnand_host *host)
2109{
2110 struct mtd_info *mtd = nand_to_mtd(&host->chip);
2111 struct nand_chip *chip = &host->chip;
2112 struct brcmnand_controller *ctrl = host->ctrl;
2113 struct brcmnand_cfg *cfg = &host->hwcfg;
2114 char msg[128];
2115 u32 offs, tmp, oob_sector;
2116 int ret;
2117
2118 memset(cfg, 0, sizeof(*cfg));
2119
2120#ifndef __UBOOT__
2121 ret = of_property_read_u32(nand_get_flash_node(chip),
2122 "brcm,nand-oob-sector-size",
2123 &oob_sector);
2124#else
2125 ret = ofnode_read_u32(nand_get_flash_node(chip),
2126 "brcm,nand-oob-sector-size",
2127 &oob_sector);
2128#endif /* __UBOOT__ */
2129 if (ret) {
2130 /* Use detected size */
2131 cfg->spare_area_size = mtd->oobsize /
2132 (mtd->writesize >> FC_SHIFT);
2133 } else {
2134 cfg->spare_area_size = oob_sector;
2135 }
2136 if (cfg->spare_area_size > ctrl->max_oob)
2137 cfg->spare_area_size = ctrl->max_oob;
2138 /*
2139 * Set oobsize to be consistent with controller's spare_area_size, as
2140 * the rest is inaccessible.
2141 */
2142 mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2143
2144 cfg->device_size = mtd->size;
2145 cfg->block_size = mtd->erasesize;
2146 cfg->page_size = mtd->writesize;
2147 cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2148 cfg->col_adr_bytes = 2;
2149 cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2150
2151 if (chip->ecc.mode != NAND_ECC_HW) {
2152 dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2153 chip->ecc.mode);
2154 return -EINVAL;
2155 }
2156
2157 if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
2158 if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2159 /* Default to Hamming for 1-bit ECC, if unspecified */
2160 chip->ecc.algo = NAND_ECC_HAMMING;
2161 else
2162 /* Otherwise, BCH */
2163 chip->ecc.algo = NAND_ECC_BCH;
2164 }
2165
2166 if (chip->ecc.algo == NAND_ECC_HAMMING && (chip->ecc.strength != 1 ||
2167 chip->ecc.size != 512)) {
2168 dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2169 chip->ecc.strength, chip->ecc.size);
2170 return -EINVAL;
2171 }
2172
2173 switch (chip->ecc.size) {
2174 case 512:
2175 if (chip->ecc.algo == NAND_ECC_HAMMING)
2176 cfg->ecc_level = 15;
2177 else
2178 cfg->ecc_level = chip->ecc.strength;
2179 cfg->sector_size_1k = 0;
2180 break;
2181 case 1024:
2182 if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2183 dev_err(ctrl->dev, "1KB sectors not supported\n");
2184 return -EINVAL;
2185 }
2186 if (chip->ecc.strength & 0x1) {
2187 dev_err(ctrl->dev,
2188 "odd ECC not supported with 1KB sectors\n");
2189 return -EINVAL;
2190 }
2191
2192 cfg->ecc_level = chip->ecc.strength >> 1;
2193 cfg->sector_size_1k = 1;
2194 break;
2195 default:
2196 dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2197 chip->ecc.size);
2198 return -EINVAL;
2199 }
2200
2201 cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2202 if (mtd->writesize > 512)
2203 cfg->ful_adr_bytes += cfg->col_adr_bytes;
2204 else
2205 cfg->ful_adr_bytes += 1;
2206
2207 ret = brcmnand_set_cfg(host, cfg);
2208 if (ret)
2209 return ret;
2210
2211 brcmnand_set_ecc_enabled(host, 1);
2212
2213 brcmnand_print_cfg(host, msg, cfg);
2214 dev_info(ctrl->dev, "detected %s\n", msg);
2215
2216 /* Configure ACC_CONTROL */
2217 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2218 tmp = nand_readreg(ctrl, offs);
2219 tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2220 tmp &= ~ACC_CONTROL_RD_ERASED;
2221
2222 /* We need to turn on Read from erased paged protected by ECC */
2223 if (ctrl->nand_version >= 0x0702)
2224 tmp |= ACC_CONTROL_RD_ERASED;
2225 tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2226 if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2227 tmp &= ~ACC_CONTROL_PREFETCH;
2228
2229 nand_writereg(ctrl, offs, tmp);
2230
2231 return 0;
2232}
2233
2234#ifndef __UBOOT__
2235static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
2236#else
2237static int brcmnand_init_cs(struct brcmnand_host *host, ofnode dn)
2238#endif
2239{
2240 struct brcmnand_controller *ctrl = host->ctrl;
2241#ifndef __UBOOT__
2242 struct platform_device *pdev = host->pdev;
2243#else
2244 struct udevice *pdev = host->pdev;
2245#endif /* __UBOOT__ */
2246 struct mtd_info *mtd;
2247 struct nand_chip *chip;
2248 int ret;
2249 u16 cfg_offs;
2250
2251#ifndef __UBOOT__
2252 ret = of_property_read_u32(dn, "reg", &host->cs);
2253#else
2254 ret = ofnode_read_s32(dn, "reg", &host->cs);
2255#endif
2256 if (ret) {
2257 dev_err(&pdev->dev, "can't get chip-select\n");
2258 return -ENXIO;
2259 }
2260
2261 mtd = nand_to_mtd(&host->chip);
2262 chip = &host->chip;
2263
2264 nand_set_flash_node(chip, dn);
2265 nand_set_controller_data(chip, host);
2266#ifndef __UBOOT__
2267 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
2268 host->cs);
2269#else
2270 mtd->name = devm_kasprintf(pdev, GFP_KERNEL, "brcmnand.%d",
2271 host->cs);
2272#endif /* __UBOOT__ */
2273 if (!mtd->name)
2274 return -ENOMEM;
2275
2276 mtd->owner = THIS_MODULE;
2277#ifndef __UBOOT__
2278 mtd->dev.parent = &pdev->dev;
2279#else
2280 mtd->dev->parent = pdev;
2281#endif /* __UBOOT__ */
2282
2283 chip->IO_ADDR_R = (void __iomem *)0xdeadbeef;
2284 chip->IO_ADDR_W = (void __iomem *)0xdeadbeef;
2285
2286 chip->cmd_ctrl = brcmnand_cmd_ctrl;
2287 chip->cmdfunc = brcmnand_cmdfunc;
2288 chip->waitfunc = brcmnand_waitfunc;
2289 chip->read_byte = brcmnand_read_byte;
2290 chip->read_buf = brcmnand_read_buf;
2291 chip->write_buf = brcmnand_write_buf;
2292
2293 chip->ecc.mode = NAND_ECC_HW;
2294 chip->ecc.read_page = brcmnand_read_page;
2295 chip->ecc.write_page = brcmnand_write_page;
2296 chip->ecc.read_page_raw = brcmnand_read_page_raw;
2297 chip->ecc.write_page_raw = brcmnand_write_page_raw;
2298 chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2299 chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2300 chip->ecc.read_oob = brcmnand_read_oob;
2301 chip->ecc.write_oob = brcmnand_write_oob;
2302
2303 chip->controller = &ctrl->controller;
2304
2305 /*
2306 * The bootloader might have configured 16bit mode but
2307 * NAND READID command only works in 8bit mode. We force
2308 * 8bit mode here to ensure that NAND READID commands works.
2309 */
2310 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2311 nand_writereg(ctrl, cfg_offs,
2312 nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2313
2314 ret = nand_scan_ident(mtd, 1, NULL);
2315 if (ret)
2316 return ret;
2317
2318 chip->options |= NAND_NO_SUBPAGE_WRITE;
2319 /*
2320 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2321 * to/from, and have nand_base pass us a bounce buffer instead, as
2322 * needed.
2323 */
2324 chip->options |= NAND_USE_BOUNCE_BUFFER;
2325
2326 if (chip->bbt_options & NAND_BBT_USE_FLASH)
2327 chip->bbt_options |= NAND_BBT_NO_OOB;
2328
2329 if (brcmnand_setup_dev(host))
2330 return -ENXIO;
2331
2332 chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2333 /* only use our internal HW threshold */
2334 mtd->bitflip_threshold = 1;
2335
William Zhang1100e492019-09-04 10:51:13 -07002336 chip->ecc.layout = brcmstb_choose_ecc_layout(host);
2337 if (!chip->ecc.layout)
2338 return -ENXIO;
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01002339
2340 ret = nand_scan_tail(mtd);
2341 if (ret)
2342 return ret;
2343
2344#ifndef __UBOOT__
2345 ret = mtd_device_register(mtd, NULL, 0);
2346 if (ret)
2347 nand_cleanup(chip);
2348#else
2349 ret = nand_register(0, mtd);
2350#endif /* __UBOOT__ */
2351
2352 return ret;
2353}
2354
2355#ifndef __UBOOT__
2356static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2357 int restore)
2358{
2359 struct brcmnand_controller *ctrl = host->ctrl;
2360 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2361 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2362 BRCMNAND_CS_CFG_EXT);
2363 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2364 BRCMNAND_CS_ACC_CONTROL);
2365 u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2366 u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2367
2368 if (restore) {
2369 nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2370 if (cfg_offs != cfg_ext_offs)
2371 nand_writereg(ctrl, cfg_ext_offs,
2372 host->hwcfg.config_ext);
2373 nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2374 nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2375 nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2376 } else {
2377 host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2378 if (cfg_offs != cfg_ext_offs)
2379 host->hwcfg.config_ext =
2380 nand_readreg(ctrl, cfg_ext_offs);
2381 host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2382 host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2383 host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2384 }
2385}
2386
2387static int brcmnand_suspend(struct device *dev)
2388{
2389 struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2390 struct brcmnand_host *host;
2391
2392 list_for_each_entry(host, &ctrl->host_list, node)
2393 brcmnand_save_restore_cs_config(host, 0);
2394
2395 ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2396 ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2397 ctrl->corr_stat_threshold =
2398 brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2399
2400 if (has_flash_dma(ctrl))
2401 ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2402
2403 return 0;
2404}
2405
2406static int brcmnand_resume(struct device *dev)
2407{
2408 struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2409 struct brcmnand_host *host;
2410
2411 if (has_flash_dma(ctrl)) {
2412 flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2413 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2414 }
2415
2416 brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2417 brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2418 brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2419 ctrl->corr_stat_threshold);
2420 if (ctrl->soc) {
2421 /* Clear/re-enable interrupt */
2422 ctrl->soc->ctlrdy_ack(ctrl->soc);
2423 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2424 }
2425
2426 list_for_each_entry(host, &ctrl->host_list, node) {
2427 struct nand_chip *chip = &host->chip;
2428
2429 brcmnand_save_restore_cs_config(host, 1);
2430
2431 /* Reset the chip, required by some chips after power-up */
2432 nand_reset_op(chip);
2433 }
2434
2435 return 0;
2436}
2437
2438const struct dev_pm_ops brcmnand_pm_ops = {
2439 .suspend = brcmnand_suspend,
2440 .resume = brcmnand_resume,
2441};
2442EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2443
2444static const struct of_device_id brcmnand_of_match[] = {
2445 { .compatible = "brcm,brcmnand-v4.0" },
2446 { .compatible = "brcm,brcmnand-v5.0" },
2447 { .compatible = "brcm,brcmnand-v6.0" },
2448 { .compatible = "brcm,brcmnand-v6.1" },
2449 { .compatible = "brcm,brcmnand-v6.2" },
2450 { .compatible = "brcm,brcmnand-v7.0" },
2451 { .compatible = "brcm,brcmnand-v7.1" },
2452 { .compatible = "brcm,brcmnand-v7.2" },
2453 {},
2454};
2455MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2456#endif /* __UBOOT__ */
2457
2458/***********************************************************************
2459 * Platform driver setup (per controller)
2460 ***********************************************************************/
2461
2462#ifndef __UBOOT__
2463int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
2464#else
2465int brcmnand_probe(struct udevice *dev, struct brcmnand_soc *soc)
2466#endif /* __UBOOT__ */
2467{
2468#ifndef __UBOOT__
2469 struct device *dev = &pdev->dev;
2470 struct device_node *dn = dev->of_node, *child;
2471#else
2472 ofnode child;
2473 struct udevice *pdev = dev;
2474#endif /* __UBOOT__ */
2475 struct brcmnand_controller *ctrl;
2476#ifndef __UBOOT__
2477 struct resource *res;
2478#else
2479 struct resource res;
2480#endif /* __UBOOT__ */
2481 int ret;
2482
2483#ifndef __UBOOT__
2484 /* We only support device-tree instantiation */
2485 if (!dn)
2486 return -ENODEV;
2487
2488 if (!of_match_node(brcmnand_of_match, dn))
2489 return -ENODEV;
2490#endif /* __UBOOT__ */
2491
2492 ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
2493 if (!ctrl)
2494 return -ENOMEM;
2495
2496#ifndef __UBOOT__
2497 dev_set_drvdata(dev, ctrl);
2498#else
2499 /*
2500 * in u-boot, the data for the driver is allocated before probing
2501 * so to keep the reference to ctrl, we store it in the variable soc
2502 */
2503 soc->ctrl = ctrl;
2504#endif /* __UBOOT__ */
2505 ctrl->dev = dev;
2506
2507 init_completion(&ctrl->done);
2508 init_completion(&ctrl->dma_done);
2509 nand_hw_control_init(&ctrl->controller);
2510 INIT_LIST_HEAD(&ctrl->host_list);
2511
Philippe Reynes7f28cf62019-03-15 15:14:37 +01002512 /* Is parameter page in big endian ? */
2513 ctrl->parameter_page_big_endian =
2514 dev_read_u32_default(dev, "parameter-page-big-endian", 1);
2515
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01002516 /* NAND register range */
2517#ifndef __UBOOT__
2518 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2519 ctrl->nand_base = devm_ioremap_resource(dev, res);
2520#else
2521 dev_read_resource(pdev, 0, &res);
2522 ctrl->nand_base = devm_ioremap(pdev, res.start, resource_size(&res));
2523#endif
2524 if (IS_ERR(ctrl->nand_base))
2525 return PTR_ERR(ctrl->nand_base);
2526
2527 /* Enable clock before using NAND registers */
2528 ctrl->clk = devm_clk_get(dev, "nand");
2529 if (!IS_ERR(ctrl->clk)) {
2530 ret = clk_prepare_enable(ctrl->clk);
2531 if (ret)
2532 return ret;
2533 } else {
2534 ret = PTR_ERR(ctrl->clk);
2535 if (ret == -EPROBE_DEFER)
2536 return ret;
2537
2538 ctrl->clk = NULL;
2539 }
2540
2541 /* Initialize NAND revision */
2542 ret = brcmnand_revision_init(ctrl);
2543 if (ret)
2544 goto err;
2545
2546 /*
2547 * Most chips have this cache at a fixed offset within 'nand' block.
2548 * Some must specify this region separately.
2549 */
2550#ifndef __UBOOT__
2551 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
2552 if (res) {
2553 ctrl->nand_fc = devm_ioremap_resource(dev, res);
2554 if (IS_ERR(ctrl->nand_fc)) {
2555 ret = PTR_ERR(ctrl->nand_fc);
2556 goto err;
2557 }
2558 } else {
2559 ctrl->nand_fc = ctrl->nand_base +
2560 ctrl->reg_offsets[BRCMNAND_FC_BASE];
2561 }
2562#else
2563 if (!dev_read_resource_byname(pdev, "nand-cache", &res)) {
2564 ctrl->nand_fc = devm_ioremap(dev, res.start,
2565 resource_size(&res));
2566 if (IS_ERR(ctrl->nand_fc)) {
2567 ret = PTR_ERR(ctrl->nand_fc);
2568 goto err;
2569 }
2570 } else {
2571 ctrl->nand_fc = ctrl->nand_base +
2572 ctrl->reg_offsets[BRCMNAND_FC_BASE];
2573 }
2574#endif
2575
2576#ifndef __UBOOT__
2577 /* FLASH_DMA */
2578 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
2579 if (res) {
2580 ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
2581 if (IS_ERR(ctrl->flash_dma_base)) {
2582 ret = PTR_ERR(ctrl->flash_dma_base);
2583 goto err;
2584 }
2585
2586 flash_dma_writel(ctrl, FLASH_DMA_MODE, 1); /* linked-list */
2587 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2588
2589 /* Allocate descriptor(s) */
2590 ctrl->dma_desc = dmam_alloc_coherent(dev,
2591 sizeof(*ctrl->dma_desc),
2592 &ctrl->dma_pa, GFP_KERNEL);
2593 if (!ctrl->dma_desc) {
2594 ret = -ENOMEM;
2595 goto err;
2596 }
2597
2598 ctrl->dma_irq = platform_get_irq(pdev, 1);
2599 if ((int)ctrl->dma_irq < 0) {
2600 dev_err(dev, "missing FLASH_DMA IRQ\n");
2601 ret = -ENODEV;
2602 goto err;
2603 }
2604
2605 ret = devm_request_irq(dev, ctrl->dma_irq,
2606 brcmnand_dma_irq, 0, DRV_NAME,
2607 ctrl);
2608 if (ret < 0) {
2609 dev_err(dev, "can't allocate IRQ %d: error %d\n",
2610 ctrl->dma_irq, ret);
2611 goto err;
2612 }
2613
2614 dev_info(dev, "enabling FLASH_DMA\n");
2615 }
2616#endif /* __UBOOT__ */
2617
2618 /* Disable automatic device ID config, direct addressing */
2619 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
2620 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
2621 /* Disable XOR addressing */
2622 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
2623
Philippe Reynes77669af2019-03-15 15:14:38 +01002624 /* Read the write-protect configuration in the device tree */
2625 wp_on = dev_read_u32_default(dev, "write-protect", wp_on);
2626
Philippe Reynes5aa6cfb2019-03-15 15:14:36 +01002627 if (ctrl->features & BRCMNAND_HAS_WP) {
2628 /* Permanently disable write protection */
2629 if (wp_on == 2)
2630 brcmnand_set_wp(ctrl, false);
2631 } else {
2632 wp_on = 0;
2633 }
2634
2635#ifndef __UBOOT__
2636 /* IRQ */
2637 ctrl->irq = platform_get_irq(pdev, 0);
2638 if ((int)ctrl->irq < 0) {
2639 dev_err(dev, "no IRQ defined\n");
2640 ret = -ENODEV;
2641 goto err;
2642 }
2643
2644 /*
2645 * Some SoCs integrate this controller (e.g., its interrupt bits) in
2646 * interesting ways
2647 */
2648 if (soc) {
2649 ctrl->soc = soc;
2650
2651 ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
2652 DRV_NAME, ctrl);
2653
2654 /* Enable interrupt */
2655 ctrl->soc->ctlrdy_ack(ctrl->soc);
2656 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2657 } else {
2658 /* Use standard interrupt infrastructure */
2659 ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
2660 DRV_NAME, ctrl);
2661 }
2662 if (ret < 0) {
2663 dev_err(dev, "can't allocate IRQ %d: error %d\n",
2664 ctrl->irq, ret);
2665 goto err;
2666 }
2667#endif /* __UBOOT__ */
2668
2669#ifndef __UBOOT__
2670 for_each_available_child_of_node(dn, child) {
2671 if (of_device_is_compatible(child, "brcm,nandcs")) {
2672 struct brcmnand_host *host;
2673
2674 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2675 if (!host) {
2676 of_node_put(child);
2677 ret = -ENOMEM;
2678 goto err;
2679 }
2680 host->pdev = pdev;
2681 host->ctrl = ctrl;
2682
2683 ret = brcmnand_init_cs(host, child);
2684 if (ret) {
2685 devm_kfree(dev, host);
2686 continue; /* Try all chip-selects */
2687 }
2688
2689 list_add_tail(&host->node, &ctrl->host_list);
2690 }
2691 }
2692#else
2693 ofnode_for_each_subnode(child, dev_ofnode(dev)) {
2694 if (ofnode_device_is_compatible(child, "brcm,nandcs")) {
2695 struct brcmnand_host *host;
2696
2697 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2698 if (!host) {
2699 ret = -ENOMEM;
2700 goto err;
2701 }
2702 host->pdev = pdev;
2703 host->ctrl = ctrl;
2704
2705 ret = brcmnand_init_cs(host, child);
2706 if (ret) {
2707 devm_kfree(dev, host);
2708 continue; /* Try all chip-selects */
2709 }
2710
2711 list_add_tail(&host->node, &ctrl->host_list);
2712 }
2713 }
2714#endif /* __UBOOT__ */
2715
2716err:
2717#ifndef __UBOOT__
2718 clk_disable_unprepare(ctrl->clk);
2719#else
2720 if (ctrl->clk)
2721 clk_disable(ctrl->clk);
2722#endif /* __UBOOT__ */
2723 return ret;
2724
2725}
2726EXPORT_SYMBOL_GPL(brcmnand_probe);
2727
2728#ifndef __UBOOT__
2729int brcmnand_remove(struct platform_device *pdev)
2730{
2731 struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
2732 struct brcmnand_host *host;
2733
2734 list_for_each_entry(host, &ctrl->host_list, node)
2735 nand_release(nand_to_mtd(&host->chip));
2736
2737 clk_disable_unprepare(ctrl->clk);
2738
2739 dev_set_drvdata(&pdev->dev, NULL);
2740
2741 return 0;
2742}
2743#else
2744int brcmnand_remove(struct udevice *pdev)
2745{
2746 return 0;
2747}
2748#endif /* __UBOOT__ */
2749EXPORT_SYMBOL_GPL(brcmnand_remove);
2750
2751MODULE_LICENSE("GPL v2");
2752MODULE_AUTHOR("Kevin Cernekee");
2753MODULE_AUTHOR("Brian Norris");
2754MODULE_DESCRIPTION("NAND driver for Broadcom chips");
2755MODULE_ALIAS("platform:brcmnand");